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Abstract: In this paper, we propose a change-point mixed model to assess the change in the trend of
outpatient antibiotic use in a Bayesian framework, where the change-points are unknown parameters
of the model. Model selection using DIC indicates that the data supports the model with a country-
specific change-point. The location of the change-points may be related to points in time where public
health strategies aiming at increasing the awareness of the public to a more rational use of antibiotics
or targeting to reduce overconsumption of antibiotics were initiated.
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1 Introduction

Antibiotics are drugs that inhibit or abolish the growth of bacteria. Antibiotic resis-
tance is a major European and global public health problem and international efforts
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are needed to counteract the emergence of resistance. The increase in resistance rate
of many important pathogens to currently most available antibiotics has now been
recognized as a universal health hazard and potentially life-threatening problem. A
large number of studies strongly suggest that this increase is directly related to the
actual use of antibiotics. Antibiotic use is increasingly recognized as the main driver
for resistance and differential selection pressure of antibiotic agents may be respon-
sible for some of the observed differences (Goossens et al., 2005; Davey et al., 2008;
Huttner et al., 2010).

Specific actions such as campaigns aimed at the public and general practitioners
appeared essential, because antibiotic use in outpatients accounts for the main part of
the overall antibiotic usage (>90%) (Goossens et al., 2005; Adriaenssens et al., 2011).
Campaigns directed to the public in order to (i) inform about antibiotic resistance
and to warn about the medical and general health issues related to the inappropri-
ate use of antibiotics and (ii) foster the patient–physician and patient–pharmacist
dialogue about the appropriate use of antibiotics, will increase the awareness of the
public to a more rational use of antibiotics. In some European countries (e.g., in
Belgium, France, Germany, Greece, Iceland, Italy, Luxembourg, Portugal, Spain and
United Kingdom), campaigns were planned as part of a national strategy to reduce
resistance to antimicrobial drugs. These strategies also included measures to promote
appropriate use of antimicrobial drugs in hospitals, long-term care facilities and the
agricultural sector (Huttner et al., 2010).

Longitudinal data on outpatient antibiotic use were available from 27 European
countries for the period 1997–2009 within the European Surveillance of Antimicro-
bial Consumption (ESAC) project (Adriaenssens et al., 2011; Coenen et al., 2011;
Minalu et al., 2011). Given that repeated measures were taken for each country,
intra-country correlation has to be taken into account when analyzing the data.
The main objective of the study is to develop an appropriate statistical model to
assess the significance of country-specific trends in Europe and to identify possible
change-points, while accounting for country-specific global use as well as seasonal
effects.

In common regression, time series or longitudinal data analysis, the outcome vari-
able is modelled as a linear function of explanatory variables and/or time. Sometimes
it may happen that the relationship between the outcome and some explanatory vari-
ables and/or time is non-smooth (non-differentiable), showing one or more points
where the effect on the response changes abruptly. These points are called break-
points, change-points, transition-points or switch-points. To estimate the change-
points, Bayesian (Smith, 1975; Carlin et al., 1992; Lange et al., 1992; Kiuchi et al.,
1995; Slate and Turnbull, 2000; Ghosh and Vaida, 2007; Dominicus et al., 2008) or
likelihood (Pastor and Guallar, 1998; Hall et al., 2000; Hall et al., 2003; Muggeo,
2003; Jacqmin-Gadda et al., 2006; Hens et al., 2010) methods may be used.

Within the likelihood framework, Pastor and Guallar (1998) used a two-segmented
logistic regression model to estimate a change-point in the context of dose–response
analysis in epidemiological studies. Muggeo (2003) proposed an approach to estimate
broken line models reducing the problem to a linear framework. Jacqmin–Gadda
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et al. (2006) proposed a random change-point model which combines a piecewise
polynomial mixed model with a random change-point for the evolution of the cog-
nitive test and a log-normal model depending on the random change-point for the
time to dementia.

A fully Bayesian hierarchical structure for a mixed effects segmented regression
model with one change-point was considered by Slate and Turnbull (2000), and
applied to large data sets concerning prostate specific antigen as a serial marker for
prostate cancer. Ghosh and Vaida (2007) proposed a change-point model with one
random change-point for the analysis of longitudinal CD4 T-cell counts for HIV in-
fected subjects following highly active antiretroviral treatment. And Dominicus et al.
(2008) studied a Bayesian random change-point model with one random change-
point to capture variability in measures of cognitive function. Hall et al. (2003)
compared the Bayesian approach with the likelihood approach for modelling cogni-
tive function over time, and pointed out that the Bayesian method has an advantage
over the likelihood method in that it does not require all subjects to have the same
change-point.

In this paper, an adaptive Bayesian linear spline model is proposed, where the
number of knots (change-points) and their location are data driven and determined
by the deviance information criterion (DIC). The presence and the location of the
change-points is data driven and can vary across countries as random change-points.
Latent country-specific indicators allow the model to switch off the change-points
for particular countries.

The application of the model may yield new and important insights in the evolu-
tion of outpatient antibiotic use in Europe. We employ a fully Bayesian approach.
The models are implemented in R using the R-package R2WinBUGS (Sturtz et al.,
2005). The programs used for the analyses are available upon request from the first
author. The program used to fit the change-point model with one unknown com-
mon change-point, one country-specific random change-point and a country-specific
latent indicator for the change-point is included in Appendix III.

The paper is organized as follows. In Section 2, we describe the data on the total
outpatient antibiotic use analyzed in the paper. In Section 3, we describe the models,
the prior distributions for the parameters and we discuss how model comparison
was applied. Results are presented in Section 4. Finally, discussions and concluding
remarks are included in Section 5.

2 Outpatient antibiotic use data

Quarterly ESAC-NET data on total outpatient antibiotic use from 27 European coun-
tries were collected for the period 1997–2009 within ESAC-NET, an international
network of surveillance systems. The methods of data collection and processing
for the ESAC-NET project have been described in detail elsewhere (Adriaenssens
et al., 2011; Coenen et al., 2011), and are also available on the ESAC-NET website
(www.esac.ua.ac.be). Antibiotic use data is expressed as the number of defined
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Figure 1 Observed country-specific evolutions for the quarterly use of tetracycline expressed in DID in 27
European countries

daily doses (DDD) per 1000 inhabitants per day (DID). This paper focuses on the
outpatient use of tetracycline for the period 1997–2009, with the observed country-
specific trends for the quarterly tetracycline use in DID shown in Figure 1.

As can be seen in Figure 1, there is variability across repeated measurements
from the same country (i.e., within-country variability) as well as variability between
countries (i.e., between-country variability), which suggests that country-specific in-
tercepts and slopes should be incorporated into the model to account for hetero-
geneity across countries. The longitudinal profiles show clear seasonal variation of
outpatient tetracycline use in all countries, with upward peaks in the winter season.
Thus, a non-linear model needs to be adopted to take the seasonality into account.
From the longitudinal profiles it can clearly be seen that countries with higher tetracy-
cline use at the baseline (in 1997) have a higher amplitude (higher seasonal variation).
Figure 1 also shows that not all longitudinal profiles are complete for all countries.
Some profiles start later in time and others show intermediate missing parts. As the
missingness mechanism is assumed to be missing completely at random (MCAR), all
analyses were based on all available cases.
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3 Adaptive change-point models

We start by introducing a non-linear mixed model with a sinusoidal component
over time to account for the seasonal variation. We extend the non-linear mixed
model by including fixed and random change-points to identify possible changes in
the trend of tetracycline use in DID. We extend the existing approaches for random
change-point models (e.g., Kiuchi et al., 1995; Ghosh and Vaida, 2007; Dominicus
et al., 2008) by a general model building procedure where the number of knots and
their location are data driven, and by taking into account a country-specific seasonal
variation. The change-point models were also extended by including country-specific
latent indicators, allowing the model to switch off the change-points for particular
countries. All models are fitted in a fully Bayesian paradigm.

3.1 Non-linear mixed model

We applied the non-linear mixed model (3.1) to model the use of tetracycline in DID.
An extension with known common change-points, unknown common change-points
and country-specific random change-points is then considered. The non-linear mixed
model is formulated as

Yi j = (β0 + b0i ) + (β1 + b1i )ti j + (β S
0 + bS

0i + β S
1 ti j ) sin(ωti j + δ) + εi j , (3.1)

where Yi j is the total outpatient tetracycline use in DID for country i (i = 1, 2, . . . , N)
at time points ti j ( j = 1, 2, . . . , ni ), ni is the number of observations from the ith
country, time = 1 corresponds to the start of the study (first quarter of 1997),
β = (β0, β1, β S

0 , β S
1 , δ) is a vector of fixed effects, β0 is the intercept, β1 is the regression

coefficient describing the marginal linear time trend (t), β S
0 is the fixed amplitude, βS

1
is the amplitude varying over time, ω (in radians) is the frequency which is a known
constant (= 2π/T) where T (= 4) is the period for the sine curve, δ (in radians) is the
phase shift or phase angle which is an unknown parameter, bi = (b0i , b1i , bS

0i ) is the
country-specific vector of random effects where b0i is the country-specific random
intercept, b1i is the country-specific random slope for time and bS

0i is the country-
specific random slope for amplitude and we assume bi ∼ N(0, D). The matrix D is
a general covariance matrix with elements di j = dji . εi is an ni -dimensional vector
of unexplained error terms εi j . It is usually assumed that all εi are independent and
normally distributed with mean vector zero and covariance matrix �i . Often, �i is
assumed equal to σ 2

ε I ni , where I ni is the ni -dimensional identity matrix.
Since no convergence was obtained when using an unstructured covariance matrix

for the random effects, a diagonal covariance matrix was used.
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3.2 Adaptive change-point model

Since there is no prior knowledge on the number of change-points, we gradually
build up the model by first considering a change-point model with a known common
change-point and then extending it by including unknown common and country-
specific random change-points.

A general mixed model with country-specific mean can be written as

Yi j = μi (ti j ) + εi j , i = 1, 2, . . . , N; j = 1, 2, . . . , ni ,

μi (ti j ) = μT
i (ti j ) + μS

i (ti j ), (3.2)

where Yi j is the tetracycline use in DID for country i at time points ti j , μT
i (ti j ) is the

trend component, μS
i (ti j ) is the seasonal component and εi j is the measurement error

which is assumed to be normally distributed with mean zero and constant variance
σ 2

ε . The country-specific mean components μT
i (ti j ) and μS

i (ti j ) are modelled as

μT
i (ti j ) = (β0 + b0i ) + (β1 + b1i )ti j + μCP

i (ti j ),

μS
i (ti j ) = (β S

0 + bS
0i + β S

1 ti j ) sin(ωti j + δ), (3.3)

where μCP
i (ti j ) is a change-point component given by

μCP
i (ti j ) =

K∑

k=1

(β(k+1) + b(k+1)i )(ti j − Kki )+, (3.4)

where x+ = max(x, 0), K is the number of unknown change-points, Kki = Ck or
Kki = Ck + cki or Kki = cki where Ck denotes a global change-point and cki a country-
specific random change-point. If μCP

i (ti j ) = 0 then there are no change-points and the
model reduces to model (3.1).

Substituting equations (3.3) and (3.4) in equation (3.2) yields the model

Yi j = (β0 + b0i ) + (β1 + b1i )ti j +
K∑

k=1

(β(k+1) + b(k+1)i )(ti j − Kki )+

+ (β S
0 + bS

0i + β S
1 ti j )sin(ωti j + δ) + εi j , (3.5)

where the fixed effects β0, β1, βS
0 , β S

1 , ω and δ, and the random effects b0i , b1i and bS
0i

are defined as before, K is the number of change-points, for k = 1, 2, . . . , K, β(k+1) is
the global difference in the linear trend before and after the change-point, b(k+1)i is the
country-specific difference in the linear trend before and after the change-point and
εi j is an unexplained error term. Random effects for the global level of use, the trend
effects, the amplitude of the seasonal effect and the location of the change-point are
used to account for heterogeneity across countries. The number of change-points K
and the location of the change-point(s) are data driven.
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In Equation (3.5) all countries are assumed to have a change in the trend of
tetracycline use in DID, but this might not be true because some countries might not
have a change in the trend of tetracycline use. To relax this assumption, we extend
(3.5) by including country-specific latent indicators for the change-points,

Yi j = (β0 + b0i ) + (β1 + b1i )ti j +
K∑

k=1

{(β(k+1) + b(k+1)i )(ti j − Kki )+}Iki

+ (βS
0 + bS

0i + β S
1 ti j )sin(ωti j + δ) + εi j , (3.6)

where Iki is an unknown country-specific indicator for the change in the trend of
tetracycline use in DID for country i for the kth change-point, k = 1, 2, . . . , K where
K is the number of change-points. Here, Iki = 1 if there is a change at knot Kki in the
use of tetracycline over time in country i , or Iki = 0 if there is no change in the use of
tetracycline over time in country i .

As there are no prior information on the number of change-points in the study,
the number of change-points K in Equations (3.5) and (3.6) has to be chosen prior
to the data fitting, k = 1, . . . , K. We first start from the simplest model where
there is only a known common change-point, i.e., K = 1. We gradually extend the
model by including a known and an unknown common change-point. And later,
we extended the model by including an additional unknown common change-point.
Next to the common change-points, country-specific random change-points have also
been included in the model.

3.3 Prior specification

The following uninformative prior distributions were used for the fixed effects:

β0, β1, β(k+1), β S
0 , β S

1 , δ ∼ Normal(0, 1000), independently where k = 1, . . . , K,

C1 ∼ Uniform(1, 52),
C2 ∼ Uniform(C1, 52). (3.7)

The normal priors on β0, β1, β(k+1), β S
0 , β S

1 and δ have large variances, expressing
our lack of knowledge about the regression coefficients. For the random effects, a
normal prior distributions was used:

b0i ∼ Normal(0, σ 2
b0

),

b1i ∼ Normal(0, σ 2
b1

),

b(k+1)i ∼ Normal(0, σ 2
b(k+1)

),

bS
0i ∼ Normal(0, σ 2

bS
0
),

cki ∼ Normal(Ck, σ 2
ck

)I(1, 52). (3.8)
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A uniform prior distribution over the total range of time was also assumed for the
country-specific random change-point:

cki ∼ Uniform(1, 52). (3.9)

The country-specific indicator for the kth change-point (Iki ) is Bernoulli-distributed
with probability Pk, where the probability Pk is beta-distributed with shape parame-
ters αp (=1) and βp (=1):

Iki ∼ dbern(Pk),
Pk ∼ dbeta(1,1). (3.10)

The hyperparameters in the prior distributions were chosen so that the priors are
uninformative. An independent inverse gamma distribution with a shape parameter
α (=0.001) and a scale parameter β (=0.001) was used for the variance parameters.

σ 2
b0

, σ 2
b1

, σ 2
b(k+1)

, σ 2
bS

0
, σ 2

ck
, σ 2

ε ∼ IGamma(0.001, 0.001), independently, (3.11)

where x ∼ IGamma(α, β) means that 1/x has the Gamma distribution with mean
α/β and variance α/β2 (Ntzoufras, 2009).

3.4 Model selection

We use the DIC for model comparison (Spiegelhalter et al., 2002). The DIC can be
represented as:

DIC = pD + D̄. (3.12)

DIC is a Bayesian equivalent to Akaike’s information criterion (AIC) and consists of
two components, a term that measures goodness-of-fit (D̄, defined as the posterior
expectation of the deviance) and a penalty term for model complexity (pD, defined
as the difference between the posterior mean of deviance and the deviances evaluated
at the posterior mean θ̄ of the parameters). pD = D̄ − D(θ̄ ). The smaller the DIC,
the better the fit (Spiegelhalter et al., 2002; Gelman et al., 2004; Ghosh and Vaida,
2007; Dominicus et al., 2008).

There has been and there still is discussion on Bayesian model selection in general
and on the specification of the prior for model selection and hypothesis testing, re-
lated to the Jeffreys-Lindley paradox (Lindley, 1957). See, for instance, Spiegelhalter
et al. (2002) in which pros and cons of several approaches to Bayesian model selec-
tion are discussed by the authors and several discussants. Posterior model probabil-
ities and Bayes factors might be considered to represent the gold standard in fully
Bayesian model determination, but these quantities are sensitive to the choice of prior
distribution in the case of specifying a default prior under weak prior information
(Overstall and Forster, 2010). Criterion-based methods such as BIC or DIC do not
give posterior model probabilities, and as such the issue of default prior specification
is avoided. Here we opted for DIC as a criterion for model selection. An in-depth
analysis of this issue with a comparison of the performance and characteristics of
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different model selection criteria is considered beyond the scope of this paper. For
more details and some recent developments on this issue related to Lindley’s paradox,
we refer to Casella et al. (2009), Mulder et al. (2009), Overstall and Forster (2010),
and references therein.

Plummer (2008) provided a justification for the DIC by demonstrating the link
between DIC and cross-validation. In his paper, DIC is shown to be an approximation
to a penalized loss function based on the deviance, with a penalty derived from
a cross-validation argument. This approximation is valid only when the effective
number of parameters in the model is much smaller than the number of independent

observations (i.e., pD << n). A corrected DIC, DICc = D̄ +
n∑

i=1
pDi /(1 − pDi ), was

suggested for generalized linear mixed models when the DIC cannot be justified as
approximation to the penalized plug-in deviance. To the best of our knowledge,
the use of the corrected DIC has not been studied for non-linear mixed models and
requires further research. Therefore, we do not pursue its use in this paper.

The quarterly tetracycline use data was analyzed in Minalu et al. (2011) using the
non-linear mixed model. The results of the non-linear mixed models were used as a
starting value for the MCMC algorithm. And for the additional change-point parame-
ters, the locations of campaigns or policy changes in antibiotic use in most European
countries were used as starting values. To ensure adequate convergence all results
were obtained using two chains of 110 000 iterations, of which we discarded the first
10 000 (burn-in) and the chain was then thinned to every 5th sample as there was
autocorrelation for some parameters. Trace plots and the potential scale reduction
R̂ were used to check convergency of the MCMC algorithm (Gelman et al., 2004).

4 Results

We considered the following models, within the family (3.5):

Model 1: Non-linear mixed model without a change-point,

μCP
i (ti j ) = 0,

Model 2: Non-linear mixed model with a known common change-point (C1 =
17),

μCP
i (ti j ) = (β2 + b2i )(ti j − 17)+,

Model 3: Non-linear mixed model with a known common change-point (C1 =
29),

μCP
i (ti j ) = (β2 + b2i )(ti j − 29)+,

Model 4: Non-linear mixed model with one unknown common change-point
(C1),
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μCP
i (ti j ) = (β2 + b2i )(ti j − C1)+,

Model 5: Non-linear mixed model with two unknown common change-points
(C1 and C2),

μCP
i (ti j ) = (β2 + b2i )(ti j − C1)+ + (β3 + b3i )(ti j − C2)+,

where ordering restriction was imposed for the common change-points (i.e., C1 <
C2).

Model 6: Non-linear mixed model with one country-specific random change-
point (ci ),

μCP
i (ti j ) = (β2 + b2i )(ti j − ci )+,

where the country-specific random change-point is centred around the unknown
point C1 and is restricted to lay within [1,52], ci ∼ N(C1, σ 2

c )(1, 52).

Model 7: Non-linear mixed model with one country-specific random change-
point (ci ),

μCP
i (ti j ) = (β2 + b2i )(ti j − ci )+,

where the country-specific random change-points are U(1, 52) distributed.
Model 1 without a change-point is first extended with known common change-

points (Models 2 and 3). Because there were public campaigns in some of the Eu-
ropean countries during the year 2000–01 (e.g., in Belgium, Germany and Greece)
and during the year 2004–05 (e.g., in Portugal and United Kingdom), we used time
= 17 (first quarter of 2001) and time = 29 (first quarter of 2004) as known com-
mon change-points in the trend of tetracycline use in DID, respectively, in Model 2
and Model 3. Next, we estimate the change-points by including unknown common
and/or country-specific random change-points (Models 4–7). The non-linear mixed
model (Model 1) was extended by including a non-linear trend and secondly an am-
plitude varying non-linearly over time (expressed as tα

i j ). As these extended models
did not outperform the change-point models, we only presented the results of the
original non-linear and the change-point models (Models 1–7). Various models with
three change-points were applied too, but convergence could not be reached for any
of these models.

For the unknown common change-points in Models 4–6, uniform prior distri-
butions over the total range of time were used. A normal prior distribution with
mean zero and variance σ 2

ck
was used for the country-specific random change-point

in Model 6, while in Model 7 a uniform prior distribution over the total range of
time was assumed for the country-specific random change-point. A summary of the
posterior distributions of the model parameters in Models 1–7 is given in Table 1.

The results in Table 1 clearly indicate the need for one or more change-points. In-
deed, Model 1 (no change-points) gets little support with the highest DIC = 391.6500.
Including a known common change-point reduces the DIC considerably (Models 2
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and 3). There is no improvement when the known change-point 29 is replaced by
an unknown common change-point (Model 4). There is, however, a further im-
provement when two unknown common change-points are included in the model
(Model 5). In Models 2–5 all countries are assumed to have the same common
change-point, while in Models 6–7 all countries have different change-points. Com-
paring Model 6 with Model 4 shows a reduction in DIC when including a country-
specific random change-point next to the global change-point. A large improvement
is achieved when a uniform prior distribution over the total range of time was used
for the country-specific random change-point (Model 7). Scatter plots of country-
specific estimates for the change-points in Models 6 and 7 are shown in Figures A1
and A2 of Appendix I.

The estimate for the unknown common change-point (C1) obtained from fitting
Model 4 is 29.3975 (fourth quarter of 2003), which is quite close to the estimates for
the common change-point obtained from fitting Model 6 (C1 = 29.4144). The average
for the estimated country-specific random change-points in Model 7 is 28.7451,
which is very close to the estimate for the unknown common change-points in Models
4 and 6. From Model 5, the estimate for the first common change-point (C1) is
20.2353 (fourth quarter of 2001) and 31.9461 (fourth quarter of 2004) for the
second common change-point (C2).

The 95% quantile-based credible interval for β1 (−0.0270,−0.0003) indicates
that there is a significant decrease in the global trend of tetracycline use in DID.
The credible intervals for β S

0 and β S
1 do not include zero, indicating a significant

overall seasonal variation and a significant overall seasonal variation trend over
time, respectively.

The estimated linear trend (dashed line), the estimated change-point model (solid
line) from Model 7 and the observed average DID for Europe are shown in
Figure 2. The predicted mean is based on the predicted outcomes from the pos-
terior distribution of the country-specific random effects. Figure 2 indicates that the
model describes the data very well.

Models 2–7 assume that there are one or more trend changes of tetracycline use
in all countries, but for some countries it might be better to have only one or even
no change-point. To allow a data-adaptive selection of the number and location
of the country-specific change-points, we extend Models 4–7 by including a latent
country-specific indicator Iki for the kth change-point, k = 1, 2, . . . , K for country
i (i = 1, 2, . . . , N).

Model 4∗: Non-linear mixed model with one unknown common change-point
(C1) and a country-specific indicator I1i ,

μCP
i (ti j ) = {(β2 + b2i )(ti j − C1)+}I1i ,

where I1i is an unknown country-specific indicator for the change in the trend of
DID for country i . Here, I1i = 1 if a change at C1 in the use of tetracycline over time
in country i is needed, or I1i = 0 if no change in the use of tetracycline over time in
country i is needed,

Statistical Modelling 2013; 13(3): 253–274

NOT FOR C
OMMERCIA

L U
SE



May 30, 2013 15:21 SM12-HF301

Adaptive change-point mixed models applied to data on outpatient 265

1997      1998      1999       2000       2001      2002      2003       2004      2005       2006      2007      2008       2009     2010

Time (1997–2009)

8

7

6

5

4

3

2

1

D
ID

 =
 D

D
D

 p
er

 1
00

0 
in

h
ab

it
an

ts
 p

er
 d

ay

0

Observed mean DID

Predicted linear trend
Predicted mean profile

Figure 2 The observed mean DID (dots), the predicted mean profile (solid line) and the predicted linear trend
(dashed line) obtained from fitting Model 7

Source: Authors’ own.

Model 5∗: Non-linear mixed model with two unknown common change-points
(C1 and C2) and two country-specific indicators (I1i and I2i ),

μCP
i (ti j ) = {(β2 + b2i )(ti j − C1)+}I1i + {(β3 + b3i )(ti j − C2)+}I2i ,

where ordering restriction was imposed for the common change-points (i.e., C1 <
C2).

Model 6∗: Non-linear mixed model with one country-specific random change-
point (ci ) and a country-specific indicator I1i ,

μCP
i (ti j ) = {(β2 + b2i )(ti j − ci )+}I1i ,

where the country-specific random change-point is centred around the unknown
point C1 and is restricted to lay within [1,52], ci ∼ N(C1, σ 2

c )(1, 52).

Model 7∗: Non-linear mixed model with a country-specific random change-
point (ci ) and a country-specific indicator I1i ,

Statistical Modelling 2013; 13(3): 253–274
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Table 2 Parameter estimates: posterior means and standard errors, and
model comparison: D̄, pD and DIC values obtained from fitting Models 4∗,
6∗ and 7∗

Parameters Model 4∗ Model 6∗ Model 7∗

β0 2.6488 (0.2734) 2.6618 (0.2890) 2.6322 (0.2527)

β1 −0.0120 (0.0064) −0.0140 (0.0066) −0.0139 (0.0065)

β2 0.0108 (0.0105) 0.0130 (0.0111) 0.0126 (0.0126)

C1 29.4560 (1.2975) 29.1115 (2.8179) -

βS
0 0.6113 (0.0630) 0.6104 (0.0613) 0.6120 (0.0615)

βS
1 −0.0062 (0.0008) −0.0062 (0.0008) −0.0062 (0.0008)

δ 0.4985 (0.0218) 0.4999 (0.0214) 0.5002 (0.0213)

P1 0.8407 (0.1222) 0.8651 (0.1091) 0.8861 (0.1008)

σ 2
b0 1.9527 (0.6229) 2.0181 (0.6382) 2.0580 (0.6472)

σ 2
b1 0.0009 (0.0003) 0.0009 (0.0003) 0.0009 (0.0003)

σ 2
b2 0.0018 (0.0008) 0.0022 (0.0009) 0.0026 (0.0011)

σ 2
c - 46.3954 (30.8729) -

σ 2
b0S 0.0791 (0.0252) 0.0788 (0.0248) 0.0790 (0.0251)

σ 2
e 0.0626 (0.0030) 0.0606 (0.0030) 0.0605 (0.0030)

D̄ 65.1738 32.7773 31.0169

pD 87.6091 92.3128 54.7426

DI C 152.7831 125.0902 85.7595

Note: ∗ Models 4, 6 and 7 are fitted with a country-specific latent indicator Iki

Source: Authors’ own.

μCP
i (ti j ) = {(β2 + b2i )(ti j − ci )+}I1i ,

where the country-specific random change points are U(1, 52) distributed.
The parameter estimates for all parameters in Models 4∗, 6∗ and 7∗ are given in

Table 2. No convergence was obtained for Model 5∗.
From the results given in Table 2, Model 7∗ has the lowest DIC value which is

quite close to the DIC value of Model 7 (in Table 1). The parameter estimates given
in Table 2 are also close to the corresponding parameter estimates given in Table 1.
The parameter estimates for the country-specific latent indicators Iki are given in
Table A1 in Appendix II. The posterior means for the change-point indicator Iki is
greater than 0.5 for all countries, which indicates a change in the trend of tetracycline
use for all countries.

The observed country-specific profiles and the predicted country-specific profiles
from Model 7 for three selected countries (Iceland, Belgium and Austria) are shown
in Figure 3. As can be seen from Figure 3, the predicted country-specific profiles
follow closely the observed country-specific DID values. The bold dots indicate the
estimated country-specific random change-points obtained from fitting Model 7.

A visual inspection of convergence diagnostics graphs for various model parame-
ters showed that the posterior densities are smooth and unimodal shapes. The trace

Statistical Modelling 2013; 13(3): 253–274
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Figure 3 The observed country-specific DID (dots and stars), the predicted country-specific profiles (solid lines)
and the country-specific predicted linear trends (dashed lines) obtained from fitting Model 7 for three selected
countries (Iceland, Belgium and Austria from top to bottom)

Source: Authors’ own.

plots indicate that chains appear to have reached a stationary distribution. The chain
also has good mixing and is dense.

5 Discussion

This study was motivated by the need to assess the use of tetracycline in 27 Euro-
pean countries, to assess the change in the trend of tetracycline use over time, and to
possibly relate any changes in antibiotics use due to campaigns and policy changes.
The data have previously been analyzed based on a non-linear mixed model while
taking into account the seasonal effects (Minalu et al., 2011). From the analysis, we
have identified significant variation in total outpatient tetracycline use in Europe.
Differences in tetracycline use between countries might be explained by variations
in incidence of community acquired infections, culture and education, and differ-
ences in drug regulations and in the structure of the national pharmaceutical market
(Goossens et al., 2005).
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In this paper, we presented and discussed adaptive change-point Bayesian models
to analyze the outpatient tetracycline use from 1997 to 2009. We considered the
non-linear mixed model extended with known common change-points, unknown
common change-points and country-specific random change-points. The change-
point mixed model was also extended by including country-specific indicators for the
change-points. A widely used statistic for comparing models in a Bayesian framework,
the DIC, was used for model comparison. The model with country-specific change-
points (Model 7) has the lowest value of DIC. There is some controversy on which
criterion to use to compare Bayesian models. Gelman et al. (2004) suggested pV =
Var(Deviance)/2 as an estimate of the effective number of parameters in the model
as an alternative to pD. Note that using pV as an alternative measure of complexity,
the change-point model with two unknown common change-points (Model 5) has
the lowest DIC value.

The random change-point models have been applied in many applications (Kiuchi
et al., 1995; Ghosh and Vaida, 2007; Dominicus et al., 2008). In this paper, we
extended the existing approaches by a general model building procedure where the
number of knots and their location are data driven. We also extended the previously
proposed change-point models by taking into account a country-specific seasonal
variation. The change-point models were also extended by including country-specific
latent indicators, allowing the model to switch off the change-points for particular
countries.

From the results obtained from fitting the change-point model with a country-
specific change-point (Model 7), there is a significant decrease in the trend of tetra-
cycline use in DID. There is a significant seasonal variation in the use of tetracycline
and also a significant seasonal variation trend over time.

The adaptive change-point models can be extended with more change-points. But
for the tetracycline use data, convergence was not reached by including more than two
common change-points or more than one country-specific random change-point. We
have conducted a small-scale simulation study under different scenarios to investigate
the change-point model in more detail. The results of this small-scale simulation study
show that the change-point model with two (resp. three) change-points fits the data
best when the data are generated under the change-point model with two (resp.
three) change-points. As for the analyses of the case study, the change-point model
with three (resp. four) change-points did not converge. This simulation experiment
confirms that the convergence issues we encountered in our data application for the
model with three or more change-points are very likely attributable to the absence of
three or more change-points.
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Appendix I: Estimates for the country-specific change-point
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Country abbreviations:

AT: Austria         BE: Belgium             CY: Cyprus                          CZ: Czech Republic
DE: Germany     DK: Denmark           EE: Estonia                         ES: Spain 
FI: Finland          GR: Greece              HR: Croatia                         HU: Hungary 
IE: Ireland          IL: Israel                   IS: Iceland                          IT: Italy 
LT: Lithuania      LU: Luxembourg     LV: Latvia                            NL: Netherlands
PL: Poland         PT: Portugal             RU: Russian Federation    SE: Sweden
SI: Slovenia       SK: Slovakia            UK: United Kingdom

Figure A1 Scatter plot of estimates for the country-specific change-points obtained from fitting Model 6. The
vertical line indicates the estimated global change-point.

Source: Authors’ own.
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Country abbreviations:

AT: Austria         BE: Belgium             CY: Cyprus                          CZ: Czech Republic
DE: Germany     DK: Denmark           EE: Estonia                         ES: Spain 
FI: Finland          GR: Greece              HR: Croatia                         HU: Hungary 
IE: Ireland          IL: Israel                   IS: Iceland                          IT: Italy 
LT: Lithuania      LU: Luxembourg     LV: Latvia                            NL: Netherlands
PL: Poland         PT: Portugal             RU: Russian Federation    SE: Sweden
SI: Slovenia       SK: Slovakia            UK: United Kingdom

Figure A2 Scatter plot of estimates for the country-specific change-points obtained from fitting Model 7. The
vertical line indicates the average for the estimated country-specific random change-points.

Source: Authors’ own.
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Appendix II: Estimates for the country-specific change-point indicators

Table A1 Parameter estimates: posterior means (and standard errors) for the
country-specific indicators (Iki ) obtained from fitting Models 4∗, 6∗ and 7∗

Country Parameters Model 4∗ Model 6∗ Model 7∗

Austria I1 0.9516(0.2147) 0.9693(0.1724) 0.9629(0.1890)
Belgium I2 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Cyprus I3 0.8434(0.3635) 0.8706(0.3356) 0.8794(0.3257)
Czech Republic I4 0.8026(0.3980) 0.8746(0.3311) 0.8963(0.3048)
Germany I5 0.9696(0.1718) 0.9785(0.1450) 0.9740(0.1592)
Denmark I6 0.9054(0.2926) 0.9194(0.2722) 0.9241(0.2648)
Estonia I7 0.7104(0.4536) 0.7515(0.4321) 0.8006(0.3996)
Spain I8 0.6616(0.4732) 0.7266(0.4457) 0.8132(0.3898)
Finland I9 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
Greece I10 0.8278(0.3776) 0.8634(0.3434) 0.8869(0.3167)
Croatia I11 0.9932(0.0819) 0.9930(0.0834) 0.9885(0.1066)
Hungary I12 0.9576(0.2016) 0.9656(0.1823) 0.9557(0.2057)
Ireland I13 0.8520(0.3551) 0.8604(0.3466) 0.8823(0.3222)
Israel I14 0.7719(0.4196) 0.8041(0.3969) 0.8389(0.3677)
Italy I15 0.8299(0.3757) 0.8457(0.3613) 0.8665(0.3401)
Lithuania I16 0.9705(0.1692) 0.9773(0.1489) 0.9756(0.1543)
Luxembourg I17 0.7520(0.4318) 0.7994(0.4004) 0.8286(0.3769)
Netherlands I18 0.9996(0.0194) 0.9996(0.0212) 0.9990(0.0308)
Portugal I19 0.8623(0.3446) 0.8908(0.3119) 0.8903(0.3125)
Russian Federation I20 0.8067(0.3949) 0.8569(0.3502) 0.9025(0.2967)
Sweden I21 0.5890(0.4920) 0.6698(0.4703) 0.8136(0.3894)
Slovenia I22 0.7065(0.4554) 0.8022(0.3983) 0.9013(0.2982)
Slovakia I23 1.0000(0.0071) 1.0000(0.0000) 0.9997(0.0166)
United Kingdom I24 0.9998(0.0158) 0.9997(0.0180) 0.9996(0.0200)
Iceland I25 0.9768(0.1505) 0.9999(0.0087) 1.0000(0.0000)
Latvia I26 0.7986(0.4011) 0.8164(0.3872) 0.8408(0.3659)
Poland I27 0.8389(0.3677) 0.8594(0.3476) 0.8678(0.3387)

Note: *Models 4, 6 and 7 are fitted with a country-specific latent indicator Iki .

Source: Authors’ own.

Appendix III: R code

The following WinBUGS code were used in R using the R-package R2WinBUGS to
fit the change-point model with one unknown common change-point, one country-
specific random change-point and a country-specific latent indicator for the change-
point.

#Model
model{
# Basic model
for (i in 1:N){
Y[i] ˜ dnorm(mu[i],tau)
mu[i]<- (B0 + b1[ID[i]]) + (B1 + b2[ID[i]])*T[i] + (B2 + b3[ID[i]])*
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(T[i]-(C1 + c1[ID[i]]))*step(T[i]-(C1 + c1[ID[i]]))*change[ID[i]] +
(alpha + b4[ID[i]] + alphaTime*T[i])*sin(omega*T[i] + delta)

}
# Priors for random effects
for (j in 1:M){
b1[j]˜ dnorm(0,b0.tau)
b2[j]˜ dnorm(0,b1.tau)
b3[j]˜ dnorm(0,b2.tau)
b4[j]˜ dnorm(0,b3.tau)
c1[j]˜ dnorm(0,c1.tau)
change[j] ˜ dbern(changemean)

}
# Priors for fixed effects
B0 ˜ dnorm(0,0.0001)
B1 ˜ dnorm(0,0.0001)
B2 ˜ dnorm(0,0.0001)
alpha˜ dnorm(0,0.0001)
alphaTime˜dnorm(0,0.0001)
delta˜ dnorm(0,0.0001)
C1˜ dunif(1,52)
changemean ˜ dbeta(1,1)

#Hyper priors
tau ˜ dgamma(0.001, 0.001)
b0.tau˜ dgamma(0.001, 0.001)
b1.tau˜ dgamma(0.001, 0.001)
b2.tau˜ dgamma(0.001, 0.001)
b3.tau˜ dgamma(0.001, 0.001)
c1.tau˜ dgamma(0.001, 0.001)

sigma <- 1/tau
sigma_b0 <- 1/b0.tau
sigma_b1 <- 1/b1.tau
sigma_b2 <- 1/b2.tau
sigma_b3 <- 1/b3.tau
sigma_c1 <- 1/c1.tau
}
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