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Abstract: It has been shown that individual heterogeneity in the acquisition of
infectious diseases has a large impact on the estimation of important epidemi-
ological parameters such as the (basic) reproduction number. Therefore frailty
modelling has become increasingly popular in infectious disease epidemiology.
However, so far, using frailty models, it was assumed infections confer lifelong
immunity after recovery, an assumption which is untenable for non-immunizing
infections. Our work concentrates on refining the existing frailty models to encom-
pass infection processes with reinfections and waning immunity. Shared gamma
frailty models, which are frequently used in practice, and correlated gamma frailty
models that have proven to be a valuable alternative are considered. We show
that naively assuming lifelong immunity in frailty models introduces substantial
bias in the estimation of the basic and effective reproduction number. We illus-
trate our work using Belgian cross-sectional serological data on parvovirus B19
(PVB19) and varicella zoster virus (VZV). Whereas it is typically assumed that
lifelong immunity holds for VZV, more recently, empirical evidence for PVB19
indicates waning of immunity after infection, leading to potential reinfections
with the virus.

Keywords: shared and correlated gamma frailty models; social contact rates;
SIRS transmission model; mass action principle; serological data.

1 Introduction

In recent years, frailty modelling has become increasingly popular in sur-
vival analysis to model multivariate event times. Even more so, as individ-
uals differ greatly in their risk of acquiring infections, frailty models found
their way into the field of infectious disease epidemiology. Farrington et al.
(2001) considered the shared gamma frailty model in the context of bivari-
ate current status data. However, due to its severe limitations, the more
flexible correlated frailty model was used by Hens et al. (2009), at the cost
of assuming a parametric baseline hazard. From an epidemiological point
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of view, frailty models rely on the assumption of lifelong immunity after
recovery which becomes untenable for non-immunizing infections. Further-
more, as individual heterogeneity inflates estimates for the basic reproduc-
tion number, a correct assessment of heterogeneity, and therefore a correct
specification of the infection process, is of utmost importance to obtain
reliable estimates for this quantity. In our work, we focus on shared and
correlated frailty models for non-immunizing infections. The methodology
is illustrated using Belgian current status data on parvovirus B19 (PVB19)
and varicella zoster virus (VZV) collected between 2001 and 2003. In ad-
dition, a parametric baseline hazard of infection is derived from the mass
action principle in which transmission of the pathogen is related to social
contact data obtained from the Belgian POLYMOD survey.

2 Materials and methods

Consider bivariate current status data (y1, y2, a) with yi the observed im-
munological status with respect to infection i = 1,2 and a the age of the
subject at the cross-sectional sampling time. The binary random variables
Yi, given age a, follow a binomial distribution with probability of being
seropositive equal to πi(a) = 1 − Si(a), and Si(a) is the proportion sus-
ceptible of age a. The age-dependent seroprevalence for both infections can
be modelled using frailty models, thereby estimating model parameters θ
while maximizing the multinomial loglikelihood with contribution

ll(y1, y2, a|θ) = y1y2 log (1− S1(a|θ)− S2(a|θ) + S12(a|θ)) +

y1(1− y2) log (S2(a|θ)− S12(a|θ)) +

(1− y1)y2 log (S1(a|θ)− S12(a|θ)) +

(1− y1)(1− y2) log (S12(a|θ)) ,

From this point onwards, dependence on the model parameters θ is sup-
pressed from notation. Let Zi represent a frailty with unit mean and vari-
ance σ2

if . For infections in endemic equilibrium and without loss of natural
immunity, the susceptible proportion of age a with frailty Zi is given by

Si(a|Zi) = exp

(
−
∫ a

0

Ziλi0(u)du

)
= exp (−ZiMi0(a)) , i = 1, 2

under the proportional hazards assumption (PHA). The unconditional sur-
vival functions equal Si(a) = Li(Mi0(a)), expressed in terms of the Laplace
transform Li of Zi and the integrated baseline hazard function Mi0(a).
Solving the system of ordinary differential equations associated with the
mathematical SIRS compartmental model yields:

Si(a) = exp

(
−
∫ a

0

σi(u)du

)
Li(Mi0(a)) +∫ a

0

σi(u) exp

(
−
∫ a

u

σi(v)dv

)
Li(Mi0(a)−Mi0(u))du.
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when individuals are allowed to flow back from the recovered to the sus-
ceptible state at a replenishment rate σi(a). The bivariate unconditional
survival function S12(a) is derived assuming conditional independence of
the infection times, given the frailty terms Zi. In the shared gamma frailty
setting, Z1 = Z2 ≡ Z, where Z ∼ Γ(1/σ2

f , 1/σ
2
f ). In the correlated frailty

model, we have Z1 = σ2
1f (Y ∗0 + Y ∗1 ), Z2 = σ2

2f (Y ∗0 + Y ∗2 ), where Y ∗l ∼
Γ(kl, 1) (l = 0,1,2) are independent random variables. The gamma frailty
distribution is preferred due to its mathematical convenience and closed-
form expression for the Laplace transform.
The time homogeneous mass action principle, which is briefly described
here, links the available information on social contact behaviour to the
baseline hazard λi0(a). In the presence of individual frailty terms the mass
action principle can be rendered as follows (Farrington et al., 2001):

λi(a, Zi) =
NDi

L

∫ ∞
0

∫ ∞
0

βi(a, Zi; a
′, Z ′i)λi(a

′, Z ′i)Si(a
′|Z ′i)φ(a′)fi(Z

′
i)da

′dZ ′i

where fi is the density function of Z ′i, βi(a, Zi; a
′, Z ′i) equals the per capita

rate at which an infectious individual of age a′ and frailty Z ′i makes an effec-
tive contact with a susceptible individual of age a and frailty Zi, and φ(a′)
represents the probability of being alive at age a′. In addition, N , Di and
L are the population size, the mean duration of infectiousness for infection
i and the life expectancy, respectively. Under the PHA, βi(a, Zi; a

′, Z ′i) =
ZiZ

′
iβi0(a, a′) and λi(a, Zi) = Ziλi0(a). Moreover, βi0(a, a′) is decomposed

into a proportionality factor qi(a, a
′|c), representing transmission potential

upon a contact, and c(a, a′), the annual per capita rate at which individu-
als of age a′ contact individuals of age a. An iterative procedure is used to
solve the mass action principle and to derive the baseline hazard of infection
thereof. The basic reproduction number Ri0, i = 1,2, is defined as (1+σ2

if )
times the dominant eigenvalue of the next generation matrix (Diekmann
et al., 1990).

3 Data application

Three shared gamma frailty models are fitted to the serology from PVB19
and VZV. Despite potential reinfections with PVB19, VZV infections are
assumed to confer lifelong immunity since accounting for more complex
infection dynamics did not improve model fit. The model relying on the
assumption of lifelong immunity for both infections is denoted by M1. In
addition, model M2 allows for replenishment of the susceptible compart-
ment at a constant rate σ1 solely for PVB19. Finally, model M3 simply
extends model M2 by introducing an age-dependent dichotomous replen-
ishment for PVB19 based on a cut-off value of 35 years.
The results in Table 1 indicate that the models with SIRS dynamics for
PVB19 (M2 and M3) outperform the traditional SIR model (M1) based
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on AIC-values. Furthermore, the frailty variance is seriously overestimated
in model M1 which is reflected as well in the estimated basic reproduction
numbers R̂i0. Misspecification of the underlying infection process for one
infection also influences the estimated reproduction number for the other
one.

TABLE 1. ML estimates with regard to PVB19 (i = 1) and VZV (i = 2) with
95% bootstrap-based CI and corresponding AIC-values.

Model R̂i0 AIC

M1 q10 0.073 [0.069, 0.077] 3.59 [3.27, 3.90] 4537.28
q20 0.209 [0.189, 0.232] 12.07 [10.46, 13.74]
σ2
f 0.158 [0.102, 0.210]

M2 q10 0.072 [0.068, 0.075] 3.17 [2.94, 3.43] 4477.98
σ 0.011 [0.007, 0.014]
q20 0.177 [0.162, 0.196] 9.15 [8.07, 10.53]
σ2
f 0.036 [5.4e-7, 0.086]

M3 q10 0.072 [0.069, 0.075] 3.13 [2.95, 3.38] 4474.39
σ1 0.016 [0.010, 0.022]
σ2 0.008 [0.005, 0.012]
q20 0.173 [0.161, 0.191] 8.82 [8.01, 10.13]
σ2
f 0.021 [3.6e-7, 0.071]

4 Discussion

We showed that the use of traditional frailty models results in biased es-
timates of important epidemiological parameters when incorrectly relying
on the assumption of lifelong immunity. Henceforth, frailty models com-
prising more general infection processes should be considered instead when
evidence against natural immunity exists.
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