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Abstract

Group sequential trials are one important instance of studies for which the sample size is
not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the
observed data. Much work has been devoted to the inferential consequences of this design feature.
Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature,
focusing on a collection of seemingly disparate, but related, settings, namely completely random
sample sizes, group sequential studies with deterministic and random stopping rules, incomplete
data, and random cluster sizes. They showed that the ordinary sample average is a viable
option for estimation following a group sequential trial, for a wide class of stopping rules and
for random outcomes with a distribution in the exponential family. Their results are somewhat
surprising in the sense that the sample average is not optimal, and further, there does not exist
an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically
unbiased, both conditionally upon the observed sample size as well as marginalized over it.
By exploiting ignorability they showed that the sample average is the conventional maximum
likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite
sample unbiased, but is less efficient than the sample average and has the larger mean squared
error. Asymptotically, the sample average and the conditional maximum likelihood estimator are
equivalent.

This previous work is restricted however to the situation in which the the random sample size
can take only two values, N = n or N = 2n. In this paper, we consider the more practically
useful setting of sample sizes in a the finite set {n1, n2, . . . , nL}. It is shown that the sample
average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation,
and it is consistent and asymptotically unbiased. We also show why simulations can give the
false impression of bias in the sample average when considered conditional upon the sample size.
The consequence is that no corrections need to be made to estimators following sequential trials.
When small-sample bias is of concern, the conditional likelihood estimator provides a relatively
straightforward modification to the sample average. Finally, it is shown that classical likelihood-
based standard errors and confidence intervals can be applied, obviating the need for technical
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corrections.

Some Keywords: Exponential Family; Frequentist Inference; Generalized Sample Average;
Joint Modeling; Likelihood Inference; Missing at Random; Sample Average.

1 Introduction

Principally for ethical and economic reasons, group sequential clinical trials are in common use (Wald,

1945; Armitage, 1975; Whitehead, 1997; Jennison and Turnbull, 2000). Tools for constructing such

designs, and for testing hypotheses from the resulting data, are well established both in terms of

theory and implementation. By contrast, issues still surround the problem of estimation (Siegmund,

1978; Hughes and Pocock, 1988; Todd, Whitehead, and Facey, 1996; Whitehead, 1999) following

such trials. In particular, various authors have reported that standard estimators such as the sample

average are biased. In response to this, various proposals have been made to remove or at least

alleviate this bias and its consequences (Tsiatis, Rosner, and Mehta, 1984; Rosner and Tsiatis,

1988; Emerson and Fleming, 1990). An early suggestion was to use a conditional estimator for this

Blackwell (1947).

To successfully address the bias issue, it is helpful to understand its origins. Lehman (1950) showed

that it stems from the so-called incompleteness of the sufficient statistics involved, which in turn

implies that there can be no minimum variance unbiased linear estimator. Liu and Hall (1999) and

Liu et al (2006) explored this incompleteness in group sequential trials, for outcomes with both

normal and one-parameter exponential family distributions. For these distributions, Molenberghs

et al (2012) and Milanzi et al (2012) embedded the problem in the broader class with random

sample size, which includes, in addition to sequential trials, incomplete data, completely random

sample sizes, censored time-to-event data, and random cluster sizes. In so doing, they were able to

link incompleteness to the related concepts of ancillarity and ignorability in the missing-data sense.

By considering the conventional sequential trial with a deterministic stopping rule as a limiting

case of a stochastic stopping rule, these authors were able to derive properties of families of linear

estimators as well as likelihood-based estimators. The key results are as follows:(1) there exists a

maximum likelihood estimator that conditions on the realized sample size (CL), which is finite sample

unbiased, but has slightly larger variance and mean square error (MSE) than the SA ;(2) the sample

average (SA) exhibits finite sample bias, although it is asymptotically unbiased; (3) apart from the

exponential distribution setting, there is no optimal linear estimator, although the sample average
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is asymptotically optimal; (4) the validity of the sample average as an estimator also follows from

standard ignorable likelihood theory.

Evidently, the CL is unbiased both conditionally and marginally with respect to the sample size. By

contrast, the CL is marginally unbiased, but there exist classes of stopping rules where, conditionally

on the sample size, there is asymptotic bias for some values of the sample sizes. Surprisingly, this is

not of concern. Milanzi et al (2012) showed this for the case of two possible sample sizes, N = n

and N = 2n. With such a stopping rule, it is possible that, for example when N = n, the bias

grows unboundedly with n; when this happens though, the probability that N = n shrinks to 0 at

the same rate. If strict finite sample unbiasedness is regarded as essential, the conditional MLE can

be used, which, like MLE, also admits the standard likelihood-based precision measures, although

it is computationally intensive. This is a very important result and should be contrasted with the

various precision estimators that have been developed in the past.

On the other hand, developments in Molenberghs et al (2012) and Milanzi et al (2012) show that

despite finite sample bias, a correction may not be strictly necessary for SA. Further, its likelihood

basis, implies it can be used in conjunction with standard likelihood-based measures of precision,

such as standard errors and associated confidence intervals to provide valid inferences.

A major limitation of Molenberghs et al (2012) and Milanzi et al (2012) is the restriction to two

looks of equal size. It is the main aim of this paper to extend this work to the practically more useful

setting of multiple looks of potentially different sample sizes.

In Section 2, we introduce notation, describe the setting, the models, and the associated generic

problem. In Section 3, we study the problems of incompleteness when using a stochastic stopping

rule. The class of generalized sample averages in introduced in Section 6, and conditional and joint

maximum likelihood estimators are derived in Section ??. Their asymptotic properties are studied in

Section 7. A simulation study is described in the Supplementary Materials, Section A.

2 Problem and Model Formulation

Consider a sequential trial with L pre-specified looks, with sample sizes n1 < n2 < . . . , < nL. Assume

that there are nj i.i.d. observations Y1, . . . , Ynj , from the jth look that follow an exponential family

distribution with density

fθ(y) = h(y) exp {θy − a(θ)} , (1)
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for θ the natural parameter, a(θ) the mean generating function, and h(y) the normalizing constant.

Subsequent developments are based on a generic data-dependent stochastic stopping rule, which we

write

π(N = nj |knj ) = F
(
knj

∣∣ψ) = F
(
knj

)
, (2)

where Knj =
∑nj

i=1 Yi also has an exponential family density:

fnj (k) = hnj (k) exp
{
θknj − nja(θ)

}
. (3)

Our inferential target is the parameter θ, or a function of this.

2.1 Stochastic Rule As A Group Sequential Stopping Rule

. While the stopping rule seems different from the ones frequently used, it will later on be clear as

to how it can be specified to conform to the commonly used stopping rules in the sequential trials.

For instance, when the conditional probability of stopping of an exponential family form is chosen,

e.g.,

F (kn) = F (k) =

∫ z=A(k)

z=−∞
f̃1(z)dz, (4)

then an appealing form for the marginal stopping probability can be derived. Here f̃1(z) can be

seen as an exponential family member, underlying the stopping process. When the outcomes Y

and hence K do not range over the entire real line, the lower integration limit in (4) should be

adjusted accordingly, and the function A(k) should be chosen so as to obey the range restrictions. It

is convenient to assume that f̃1(z) has no free parameters; should there be the need for such, then

they can be absorbed into A(k). Hence, we can write

f̃1(z) = h̃1(z) exp {−ã(0)} . (5)

Using (3) and (5), the marginal stopping probability becomes:

P (N = n) =

∫ k=+∞

k=−∞

∫ z=A(k)

z=−∞
fn,θ(k)f̃1(z)dz dk

= exp {−na(θ)− ã(0)}
∫ k=+∞

k=−∞
hn(k)

[∫ z=A(k)

z=−∞
h̃1(z)dz

]
eθkdk

= exp {−na(θ)− ã(0)}L {H1(A(k)) · hn(k)} , (6)

where

H1(t) =

∫ z=t

z=−∞
h̃1(z)dz.
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Milanzi et al (2012) studied in detail the behavior of stopping rules where

A(k) = αj + βknj/n
m
j

, where αj , β and m are constants specific to a design.

Choosing β →∞ and β → −∞ results into deterministic stopping or continuing thus corresponding

to the stopping rules commonly used in sequential trials. The trial is stopped when (6) is greater than

a randomly generated number from uniform(0,1). Note that the higher the evidence against(for) the

null hypothesis, the higher the probability to stop. In the specific example of normally distributed

responses (1) can be chosen as standard normal. The value of α is paramount to deciding the behavior

of stopping boundaries. Consider O’Brien and Fleming stopping boundaries where it is difficult to

stop in early stages; one can then specify αj such that the probability of stopping increases with

the stages. In addition to the computational advantages and the associated practicality, we use the

stochastic rule to maintain the focus of this paper, which is estimation.

3 Incomplete Sufficient Statistics

Several concepts play a crucial role in determining the properties of estimators following sequential

trial: incompleteness, a missing at random (MAR) mechanism, ignorability, and ancillarity (Molen-

berghs et al , 2012). We consider the role of incompleteness first: a statistic s(Y ) of a random

variable Y , with Y belonging to a family Pθ, is complete if, for every measurable function g(·),

E[g{s(Y )}] = 0 for all θ, implies that Pθ[g{s(Y )} = 0] = 1 for all θ (Casella and Berger, 2001,

pp. 285–286). Incompleteness is central to the various developments (Liu and Hall, 1999; Liu et al ,

2006; Molenberghs et al , 2012) because of the the Lehman-Scheffé theorem which states that “if a

statistic is unbiased, complete, and sufficient for some parameter θ, then it is the best mean-unbiased

estimator for θ,” (Casella and Berger, 2001). In the present setting, the relevant sufficient statistic

is not complete, and so the theorem can not be applied here.

In line with extending the work of Molenberghs et al (2012) and Milanzi et al (2012), to a general

number of looks, we explore incompleteness and its consequencies in studies with more than two

looks using the stochastic rule.

In a sequential setting, a convenient sufficient statistic is (K,N). Following the developments in the

5



above papers, the joint distribution for (K,N) is:

p(K,N) = f0(K,N) F (KN ), (7)

f0(kn1 , n1) = fn1(kn1), (8)

f0(knj , nj) =

∫
f0(knj−1 , nj−1)fnj−nj−1(knj − knj−1)

[
1− F (knj−1)

]
dknj−1 . (9)

If (K,N) were complete, then there would exist a function g(K,N) such that E [g(K,N)] = 0 if

and only if g(K,N) = 0, implying that

0 =

∫
g(kn1 , n1)fn1(kn1)F (kn1)dkn1 +

L−2∑
j=2

∫
g(knj , nj)H(knj )F (knj )dknj

+

∫
g(knL , nL)H(knL)F (knL)dknL , (10)

with

H(knj ) =

∫ . . .︸︷︷︸
j−1

∫
f0(knj−1 , nj−1)fnj−nj−1(knj − knj−1)

[
1− F (knj−1)

]
dkn1 . . . dknj−1

]
.

Tedious but straightforward algebra results into:

g(knL , nL)H̃(knL) = −
L−1∑
j=1

∫
g(zj , nj)H̃(zj)F (zj)dzj ,

g(knL , nL) =

∑L−1
j=1

∫
g(zj , nj)H̃(zj)F (zj)dzj

H̃(knL)
.

Assigning, for example, arbitrary constants to g(n1, kn1) . . . g(nL−1, knL−1), a value can be found

for g(nL, knL) 6= 0, contradicting the requirement for (K,N) to be complete, hence establishing

incompleteness. From applying the Lehmann-Scheffé theorem, that no best mean-unbiased estimator

is guaranteed to exist. The practical consequence of this is that even estimators as simple as a sample

average need careful consideration and comparison with alternatives. Nevertheless, the situation is

different for non-linear mean estimators as illustrated for the conditional likelihood estimator.

4 Unbiased Estimation: Conditional Likelihood

The eminent draw back of linear based mean estimators in the context of sequential trials is their

finite sample bias. In connecting missing data and sequential trials theory, Molenberghs et al (2012)

provided a factorization for the joint distribution of observed data and sample size that leads to an
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unbiased conditional likelihood mean estimator.

For the arbitrary number of looks, the conditional distribution for N = n1 is:

fn1(n1, kn1) = fn1(kn1)F (kn1),

fn1(n1) =

∫
fn1(kn1)F (kn1)dkn1 = An1(µ),

f(kn1 |n1) =
fn1(kn1)F (kn1)

An1(µ)
,

from which the log-likelihood, score, Hessian, and information follow as:

`n1(µ) = ln [hn1(kn1)] + θkn1 − n1µ− ln [An1(µ)] , (11)

Sn1(µ) = kn1 −
Bn1(µ)

An1(µ)
= kn1 − E

[
K
∣∣N = n1

]
, (12)

Hn1(µ) = −

{
Cn1(µ)

An1(µ)
−
(
Bn1(µ)

An1(µ)

)2
}

= −
{
E
[
K2
∣∣N = n1

]
−
(
E
[
K
∣∣N = n1

])2}
, (13)

In1(µ) = E
[
K2
∣∣N = n1

]
−
{
E
[
K
∣∣N = n1

]}2
,

where

Bn1(µ) =

∫
kn1fn1(kn1)dkn1 and Cn1(µ) =

∫
k2n1

fn1(kn1)dkn1 .

Similarly for N = nj where j > 1, we have the conditional distribution:

fnj (nj , knj ) = H̃(knj )F (knj ) exp
[
θknj − nja(θ)

]
, (14)

fnj (nj) =

∫
H̃(knj )F (knj ) exp

[
θknj − nja(θ)

]
= Anj (µ), (15)

f(knj |nj) =
H̃(knj )F (knj ) exp

[
θknj − nja(θ)

]
Anj (µ)

. (16)

The following expressions for the likelihood, score, Hessian, and information are:

`nj (µ) = ln[H̃(knj )F (knj )] + θknj − njµ− lnAnj (µ), (17)

Snj (µ) = knj −
Bnj (µ)

Anj (µ)
= knj − E

[
K
∣∣N = nj

]
, (18)

Hnj (µ) = −

{
Cnj (µ)

Anj (µ)
−
[
Bnj (µ)

Anj (µ)

]2}
= −

{
E
[
K2
∣∣N = nj

]
−
(
E
[
K
∣∣N = nj

])2}
, (19)

Inj (µ) = E
[
K2
∣∣N = nj

]
−
{
E
[
K
∣∣N = nj

]}2
, (20)

where

Bnj (µ) =

∫
knjH̃(knj )F (knj ) exp(θknj − nja(θ))dknj ,

Cnj (µ) =

∫
k2nj

H̃(knj )F (knj ) exp(θknj − nja(θ))dknj (j > 1).
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The overall information for the conditional likelihood estimator is given by

Ic(µ) =
L∑
j=1

Anj (µ)

{
Cnj (µ)

Anj (µ)
−
[
Bnj (µ)

Anj (µ)

]2}
,

=

L∑
j=1

nja
′′(θ)Anj (µ)−

L∑
j=1

[Bnj (µ)− nja′(θ)Anj (µ)]2

Anj (µ)
. (21)

From the scores (12) and (18), it can be seen that conditional likelihood estimator is unbiased.

Clearly, the bias correction in the CLE mirrors the bias expression of the SA, as can be seen from

(33). Upon writing (12) and (18), as

Snj (µ) = knj − njµ+

[
njµ−

Bnj (µ)

Anj (µ)

]
,

the bias-correction factor in the CLE becomes even more apparent.

In contrast to the case of a fixed sample size, conditioning on the sample size in this case leads to loss

of information, as can be seen by the subtraction of a positive factor in (21). This is a consequence

of conditioning on a non-ancillary statistic, as discussed in Casella and Berger (2001).

GEERT: I added this statement to show the computational problems of conditional likeli-

hood, is it too harsh?

Additionally, despite having the appealing property of finite sample unbiasedness, its non-

linear nature comes with computational problems. Note that maximization of (11) and (14)

requires simultaneous optimization and solving of multiple integrals. Unless unbiasedness is

of paramount importance, serious consideration of the time and complexity of implementing

the conditional likelihood has to be done.

5 Joint Likelihood Estimation

Likelihood methods, while allowing for a unified treatment across a variety of settings (e.g., data

types, stopping rules), they do rely heavily on correct parametric specification. This should be taken

into account when opting for a particular approach.

Selection model factorization for the joint distribution of observed data and sample size also leads to

joint likelihood estimation (JLE).Employing separability and ignorability concepts from the missing

data theory, it is known that under a missing at random (MAR) assumption, maximizing the joint

likelihood is equivalent to maximizing the likelihood of the observed data only. This is crucial when
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considered against the background of Kenward and Molenberghs (1998) where it was shown that

under frequentist inference and the missing at random (MAR) assumption, the observed information

matrix gives valid inferences. Other properties of joint likelihood estimation are explored below:

The joint distribution of the sufficient statistics (K,N) is given by;

f(K,N) = hN (K) exp [Kθ −Na(θ)] ·
L−1∏
i=1

[
1− F (knj )

]
F (knL)I(i<L). (22)

Because our stopping rule is independent of the parameter of interest, the log-likelihood, the score,

the Hessian, and the expected information simplify as follows:

`(µ) = ln[hN (K)] +Kθ −Na(θ) + ln

{
L−1∏
i=1

[
1− F (knj )

]
F (knL)I(i<L)

}
, (23)

S(µ) = K −Na′(θ), (24)

H(µ) = −Na′′(θ), (25)

I(µ) =

L∑
j=1

nja
′′(θ)Anj (µ). (26)

In deriving the score (24) from (23) the rightmost term drops out, i.e., conventional ignorability

applies. As a consequence, the maximum likelihood estimator (MLE) reduces to µ̂ = a′(θ) = K/N ,

the SA.

Because of the bias, a finite sample comparison among estimators needs to be based on the MSE.

For µ̂, this is

MSE(µ̂) =
1∑L

j=1 nja
′′(θ)Anj (µ)

+

 L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

2

. (27)

For the conditional likelihood estimate (CLE) the MSE is:

MSE(µ̂c) =
1

Ic(µ)
=

1∑L
j=1 nja

′′(θ)Anj (µ)

+
y[∑L

j=1 nja
′′(θ)Anj (µ)

]2
− y

∑L
j=1 nja

′′(θ)Anj (µ)
, (28)

where

y =

L∑
j=1

[
Bnj (µ)−Anjnj(µ)

]2
Anj (µ)

.

The condition that MSE(µ̂) ≥ MSE(µ̂c) is equivalent to the requirement that L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

2

≥ 1∑L
j=1 nja

′′(θ)Anj (µ)
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holds. For the special case of equal sample sizes this can never be true, hence the SA has the smaller

MSE. More generally, neither is uniformly superior in terms of MSE.

6 Generalized Sample Averages

To get a broad picture of the properties of SA which follows from JLE, we embed it in a broader class

of linear estimator. Extending the definition in Molenberghs et al (2012), the generalized sample

average (GSA) can be be defined as:

µ̄g =
L∑
j=1

aj
nj
knj , (29)

for a set of constants a1, . . . , aL. The SA follows as the special case where each aj = 1. To explore

the properties of the GSA we make use of the fact that:∫
fn1(kn1)dkn1 +

L∑
j=2

∫
H̃(knj )F (knj ) exp(θknj − nja(θ))dknj = 1,

and derive three useful identities:∫
fn1(kn1)dkn1 = 1−

L∑
j=2

Anj (µ), (30)

L∑
j=1

Bnj (µ) =
L∑
j=1

nja
′(θ)Anj (µ), (31)

L∑
j=1

Cnj =

L∑
j=1

2nja
′(θ)Bnj (µ)− [nja

′(θ)]2Anj (µ) + nja
′′(θ)Anj (µ),

Using identities (30) and (31), the expectation of (29) can then be formulated as

E [µ̄g] =
a1
n1
Bn1(µ) +

L∑
j=2

aj
nj
Bnj (µ)

= a1µ+
L∑
j=2

a1Anj (µ)
n1 − nj
n1

[
n1aj − nja1
a1(n1 − nj)

E

{
K

N

∣∣∣∣∣N = nj

}
− µ

]
, (32)

establishing the bias as a function of the difference between the marginal and conditional means.

When (32) is unbiased, at least one value among a1, . . . , aL will depend on µ. This means that none

of the GSA can be uniformly unbiased. Focusing on the SA, the expectation reduces to

E [µ̄] = µ+

L∑
j=2

Anj (µ)
n1 − nj
n1

[
Bnj (µ)

njAnj(µ)
− µ

]

= µ+
L∑
j=2

Anj (µ)
n1 − nj
n1

[
E

{
K

N

∣∣∣∣∣N = nj

}
− µ

]
, (33)
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from which we get the bias as

L∑
j=2

Anj (µ)
n1 − nj
n1

[
Bnj (µ)

njAnj(µ)
− µ

]
=

L∑
j=2

n1 − nj
n1nj

[
Bnj (µ)−Anjnjµ

]
=

L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

. (34)

Thus, the SA is unbiased when the conditional and marginal means are equal.

7 Asymptotic Properties

We now turn to the large-sample properties of the estimators discussed in the previous sections. When

N →∞, approximately K ∼ N(Nµ,Nσ2), so normal-theory arguments can be used. Considering a

first-order Taylor series expansion of F (knj ) around njµ results in F (knj ) ≈ F (njµ)+F ′(njµ)(knj−

njµ). Without loss of generality, consider a class of stopping rules for which F ′(nj)
n→∞→ 0. In this

setting, the expressions derived above can be approximated by

An1(µ) ≈ F (n1µ),

Bn1(µ) ≈ F (n1µ)n1µ,

Anj (µ) ≈
j−1∏
i=1

[1− F (niµ)]F (njµ), (j > 1)

Bnj(µ) ≈
j−1∏
i=1

[1− F (niµ)]F (njµ)njµ, (j > 1).

These approximations will be useful in what follows.

7.1 Asymptotic Bias

Conditional Likelihood Estimation

We turn now to the asymptotic conditional behavior of the bias of the sample average given the

sample size. Two cases are considered:

Case I. F (nµ)
n→∞−→ a ∈]0, 1[ and F ′(nµ)

n→∞−→ 0. For this case E[µ̄|N = nj ]
n→∞−→ µ, for j =

1, . . . , L.

Case II. Here, both the function F (·) and its first derivative F (·) converge to zero. When this

happens, it does so for all but one of the sample sizes that can possibly be realized. The one
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exception is the sample size that will be realized, asymptotically, with probability one. Without

loss of generality, we illustrate this case for stopping at the first look, assuming that the sample

size realized at the first look corresponds to a set of values for µ taht do not contain the true

one. Thus, F (nµ)
n→∞−→ 0 and F ′(nµ)

n→∞→ 0. This case can correspond for particular forms

of F (knj ). Given that K is asymptotically normally distributed, letting F (K) = Φ(k) is a

mathematically convenient choice from which it follows that F (njµ) = Φ(njµ). Consider first

N = n1. Then,

lim
n1→∞

E[µ̄|N = n1] = µ− lim
n1→∞

φ(n1µ)σ2

Φ(n1µ)
,

of which the right hand term approaches 0/0. We therefore apply l’Hopital’s rule and obtain:

lim
n1→∞

E[µ̄|N = n1] = µ− lim
n1→∞

−n1µφ(n1µ)

φ(n1µ)
→∞,

with the sign opposite to that of µ. Hence, conditional on the fact that stopping occurs after

the first look, the estimate may grow in an unbounded way. However, recalling that F (nµ),

the probability of stopping when N = n1, also approaches zero, these extreme estimates are

also extremely rare. In the same case, for N = nj (j > 1), limn→∞E[µ̄|N = nj ] → µ. So

for these sample sizes no asymptotic bias occurs.

Milanzi et al (2012) showed that a large class of stopping rules corresponds to either Case I or

Case II. For example, for stopping rule Φ(α + βk/n), they found that Case I applies. Switching to

Φ(α + βk), F ′(nµ) = βφ(α + βnµ) which again tends to zero. However, Φ(α + βnµ) may tend

to either zero or one. For a general rule F (k) = Φ(α + βknm), with m any real number, F ′(nµ)

converges to zero whatever m is. Further, F (nµ) converges to Φ(α + βµ) for m = −1, Φ(α) for

m < −1, and Φ(±∞) (i.e., 0 or 1) for m > −1.

Joint Likelihood Estimation

Recall that the bias for the SA was given by (34), which asymptotically tends to the limit

lim
n→∞

L∑
j=1

∏j−1
i=1 [1− F (niµ)]F (njµ)njµ−

∏j−1
i=1 [1− F (niµ)]F (njµ)njµ

nj
−→ 0.

Although the sample average is finite-sample biased in general for data-dependent stopping rules, it

is asymptotically unbiased and hence can be considered an appropriate candidate for practical use

following a sequential trial. Emerson (1988) established the same result for two possible looks and

further noted that this property is not relevant in group sequential trials, because large sample sizes are
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unethical, hence making the study of small sample properties crucial. On the other hand, results from

a comprehensive analysis, comparing randomized controlled trials (RCTs) stopped for early benefit

(truncated) and RCTs not stopped for early benefit (non-truncated), indicated that treatment effect

was over-estimated in most of truncated RCTs regardless of the pre-specified stopping rule used

(Bassler et al , 2010). They further advocate stopping rules that demand large number of events. In

their exploration of properties of estimators, Milanzi et al (2012) showed that in the general class of

linear mean estimators, only the sample average has asymptotic unbiasedness property thus giving

it an advantage in cases where asymptotic unbiasedness would play a role. The sample average is

asymptotically unbiased in all cases, and even conditionally asymptotically unbiased, even in the case

of an arbitrary number of looks. Further, under the usual likelihood regularity conditions, the SA is

then consistent and asymptotically normally distributed, and the likelihood-based precision estimator

and its corresponding confidence intervals are valid. Care has to be exercised when working under

the MAR assumption, as it is the case here, because the observed information matrix rather than the

expected information matrix should be used to obtain precision estimators to ensure their validity.

Kenward and Molenberghs (1998) noted that, provided that use is made of the likelihood ratio,

Wald or score statistics based on the observed information, then reference to a null asymptotic χ2

distribution will be appropriate.

This conventional asymptotic behavior contrasts with the idiosyncratic small-sample properties of

the SA derived in the Section 6.

7.2 Asymptotic Mean Square Error

Given that the bias for the sample average tends to zero as the sample size increases and that∑L
j=1Bnj (µ)−Anj (µ)njµ

n→∞−→ 0, it follows that

lim
n→∞

MSE(µ̂) = lim
n→∞

MSE(µ̂c)→
1∑L

j=1 nja
′′(θ)Anj (µ)

.

8 Simulation Study

8.1 Design

The simulation study has been designed to corroborate the theoretical findings on the behavior of

the likelihood estimators, in comparison to commonly used biased adjusted estimators. Assume a

clinical trial comparing a new therapy to a control, designed to follow O‘Brien and Fleming’s group
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sequential plan with four interim analyses.

The objective of the trial is to show that the mean response from the new therapy is higher than that

of the control group. Let Yit ∼ N(µt, 1) and Yic ∼ N(µc, 1) be the responses from subject i in the

therapy and control groups, respectively. The null hypothesis is formulated as H0 : θ = µt − µc = 0

vs. H1 : θ = θ1 > 0. Further, allow a type I error of 2.5% and 90% power to detect the clinically

meaningful difference.

Given that we are interested in asymptotic behavior, different values of the clinically meaningful

difference, θ1 = 0.5, 0.25, and 0.15 are considered to achieve different sample sizes, with smaller θ1

corresponding to larger sample size.

With the settings described above, datasets are generated as follows; at each stage, Yit ∼ N(2, 1),

i = 1 . . . nj , j = 1 . . . 4 and Yic ∼ N(µc, 1), where µc = 1.5, 1.75, and 1.85 for the first, second, and

third setting, respectively. These also serve as the true mean values under which the bias is being

considered.

Estimation proceeds by obtaining the maximum likelihood estimator (sample average: µ̂t − µ̂c) at

each stage and apply the stopping rule:

F (knj ) = Φ

(
αj + β

kj
nj

)
, (j = 1 . . . 4),

where β = 100 to represent the rules applied to the group sequential trials case (Milanzi et al ,

2012). To follow the behavior of O’Brien and Fleming boundaries (where early stopping is difficult),

a value of α is chosen to make sure that the probability of stopping increases with the increase in

number of looks, i.e., αj = 2(h−j+1)
h α1, where α1 = −50, −25, and−15 for θ1 = 0.5, 0.25, and 0.15,

respectively and h is the number of planned looks. Obviously, the choice of αj depends on the design

and goals of the trial. In this setting, α1 was chosen such that P (N = n3|θ = θ1) ≥ 0.5 and to make

early stopping difficult. The decision to stop is made when F (knj ) > U , where U ∼ Uniform(0, 1);

otherwise, we continue. For example if F (knj ) = 0.70, then the probability of continuing is 30% and

for large values of β, F (knj ) ∈ {0, 1}.

The objective of the simulation is to show that the performance of the CLE as the mean estimator

after a group sequential trial and compare MLE to other bias adjusted estimators.We further show

that MLE confidence intervals obtained by using the observed information matrix, lead to valid

conclusions.
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Other estimators obtained include: the mean unbiased estimator (MUE), the bias adjusted estimator

(BAM; Todd, Whitehead, and Facey 1996), and Rao’s bias-adjusted estimator (RBADJ; Emerson

and Fleming 1990).

Additional simulations with two possible looks and a smaller value of β for both joint and conditional

likelihood are presented in the Appendix.

8.2 Results

Table 1 gives the mean estimates for different estimators of θ. On average MLE exhibits large

relative bias compared to the bias adjusted estimates, for example, for θ1 = 0.15 which corresponds to

maximum sample size of 1949, relative bias for MLE is 6% compared to 0.7% for CLE. The conditional

likelihood estimate performs as expected with consistent small bias in all the three scenarios. On the

other hand, MLE shows the asymptotic unbiasedness behavior, seen by the reduction (though small)

in relative bias as sample size increases. This is not the same for BAM and RBADJ.

While point estimates are useful in giving the picture of the magnitude of the difference, confidence

intervals (CI) are highly important in decision making. A comparison of adjusted confidence intervals

provided with the RCTdesign package in R (Emerson et al , 2012), to the likelihood based confidence

intervals, obtained by using observed variance as precision estimates, indicates that their coverage

probabilities are comparable. The coverage probabilities were (94.6%, 94.6%, 97.6%) for the adjusted

CI and (93.8%, 92.8%, 96.8%) for MLE based CI, for the three settings in the order of increasing

sample size. Using the same design parameters, we also investigated the type I error rate for MLE and

adjusted estimators, by setting θ1 = 0 and obtaining the percentage times the confidence interval

does not contain zero. Type I error rates for likelihood based CI were (5.6%,6.4%,2.8%), which

are similar to those based on adjusted CIs, (5.4%,4.8%,2.8%) for the three settings in the order

of increasing sample size. Certainly using either of the CIs will lead to similar conclusions, which

makes the simpler and well known sample average a good estimator candidate for analysis after group

sequential trials..

We also explore the bias of each of the estimators at the sample level in contrast to the averaged

bias as presented in Table 1. Recall that we had 500 samples for each setting, Table 2 gives the

proportion of samples whose estimates’ relative bias fell into a specified category. The CLE had a

reverse trend of the other estimators where a only few estimated had large bias. Indeed it is hard
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to pick a preferred estimator among the others estimators based on these results since each of the

estimator has about 75% of the estimates having relative bias of > 10%. It is also clear from Figure

1, which plot the difference in relative bias, between each of the bias adjusted estimates and MLE,

that none of the estimates discussed above is uniformly unbiased in comparison to MLE, i.e is some

instances MLE may do better.

Table 1: Mean estimates (Est.) and relative bias (R.Bias) for the three different settings of O’Brien

and Fleming’s design. Parameters common to all the three settings include, power=90%, type I

error=0.025, H0 : θ = 0 vs. H1 : θ = θ1 > 0, where only the detectable difference (θ1) was changed

to initiate change in maximum sample size (Size). MLE is the maximum likelihood estimate, BAM

is the bias-adjusted maximum likelihood estimate, RBADJ is the Rao bias adjusted estimate, MUE

is the median unbiased estimate and CLE is the conditional likelihood estimate.

MLE BAM RBADJ MUE CLE

Size Est. R.Bias Est. R.Bias Est. R.Bias Est. R.Bias Est. R.Bias

176 0.5448 (0.0895) 0.5142 (0.0285) 0.5019 (0.0037) 0.5251 (0.0502) 0.5026 (0.0052)

702 0.2665 (0.0661) 0.2508 (0.0031) 0.2473 (0.0108) 0.2557 (0.0228) 0.2476 (0.0094)

1949 0.1595 (0.0635) 0.1489 (0.0070) 0.1469 (0.0209) 0.1520 (0.0130) 0.1511 (0.0071)

9 Concluding Remarks

As a result of the bias associated with joint maximum likelihood estimators following sequential

trials, much work has been applied to providing alternative estimators. The origin of the problem lies

with the incompleteness of the sufficient statistic for the mean parameter Lehman (1950), implying,

among others, that there is no best unbiased linear mean estimator.

Using stochastic stopping rules, which encompass the deterministic stopping rules used in sequential

trials as special cases, we have studied the properties of joint maximum likelihood estimators afresh, in

an attempt to enhance our understanding of the behavior of estimators (for both bias and precision)

based on data from such studies. This has been data for the one parameter exponential family

distributions to encompass response outcomes form several distributions like, binary , normal, Poisson,
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Table 2: Results from three different settings of O’Brien and Fleming’s design. Parameters common

to all three settings include: power=90%, type I error=0.025, H0 : θ = 0 vs. H1 : θ = θ1 > 0, where

only the detectable difference (θ1) was changed to initiate change in maximum sample size (Size).

Out of 500 datasets generated for each setting, we compare the percentage of estimates (Prop. as

a percentage) whose relative bias falls in the specified range (R.Bias as a percentage). MLE is the

maximum likelihood estimate, BAM is the biased adjusted maximum likelihood estimate, RBADJ

is Rao’s bias adjusted estimate, MUE is the median unbiased estimate, and CLE is the conditional

likelihood estimate..

Prop.(%)

θ1(Size) R.Bias(%) BAM RBADJ MUE MLE CLE

0.5(176) ≤ 0.99 2.6 2.0 2.2 2.2 76.3

1− 4.99 8.4 11.4 11.0 10.6 13.2

5− 10 10.6 11.6 12.6 15.0 7.9

> 10 78.4 75.0 74.2 72.2 2.6

0.25(702) ≤ 0.99 2.0 3.2 1.4 2.6 81.3

1− 4.99 7.2 9.0 8.8 9.0 12.5

5− 10 9.4 9.8 10.8 9.8 2.1

> 10 81.4 78.0 79.0 78.6 4.2

0.15(1949) ≤ 0.99 2.6 1.8 1.4 2.2 55.6

1− 4.99 7.4 13.2 8.0 13.2 33.3

5− 10 9.2 9.0 11.8 11.0 8.9

> 10 80.8 76.0 77.6 74.4 2.2

exponential and survival times.

First, the incompleteness of the sufficient statistic when using a stochastic stopping rule has been

established. Using a generalized sample average, it is noted that in almost no case is there an

unbiased estimator. Even when such an estimator does exist, with a completely random sample size,

it cannot be uniformly best.

Second, there exist an unbiased estimator resulting from the likelihood of the observed data con-

ditional on the sample size. While appealing, the conditional estimator is computationally more
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involved, because there is no closed-form solution. Although for a sequential trial with a determin-

istic stopping rule, the ordinary sample average is finite sample biased, it can be been shown both

directly and through likelihood arguments, that it is asymptotically unbiased and so remains a good

candidate for practical use. Further, it is computationally trivial, has a correspondingly simple esti-

mator of precision,derived from observed information matrix and hence a well behaved asymptotic

likelihood-based confidence interval. In addition, the mean square error of the sample average is

smaller than that of the estimator based on the conditional likelihood. Asymptotically, the mean

square errors of both estimators converge.

Third, there is the subtle issue that the sample average may be asymptotically biased for certain

stopping rules, when its expectation is considered conditionally on certain values of the sample size.

However, this is not a real practical problem because this occurs only for sample sizes that have

asymptotic probability zero of being realized. We placed emphasis on joint and conditional likelihood

estimators. While in the former the stopping rule is less present than sometimes thought, it is not

in the latter. Also, when alternative frequentist estimators are considered, the stopping rule is likely

to play a role in synchrony with the rule’s influence on hypothesis testing due to the duality between

hypothesis testing and confidence intervals.

While in some circumstances other sources of inaccuracy may overwhelm the issue studied here, we

believe it is useful to bring forward implications of our findings for likelihood-based estimation.

Our findings, especially for the simulations in the appendix, indicate that bias decreases relatively

rapidly with sample size, but there are subtle differences depending on stopping rule considered. In

this sense, fixed rules are different from Z-statistic based rules (Emerson 1988, p. 5; Jennison and

Turnbull, 2000).

In conclusion, the sample average is a very sensible choice for point, precision, and interval estimation

following a sequential trial.
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Figure 1: Difference in relative bias between MLE and each the biased adjusted estimates (BAM,

RBADJ and MUE). The first row is for θ1 = 0.5, second row, θ1 = 0.25 and third row, |
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Supplementary Materials

These Supplementary Materials contain a full description of the additional simulation settings and

results where we consider different forms of the stopping rule and study asymptotic unbiasedness and

mean square error for both joint and conditional likelihood.

A Simulation Study

A.1 Design

This simulation study has been designed to corroborate the theoretical findings on the behavior of

joint and conditional likelihood estimators. For this it is sufficient to take a sequential trial setting

in which N can take two possible sample sizes: N = n or N = 2n. For the first set of simulations,

we generate Yi ∼ N(µ, 1), (i = 1, . . . , n), after which F = Φ (α+ βk/n) is evaluated. The

decision to stop or continue is reached by generating Q ∼ U(0, 1). If Q ≤ F , then the trial is

stopped, otherwise we generate another Yi ∼ N(µ, 1) i = n+ 1, . . . , 2n. Finally, the estimate of µ

is obtained by maximizing the relevant likelihood (joint or conditional). The following values were

chosen: µ = 2; 4; 10 and n = 25; 50; 250; 500; 5000. Values of α and β were fixed at 0.1 and 0.01,

respectively. A total of one million simulations were done for each setting, to ensure that even very

small effects could be detected.

In the second set of simulations, the stopping rule is changed to F = Φ (α+ βk), for which the
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conditional expectation of the SA may grow without bound.

A.2 Results

In Tables 3 and 4, we present the operational characteristics of the mean estimators from the joint

and conditional likelihood respectively, for the stopping rule of the form F = Φ (α+ βk/n). The

magnitude of both bias and MSE are comparable between the two tables, supporting the theoretical

findings that the sample average is asymptotically unbiased and that the MSEs converge as sample

size increases. A further set of simulation results is provided in Supplementary Materials A.

Tables 5 and 6 are the counterparts for stopping rule F = Φ (α+ βk). Note that there are fewer

entries in Table 5, because, for larger sample sizes, the probability of stopping at N = n decreases,

to the extent that not enough data remain to meaningfully complete the simulations. Though not

very extreme, the magnitude of relative bias is noticeably higher for N = n than for N = 2n. The

good news is that, overall, the marginal estimate will be driven by cases stopping at N = 2n, whose

estimates have a very small bias and small MSE.

B Simulation Study for Stopping Rule Φ(α + βk)

B.1 Simulation Settings

The results presented in this section are from the simulation study run with the purpose of investi-

gating the behavior of the joint and conditional likelihood estimators in non-fixed sample size trials.

The sample size N can take the values n and 2n.

Specifically, we generated Yi ∼ N(µ, 1) i = 1 . . . n, from which F = Φ (α+ βk) is calculated, with

K =
∑n

i=1 Yi. The decision to stop or continue is reached by generating Q ∼ U(0, 1) and that if

Q ≤ F , the trial stops, otherwise we generate another Yi ∼ N(µ, 1) i = n + 1 . . . 2n. Finally the

estimate of µ is obtained by maximizing the relevant likelihood (joint or conditional). The following

values were considered: µ = 2; 4; 10 and n = 25; 50; 250; 500; 5000. To also allow for small effects

to show up, a total of 1 million simulations were done for each setting.

B.2 Simulation Results

The results indicate small biases in all cases, the highest bias value being 0.1%, which comes from the

conditional likelihood estimator for N = 25 and µ = 2. In general, though, the conditional likelihood
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Table 3: Estimates were obtained by maximizing the joint likelihood (sample average) and averaging

was done over estimates from all the simulated samples; n is the sample size generated at a particular

stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean

square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00014 0.02904 1.67065 2.3288

50 2 2.0001 .00007 0.01452 1.76743 2.2329

250 2 1.9999 .00005 0.00291 1.89581 2.1040

500 2 2.0000 .00001 0.00145 1.92638 2.0736

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 3.9998 .00006 0.02888 3.67160 4.3279

50 4 4.0001 .00002 0.01444 3.76801 4.2322

250 4 4.0001 .00002 0.00289 3.89630 4.1038

500 4 4.0000 .00001 0.00144 3.92663 4.0734

5000 4 4.0000 .00000 0.00014 3.97681 4.0232

25 10 9.9997 .00003 0.02841 9.67427 10.3252

50 10 10.0001 .00001 0.01421 9.76993 10.2303

250 10 10.0001 .00001 0.00284 9.89715 10.1030

500 10 10.0000 .00000 0.00142 9.92723 10.0728

5000 10 10.0000 .00000 0.00014 9.97700 10.0230
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Table 4: Estimates were obtained by maximizing the conditional likelihood and averaging was done

over estimates from all the simulated samples; n is the sample size generated at a particular stage,

µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean

square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits, respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00031 0.02904 1.67061 2.3288

50 2 2.0001 .00010 0.01454 1.76728 2.2329

250 2 2.0000 .00000 0.00290 1.89594 2.1041

500 2 2.0001 .00006 0.00713 1.85669 2.1434

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 4.0000 .00004 0.02888 3.67186 4.3282

50 4 4.0001 .00013 0.01445 3.76798 4.2323

250 4 4.0000 .00000 0.00289 3.89622 4.1038

500 4 4.0001 .00005 0.00144 3.92666 4.0734

5000 4 4.0000 .00001 0.00014 3.97681 4.0232

25 10 10.0000 .00004 0.02841 9.67458 10.3255

50 10 10.0001 .00010 0.01422 9.76984 10.2304

250 10 10.0000 .00002 0.00284 9.89709 10.1029

500 10 10.0001 .00005 0.00142 9.92726 10.0728

5000 10 10.0000 .00001 0.00014 9.97700 10.0230
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Table 5: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples where we stopped at N = n; n is the sample size generated

at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits, respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.98573 0.00714 0.04009 1.59438 2.3771

50 2 1.95704 0.02148 0.02062 1.68982 2.2243

250 2 1.90287 0.04856 0.01343 1.77891 2.0268

25 4 3.97778 0.00555 0.04022 3.58737 4.3682

50 4 3.85891 0.03527 0.03438 3.62663 4.0912

25 10 9.97525 0.00248 0.04061 9.58325 10.3673

estimator shows little or no bias. For the sample average, comparing the overall results with the ones

conditional on sample size, reveals that the bias is slightly higher in the conditional estimates than

the marginal ones for the small sample size. The asymptotic behavior of bias is in line with theory,

given that it decreases with increasing sample size. Loss of information in the conditional estimates

is noticeable but very small in the settings studied, again in line with theory.

Details are provided in Tables 13–18.

C Simulation Study for Stopping Rule Φ(α + βk/n)

C.1 Simulation Settings

The results presented here are from a simulation study run with the purpose of investigating the

behavior of joint and conditional likelihood estimators in non-fixed sample size trials. In contrast to

Section B.1 the stopping rule is now F = Φ
(
α+ β kn

)
. All other settings are as in Section B.1.

C.2 Simulation Results

The results show small biases in all cases, the highest bias value being 0.1% which comes from the

conditional likelihood estimate for N = 25 and µ = 2, though in general the conditional likelihood
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Table 6: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples where we continued to N = 2n, n is the sample size gen-

erated at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias= |(µ−µ̂)|µ ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits, respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0033 .00166 0.02001 1.72613 2.2805

50 2 2.0067 .00332 0.01004 1.81065 2.2027

250 2 2.0001 .00003 0.00200 1.91241 2.0877

500 2 2.0000 .00002 0.00100 1.93805 2.0620

5000 2 2.0000 .00001 0.00010 1.98041 2.0196

25 4 4.0025 .00061 0.02001 3.72526 4.2796

50 4 4.0057 .00144 0.01003 3.80974 4.2017

250 4 4.0001 .00002 0.00200 3.91241 4.0877

500 4 4.0000 .00001 0.00100 3.93805 4.0620

5000 4 4.0000 .00000 0.00010 3.98041 4.0196

25 10 10.0003 .00002 0.02000 9.72306 10.2774

50 10 10.0001 .00000 0.01000 9.80405 10.1961

250 10 10.0001 .00001 0.00200 9.91241 10.0877

500 10 10.0000 .00000 0.00100 9.93805 10.0620

5000 10 10.0000 .00000 0.00010 9.98041 10.0196
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Table 7: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples; n is the sample size generated at a particular stage, µ is

the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square

error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9985 .00077 0.02550 1.68972 2.3072

50 2 1.9990 .00052 0.01136 1.79192 2.2060

250 2 2.0001 .00003 0.00200 1.91241 2.0877

500 2 2.0000 .00002 0.00100 1.93805 2.0620

5000 2 2.0000 .00001 0.00010 1.98041 2.0196

25 4 3.9991 .00024 0.02272 3.70628 4.2918

50 4 3.9998 .00004 0.01018 3.80238 4.1973

250 4 4.0001 .00002 0.00200 3.91241 4.0877

500 4 4.0000 .00001 0.00100 3.93805 4.0620

5000 4 4.0000 .00000 0.00010 3.98041 4.0196

25 10 10.0001 .00001 0.02009 9.72242 10.2779

50 10 10.0001 .00000 0.01000 9.80405 10.1961

250 10 10.0001 .00001 0.00200 9.91241 10.0877

500 10 10.0000 .00000 0.00100 9.93805 10.0620

5000 10 10.0000 .00000 0.00010 9.98041 10.0196
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Table 8: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples where we stopped at N = n; n is the sample size generated

at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.98573 0.00714 0.04009 1.59438 2.3771

50 2 1.95704 0.02148 0.02062 1.68982 2.2243

250 2 1.90287 0.04856 0.01343 1.77891 2.0268

25 4 3.97778 0.00555 0.04022 3.58737 4.3682

50 4 3.85891 0.03527 0.03438 3.62663 4.0912

25 10 9.97525 0.00248 0.04061 9.58325 10.3673

estimator shows little or no bias. Comparing the marginal and conditional estimators for the sample

average reveals that the bias is slightly higher in the conditional estimators than the marginal ones

for the small sample size. Also here, the asymptotic behavior of the bias is in line with that expected

from the theoretical developments, as it decreases with increasing sample size. Loss of information

in the conditional estimator is discernable but small.

The results are presented in Tables 13–18.

8



Table 9: Estimates were obtained by maximizing the joint likelihood and averaging was done over es-

timates from all the simulated samples where we continued to N = 2n, n is the sample size generated

at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0033 .00166 0.02001 1.72613 2.2805

50 2 2.0067 .00332 0.01004 1.81065 2.2027

250 2 2.0001 .00003 0.00200 1.91241 2.0877

500 2 2.0000 .00002 0.00100 1.93805 2.0620

5000 2 2.0000 .00001 0.00010 1.98041 2.0196

25 4 4.0025 .00061 0.02001 3.72526 4.2796

50 4 4.0057 .00144 0.01003 3.80974 4.2017

250 4 4.0001 .00002 0.00200 3.91241 4.0877

500 4 4.0000 .00001 0.00100 3.93805 4.0620

5000 4 4.0000 .00000 0.00010 3.98041 4.0196

25 10 10.0003 .00002 0.02000 9.72306 10.2774

50 10 10.0001 .00000 0.01000 9.80405 10.1961

250 10 10.0001 .00001 0.00200 9.91241 10.0877

500 10 10.0000 .00000 0.00100 9.93805 10.0620

5000 10 10.0000 .00000 0.00010 9.98041 10.0196
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Table 10: Estimates were obtained by maximizing the conditional likelihood and averaging was done

over estimates from all the simulated samples; n is the sample size generated at a particular stage,

µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean

square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0069 0.00687 0.02560 1.69777 2.3160

50 2 2.0195 0.01951 0.01182 1.81170 2.2273

25 4 4.0196 0.01961 0.02318 3.72629 4.3129

50 4 4.0423 0.04227 0.01206 3.84389 4.2406

25 10 10.0527 0.05272 0.02295 9.77448 10.3310

Table 11: Estimates were obtained by maximizing the conditional likelihood and averaging was

done over estimates from all the simulated samples where we stopped at N = n, n is the sam-

ple size generated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and

upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.98129 0.01871 0.04029 1.58970 2.3729

50 2 1.95747 0.04253 0.02062 1.68994 2.2250

25 4 3.97558 0.02442 0.04035 3.58500 4.3662

50 4 3.88135 0.11865 0.02860 3.64853 4.1142

25 10 9.97511 0.02489 0.04062 9.58309 10.3671
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Table 12: Estimates were obtained by maximizing the conditional likelihood and averaging was

done over estimates from all the simulated samples where we continued to N = 2n, n is the

sample size generated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and

upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0166 0.01661 0.02035 1.73890 2.2943

50 2 2.0309 0.03089 0.01104 1.83403 2.2277

25 4 4.0266 0.02664 0.02080 3.74884 4.3044

50 4 4.0490 0.04901 0.01250 3.85207 4.2459

25 10 10.0531 0.05308 0.02289 9.77537 10.3308
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Table 13: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples, n is the sample size generated at a particular stage, µ is

the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square

error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00014 0.02904 1.67065 2.3288

50 2 2.0001 .00007 0.01452 1.76743 2.2329

250 2 1.9999 .00005 0.00291 1.89581 2.1040

500 2 2.0000 .00001 0.00145 1.92638 2.0736

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 3.9998 .00006 0.02888 3.67160 4.3279

50 4 4.0001 .00002 0.01444 3.76801 4.2322

250 4 4.0001 .00002 0.00289 3.89630 4.1038

500 4 4.0000 .00001 0.00144 3.92663 4.0734

5000 4 4.0000 .00000 0.00014 3.97681 4.0232

25 10 9.9997 .00003 0.02841 9.67427 10.3252

50 10 10.0001 .00001 0.01421 9.76993 10.2303

250 10 10.0001 .00001 0.00284 9.89715 10.1030

500 10 10.0000 .00000 0.00142 9.92723 10.0728

5000 10 10.0000 .00000 0.00014 9.97700 10.0230
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Table 14: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples where we stopped at N = n, n is the sample size generated

at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0005 .00026 0.0200 1.72333 2.2777

50 2 2.0002 .00009 0.0100 1.80418 2.1962

250 2 2.0001 .00006 0.0020 1.91246 2.0878

500 2 2.0001 .00002 0.0010 1.93807 2.0620

5000 2 2.0000 .00000 0.0001 1.98041 2.0196

25 4 4.0003 .00007 0.0200 3.72309 4.2775

50 4 4.0001 .00003 0.0100 3.80412 4.1961

250 4 4.0001 .00001 0.0020 3.91240 4.0877

500 4 4.0000 .00001 0.0010 3.93806 4.0620

5000 4 4.0000 .00000 0.0001 3.98041 4.0196

25 10 10.0004 .00004 0.0200 9.72320 10.2776

50 10 10.0002 .00002 0.0100 9.80421 10.1962

250 10 10.0001 .00001 0.0020 9.91240 10.0877

500 10 10.0000 .00000 0.0010 9.93805 10.0620

5000 10 10.0000 .00000 0.0001 9.98041 10.0196
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Table 15: Estimates were obtained by maximizing the joint likelihood and averaging was done over

estimates from all the simulated samples where we continued to N = 2n, n is the sample size gener-

ated at a particular stage, µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ,

‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval

limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9994 .00031 0.03291 1.64807 2.3507

50 2 2.0001 .00006 0.01646 1.75168 2.2486

250 2 1.9998 .00009 0.00330 1.88866 2.1110

500 2 2.0000 .00002 0.00165 1.92137 2.0786

5000 2 2.0000 .00001 0.00016 1.97518 2.0249

25 4 3.9995 .00012 0.03287 3.64846 4.3506

50 4 4.0001 .00002 0.01643 3.75188 4.2483

250 4 4.0001 .00002 0.00328 3.88910 4.1111

500 4 4.0000 .00000 0.00164 3.92154 4.0785

5000 4 4.0000 .00000 0.00016 3.97521 4.0248

25 10 9.9994 .00006 0.03265 9.64959 10.3492

50 10 10.0001 .00001 0.01634 9.75262 10.2475

250 10 10.0001 .00001 0.00327 9.88944 10.1107

500 10 10.0000 .00000 0.00163 9.92178 10.0783

5000 10 10.0000 .00000 0.00016 9.97529 10.0248
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Table 16: Estimates were obtained by maximizing the conditional likelihood and averaging was done

over estimates from all the simulated samples; n is the sample size generated at a particular stage,

µ is the true mean, µ̂ is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean

square error and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00031 0.02904 1.67061 2.3288

50 2 2.0001 .00010 0.01454 1.76728 2.2329

250 2 2.0000 .00000 0.00290 1.89594 2.1041

500 2 2.0001 .00006 0.00713 1.85669 2.1434

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 4.0000 .00004 0.02888 3.67186 4.3282

50 4 4.0001 .00013 0.01445 3.76798 4.2323

250 4 4.0000 .00000 0.00289 3.89622 4.1038

500 4 4.0001 .00005 0.00144 3.92666 4.0734

5000 4 4.0000 .00001 0.00014 3.97681 4.0232

25 10 10.0000 .00004 0.02841 9.67458 10.3255

50 10 10.0001 .00010 0.01422 9.76984 10.2304

250 10 10.0000 .00002 0.00284 9.89709 10.1029

500 10 10.0001 .00005 0.00142 9.92726 10.0728

5000 10 10.0000 .00001 0.00014 9.97700 10.0230
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Table 17: Estimates were obtained by maximizing the conditional likelihood and averaging was

done over estimates from all the simulated samples where we stopped at N = n, n is the sam-

ple size generated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and

upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9988 .00118 0.04000 1.60682 2.3908

50 2 1.9999 .00006 0.02000 1.72276 2.2771

250 2 1.9999 .00007 0.00400 1.87597 2.1239

500 2 2.0000 .00002 0.01001 1.82802 2.1720

5000 2 2.0000 .00003 0.00020 1.97232 2.0278

25 4 3.9995 .00055 0.04000 3.60745 4.3915

50 4 4.0002 .00017 0.02000 3.72298 4.2774

250 4 3.9998 .00016 0.00400 3.87588 4.1238

500 4 4.0000 .00003 0.00200 3.91238 4.0877

5000 4 4.0000 .00003 0.00020 3.97231 4.0278

25 10 9.9993 .00068 0.04000 9.60732 10.3913

50 10 10.0001 .00012 0.02000 9.72293 10.2773

250 10 9.9999 .00014 0.00400 9.87590 10.1238

500 10 10.0000 .00003 0.00200 9.91238 10.0877

5000 10 10.0000 .00004 0.00020 9.97232 10.0278
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Table 18: Estimates were obtained by maximizing the conditional likelihood and averaging was

done over estimates from all the simulated samples where we continued to N = 2n, n is the

sample size generated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are the lower and

upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0004 .00041 0.02000 1.72322 2.2776

50 2 2.0002 .00023 0.01000 1.80423 2.1962

250 2 2.0001 .00006 0.00200 1.91241 2.0877

500 2 2.0001 .00009 0.00515 1.87638 2.1238

5000 2 2.0000 .00000 0.00010 1.98040 2.0196

25 4 4.0005 .00051 0.02000 3.72332 4.2777

50 4 4.0001 .00011 0.01000 3.80411 4.1961

250 4 4.0001 .00013 0.00200 3.91247 4.0878

500 4 4.0001 .00006 0.00100 3.93808 4.0620

5000 4 4.0000 .00000 0.00010 3.98040 4.0196

25 10 10.0006 .00057 0.02000 9.72338 10.2778

50 10 10.0001 .00008 0.01000 9.80408 10.1961

250 10 10.0001 .00013 0.00200 9.91248 10.0878

500 10 10.0001 .00006 0.00100 9.93808 10.0620

5000 10 10.0000 .00000 0.00010 9.98040 10.0196
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