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Abstract

For item response theory (IRT) models, which belong to the class of generalized linear or non-
linear mixed models, reliability at the scale of observed scores, i.e., manifest correlation, is usually
of greater scientific interest, while its calculation is more difficult than latent correlation based
reliability. This is not in the least because it cannot be calculated explicitly when the logit link is
used in conjunction with normal random effects. As such, approximations like Fisher’s information
coefficient, Cronbach’s α, or the latent correlation are calculated, allegedly because it is easy to do
so. Cronbach’s α has well-known and serious drawbacks, Fisher’s information is not meaningful
under certain circumstances and there is an important but often overlooked difference between
latent and manifest correlations. Here, manifest correlation refers to correlation between observed
scores, while latent correlation refers to correlation between scores at the latent scale, e.g., logit
or probit scale. Thus, using one in place of the other can lead to erroneous conclusions. Taylor
series based reliability measures, which are based on manifest correlation functions, are derived
and a careful comparison of reliability measures based on latent correlations, Fisher’s information,
and exact reliability is effectuated. The latent correlations are virtually always considerably higher
than their manifest counterparts, Fisher’s information measure shows no coherent behavior (it
is even negative in some cases), while the newly introduced Taylor series based approximations
reflect the exact reliability very closely. Comparisons among the various types of correlations, for
various IRT models, are made using algebraic expressions, Monte Carlo simulations, and data
analysis. Considering the light computational burden and the performance of Taylor series based
reliability measures, their use is recommended.

Some Keywords: 1PL model; 2PL model; Logit link; Probit link; Rasch model.

1 Introduction

Measurement studies play a vital role in exploring various attributes, like social and intellectual
behavior. The relevance of such studies depends on several, equally important factors, which include
reliability of the tool used for measurement. Culligan (2008) defines reliability as a measure of
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the consistency of the application of an instrument to a particular population at a particular time.

Classical test theory (CTT) remains one of the most used paradigms for the analysis of measurement
studies, within which the concept of reliability is well developed. In CTT, the reliability measure is

simply the proportion of true to observed variance. Limitations in classical theory (Schaeffer et al.,
1986; O’Brien, 1995) have led to the development of several alternatives, in some of which deriving
a reliability measure is straightforward, such as in CTT, while in others it is not.

Examples include generalizability theory (GT), which makes use of linear mixed models to estimate

various variance components used in estimating reliability (Van Leeuwen et al., 1998). With linear
mixed models, the definition of reliability as a proportion of true to observed variance is easily carried

forward due to the nice properties of the normal distribution, which is usually assumed for the
observed responses, the most notable being the separation of mean and variance parameters.

For binary response items, Item response theory (IRT) has indisputably commanded wide application

among measurement studies, mostly for its advantages over classical theory (Rasch, 1960; De Ayala,
2009). Much as IRT models are commonly used for measurement of variables like attributes and at-

titudes (Van der Linden & Hambleton, 1997), the question of reliability of measurements (Spearman,
1904), which is crucial for such studies, cannot be ignored.

Unfortunately, peculiarities emerge when dealing with binary responses. For normally distributed

outcomes, reliability of measurement reduces to, σ2
θ/(σ2

θ + σ2
ε), where σ2

θ is the variance of the
person trait θ and σ2

ε is the variance of the distribution assumed for the errors. This is commonly

referred to as intraclass correlation (Molenberghs & Verbeke, 2005). Directly using intraclass corre-
lation for dichotomous responses produces what is known as latent correlation because it gives the

correlation between responses at a logit or probit scale. It follows that reliability measured using
latent correlation will be at a latent scale. More often than not, scientific interest is in the reliability
of the observed scores rather than the latent ones such that meaningful reliability measures have

to be based on manifest correlation, i.e., correlation between observed scores. While for normally
distributed outcomes latent and manifest correlations coincide, this is no longer the case for binary or

other non-normal outcomes. Hence, to obtain meaningful reliability measures, appropriate quantities
for the intraclass correlation formula have to be derived.

Reliability measures based on manifest correlations are not as well developed for dichotomous re-

sponses as is the case for continous responses. Briggs & Wilson (2007) and Rodŕıguez & Elo (2003)
note that these are usually difficult to derive because they involve the evaluation of integrals that

lack closed forms and thus are not widely used. To bypass such difficulties, approximate reliability
measures are preferred and these include: Cronbach’s α, the intra-class correlation, and Fisher’s

Information measure. Drawbacks for using Cronbach’s α in IRT have been well documented (Cron-
bach & Shavelson, 2004), and Fisher’s Information measure has limited application, given that under

some conditions it can be negative (Mesbah et al., 2002). Therefore, it is not meaningful in some
cases. Furthermore, its extension to models with multi-dimension traits is not clear. Some drawbacks
regarding the use of the intraclass correlation in IRT, i.e., using reliability measures based on latent

correlation, will be highlighted in the sections to follow.

Most of the IRT models fall into the family of generalized linear mixed models (GLMM), an exten-
sion of linear mixed models to a special family of non-linear mixed models (Molenberghs & Verbeke,

2005; Rijmen et al., 2003), where the outcome is of a non-Gaussian type, but the effects of predictor
variables still enter a so-called linear predictor function. Vangeneugden et al. (2010) derived approx-

imate manifest variance-covariance functions and correlation functions for the GLMM family. The
approximation totally evades the need to evaluate integrals and requires the input of estimates that
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are easily obtained during models estimation.

Taking into account that One- and Two-parameter Logistic (1PL and 2PL) models belong to the

GLMM family, we explore the usefulness of such approximations in these two IRT models towards
obtaining reliability measures. Whereas the goal of Vangeneugden et al. (2010) was to estimate

manifest correlations between two binary outcomes within a subject (which are the correlations of
interest for most model members of the GLMM), by studying these approximations in the context
of a combination of Classical Test Theory (CTT) and IRT, we derive reliability measures, both at

the expected item score and expected sum score levels, that directly correspond to the definition
of reliability in CTT, i.e., proportion of true to observed variance, which are based on manifest

correlations. The performance of these measures will be assesed through a simulation study which will
compare the newly derived approximations, latent and Fisher Information based reliability measures

to the exact reliability. Applicability will be shown through an empirical data analysis of Verbal
Aggression and Law School Admission Test datasets.

The organization of this paper is as follows. A brief description of the case studies is presented

in Section 2. Section 3 is dedicated to the measures of reliability in IRT, and Section 4 reviews
the general correlation functions as derived by Vangeneugden et al. (2010), including the derivation

of the correlation functions for the specific 1PL and 2PL models. The design and results of the
simulation study are described in Section 5. The analysis of the case studies in Section 6 is followed

by concluding remarks in Section 7.

2 Data Description

2.1 Verbal Aggression Data

The data consist of subjects’ responses to questions about verbal aggression. The instrument is a

behavioral questionnaire. All items refer to verbally aggressive reactions in a frustrating situation.
The data can also be considered as from a psychological experiment which has three design factors.

(1) Behavior mode: a differentiation is made between two levels, i.e., wanting to do and the actual
doing. (2) Situation type: This factor has two levels, namely other-to-blame and self-to-blame

situation type, and each of these levels has two situations. Self to blame situations were: ‘The
grocery closes just as I am about to enter’ and ‘The operator disconnects me when I had used up

my last 10 cents’. Other to-blame situations were: ‘A bus fails to stop for me’ and ‘I miss the train
because a clerk gave me faulty information’. So, the situations can also be viewed as nested in
the situation type. (3) Behavior type: this had three kinds of behaviors, namely shout, scold, and

curse. An example of an item in this instrument was: ‘A bus fails to stop for me. I would want to
curse’. Possible answers were, no (0), perhaps (1), and yes (2). In our application, we will use the

dichotomized version of the response, in which ‘no’ and ‘perhaps’ are recoded as 0 and ‘yes’ as 1. A
detailed description of the data and its items can be found in Vansteelandt (2000) and De Boeck &

Wilson (2004).

2.2 Law School Admission Test (LSAT6) Data

LSAT is a standardized test administered to prospective law students and designed to assess reading
comprehension, logical and verbal reasoning proficiencies. The data comprise scores on five items

of Section 6 of of the LSAT, for 1000 examinees. The data are publicly available in the R package
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mirt; they are well described in Bock & Lieberman (1970).

3 Reliability Measures in One Parameter Logistic (1PL) and Two Parameter Lo-
gistic (2PL) Models

Reliability measures of common interest for 1PL and 2PL models, which are also the focus of this

work, include reliability of expected item score and reliability of the expected sum score. This section
reviews both exact and approximate methods for estimating such measures.

3.1 Exact Reliability Measures

Customarily, expected item and sum score reliability measures are computed based on observed

scores, which are binary in nature for 1PL and 2PL models. While exact methods for estimating such
measures are widely known, they are rarely used in practice because they are computationally inten-

sive; instead, approximations are preferred. The exact measures are reviewed to facilitate comparison
with the approximate one.

Define Yji as a realized score on item i = 1, . . . , I by person j = 1, . . . , N . It is common to express

the observed score as:
Yji = µji + εji,

where µji is the true score and εji is the error score. Equivalently, the 2PL model formulates the
observed score as

Yji = µji + εji =
exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]
+ εji, (1)

where θj is the person trait score, with θj having variance σ2
θ , αi and βi the discrimination and

difficulty values for item i, and εji the error term, which in this case is a function of µji.

Recall that our focus is on the expected item and expected sum scores, which are given by:

Yi =

∫ {
exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]
+ εji

}
φ(θj|0, σ2

θ) dθ = µi + εi (2)

ST =

∫ I∑

i=1

{
exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]
+ εji

}
φ(θj|0, σ2

θ) dθ = µ + ε,

respectively. Dimitrov (2003) defines their corresponding variances as:

Var(εi) =

∫
µji(1 − µji) φ(θj|0, σ2

θ) dθ,

Var(µi) = µi(1 − µi)− Var(εi),

Var(ε) =

I∑

i=1

Var(εi),

Var(µ) =

∫ {
I∑

i=1

exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]

}2

φ(θj|0, σ2
θ) dθ

+

{∫ I∑

i=1

exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]
φ(θj|0, σ2

θ) dθ

}2

,
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with reliability defined as the proportion of true variance to observed variance. Further,

ρi =
Var(µi)

Var(µi) + Var(εi)
,

ρs =
Var(µ)

Var(µ) + Var(ε)

measure the expected item score and expected sum score reliability, respectively. Each of the com-

ponents for obtaining these measures involves integration of normal random effects over binary data
distributions, which are known to lack a closed form. The computational burden associated with

these measures arguably results into their infrequent use in practice.

3.2 Intra-class Correlation (Latent)

The definition of the intra-class correlation stems directly from the definition of reliability in CTT,
which is the ratio of the true over the observed variance. Let Yji be a continuous observed score for

person j = 1, . . . , N on item i = 1, . . . , I , and further Y c
j = (Yj1, . . . , YjI). Using a linear mixed

model, the observed score can be expressed in terms of the true score µj and error as follows:

Y c
j = µj + εj = θj − β + εj , (3)

where β is the vector of item difficulties, θj ∼ N (0, σ2
θ), and εj ∼ N (0, σ2

εII), are the measures of

person trait and random errors, respectively. Further, Cov(θj, εj) = 0. It has been shown that

Var(Y c
j) = Var(µj) + Var(εj) = 1Iσ

2
θ1

′

I + σ2
εII

(Verbeke & Molenberghs, 2000). For illustrative purposes, consider the case of I = 2. Then,

Var(µj) =

[
σ2

θ σ2
θ

σ2
θ σ2

θ

]

, Var(εj) =

[
σ2

ε 0

0 σ2
ε

]

. (4)

Item and sum score reliability measures follow as:

ρi1 =
σ2

θ

σ2
θ + σ2

ε

, ρs2
=

2σ2
θ

2σ2
θ + σ2

ε

, (5)

which correspond to ICC(1) and ICC(k) measures in McGraw & Wong (1996).

The same arguments can be followed when µj = α(θj − β) and the equivalent quantities are:

Var(Y c
j) = Var(µj) + Var(εj) = αIσ

2
θα′

I + σ2
εII ,

Var(µj) =

[
α2

i σ
2
θ αiαi′σ

2
θ

αiαi′σ
2
θ α2

i′σ
2
θ

]
,

Var(εj) =

[
σ2

ε 0

0 σ2
ε

]

,

ρi2 =
α2

i σ
2
θ

α2
i σ

2
θ + σ2

ε

, (6)

ρs2
=

σ2
θ(αi + αi′)

2

σ2
θ(αi + αi′)2 + 2σ2

ε

. (7)
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Now, consider a binary observed score modeled through the 1PL model as:

logit [P (Y j = 1)] = θj − β. (8)

It has been noted (Agresti, 2002) that (8) can be expressed in the form of (3), as follows:

Y ∗

j = µj + εj = θj − β + ε∗j , (9)

where Y ∗

ji is assumed to be a latent continuous score underlying the dichotomization of Yji, such that
Yji = 1 if Y ∗

ji ≥ C and 0 otherwise, with C a pre-specified threshold and ε∗ ∼ Logistic(0, 1). Model
(9) is a typical linear mixed model, hence the theory behind the derivation of reliability measures (5),

(6), and (7), can be applied directly and the corresponding reliability measures are:

ρil1 =
σ2

θ

σ2
θ + π2

3

and ρsl1
=

2σ2
θ

2σ2
θ + π2

3

, (10)

for item and test score, respectively, for the 1PL model. Equivalent expressions for the 2PL model
are:

ρil2 =
α2

i σ
2
θ

α2
i σ

2
θ + π2

3

, and ρsl2
=

σ2
θ(αi + αi′)

2

σ2
θ(αi + αi′)2 + 2π2

3

, (11)

for the item and test reliability, respectively, π2/3 is the variance of the underlying error distribution,
the standard logistic distribution. While the mathematical motivation is appealing, it is evident that

(10) and (11) only depend on σ2
θ . Hence, any change in this value, for example, due to change in

identification restrictions, will result in varying reliability. These are examples of reliability measures
based on latent correlation and, as noted before, for the binary case such measures do not coincide

with their manifest correlation based counterparts. In a way this is unfortunate, especially in cases
where there are no closed forms for the marginal model stemming from the hierarchical formulation.

Note that the difference between latent and manifest correlation is independent of the existence
of a closed form. For example, a probit link with normal random effects allows for a closed-form

formulation (Molenberghs et al., 2010), but also there the two correlations have a different expression.
In general, latent correlation should not be used when manifest correlation is of interest.

3.3 Fisher Information

A common approach for dichotomous IRT models, is to use a Fisher information based test score
reliability measure, which for the 2PL model is obtained as follows. Define total information as:

I(θj; I) =

I∑

i=1

α2
i

exp(ηji)

[1 + exp(ηji)]2
,

with ηji = αi(θj − βi), where βi is the difficulty value for item i, θj is the value of the latent trait
for person j, and I is the total number of items. The expression is intuitively appealing, given that

it is a sum over standard logistic variances. An approximation of the reliability coefficient follows as:

ρf = 1 −
1

N

N∑

j=1

I(θj; I)−1

σ̂2
θ

(12)

(Lord, 1983), where σ̂2
θ is the estimated variance of the latent trait, e.g., the observed variance

of person parameters and N the total number of persons. This approximation is only valid when

the number of items is large; it also requires the knowledge of true values of difficulty parameters,
information which usually is beyond reach. A 1PL equivalent follows by setting α = 1.
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4 Taylor-series-based Derivation of the Correlation Function

4.1 Manifest Correlation Functions For GLMM

We present here a brief review of the explicit but approximate correlation functions, as based on

Taylor-series approximations as derived for GLMM family and explained in detail in Vangeneugden
et al. (2010). Let Yji be the ith outcome measured on person j , j = 1, . . .N and i = 1, . . . , I ;

further let Y j = (Yj1, . . . , Yjnj
)′.

Write the general model as Y j = µj + εj , where the conditional mean, given the random effects
are written as µj = h(Xjβ + Zjθj), and where β is a vector of fixed-effects parameters, θj are

random effects, Xj and Zj are known design matrices, and h is a known link function. Finally,
εj = (εj1, . . . , εjnj

)′ is the residual error component.

The general formula for the variance-covariance matrix of Y j was derived without any restriction

on the distribution of the outcome variable, nor on the complexity of the model, e.g., allowing
for serial correlation or not. This maximizes the similarity with the case of continuous, normally

distributed outcomes. However, a key distinction is that in the Gaussian case the mean and variance
are functionally independent parameters, whereas here the residual variance will follow from the

mean. The variance-covariance matrix can be written as:

V j = Var(Y j) = Var(µj + εi) = Var(µj) + Var(εj) + 2Cov(µj, εj). (13)

Because µj depends on θj only, which is independent of εj, it follows that Cov(µj , εj) = 0, and the
first term in (13), using a first-order Taylor series expansion around θj = 0 reduces to:

Var(µj) = Var[µj(ηj)] = Var[µj(Xjβ + Zjθj)]

∼=

(
∂µj

∂ηj

∂ηj

∂θj
|θj=0

)
D

(
∂µj

∂ηj

∂ηj

∂θj
|θj=0

)
′

∼= ∆jZjDZ ′

j∆
′

j, (14)

where ∆j =
∂µj

∂ηj
|θj=0. The second term in (13), leads to:

Var(εj) = Var[E(εj | θj)] + E[Var(εj|θj)] = E[Var(εj | θj)] = Ξ

1

2

j ΣjΞ

1

2

j , (15)

where Ξ is a diagonal matrix with the overdispersion parameters along the diagonal. If there are no

overdispersion parameters, Ξj is set equal to the identity matrix. Expand the variance function Σj

so that

Var(εj) = Ξ

1

2

j A
1

2

j RjΞ

1

2

j A
1

2

j , (16)

where Rj is the correlation matrix and Aj is a diagonal matrix containing the variances following from
the generalized linear model specification of Yji given the random effects θj = 0, i.e., with diagonal

elements v(µji)|θj=0. Using (14) and (16), we have the following expression for the variance-

covariance matrix (13):

V j = ∆jZjDZ′

j∆
′

j + Ξ

1

2

j A
1

2

j RjΞ

1

2

j A
1

2

j . (17)

Evidently, from this variance-covariance matrix, we can easily obtain the correlations. While the
above derivation is referred to as a first-order Taylor series expansion, the exact same expression

follows if a second-order expansion is considered, owing to terms vanishing. Therefore, we are
authorized to refer to it as a second-order Taylor series expansion which according to Vangeneugden

et al. (2011), who explored the quality of approximation by considering higher-order series, gives a
good approximation.
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4.2 Taylor Series Based Reliability Measures For 1PL and 2PL Models.

Loosely, reliability is an indicator of strength of agreement of particular scores (depending on the
form of reliability); usually it takes the form of a correlation function. To obtain reliability measures
on the scale of observed scores, manifest correlation functions have to be used. While such functions

are easily obtained for continuous data, usually for binary data, approximations are employed. This
section discusses the relevance of the approximate variance-covariance matrix in a GLMM for assessing

reliability of the expected item score and the expected sum score.

Without loss of generality, consider a measurement tool with i = 1, . . . , I items, responded to
by j = 1, . . . , N persons and further let Yji be the binary score on item i by person j. Then,

parameterize the 2PL model as

Yji =
exp [αi(θj − βi)]

1 + exp [αi(θj − βi)]︸ ︷︷ ︸
µji

+εji, (18)

where θj ∼ N (0, σ2
θ), βi and αi are the difficulty value and discrimination parameters, respectively,

for item i. The model formulation in Section 4.1, Y j = µj +εj , is basically the matrix representation
of (18), where Y j is the vector of Yji’s, for person j on all items; we proceed similarly for µj and

εj.

Vangeneugden et al. (2010) approximate Var(Y j) by using a first-order Taylor series expansion of
the variance function around θj = 0. Implicitly, this assumes that P (yji = 1|θj) = P (yi = 1), which
defines the expected item score (Section 3.1). Further, Y j = Y j′ , j 6= j ′ and Y j = Y i, where

Y i = µi + εi, is the vector of expected item scores. Consequently,

Var(Y i) = Var(Y j) ∼= Var(µj) + Var(εj), where (19)

Var(µj)
∼=

(
∂µj

∂ηj

∂ηj

∂θj
|θj=0

)
D

(
∂µj

∂ηj

∂ηj

∂θj
|θj=0

)
′

, (20)

Var(εj) ∼= A
1

2

j A
1

2

j . (21)

The fact that Rj and Ξj disappear is a result of conditional independence and the assumption of
no overdispersion in the 2PL model. From (2), it is easy to deduce that the expected sum score

merely is the sum over all expected item scores. Hence, the variance of ST is just the sum of all
components in Var(Y j), i.e.,

Var(ST ) =
∑

Var(Y j) =
∑

Var(µj) +
∑

Var(εj).

Using the classical definition of reliability, i.e., the proportion of true to observed variance, we obtain:

ρiA =
Var(µi)

Var(µi) + Var(εi)
and ρsA =

Var(
∑

i µji)

Var(
∑

i µji) + Var(
∑

i εji)
, (22)

as reliability measures for the expected item and test scores, respectively. Var(µi) and Var(εi)
correspond to the ith diagonal elements of Var(µj) and Var(εj), respectively. Equivalent expressions
for the 1PL model follow when αi = 1.

It is assumed that variance estimation comes after estimation of other model parameters. As such,
the assumptions made in this section apply to variance estimation only.
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We acknowledge alternative approximations for reliability measures based on manifest correlations

(Dimitrov, 2003). Nevertheless, the simplicity and easy-to-follow nature of our approximations make
them a valuable addition to the existing methods.

4.2.1 Illustration For 1PL Model

This section illustrates computation of (19) and (22) for 1PL, a step that also allows the exploration

of differences in latent and manifest correlations.

Define the 1PL model as (18), where αi = 1. It follows that:

ηji = θj − βi,
∂ηji

∂θj

|θj=0 = 1,
∂µji

∂ηji

|θj=0 =
exp(βi)

[1 + exp(βi)]
2

= v(µji)|θj=0. (23)

Assume a test with only two items, then,

∂µji

∂ηji

|θj=0 = Aj =

[
vji(0) 0

0 vji′(0)

]

, D =
[
σ2

θ

]
,

∂ηji

∂θj
|θj=0 = 1 =

[
1

1

]

, (24)

Var(µj) =

[
v2
ji(0)σ2

θ vji(0)vji′(0)σ2
θ

vji′(0)vji(0)σ2
θ v2

ji′(0)σ2
θ

]

, Var(εj) =

[
vji(0) 0

0 vji′(0)

]

,

ρiA1
=

vji(0)σ2
θ

1 + vji(0)σ2
θ

, ρsA1
=

σ2
θ

[
vji(0) + vji′(0)

]

1 + σ2
θ

[
vji(0) + vji′(0)

] ,

where vji(0) = v(µji)|θj=0.

Manifest versus Latent Correlation

The latent correlation measure presented in Section 3.3 is obviously appealing and easy to obtain,
and one can be tempted to use it as a reliability measure. We study the relationship between the

reliability measures based on latent and manifest correlation.

Consider ρiA1
and ρsA1

at their maximum possible values, which are easily obtained by realizing that
the maximum value for vji(0) = 0.25. A comparison of these to the latent reliability measures in

(10), reveals the following relationship;

ρiA1
=

σ2
θ

4 + σ2
θ

< ρil1 =
σ2

θ
π2

3 + σ2
θ

, (25)

ρsA1
=

σ2
θ

2 + σ2
θ

< ρsl1
=

σ2
θ

π2

6 + σ2
θ

. (26)

Latent correlation based score reliability is always greater than its manifest correlation based counter-
part, hence if scientific interest is on reliability of observed scores, great caution has to be exercised
in using latent correlation based reliability measures.

Note that the above statement does not imply that manifest correlation is always better than latent
correlation or, for that matter, vice versa. Rather, when interest genuinely is in latent correlation,
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then it is fair to say that manifest correlation, when viewed as an approximation to latent correlation,

is attenuated because of measurement error. In the reverse case, when interest is placed in manifest
correlation, latent correlation can be considered disattentuated because it fails to accommodate this

very measurement error.

4.2.2 Illustration For 2PL Model

Similar to Section (4.2.1) we illustrate computation of (19) and (22) for the 2PL model, and further

explore the relationship between latent and manifest correlations.

Define the 2PL model as (18), it follows that,

ηji = αi(θj − βi),
∂ηji

∂θj

|θj=0 = αi
∂µji

∂ηji

|θj=0 =
exp(αiβi)

[1 + exp(αiβi)]
2

= v(µji)|θj=0. (27)

Again consider a test with only two items, then,

∂µji

∂ηji
|θj=0 = Ai =

[
vji(0) 0

0 vj′i(0)

]

, D =
[
σ2

θ

]
,

∂ηji

∂θj
|θj=0 =

[
αi

αi′

]

, (28)

Var(µj) =

[
α2

i v
2
ji(0)σ2

θ αi′αivji(0)vji′(0)σ2
θ

αi′αivji′(0)vji(0)σ2
θ α2

i′v
2
ji′(0)σ2

θ

]
, Var(εj) =

[
vji(0) 0

0 vji′(0)

]
,

ρiA2
=

vji(0)α2
i σ

2
θ

1 + vji(0)α2
i σ

2
θ

, ρsA2
=

σ2
θ

[
vji(0)αi + vji′(0)αi′

]2

[
vji(0) + vji′(0)

]
+ σ2

θ

[
vji(0)αi + vji′(0)αi′

]2
,

where vji(0) = v(µji)|θj=0.

Manifest versus Latent Correlation.

The following relationship exists between latent and manifest correlation based reliability measures
for the 2PL model:

ρiA2
=

α2
i σ

2
θ

4 + α2
i σ

2
θ

< ρil2 =
α2

i σ
2
θ

π2

3 + α2
i σ

2
θ

, (29)

ρsA2
=

σ2
θ(αi + αi′)

2

8 + σ2
θ(αi + αi′)2

< ρsl2
=

σ2
θ (αi + αi′)

2

2π2

3 + σ2
θ (αi + αi′)2

(30)

The relationship between latent and manifest correlations based reliability measures observed in the
1PL model is the same for the 2PL model.

5 Simulation Study

Due to lack of closed-form quantities, the performance of reliability measures based on Taylor series

approximations of the variance-covariance matrix in Section 4.2 will be assessed through a simulation
study. We will compare these with the exact measures described in Section 3.1. Additionally, the

relationship observed between manifest and latent correlation based measures in Sections 4.2.1 and
4.2.2, will be studied for more than two items.

10



5.1 Design

5.1.1 Based on Theoretical Values

Measuring tools calibrated under the 1PL and 2PL models are considered. Each has 24 items,

whose difficulty values (βi) are generated from a uniform distribution within the range [−4, 4],
the discrimination parameter values (αi) for the 2PL model are sampled from N (2, 0.64), and the

number of respondents is set to 400. To assess the quality of our approximations at different levels
of reliability, three values for the variance of person trait scores (θj), which influences reliability, were

considered, i.e., σ2
θ = 0.25, 1, or 4, implying that each model will produce three measuring tools

that will be responded to by three different sets of individuals. With these values, the score Yji for
item i by person j is generated from a Bernoulli(πji), where

πji =

{ exp(θj−βi)
1+exp(θj−βi)

for the 1PL model,
exp[αi(θj−βi)]

1+exp[αi(θj−βi)]
for the 2PL model.

For the exact, Taylor series approximation and latent correlation based approximations, both expected

item reliability and expected sum score reliability will be computed, while for the Fisher information
coefficient, only the expected sum score will be obtained. To concentrate on the performance of the
reliability measures, the models are not fit. Rather, we assume that the generated samples represent

the true population. As such, simulated values are plugged into all the formulas and the integrals in
Section 3.1 are obtained by simply averaging over the relevant quantities. This helps to eliminate

behavior that may be observed due other issues, like lack of model convergence resulting in poor
estimates.

5.1.2 Based on Model Estimates

While the generated values were used to compute all reliability measures in Section 5.2.1, in this
section the models under which the data was generated were fitted. Model estimates were thus

plugged in to compute all reliability measures except for the exact reliability where the generated
values were used. Further, both the number of items and persons were varied, with 6, 12, and 24,

and 30, 100, and 200 considered for the items and number of persons, respectively. A total of 50
datasets were generated under each setting and only σ2

θ = 1 was used. All other settings were similar
to those in Section 5.2.1.

5.2 Simulation Results

5.2.1 Based on Theoretical Values

Table 1 indicates that the reliability of the expected sum, estimated using the newly introduced,Taylor

series approximation is very similar to the exact reliability. Practically, using one in place of the other
should lead to virtually the same substantive conclusions. In addition, Taylor series approximations

are not computationally intensive, because they do not involve the evaluation of integrals with no
closed forms, and quantities for approximating the variance-covariance matrix follow directly from

model estimation. Clearly, these strengths make the Taylor series approximation a valuable addition
to the theory of reliability measurement.
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Table 1: Expected sum score reliability computed based on theoretical values for 1PL and 2PL
models, using various approximation methods. ρSA

gives the reliability estimated using the Taylor
series approximation, ρf , uses the Fisher information measure, ρSl

is the latent variance of logistic

regression, i.e., π2/3, is used as variance of error (σ2
ε) and ρS is the exact sum score reliability. σ2

θ

is the variance of person trait.

Measure of Reliability

σ2
θ Model ρSA

ρf ρSl
ρS

0.25 1PL 0.461 -0.120 0.646 0.480

2PL 0.687 0.615 0.889 0.704

1 1PL 0.774 0.676 0.879 0.778
2PL 0.898 0.881 0.970 0.895

4 1PL 0.932 0.887 0.967 0.928

2PL 0.972 0.891 0.992 0.963

Also revealed in Table 1 is a possible drawback for the commonly used Fisher information based

measure: when σ2
θ = 0.25, reliability is negative and does not have a meaningful interpretation.

Further, in other cases, like for the 2PL model with σ2
θ = 1, it overestimates the exact reliability

while in the 1PL model with σ2
θ = 0.25, it underestimates the exact reliability. In general, Fisher

information based reliability will not always yield a truthful picture of the reliability of the expected

sum.

In line with theory, latent correlation based reliability is consistently greater than the manifest corre-
lation based measures (Taylor approximation and exact). If reliability at the logit scale is of interest,

latent correlations are meaningful; otherwise, they should be avoided.

Expected item score reliability is useful when creating item banks, as it can help in choosing items
that are reliable. Results in Table 2 emphasize why latent correlation based reliability may not be
best suited to be used for such a process, especially for the 1PL model, because not only is it always

greater than the manifest correlation based version, but it is also constant for all items. The Taylor
series based versions approximate the exact expected item score reliability closely for the 1PL model,

such that decision making based on the former is likely to reflect the decisions that would result from
using the latter. For the 2PL model, Taylor series approximation is not good for some items like 3,

4, 8, 9, 11, 13, 15, and 21, which greatly underestimate the exact reliability, suggesting the need
to improve the approximations if they are to be used for item reliability in the 2PL model. Possible

considerations include expansion of Taylor series around θj = θ̂j , the maximum likelihood estimate
of the trait score, instead of θj = 0, but this is beyond the scope of the current work. Latent

reliability in 2PL increases with discriminative power, i.e., items with high discriminative power have
high reliability, regardless of the difficulty level. Results for cases with σ2

θ = 0.25, 4 are presented in
the Appendix.
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Table 2: Item reliability for 1PL and 2PL, where person trait variance σ2
θ = 1. ρSA

is the item
reliability obtained using the Taylor series approximation, ρSl

, is the latent correlation based item

reliability and ρS is the exact item reliability and finally, β and α are the simulated item difficulty
and discrimination parameter values.

1PL 2PL

Item β ρil ρiA ρi β α ρil ρiA ρi

1 1.221 0.233 0.150 0.168 0.444 3.441 0.782 0.634 0.608
2 -0.670 0.233 0.183 0.173 3.785 1.210 0.308 0.015 0.054

3 1.205 0.233 0.151 0.169 0.974 3.731 0.809 0.258 0.608
4 0.162 0.233 0.199 0.185 -1.389 2.233 0.602 0.170 0.352

5 0.780 0.233 0.177 0.179 -0.490 2.043 0.559 0.450 0.398
6 -3.850 0.233 0.020 0.047 3.008 1.789 0.493 0.014 0.135
7 3.330 0.233 0.032 0.071 -0.623 2.680 0.686 0.489 0.487

8 -0.197 0.233 0.198 0.182 2.971 1.960 0.538 0.011 0.150
9 2.373 0.233 0.072 0.119 1.244 2.602 0.673 0.197 0.465

10 2.037 0.233 0.093 0.135 -0.711 2.517 0.658 0.437 0.458
11 0.423 0.233 0.193 0.184 -1.353 2.350 0.627 0.175 0.372

12 -1.702 0.233 0.115 0.136 -2.184 0.590 0.096 0.056 0.061
13 0.948 0.233 0.168 0.176 -2.332 2.241 0.604 0.026 0.267

14 2.979 0.233 0.044 0.088 -0.061 2.757 0.698 0.654 0.521
15 3.873 0.233 0.020 0.049 -2.552 2.274 0.611 0.015 0.251

16 0.288 0.233 0.197 0.185 -0.519 2.020 0.554 0.440 0.393
17 0.042 0.233 0.200 0.185 -1.281 2.046 0.560 0.209 0.336
18 -1.461 0.233 0.133 0.146 0.118 0.395 0.045 0.038 0.040

19 0.480 0.233 0.191 0.184 -0.156 2.106 0.574 0.519 0.423
20 -3.227 0.233 0.035 0.069 -1.769 1.286 0.334 0.123 0.177

21 3.741 0.233 0.022 0.054 3.688 2.413 0.639 0.001 0.053
22 0.096 0.233 0.200 0.185 -1.501 2.011 0.551 0.152 0.309

23 -2.821 0.233 0.050 0.086 1.581 1.981 0.544 0.136 0.342
24 3.780 0.233 0.021 0.052 0.630 1.619 0.443 0.338 0.330

5.2.2 Based on Model Estimates

The pattern observed in the estimation of expected sum reliability when theoretical values are used,
is carried forward to the setting where model-based estimates are used. Latent reliability is always
higher than the exact and Taylor approximated reliability. The disadvantage of Fisher information

is also prominent in settings with only few items, e.g., 6, where reliability is either negative or very
small compared to the true reliability. In general, Taylor approximated sum reliability is the closest to

the exact reliability, although the difference is noticeable for 2PL models with 6 items. The number
of items may affect the quality of approximation. This can be seen in Table 3.

On the other hand, item reliability seems to heavily depend on the quality of estimates used. Results

from the 2PL model for Taylor approximation and latent reliability are presented in Figures 1 and 2,
respectively. Where the approximated reliability matches the exact, points are expected to lie along

the diagonal line. This is hardly the case for latent reliability and Taylor approximated reliability for
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Table 3: Expected sum score reliability estimated for 1PL and 2PL models, using various approxi-
mation methods. ρSA

gives the reliability estimated using the Taylor series approximation, ρf , uses
the Fisher information measure, ρSl

is the latent reliability and ρS is the exact sum score reliability.

Inum and Pnum represent the number of items and persons used for each model.

Measure of Reliability

Model Inum Pnum σ̂2
θ ρS ρSA

ρl ρSf

1PL 30 6 1.25 0.49 0.52 0.66 -0.03

12 1.16 0.63 0.65 0.80 0.44

24 1.01 0.76 0.75 0.88 0.66

100 6 1.06 0.49 0.52 0.65 -0.01

12 0.96 0.63 0.64 0.78 0.40

24 0.99 0.76 0.77 0.88 0.67

200 6 1.04 0.49 0.52 0.65 0.00

12 0.98 0.63 0.65 0.78 0.42

24 1.01 0.76 0.77 0.88 0.68

2PL 30 6 1.00 0.59 0.66 1.00 0.10

12 1.00 0.80 0.85 0.96 0.79

24 1.00 0.89 0.89 0.97 0.91

100 6 1.00 0.58 0.47 0.90 0.40

12 1.00 0.80 0.83 0.91 0.73

24 1.00 0.89 0.91 0.97 0.90

200 6 1.00 0.58 0.49 0.92 0.25

12 1.00 0.80 0.82 0.92 0.74

24 1.00 0.89 0.89 0.97 0.90

models with 6 items. This observation is in line with the noticeable differences between exact and

Taylor approximation for the expected sum reliability. Even when the estimates are biased (relative
bias > 10%), Taylor approximated reliability is still relatively closer to the exact reliability. Results

for the 1PL model are presented in Figures 4 and 3 and they convey a similar story.

6 Analysis of Case Study

The application of the reliability measures introduced in Section 4.2 is demonstrated through the
analysis of the two datasets described in Section 2. Using various datasets that are measuring
different attributes brings out just how broadly these measures can be used to assess reliability of

measuring tools across different fields of research. Both 1PL and 2PL models were fitted using the
NLMIXED procedure in SAS, which employs adaptive Gauss-Hermite quadrature to compute the

integrals and ultimately the maximum likelihood based parameter estimates.

Results for the LSAT6 data are presented in Table 4. These generally indicate low reliability both at
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Table 4: Results from the analysis of the LSAT6 data. β̂ is the estimate of item difficulty; α̂, is
the discrimination parameter estimate; ρiA indicates the Taylor series approximated expected item

score reliability; ρil corresponds to the latent correlation based counterpart; ρs gives the expected
sum score reliability of the corresponding item reliability; ρf is the Fisher information based reliability

measure.

1PL 2PL

item β̂ ρiA ρil β̂ α̂ ρiA ρil

1 -2.730 0.032 0.148 -3.359 0.826 0.036 0.172
2 -0.999 0.101 0.148 -1.370 0.723 0.094 0.137
3 -0.240 0.123 0.148 -0.280 0.891 0.163 0.194

4 -1.306 0.087 0.148 -1.866 0.688 0.074 0.126
5 -2.099 0.053 0.148 -3.126 0.657 0.042 0.116

ρS 0.304 0.464 0.312 0.465

ρf -1.343 -1.240

the expected item score level and at the expected sum score level. With a five-item measuring tool,
this is not surprising as these may not be enough to capture all relevant information. In addition,

the negative estimates for the difficulty parameters for both the 1PL and 2PL models indicate a
low difficulty level for all items and the small person trait variance of 0.570 suggests that examinees

exhibit similar levels of ability, a scenario that is well known to be less informative. Latent correlation
based reliability is larger than the Taylor series approximation and in this case this would lead to

different conclusions regarding reliability of the expected sum score. The Fisher information based
measure is not useful in this case given that it is negative, which can also be attributed to the

relatively small number of items.

The questionnaire for Verbal Aggression data has 24 items, which can be considered of average length
and according to Table 5, the expected sum score reliability is high: above 0.85 for all measures.

Further, the item difficulty estimates for 1PL and 2PL models have maxima, 2.976 and 2.439, and
minima, −1.748 and −1.212, respectively, suggesting a mixture of high and low difficulty level items.
The person trait variance of 1.919 suggests a cross-section of persons with varying abilities, forming

a desirable scenario to achieve high reliability. Again, the latent correlation based reliability is higher
than the manifest correlation based counterpart, although in this case, similar conclusions regarding

reliability of both the expected item and the sum score would be reached, regardless of the measure
of reliability used.

7 Concluding Remarks

Beyond doubt, reliability measures based on manifest correlations are of considerable importance in
IRT. The reason for their relatively rare use can be largely attributed to lack of efficient means of

estimation given that marginalizing the joint distribution of normal random effects, combined with
binary data distributions is computationally challenging.

This paper has outlined a procedure for approximating reliability measures based on manifest cor-

relations, and illustrated their application for 1PL and 2PL models for both expected item score
and expected sum score. We have further explored the relationship between latent and manifest
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correlations based reliability measures, where it was shown that latent correlation based reliability

measures are always greater than their manifest correlation based counterparts. Hence, using one in
place of the other should be avoided. A simulation study to assess the performance of the newly

introduced Taylor series based reliability measures indicated that they give a true reflection of the
exact reliability, especially at the expected sum score level. In comparison to Fisher information based
sum score reliability, Taylor series based approximations, perform consistently better, including in the

cases where the Fisher information based measure gives negative values, which are not meaningful.

Taylor series based reliability measures do not involve evaluation of integrals with no closed forms.
Rather, they use quantities that are easily obtained during model estimation; computation can be

handled by most standard statistical software tools. Thus, they represent a less computationally
intensive, readily available solution to obtaining reliability of either item score or sum score, whichever

truly reflects the required reliability. However, the quality of reliability estimates heavily relies on the
quality of model estimated parameters. For example, results from poorly converged models may not

reflect the true reliability.

Generally, our findings are useful and relevant for practice and expand on the available tools for
measuring reliability. When studying reliability or generalizability, manifest correlation is a more

intuitive measure, as it captures the correlation between what is actually observed, and not what
happens at the level of a latent construct.
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Rodŕıguez, G. & Elo, I. (2003). Intra-class correlation in random effects models for binary data. The

Stata Journal, 3, 32–46.

Schaeffer, G.A., Carlson, R.E., and Matas, R.L. (1986). Assessing the reliability of criterion-referenced
measures used to evaluate health-education programs. Evaluation Review, 10, 115–125.

Spearman, C. (1904). The proof and measurement of association between two things. The American
Journal of Psychology, 15, 72–101.

17



Van der Linden, W.J. & Hambleton, R.K. (Eds.) (1997). Handbook of Modern Item Response Theory.

New York: Springer.

Vangeneugden, T., Laenen, A., Geys, H., Renard, D., & Molenberghs, G. (2004). Applying linear

mixed models to estimate reliability in clinical trial data with repeated measurements. Controlled
Clinical Trials, 25, 13–30.

Vangeneugden, T., Laenen, A., Geys, H., Renard, D., & Molenberghs, G. (2005). Applying concepts

of generalizability theory on clinical trial data to investigate sources of variation and their impact
on reliability. Biometrics, 61, 295–304.

Vangeneugden, T., Molenberghs, G., Laenen, A., Geys, H., Beunckens, C., and Sotto, C.(2010)
Marginal correlationin longitudinal binary data based on generalized linear mixed models. Commu-

nications in Statistics - Theory and Methods, 39, 3540–3557.

Vangeneugden, T., Molenberghs, G., Verbeke, G., & Demétrio, C. (2011). Marginal correlation
from an extended random-effects model for repeated and overdispersed counts. Journal of Applied
Statistics, 38, 215–232.

Van Leeuwen, D.M., Barnes, M.D., & Pase, M. (1998). Generalizability theory: A unified approach to

assessing the dependability (reliability) of measurements in the health sciences. Journal of Outcome
Measurement, 2, 302–325.

Vansteelandt, K. (2000). Formal models for Contextualized Personality Psychology. Unpublished
doctoral dissertation, KU Leuven, Belgium.

Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New

York:Springer.

Zeger, S.L., Liang, K.-Y., & Albert, P.S. (1988). Models for longitudinal data: a generalized esti-
mating equation approach. Biometrics, 44, 1049–1060.

18



30 100 200

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

6
1

2
2

4

0.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8

True reliability

Ta
yl

o
r 

 a
p
p
ro

x.
 r

e
lia

b
ili

ty

indx

bias <= 10

bias > 10

Figure 1: Scatter plot for exact vs Taylor approximated item reliability from 2PL model. On the
upper and right margins are the number of persons (30, 100, 200) and items (6, 12, 24), respectively.

The variable ‘indx’ indicates whether both the item difficulty and discrimination parameter estimates
used in computing reliability had relative bias of greater than 10% (bias>10) or below (bias >= 10).
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Figure 2: Scatter plot for exact vs latent item reliability from 2PL model. On the upper and right
margins are the number of persons (30, 100, 200) and items (6, 12, 24), respectively. The variable

‘indx’ indicates whether both the item difficulty and discrimination parameter estimates used in
computing reliability had relative bias of greater than 10% (bias>10) or below (bias >= 10).
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Table 5: Results from the analysis of the Verbal Aggression Data. β̂ is the estimate of item
difficulty; α̂, is the discrimination parameter estimate; ρiA indicates the Taylor series approximated

expected item score reliability; ρil corresponds to the latent correlation based counterpart; ρs gives
the expected sum score reliability of the corresponding item reliability; ρf is the Fisher information

based reliability measure.

1PL 2PL

item β̂ ρiA ρil β̂ α̂ ρiA ρil

1 -1.221 0.252 0.368 -0.886 1.372 0.249 0.364

2 -0.565 0.307 0.368 -0.387 1.551 0.355 0.422
3 -0.080 0.324 0.368 -0.062 1.373 0.320 0.364

4 -1.748 0.195 0.368 -1.212 1.483 0.211 0.400
5 -0.707 0.298 0.368 -0.476 1.601 0.357 0.438

6 -0.012 0.324 0.368 -0.012 1.285 0.292 0.334
7 -0.529 0.309 0.368 -0.510 0.891 0.159 0.194

8 0.686 0.299 0.368 0.479 1.436 0.315 0.385
9 1.527 0.220 0.368 1.438 0.933 0.125 0.209
10 -1.082 0.266 0.368 -0.877 1.148 0.205 0.286

11 0.349 0.318 0.368 0.223 1.628 0.391 0.446
12 1.044 0.270 0.368 0.935 0.996 0.167 0.232

13 -1.221 0.252 0.368 -0.786 1.720 0.326 0.473
14 -0.389 0.316 0.368 -0.230 2.351 0.563 0.627

15 0.871 0.285 0.368 0.606 1.451 0.304 0.390
16 -0.872 0.285 0.368 -0.602 1.512 0.319 0.410

17 0.057 0.324 0.368 0.023 2.030 0.507 0.556
18 1.482 0.225 0.368 0.963 1.656 0.278 0.454

19 0.211 0.322 0.368 0.173 1.116 0.236 0.274
20 1.504 0.222 0.368 1.094 1.361 0.218 0.360
21 2.976 0.081 0.368 2.439 1.140 0.067 0.283

22 -0.707 0.298 0.368 -0.510 1.401 0.302 0.373
23 0.384 0.316 0.368 0.261 1.471 0.343 0.397

24 2.000 0.168 0.368 1.571 1.209 0.142 0.307

ρS 0.900 0.933 0.908 0.936

ρf 0.859 0.863
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Table 6: Item reliability for 1PL and 2PL, where person trait variance, σ2
θ = 4. ρSA

is the item

reliability obtained using the Taylor series approximation; ρSl
is the latent correlation based item

reliability; ρS is the exact item reliability; β and α are the simulated item difficulty and discrimination

parameter values.

1PL 2PL
Item β ρil

ρiA
ρi β α ρil

ρiA
ρi

1 1.221 0.549 0.413 0.407 0.444 3.441 0.935 0.874 0.782
2 -0.670 0.549 0.472 0.398 3.785 1.210 0.640 0.056 0.380
3 1.205 0.549 0.415 0.407 0.974 3.731 0.944 0.582 0.817
4 0.162 0.549 0.498 0.410 -1.389 2.233 0.858 0.451 0.655
5 0.780 0.549 0.463 0.411 -0.490 2.043 0.835 0.766 0.642
6 -3.850 0.549 0.075 0.268 3.008 1.789 0.795 0.055 0.555
7 3.330 0.549 0.118 0.337 -0.623 2.680 0.897 0.793 0.715
8 -0.197 0.549 0.498 0.406 2.971 1.960 0.824 0.043 0.586
9 2.373 0.549 0.238 0.377 1.244 2.602 0.892 0.496 0.736
10 2.037 0.549 0.290 0.389 -0.711 2.517 0.885 0.756 0.700
11 0.423 0.549 0.489 0.411 -1.353 2.350 0.870 0.459 0.672
12 -1.702 0.549 0.343 0.367 -2.184 0.590 0.297 0.191 0.197
13 0.948 0.549 0.446 0.410 -2.332 2.241 0.859 0.097 0.598
14 2.979 0.549 0.155 0.353 -0.061 2.757 0.902 0.883 0.723
15 3.873 0.549 0.074 0.309 -2.552 2.274 0.863 0.058 0.589
16 0.288 0.549 0.495 0.411 -0.519 2.020 0.832 0.758 0.638
17 0.042 0.549 0.500 0.409 -1.281 2.046 0.836 0.514 0.631
18 -1.461 0.549 0.379 0.376 0.118 0.395 0.160 0.135 0.130
19 0.480 0.549 0.486 0.411 -0.156 2.106 0.844 0.812 0.653
20 -3.227 0.549 0.128 0.297 -1.769 1.286 0.668 0.359 0.450
21 3.741 0.549 0.083 0.316 3.688 2.413 0.876 0.003 0.652
22 0.096 0.549 0.499 0.409 -1.501 2.011 0.831 0.418 0.617
23 -2.821 0.549 0.175 0.316 1.581 1.981 0.827 0.386 0.644
24 3.780 0.549 0.080 0.314 0.630 1.619 0.761 0.671 0.585
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Table 7: Item reliability for 1PL and 2PL, where person trait variance, σ2
θ = 0.25. ρSA

is the item

reliability obtained using the Taylor series approximation; ρSl
is the latent correlation based item

reliability; ρS is the exact item reliability; β and α are the simulated item difficulty and discrimination

parameter values.

1PL 2PL
Item β ρil ρiA ρi β α ρil ρiA ρi

1 1.221 0.071 0.042 0.048 0.444 3.441 0.473 0.303 0.342

2 -0.670 0.071 0.053 0.055 3.785 1.210 0.100 0.004 0.006
3 1.205 0.071 0.042 0.048 0.974 3.731 0.514 0.080 0.286

4 0.162 0.071 0.058 0.060 -1.389 2.233 0.275 0.049 0.097
5 0.780 0.071 0.051 0.055 -0.490 2.043 0.241 0.170 0.169
6 -3.850 0.071 0.005 0.007 3.008 1.789 0.196 0.004 0.009

7 3.330 0.071 0.008 0.012 -0.623 2.680 0.353 0.193 0.220
8 -0.197 0.071 0.058 0.060 2.971 1.960 0.226 0.003 0.008

9 2.373 0.071 0.019 0.025 1.244 2.602 0.340 0.058 0.149
10 2.037 0.071 0.025 0.031 -0.711 2.517 0.325 0.163 0.194

11 0.423 0.071 0.056 0.059 -1.353 2.350 0.296 0.050 0.106
12 -1.702 0.071 0.032 0.036 -2.184 0.590 0.026 0.015 0.016

13 0.948 0.071 0.048 0.053 -2.332 2.241 0.276 0.007 0.025
14 2.979 0.071 0.011 0.016 -0.061 2.757 0.366 0.320 0.277

15 3.873 0.071 0.005 0.007 -2.552 2.274 0.282 0.004 0.017
16 0.288 0.071 0.058 0.060 -0.519 2.020 0.237 0.164 0.164
17 0.042 0.071 0.059 0.061 -1.281 2.046 0.241 0.062 0.099

18 -1.461 0.071 0.037 0.041 0.118 0.395 0.012 0.010 0.010
19 0.480 0.071 0.056 0.059 -0.156 2.106 0.252 0.213 0.194

20 -3.227 0.071 0.009 0.012 -1.769 1.286 0.111 0.034 0.043
21 3.741 0.071 0.006 0.008 3.688 2.413 0.307 0.000 0.001

22 0.096 0.071 0.059 0.061 -1.501 2.011 0.235 0.043 0.078
23 -2.821 0.071 0.013 0.017 1.581 1.981 0.230 0.038 0.078

24 3.780 0.071 0.005 0.008 0.630 1.619 0.166 0.113 0.124

2



30 100 200

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

6
1

2
2

4

0.00 0.05 0.10 0.15 0.20 0.250.00 0.05 0.10 0.15 0.20 0.250.00 0.05 0.10 0.15 0.20 0.25

True reliability

L
a
te

n
t 
re

lia
b
ili

ty

indx

bias <=  10

bias >10

Figure 3: Scatter plot for exact vs latent item reliability from 1PL model. On the upper and right
margins are the number of persons (30, 100, 200) and items (6, 12, 24), respectively. The variable

‘indx’ indicates whether the item difficulty estimate used in computing reliability had relative bias of
greater than 10% (bias>10) or below (bias >= 10).
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Figure 4: Scatter plot for exact vs Taylor approximated item reliability from 2PL model. On the
upper and right margins are the number of persons (30, 100, 200) and items (6, 12, 24), respectively.

The variable ‘indx’ indicates whether the item difficulty estimate used in computing reliability had
relative bias of greater than 10% (bias>10) or below (bias >= 10).
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