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Samenvatting

Ruw geschetst bestaat het ontwikkelingsproces van nieuwe geneesmiddelen uit de vol-

gende stappen: de ontdekkingsfase, waar potentieel actieve chemische componenten

worden onderscheiden die verdere studie vereisen; de optimisatie-fase die de farmacol-

ogische profielen optimiseert, en de ontwikkelingsfase waar de potentiële component

aan rigoureuse evaluatie wordt onderworpen. Het is uiteraard belangrijk dat het finale

product veilig en werkzaam is, binnen de populatie die men voor ogen heeft (Schultz,

Ruppel, and Johnson, 1988). Gemeenschappelijk aan alle fasen is het gebruik van

empirische evidentie, of gegevens, om het proces en de eraan gekoppelde beslissing te

ondersteunen. Er is dus grote nood aan statistische expertise. De klemtoon hier ligt

op het ontwikkelen van gepaste methodologie, gekoppeld aan ingewikkeld proefopzet,

in de ontdekkings- en ontwikelingsfases. Ze vormen het onderwerp van respectievelijk

Deel I en Deel II van onderhavig werk.

Flexibele methodologie voor hiërarchische gegevens,

en voor gegevens met selectie-effecten

Farmaceutische bedrijven houden bibliotheken bij van voor de ontwikkeling van ge-

neesmiddelen veelbelovende chemische componenten. Het is cruciaal dat dergelijke

bibliotheken een grote fractie “interesssante” componenten bevatten. Dit verhoogt

uiteraard de kans op succes bij screening (Lajiness and Watson, 2008). Het is ge-

bruikelijk van de eigen ontdekkingen aan te vullen met aangekochte bibliotheken.

Recent werd voorgesteld van de bibliotheken te versterken door ze te voorzien van de

opinie van experten (Hack et al., 2011).

De aanpak voorgesteld door Hack et al. (2011) vertrekt van de aankoop van ver-

scheidene structurele filters die ook de eigenschappen van de componenten screenen.

Hierdoor is het mogelijk van onmiddellijk die componenten te verwijderen die geen
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enkele belofte vertonen. De resterende componenten worden dan in zogenaamde clus-

ters ondergebracht, samen met de reeds in huis aanwezige componenten. Clusters die

uitsluitend uit externe componenten bestaan worden voorgelegd aan de wereldwijde

gemeenschap van medicinale chemici; zij scoren de componenten om op die manier

uit te maken of ze een plaats verdienen in de bibliotheken of niet. Naast een ja/neen

beslissing worden de componenten ook van een rangorde voorzien, uiteraard met het

oog op het aanbrengen van prioriteiten.

Het boven geschetste proces heeft hoog-dimensionale aspecten om twee redenen:

(i) als experten vele clusters scoren, dan is de dimensie van de respons vector hoog; (ii)

een score toekennen aan een cluster impliceert het schatten van duizenden fixed-effect

parameters.

Uiteraard is de methodologie voor hiërarchische gegevens goed ontwikkeld (Molen-

berghs and Verbeke, 2005; Verbeke and Molenberghs, 2000; Liang and Zeger, 1986).

Er is heel wat vooruitgang geboekt ook bij de analyse van hoog-dimensionale her-

haalde metingen. Bijvoorbeeld, Fieuws and Verbeke (2006) maken gebruik van paars-

gewijs schatten, terwijl Molenberghs, Verbeke, and Iddi (2011) grote steekproeven in

stukjes hakken, elk stukje apart analyseren, en dan volgens bepaalde combinatieregels

tot één conclusie komen.

Om expert opinie te kwantificeren is het nodig van de bestaande methodologie uit

te breiden zodat tegelijkertijd de beide hoog-dimensionale aspecten (fixed effecten

en herhaalde respons vector) in rekening kunnen gebracht worden. Een dergeli-

jke procedure wordt voorgesteld in Hoofdstuk 3. Vertrekkend van de splitsingsidee

in Molenberghs, Verbeke, and Iddi (2011), wordt een permutatie-splitsing procedure

voorgesteld. Ze laat toe van het geschetste probleem aan te pakken binnen de grenzen

van standaard beschikbare statistische software. De resultaten liggen zeer dicht bij

de maximum likelihood schatters die men zou krijgen indien de steekproef als geheel

wordt geanalyseerd. Alleen is er een enorme winst aan berekeningstijd en -vereisten.

Dit is mogelijk door: (i) oordeelkundig splitsen van de dataset is deelverzamelingen;

(ii) adequate schattingsmethoden toepassen op elk van de delen; (iii) permutatie van

de gegevens en herhalen van stappen (i) en (ii); (iv) combinatie van de voor de delen

verkregen schatters tot één enkele conclusie. De performantie van de methode wordt

ook onderzocht aan de hand van simulaties.

In deze methode is het niet zo dat het aantal clusters dat door een expert behan-

deld wordt bij voorbaat vast ligt. In overeenstemming met de praktijk hangt zulks

af van de tijd beschikbaar voor een bepaalde expert. Het aantal bestudeerde clusters

(number of clusters rated, NoCR bevat meer dan waarschijnlijk minstens een beetje

informatie over de scores van de expert. In Hoofdstuk 4 worden de theoretische im-
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plicaties hiervan besproken. Het belang van het mee in rekening brengen van NoCR

wordt aangetoond, zelfs onafhankelijk van het feit of het al of niet een invloed heeft op

de score van een expert. Daarnaast worden aantrekkelijke proefopzetten besproken

die dit probleem vermijden, zoals dat waarbij een expert alle clusters bestudeerd, of

het random toekennen van een aantal clusters over de experten, waarbij het aantal

wel degelijk wordt vastgehouden. Ondanks hun theoretische voordelen zijn ze voor

de praktijk minder aangewezen. Pragmatisch kan het dus niet anders dan toch maar

met NoCR rekening te houden.

De meeste methoden voor niet-gerandomiseerde studies impliceren een vorm van

data-verrijking (enrichtment). Dit betekent dat er meer in het model verondersteld

wordt dan gegevens kunnen valideren. Verrijking stoelt dus op niet-verifieerbare aan-

names. Typische voorbeelden van verrijking zijn: ontbrekende gegevens, censurering

bij overlevingstijden, random effecten, enz. Het foutief specifiëren van de random

effect verdeling kan problemen veroorzaken voor de statistische conclusies (Litière,

Alonso, and Molenberghs, 2008). Om die reden zoeken we naar methodologie die

robuust is tegen misspecificatie, omdat verrijking nu eenmaal niet te vermijden is.

Hoofdstuk 5 stelt een dergelijke methode voor. De impact op de conclusies wanneer

dit fenomeen verwaarloosd wordt, vormt het voorwerp van studie in Hoofdstuk 6.

Via simulaties wordt ook nagegaan wat er gebeurt indien overdispersie wordt ver-

waarloosd.

Flexibele methodologie voor gegevens met random

steekproefgrootte

Klinische studies gaan na of een potentieel geneesmiddel voldoende veilig en werkzaam

is (Rodda et al., 1988). Om de impact op de studiepopulatie te verkleinen, maakt men

sedert decennia gebruik van zogenaamde random steekproefgrootte (random sample

size, RSS ). Dit heeft geleid tot het kader van de groep sequentiële studies (group se-

quential trials, GST ). Een GST kan gestopt worden indien het resultaat vroeg in de

studie buiten verwachting heel sterk zou zijn, of wanneer net het tegendeel voorkomt.

Er zijn duidelijk ethische en economische voordelen aan deze manier van werken, maar

tegelijk zijn er problemen op het vlak van parameterschatting. Er is een brede con-

sensus dat schatters gebaseerd op GST minder elegante eigenschappen hebben dan

wanneer conventionele gegevens uit een studie met vaste steekproefgrootte gebruikt

worden. Bijvooorbeeld, het steekproefgemiddelde (sample average, SA) verliest de zo-

genaamde minimum variantie onvertekende eigenschap (Todd, Whitehead, and Facey,
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1996; Jennison and Turnbull, 2000). Als antwoord hierop werden heel wat alternatieve

schatters voorgesteld (Whitehead, 1997; Emerson and Fleming, 1990; Liu and Hall,

1999). Deel Part II bestudeert dit probleem in detail en vanuit een orginele invalshoek.

Ten eerste wordt RSS gekoppeld aan het nu goed ontwikkelde gebied van joint model-

ing , waarbij ook de link gelegd wordt met onvolledige gegevens en overlevingsanalyse.

Concepten zoals ignorability , separability , en ancillarity kunnen dan handig binnen

deze context geplaatst worden om op die manier eigenschappen van lineaire schatters

af te leiden. De relevantie voor het kader van de klinische studie wordt bestudeerd

door de nadruk te leggen op data uit GST. We leiden af dat standaardschatters een

veel grotere geldigheid binnen de context van GST dan meestal wordt aangenomen.

Een en ander wordt grondig bestudeerd in Hoofdstukken 7 en 8 . Naast de hoger

genoemde eigenschappen wordt ook het verband gelegd met statistische volledigheid,

sufficiënte statistieken en de stelling van Lehman-Scheffé. Tenslotte is er een verband

met concepten uit de ontbrekende gegevens, zoals missing at random (MAR) en in-

gorability. Een cruciaal gegeven is dat bijvoorbeeld het gewone steekproefgemiddelde

nog steeds volgt uit het gebruik van maximum likelihood, ondanks het verlies van een

aantal schijnbaar belangrijke frequentistische eigenschappen. Daarnaast wordt ook

conditionele maximum likelihood gebruikt om een schatter af te leiden die onvertek-

end is ook in kleine steekproeven. Het verschil tussen de schatters verkregen uit de

gewone en de conditionele likelihood is nauw verwant aan de vertekening die vanuit

frequentistisch oogpunt bestudeerd wordt.

De meeste geneesmiddelen die bedoeld zijn om het leven te verlengen worden ook

bestudeerd in functie van kwaliteit van het leven. Dit laatste wordt vaak in kaart

gebracht door het gebruik van gevalideerde schalen. Ze moeten natuurlijk geldig

en betrouwbaar zijn, in de psychometrische betekenis van het woord; dit betekent

dat ze voldoende precies datgene meten wat ze verondersteld worden van te meten.

Indien de schalen een continue maat opleveren, is betrouwbaarheid uit te drukken

als een verhouding van varianties. Voor binaire respons is dit minder evident. In

Hoofdstuk 9 worden benaderende uitdrukkingen afgeleid voor de betrouwbaarheid in

voorkomend geval; een en ander wordt binnen het Item Response Theory paradigma

geplaatst. Gebaseerd op de benaderende, zogenaamd manifestie correlatiefuncties van

Vangeneugden et al. (2010) kunnen we aantonen dat betrouwbaarheid van een binaire

schaal evengoed als een variantieratio kan berekend worden. Dit vermijdt uiteraard

belangrijke computationele problemen.



vii

Acknowledgments

It is an open secret that this work is a product of immense collaborations from

different angles.

Geert Molenberghs and Ariel Alonso: I cannot ask for a better team to work with.

The knowledge and experience, both academic and non-academic that you have

imparted to me is immeasurable and I will forever be grateful. Your sensitivity

towards my responsibilities as a parent and making our working schedules as flexible

as possible has largely contributed to the my success of the work being celebrated

today.

My appreciation extends to Luc Bijnens, Christophe Buyck and colleagues from

Janssen pharmacuetica with whom we worked together on the projects of the first

part of the thesis.

A special recognition goes to the jury members for taking time to read the thesis and

for the enlightening comments. Many thanks to my office mates in C107 and E104

and I-BioStat colleagues for offering the stimulating and habitable environment.

The financial support from BOF cannot be taken for granted.

My family in Malawi: Regardless of the distance, I feel your support close by, of

course with Edith around its even much closer :-) . Thanks for always being there

for me.

To my son Dalitso, I will make up for all the missed scout/swimming sessions and

thanks for frustrating me with other things different from non-converging simulations

due to a forgotten comma :-). Having you around is just the best.

My belgian family(Sonia, Valere, Amanda, and Karin): Bedankt voor alles. Jij bent

zoals familie. Many thanks to the kenyan students community for your friendship.

Njeru Njagi: I cannot trade your companionship for anything, it makes a lot of

things lighter and bearable. Asante sana.

My special tribute to Arthur Gitome. We were looking forward to this day together.

May his soul rest in peace.





List of Publications

This work has been based on the following scientific papers:

Alonso, A., Milanzi, E., Buyck, C., Molenberghs, G. and Bijnens, L. (2013). Im-

pact of selection bias on the qualitative assessment of clusters of chemical compounds.

Submitted.

Alonso, A., Milanzi, E., Buyck, C., Molenberghs, G. and Bijnens, L. (2013). A

new modeling approach for quantifying expert opinion in the drug discovery process.

Submitted, revised.

Milanzi, E., Alonso, A.,Buyck, C., Molenberghs, G. and Bijnens, L. (2013). A

permutational-splitting sample procedure to quantify expert opinion on clusters of

chemical compounds using high-dimensional data. Submitted, revised.

Milanzi, E., Alonso, A. and Molenberghs, G. (2012). Ignoring overdispersion in

hierarchical loglinear models: Possible problems and solutions. Statistics In Medicine

2012; 31, 14751482.

Milanzi, E., Molenberghs, G., Alonso, A., Kenward, M.G., Verbeke,G.,Tsiatis,

A. A. and Davidian, M. (2013). Properties of Estimators in Exponential Family

Settings With Observation- based Stopping Rules. Submitted, revised.

Milanzi, E., Molenberghs, G., Alonso, A., Kenward, M. G., Verbeke,G.,Tsiatis,

A. A. and Davidian, M. (2013). Estimation after group sequential trials. Submitted,

revised.

Milanzi, E., Molenberghs, G., Alonso, A., Verbeke,G., and De Boeck, P. (2013).

Reliability Measures In Item Response Theory: Manifest vs Latent Correlation Func-

tions. Submitted, revised.

ix





Contents

Table of Contents xi

List of Tables xvii

List of Figures xxi

List of Abbreviations xxiii

1 Introduction 1

1.1 Flexible Methodology for Hierarchical Data and Data with selection Bias 1

1.2 Flexible Methodology For Data With Random Sample Size . . . . . . 4

2 Motivating Case Studies 7

2.1 Expert Opinion On Clusters of Chemical Compounds . . . . . . . . . 7

2.1.1 Design of the study . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Possible Implications Of The Design On Estimation and Inference 8

2.2 Epilepsy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Verbal Agression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Law School Admission Test (LSAT6) Data . . . . . . . . . . . . . . . . 11

I Flexible Methodology For Hierarchical Data and Data
with Selection Bias 13

3 A Permutational-Splitting Sample Procedure to Quantify Ex-

pert Opinion on Clusters of Chemical Compounds Using High-

Dimensional Data 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Estimating the Probability of Success . . . . . . . . . . . . . . . . . . 17

xi



xii Table of Contents

3.2.1 A Permutational-Splitting Sample Procedure . . . . . . . . . . 19

3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Impact of Selection Bias on the Qualitative Assessment of Clusters

of Chemical Compounds 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Naive Estimation of Probabilities . . . . . . . . . . . . . . . . . 36

4.2 Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 How Ignorable is the Selection Procedure in the Absence of

Selection Bias? . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Case Study Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 A New modeling Approach for Quantifying Expert Opinion in the

Drug Discovery Process 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 The Joint Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Combined Model Approach . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Case Study Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Ignoring Overdispersion in Hierarchical Models: Possible Problems

and Solutions 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Combining Conjugate and Normal Random

Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Combined Poisson Model for Count Data . . . . . . . . . . . . 66

6.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Impact of Ignoring Overdispersion . . . . . . . . . . . . . . . . 67

6.3.2 Impact on Incorrectly Assuming Overdispersion . . . . . . . . 67

6.3.3 Impact of Misspecification of Random Effects . . . . . . . . . 68

6.3.4 Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Table of Contents xiii

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Ignoring Overdispersion . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2 Misspecification of Random Effects Distribution . . . . . . . . 69

6.4.3 Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Re-Analyzing the Case Study . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II Flexible Methodology For Data With Random Sample
Size 77

7 Properties of Estimators in Exponential Family Settings With

Observation-based Stopping Rules 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Notation, Basic Concepts, and Problem Formulation . . . . . . . . . . 81

7.2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.2 General Model Formulation . . . . . . . . . . . . . . . . . . . . 83

7.3 Incomplete Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . 85

7.3.1 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.2 The Normal Case . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.3 The Binary Case . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Generalized Sample Averages . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.1 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.2 The Normal Case . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.3 The Binary Case . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Likelihood Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.1 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.2 The Normal Case . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.3 The Binary Case . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Estimation After a Group Sequential Trial 113

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Problem and Model Formulation . . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Stochastic Rule As A Group Sequential Stopping Rule . . . . . 115

8.3 Incomplete Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . 116

8.4 Generalized Sample Averages . . . . . . . . . . . . . . . . . . . . . . . 118

8.5 Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xiv Table of Contents

8.5.1 Joint Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.5.2 Conditional Likelihood . . . . . . . . . . . . . . . . . . . . . . . 121

8.6 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.6.1 Asymptotic Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.6.2 Asymptotic Mean Square Error . . . . . . . . . . . . . . . . . . 125

8.7 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Reliability Measures In Item Response Theory: Manifest Versus

Latent Correlation Functions 131

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Reliability Measures in One Parameter Logistic (1PL) and Two Pa-

rameter Logistic (2PL) Models . . . . . . . . . . . . . . . . . . . . . . 134

9.2.1 Exact Reliability Measures . . . . . . . . . . . . . . . . . . . . 134

9.2.2 Intra-class Correlation (Latent) . . . . . . . . . . . . . . . . . . 135

9.2.3 Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.3 Taylor-series-based Derivation of the Correlation Function . . . . . . 138

9.3.1 Manifest Correlation Functions For GLMM . . . . . . . . . . . 138

9.3.2 Taylor Series Based Reliability Measures For 1PL and 2PL

Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3.2.1 Illustration For 1PL Model . . . . . . . . . . . . . . . 140

9.3.2.2 Illustration For 2PL Model . . . . . . . . . . . . . . . 141

9.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.4.1 Design of the Simulation Study . . . . . . . . . . . . . . . . . . 143

9.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.5 Analysis of Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10 Concluding Remarks 151

10.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.1.1 Flexible Methodology For Hierarchical Data and Data with Se-

lection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.1.2 Flexible Methodology For Data With Random Sample Size . . 153

10.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Table of Contents xv

10.2.1 Connections Between Combined Model and Missing Data

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.2.2 Reliability Measures for Models Multidimensional Traits . . . . 156

A Appendix A 169

A.1 Results Emanating From Different Selection Models . . . . . . . . . . 169

B Appendix B 171

B.1 Stopping Probability for Normally Distributed Outcomes . . . . . . . 171

B.2 Joint Probability for Binary Outcome . . . . . . . . . . . . . . . . . . 172

B.3 Conditional Expectations for CL . . . . . . . . . . . . . . . . . . . . . 173

C Appendix C 175

C.1 Simulation Study for Stopping Rule Φ(α+ βk) . . . . . . . . . . . . . 175

C.1.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.1.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.2 Simulation Study for Stopping Rule Φ(α+ βk/n) . . . . . . . . . . . . 176

C.2.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 177

D Additional Results From The Simulation Study on reliability Mea-

sures 187





List of Tables

3.1 Top 20 clusters (ID) with highest estimated probability of success for

the expert opinion case study . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Weighted and unweighted analyses for the expert opinion case study . 31

3.3 Estimates for the top 20 clusters from the simulation study on perfor-

mance of permutational-splitting procedure . . . . . . . . . . . . . . . 32

3.4 Estimated success probabilities for top 20 clusters for the simulation

study on performance of permutational-splitting procedure . . . . . . 33

4.1 Simulation results for sensitivity analysis . . . . . . . . . . . . . . . . . 44

4.2 simulation results for the joint model . . . . . . . . . . . . . . . . . . . 45

4.3 Estimates for fixed effects and probabilities of success obtained from

the Naive and joint model analyses for the expert opinion case study . 46

4.4 Joint model analysis of expert opinion case study . . . . . . . . . . . . 47

5.1 Estimates (standard errors) for simulation study comparing the com-

bined model to joint models . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Relative bias for estimates from the simulation study comparing the

combined model to joint model. . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Confidence intervals for estimates from the simulation study comparing

the combined model to joint model. . . . . . . . . . . . . . . . . . . . . 60

5.4 Probability estimates from the simulation study comparing the com-

bined model to joint model . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Re-analysis of expert opinion case study with the combined model . . 62

6.1 Parameter estimates and standard errors for the Epilepsy Study . . . 72

6.2 Results of simulation study on impact of ignoring overdispersion . . . 73

xvii



xviii List of Tables

6.3 Results of simulation study on impact of misspecfying the distribution

of bi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Results of simulation study on impact of misspecfying the distribution

of θij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Results of simulation study on impact of misspecfying both θij and bi

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Coefficients for optimum unbiased generalized sample average estimators 96

8.1 Mean estimates and relative bias for different settings of O’Brien and

Fleming’s design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Bias in MLE and bias adjusted estimators . . . . . . . . . . . . . . . . 129

9.1 Expected sum score reliability . . . . . . . . . . . . . . . . . . . . . . . 145

9.2 Item reliability for 1PL and 2PL . . . . . . . . . . . . . . . . . . . . . 146

9.3 Results from the analysis of the LSAT6 data . . . . . . . . . . . . . . 148

9.4 Results from the analysis of the Verbal Aggression Data. . . . . . . . . 149

A.1 Results from shared parameter model . . . . . . . . . . . . . . . . . . 170

C.1 Joint maximum mikelihood estimates for F = Φ(α+ βk)(marginal) . . 176

C.2 Joint maximum likelihood estimates for F = Φ(α + βk)(Conditional

on N=n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.3 Joint Maximum likelihood estimates for F = Φ(α+βk)(conditional on

N=2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.4 Conditional maximum likelihood estimates for F = Φ(α+ βk)(marginal)178

C.5 Conditional maximum likelihood estimates for F = Φ(α +

βk)(conditional on N=n) . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.6 Conditional maximum likelihood estimates for F = Φ(α+ βk) (condi-

tional on N=2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.7 Joint maximum likelihood estimates for F = Φ(α+ βk/n)(marginal) . 180

C.8 Joint Maximum likelihood estimates for F = Φ(α+ βk/n)(conditional

on N=n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.9 Joint Maximum likelihood estimates for F = Φ(α+ βk/n)(conditional

on N=2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.10 Conditional maximum likelihood estimates for F = Φ(α + βk/n)

(marginal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



List of Tables xix

C.11 Conditional Maximum likelihood estimates for F = Φ(α + βk/n)

(marginal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.12 Conditional maximum likelihood estimates for F = Φ(α +

βk/n)(conditional on N=2n) . . . . . . . . . . . . . . . . . . . . . . . 185

D.1 Item reliability, where person trait variance, σ2
θ = 4 . . . . . . . . . . . 188

D.2 Item reliability , where person trait variance, σ2
θ = 0.25 . . . . . . . . 189





List of Figures

2.1 Histogram for the number of clusters rated by the experts . . . . . . . 9

3.1 Distribution of estimated probabilities of success . . . . . . . . . . . . 24

3.2 Relative difference between true values and MLE estimates and true

values and Procedure estimates . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Number of clusters rated vs recommended clusters . . . . . . . . . . . 49

8.1 Difference in relative bias between MLE and biased adjusted estimates 128

xxi





List of Abbreviations

1PL One Parameter Logistic

2PL Two Parameter Logistic

BAM Bias Adjusted Estimator

CI Confidence Interval

CL Conditional Likelihood

CLE Conditional Likelihood Estimate

CRSS Completely Random Sample Size

CTT Classical Test Theory

FSS Fixed Sample Size

GLMM Generalized Linear Mixed Model

GSA Generalized Sample Average

GST Group Sequential Trials

GT Generalizability Theory

ICC Intra-Class Correlation

IRT Item Response Theory

LSAT Law School Admission Test

MAR Missing At Random

MCAR Missing Completely At Random

MLE Maximum Likelihood Estimate

MNAR Missing Not At Random

MSE Mean Square Error

MUE Mean Unbiased Estimator

NoCR Number of Clucters Rated

RBADJ Rao’s Bias Adjusted

RSS Random Sample Size

SA Sample Average

xxiii





Chapter 1

Introduction

Introduction Roughly, the drug discovery process is divided into three stages, namely,

lead discovery, lead optimization, and lead development, in that order. The lead dis-

covery stage identifies potentially active chemical compounds worth of further study

for drug development, and the lead optimization stage improves the pharmacological

profiles of the identified compounds, by increasing the level of desirable activity and

reducing the level of undesirable activity. Finally, the lead development stage, sub-

jects the compounds to rigorous evaluations, to ensure that the end product is both

safe and effective for the targeted population (Schultz, Ruppel, and Johnson, 1988).

Common to all stages and critical part of evidence qualifying compounds to pro-

ceed to the next stage, is the amount of empirical evidence in support of a decision.

This makes statistical expertise indispensable in the whole drug discovery process.

The thesis focuses on flexible methodology and complications encountered during the

analysis of empirical data realized during compound the acquisition process in lead

optimization stage and clinical trials in the lead development stage. These are the

focus of Parts I and II, respectively.

1.1 Flexible Methodology for Hierarchical Data and

Data with selection Bias

Pharmaceutical companies tend to maintain a library of chemical compounds that are

known to possess drug-like matter. Regularly, these are screened for drug-activity,

to identify compounds that can be developed further. It is crucial that such a

library contain a large proportion of “interesting” compounds, from a pharmaceutical

1



2 Chapter 1. Introduction

point of view, to increase chances of hits during screening (Lajiness and Watson,

2008), and this is usually achieved by supplementing the library collection through

acquisition of compounds from vendors. Prevalent techniques used in determining

compounds worth acquiring,are frequently based on similarities or differences in

properties between compounds already in the library and those to be acquired (Ma,

Lazo, and Xie, 2011; Dunbar, 2000). However, Hack et al. (2011) recently suggested

an approach for enhancing diversity of a chemical library that incorporates expert

opinion as additional evidence when deciding on which compounds to acquire. Sta-

tistical challenges and possible solutions associated with quantification of the expert

opinion, which include a combination of data hierarchy and high-dimensionality,

selection bias and/or missing data, are extensively addressed in Part I of this thesis.

The approach suggested by Hack et al. (2011) proceeds by screening candidate

compounds for acquisition using various structural and property filters in order

to eliminate clearly non-drug-like matter. The remaining compounds are then

clustered together with the in-house collection using a novel fingerprint-based

clustering algorithm that emphasizes common substructures and works with millions

of molecules. Clusters populated exclusively by external compounds are identified

as “diversity holes”, and the representative members are presented to the global

medicinal chemistry community, to rate the clusters as to whether they should be

included in the library or not. Finally, the ratings are quantified and used to rank

the clusters according to acquisition priority.

Though the approach seems straightforward, its implementation poses statistical

modeling challenges. Since each expert can rate more than one cluster, the collected

ratings have a hierarchical structure, hence standard methods that assume indepen-

dence typically do not apply. Chemical compounds are usually acquired in millions,

although in the approach considered here, this was reduced to thousands (22,015),

through clustering. Certainly, high-dimensional problems crop up from two angles,

namely, (i) when an expert rates many clusters, the dimension of the repeated re-

sponse vector will be high, and (ii) when assigning a rank to each cluster implies the

estimation of thousands of fixed effects parameters.

Indeed, methodology for hierarchical data is well established (Molenberghs and

Verbeke, 2005; Verbeke and Molenberghs, 2000; Liang and Zeger, 1986) , and there

are remarkable research advances in high-dimensional data problems. To circumvent

the problem of high-dimension repeated response, Fieuws and Verbeke (2006) employ

a pairwise fitting procedure, while Molenberghs, Verbeke, and Iddi (2011) use sample
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splitting. While relevant, these methods do not fully tackle the problem of a high-

dimensional fixed effects vector.

In regression models, variable selection Meinshausen and Bühlmann (2010); Fan and

Peng (2004) precedes model fitting to avoid a high-dimensional fixed-effects vector.

Unfortunately, variable selection is not a viable option since each cluster has to be

ranked. Evidently, to quantify expert opinion existing methods need to be extended

to simultaneously address high-dimensionality in both the fixed-effects and repeated

response vectors, and Chapter 3 proposes such a procedure. Building on the sample

splitting idea, the permutational-splitting sample procedure, allows for model estima-

tion for data with the two-fold high-dimension problem, using the commonly available

computing resources and produces estimates similar to maximum likelihood estimates

that would be obtained if the whole dataset was used at once. This is achieved by, (i)

judiciously splitting the whole dataset into sub-samples, (ii) performing valid model

estimation for each sub-sample, (iii) permuting the data and repeating (i) and (ii),

and (iv) mechanically combining the parameter estimates from the sub-sample analy-

ses to obtain the final estimates. In addition to quantifying expert opinion using this

procedure, Chapter 3 presents a simulation study that investigates the performance

of the procedure against full maximum likelihood.

In this approach, the clusters were presented in a random order, but the final

number of clusters each expert rated was not fixed in advance, rather it depended

on the time an expert decided to stop rating. Indeed, the number of clusters rated

(NoCR), contains some information about the expert and thus may have to be taken

into account when quantifying expert opinion. Chapter 4 discusses the theoretical

implications of having differing and random NoCR, and demonstrates why it is

important to consider the process generating the NoCR, regardless of whether

it influences the rating outcome or not. Further, appealing designs that avoid

such a phenomenon, namely, each expert rating all available clusters or randomly

assigning a pre-fixed number of cluster and force the experts to finish their quota, are

explored. In spite of their statistical appeal, their practicality is doubtful. As such,

to quantify the expert opinion, methods that can model the rating and NoRC gen-

erating processes jointly, unlike methods that assume randomization, have to be used.

Most methods for non-randomized studies require data enrichment, which is

mainly based on unverifiable assumptions. Common forms of enrichment include

random effects and (non)parametric models, which if misspecified can have detrimen-

tal effects on estimates and statistical inferences (Litière, Alonso, and Molenberghs,

2008). It is desirable that methods that are robust against misspecification are used,
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especially in situations where data enrichment is unavoidable. Chapter 5 therefore

proposes a modeling technique that uses random effects to augment the data and

produces valid estimates when the assumptions are misspecified. Using the technique

introduced in Chapter 5, Chapter 6 studies the impact of ignoring data augmentation

when it is necessary. Through an extensive simulation study, problems resulting from

ignoring overdispersion, an example of a situation where data enrichment is necessary,

are exposed and possible solutions suggested.

1.2 Flexible Methodology For Data With Random

Sample Size

Clinical trials fall into the lead development stage, where the value of a compound as

drug, in prevention, treatment or diagnosis of a disease is determined by evaluating

its benefits relative to its risk and undesirable effects (Rodda et al., 1988). In view of

minimizing the impact of undesirable effects on the tested population, study designs

with random sample size (RSS), like group sequential trials (GST), which can be

stopped in case of clear danger or benefit are preferred. While convenient ethically,

such designs pose statistical challenges in estimating parameters of interest. The

consensus is that estimators used after a fixed sample size (FSS) trial, lose some

of their nice properties when used after a GST. For example, the sample average

(SA), loses the minimum variance unbiased estimator property (Todd, Whitehead,

and Facey, 1996; Jennison and Turnbull, 2000). This has led to research directed at

finding alternative estimators to be used after GST (Whitehead, 1997; Emerson and

Fleming, 1990; Liu and Hall, 1999). Part II presents an in-depth analysis of properties

of estimators for studies with (RSS) from a novel perspective. First, RSS is linked

to the well-established research area of joint modeling, which includes settings like

incomplete data and survival analysis. Then, concepts like ignorability, separability

and ancillarity are placed in the context of RSS trials theory to establish properties

of linear mean based estimators. Further the relevance of such properties to clinical

trials is illustrated by studying the specific case of GST where it is shown that, while

retaining the good qualities of RSS, flexible analyses like those used in FSS trials may

be adequate after a GST.

When the human population is the target, clinical trials are more likely to expose

the participants to some risk or unexpected liability. To this effect, strict ethical

guidelines in medical research like, “The Helsink 1964” and “The Numbero code”

are enforced to minimize such risks. For example, it is unacceptable to continue
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subjecting participants in a study to a clearly toxic or less effective drug when

a better alternative drug exists (Armitage, 1975). This forms the basis of most

clinical trials that are designed to allow early stopping. In addition to adhering to

high-level ethics, such trials are economical in resources. Recall that these attractive

features come at a cost of losing some good properties of mean estimators in the

FSS setting, hence casting doubt on their use in the RSS setting. By relating

RSS trials to missing data theory, Chapter 7 clearly outlines important concepts,

common to all these settings, that determine the properties of mean estimators in

RSS trials. In particular, completeness of a sufficient statistic and Lehman-Scheffe’s

theorem are used to illustrate the loss of unbiased minimum variance mean estimator

(UMVUE) property by SA. Further, concepts like the missing at random (MAR) and

ignorability assumptions from the missing data theory are used to show that sample

average (SA) is the maximum likelihood estimator (MLE) after a RSS trial. As such

likelihood inferences valid under MAR in the missing data context, like asymptotic

unbiasedness of MLE and validity of asymptotic confidence intervals computed

using observed information matrix, are also valid in RSS trials. SA is also studied

within the larger class of linear based mean estimators where it emerges as the only

estimator of that class that exhibits asymptotic unbiasedness. An interesting result

is that, mean estimators used in FSS trials are still useful in RSS trials. Finally, a

new unbiased conditional maximum likelihood mean estimator is introduced as an

alternative for those not comfortable with the finite sample bias in MLE, although

its use is accompanied with some loss of information.

Chapter 8 digests the relevance of the findings in Chapter 7 to GST, which

is a specific case and a popular design of RSS trials. The main message is that

flexible modeling used in FSS trials is useful in GST, when the likelihood estimation

paradigm is followed. For example, SA can still be used as a mean estimator despite

having finite bias.

Evaluation of most drugs meant to prolong life, include quality of life assessment

studies, where quality of life is measured according to an approved scale. Of the many

aspects considered when approving the scale, is reliability, defined as the ability of

the scale to consistently measure what it is supposed to measure. For scales with

continuous scores, reliability is calculated as the ratio of true to observed variance,

and is easily obtained. However, for binary scores, computing reliability as the ratio

of true to observed variance is computationally challenging. Chapter 9 introduces

approximate reliability measures for binary scored scales, within the Item Response
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Theory paradigm. Based on approximate manifest correlation functions proposed by

Vangeneugden et al. (2010), we show that reliability of a binary scored scale can be

obtained as the ratio of true to observed variance, while eluding the computational

obstacles.



Chapter 2

Motivating Case Studies

In this chapter, we introduce case studies that motivated the ideas developed in Part I

and used to illustrate the findings in part II.

2.1 Expert Opinion On Clusters of Chemical Com-

pounds

The pharmaceutical company Johnson & Johnson carried out a project to identify

compounds from vendors for acquisition, to enhance the diversity of their library

collection. The 5, 261, 676 compounds marked for potential acquisition, underwent

a filtering process to eliminate clearly non-drug-like matter. Remaining compounds

were combined with the existing library collection, and a fingerprint-based procedure

was implemented to cluster together related compounds. In total, 22, 015 clusters

were exclusively made up of compounds from vendors, and viewed as having library

diversification potential. To decide on which clusters to give acquisition priority,

global medicinal experts were asked to rate these clusters.

2.1.1 Design of the study

The rating system was implemented by a desk-top application, Third Dimension Ex-

plorer (3DX), a drug-discovery specific software that is similar in concept to Microsoft

Excel (Agrafiotis et al., 2007). In a typical rating session, an expert was presented

with a random small subset of clusters, selected from the entire set of 22, 015 clusters,

to ensure that an expert looks at all clusters without scrolling through the screen. To

help the expert make an informed choice, the clusters were presented with additional

7
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information that included the size of the cluster, the structures of its representative

members, i.e., the compound with the lowest molecular weight, and up to four ad-

ditional members (the compound with the highest molecular weight and 1–3 other

randomly chosen members). Possible ratings were: −1, if disliked, 0, if indifferent

and 1 if liked, but for the analysis −1 and 0 were merged and recoded into 0. A new

random subset that excludes clusters already rated, would be presented either, when

all the clusters in the previous subset have been rated, or if the expert resumes the

rating after a break. Rates were assigned to clusters and not individual members,

and a total of 147 experts took part in the study.

The histogram in Figure 2.1 displays the distribution of the number of clusters

rated by the experts. The left side distribution, which plots numbers of all experts,

is positively skewed, indicating that many experts opted to rate few clusters. Indeed,

25% of the experts rated fewer than 345 clusters, 50% fewer than 1200 and 75% of the

experts, fewer than 2370 clusters. Moreover, the most rated cluster had 31 ratings,

and 8 for the least rated. On the right hand side is the distribution of the number

of clusters for experts who rated less than 4000 clusters and it has two notable peaks

at 0–200 and 2000 clusters, suggesting that many experts’ number of ratings fall into

these categories. In total, the final dataset contained 409,552 observations.

2.1.2 Possible Implications Of The Design On Estimation and

Inference

The rating system was designed to support multiple sessions that would allow the

experts to stop and resume the rating at their own convenience, resulting in numbers

of clusters rated by experts ranging from 20 to 22,015. While practically convenient,

it may bring about serious complications for the data analysis, especially when esti-

mating the success probabilities. Assuming that each expert was expected to rate all

clusters, vectors of ratings for those who did not achieve this can be considered incom-

plete, and missing data techniques can be used to account for the differing numbers.

The magnitude of the missing responses (87 %), may require a large scale sensitivity

analysis. Alternatively, the ability to stop may encourage experts to stop when they

encounter a hard-to rate cluster so as to get a new random subset, in which case the

wide range for the number of clusters rated would reflect selection patterns of the

experts that translate into selection bias in estimation. In such a setting, selection

bias methods can also be employed.

Serious complications can also arise from the less restricted random assignment

of the clusters. Possible extreme cases include: (i) some clusters being rated by all
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Figure 2.1: Histogram for the number of clusters rated by the experts.The left hand

side, is the histogram for all experts, and the rights hand side is for experts who rated

less than 4000 clusters.
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experts and some by none, making assignment of ranks impossible, (ii) both experts

and clusters being divided into two separate components, where one half of experts

rates one half of the clusters, which may complicate estimation of experts’ variability.

Fortunately, the extreme cases were avoided since four experts rated all clusters.

Nevertheless, the most rated cluster had ≈ 4× the ratings of the least rated, i.e.,

the success probability for the former is estimated more precisely since it has more

information.

The ideal design is to force the experts to rate all clusters, which may be imprac-

tical due to time constraints and conflicting engagements. Alternatively, each expert

would be randomly assigned a subset of clusters in a way that ensures that each

cluster is rated equally, and this requires that each expert finishes his/her quota of

clusters which is also challenging. Even though it is not the focus of the present work,

it is clear that the design of the study is another important element to guarantee the

validity of the results. Optimal designs are a class of experimental designs that are

optimal with respect to some statistical criterion (Berger and Wong, 2009). For in-

stance, one may aim to select the number of experts, the number of clusters assigned

to the experts and the assignment mechanism to maximize precision when estimating

the probabilities of success. In principle, it seems intuitively desirable for each cluster

to be evaluated by the same number of experts and for each pair of experts to have

a reasonable number of clusters in common. However, more research will be needed

to clarify these issues and establish the best possible design for this type of studies.

2.2 Epilepsy Data

The data come from a randomized, double-blind, parallel group and multi-center

clinical trial for the comparison of placebo with a new anti-epileptic drug (AED), in

combination with one or two other AED’s. The study is described in full detail in

Faught et al. (1996). Randomization took place after a 12-week baseline period that

served as a stabilization time for the use of AED’s, and during which the number of

seizures were counted. After that period, 45 patients were assigned to the placebo

group and 44 to the active (new) treatment group. Patients were then measured

weekly and after a followed up of 16 weeks (double-blind) they were entered into a

long-term open-extension study. Consequently, some patients were followed for up to

27 weeks. The outcome of interest was the number of epileptic seizures experienced

during the most recent week. The research question was whether or not the new

treatment could reduce the number of epileptic seizures.
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2.3 Verbal Agression Data

The data consist of subjects’ responses to questions about verbal aggression. The in-

strument is a behavioral questionnaire. All items refer to verbally aggressive reactions

in a frustrating situation. The data can also be considered as from a psychological

experiment which has three design factors: (1) Behavior mode: a differentiation is

made between two levels, i.e., wanting to do and the actual doing; (2) Situation type:

This factor has two levels, namely other-to-blame and self-to-blame situation type,

and each of these levels has two situations. Self to blame situations were: ‘The grocery

closes just as I am about to enter’ and ‘The operator disconnects me when I had used

up my last 10 cents’. Other to-blame situations were: ‘A bus fails to stop for me’ and

‘I miss the train because a clerk gave me faulty information’. So, the situations can

also be viewed as nested in the situation type; (3) Behavior type: this had three kinds

of behaviors, namely shout, scold, and curse. An example of an item in this instru-

ment was: ‘A bus fails to stop for me. I would want to curse’. Possible answers were,

no (0), perhaps (1), and yes (2). In our application, we will use the dichotomized

version of the response, in which ‘no’ and ‘perhaps’ are recoded as 0 and ‘yes’ as 1.

A detailed description of the data and its items can be found in Vansteelandt (2000)

and De Boeck and Wilson (2004).

2.4 Law School Admission Test (LSAT6) Data

LSAT is a standardized test administered to prospective law student and designed

to assess reading comprehension, logical and verbal reasoning proficiencies. The data

comprises scores on five items of Section 6 of of the LSAT for 1000 examinees. The

data is publicly available in the R package mirt, and it is well described in Bock and

Lieberman (1970).
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Chapter 3

A Permutational-Splitting

Sample Procedure to

Quantify Expert Opinion on

Clusters of Chemical

Compounds Using

High-Dimensional Data

3.1 Introduction

The lengthy and expensive process of drug development is initiated with the lead dis-

covery stage, which identifies potentially active chemical compounds worth of further

study for drug development. Pharmaceutical companies tend to maintain a library of

chemical compounds (library) that are screened for some drug activity. Lajiness and

Watson (2008) advocate for a library with a large proportion of “interesting” chemical

compounds, from a pharmaceutical point of view, to increase chances of hits during

screening. Acquisition of third party chemical compounds (’compounds’) presents a

possibility to build such a library, though it comes with the challenge of selecting the

compounds worth purchasing. Critical in selecting such compounds is the amount of

15
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evidence supporting the presence of drug activity.

Recently, Hack et al. (2011) introduced an approach for enhancing the diversity of

a library based on the theory of wisdom of crowds (Surowieck, 2004), when acquiring

compounds from vendors. First, candidate compounds for acquisition are screened

using various structural and property filters to eliminate clearly non-drug-like matter,

then the remaining compounds are clustered together with the compounds already

in the library, using a fingerprint-based clustering algorithm. Finally, clusters popu-

lated exclusively by third party compounds are identified and presented to the global

medicinal chemistry experts, who rate the clusters regarding their appropriateness

for library inclusion. Based on the ratings, each cluster is ranked and the top ranked

ones are given acquisition priority. Using expert opinion has been acknowledged as

crucial element for judgment (Oxman, Lavis, and Fretheim, 2007).

This chapter shows that, based on these qualitative ratings and using hierarchical

models, a probability of success (recommending a cluster for inclusion) can be assigned

to each cluster. The main issue in this process is that the presence of several judges

and many clusters lead to a high-dimensional vector of repeated responses and a

high-dimensional fixed-effect structure as well.

Facets of the so-called curse of dimensionality (Donoho, 2000), in statistical esti-

mation and inference are numerous, and constitute a substantial proportion of active

statistical research. For instance, in multiple linear regression, Gaure (2013) and

Guimaraes and Portugal (2010) studied this problem when a large number of covari-

ates are included in the model. Likewise, Fieuws and Verbeke (2006) have proposed

approaches to fit multivariate hierarchical models in settings where the responses are

high-dimensional vectors of repeated observations.

Arguably, variable selection is the most recognized form of high-dimensional data

problems (Fan and Peng, 2004; Meinshausen and Bühlmann, 2010; Fan, Guo, and

Hao, 2012), where the number of explanatory variables is much larger than the sample

size. The challenge is to select useful variables from a multitude of mostly “noisy”

variables. As such, many variable selection methods are based on the assumption that

the high-dimensional vector of explanatory variables is sparse, and the methods are

meant to identify those with the highest probability of having a non-zero effect. This

approach is not plausible for our problem because in essence we only have one variable

with numerous categories (resulting into a high dimensional fixed effects vector), such

that even when the effect for some categories is zero we cannot omit them from the

analysis.

The approach followed here is based on permuting and splitting the original data

set into mutually exclusive subsets that are analyzed separately and the posterior
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combination of the results from sub-analyses. It is aimed at rendering the use of

random-effects models possible when there is a huge number of clusters and/or a

large number of experts. In this setting, conventional maximum likelihood is not

computationally feasible, and alternative strategies are needed.

Data splitting methods are not new in tackling high dimensional problems: Chen

and Xie (2012) use a split-and-conquer approach to analyze extraordinarily large data

in penalized regression. Fan, Guo, and Hao (2012) utilize data-splitting technique to

estimate variance in ultrahigh dimensional regression. Molenberghs, Verbeke, and

Iddi (2011), formulated a splitting approach when either the repeated response vector

was high-dimensional or the sample size too large.

The scenario studied here, however, is radically different: both the repeated re-

sponse vector and the vector of covariates are high-dimensional. This requires a differ-

ent splitting strategy, in which the covariates involved in each sub-sample are not the

same and so are the estimated effects and Hessian matrices from each sub-analysis.

Hence,the methods used by the above mentioned authors in combining estimates do

not directly apply.

3.2 Estimating the Probability of Success

To facilitate the decision making process, it is desirable to summarize the large number

of qualitative assessments given by the experts into a single probability of success for

every cluster. One way to approach this problem is to use generalized linear mixed

models. Alternatively, a simpler method is to use the observed probabilities of success,

estimated as the proportion of ones that each cluster received. There are, however,

good reasons to prefer the model-based approach. Indeed, hierarchical models bring

more flexibility by allowing the inclusion of covariates associated with the clusters

and the experts. They also permit extensions to incorporate the presence of selection

bias or missing data and explicitly account for the fact that an expert may evaluate

several clusters. In addition, the model-based approach naturally delivers an estimate

of the inter-expert variability. Although it is not the focus of the analysis, a measure

of heterogeneity among experts is a valuable element for the interpretation of the

results and for the design of future evaluation studies.

To estimate the probability of success for every cluster, let us now denote the

vector of ratings associated with expert i by Y i = (Yij)j∈Λi , where Λi is the subset

of all clusters evaluated by the ith expert and i = 1, . . . , n. A natural choice to model
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these data is the logistic-normal model:

logit [P (Yij = 1|bi)] = βj + bi, (3.1)

where βj is a fixed parameter characterizing the effect of cluster Cj with j ∈ Λi and

bi ∼ N(0, σ2) is a random expert effect. Models similar to (3.1) have been successfully

applied in psychometrics to describe the ratings of individuals on the items of a test

or psychiatric scale. In this context, model (3.1) is known as the Rasch model and

it plays an important role in the conceptualization of fundamental measurement in

psychology, psychiatry, and educational testing (De Boeck and Wilson, 2004; Bond

and Fox, 2007). There are clear similarities between the problem studied in this work

and the measurement problem tackled in psychometrics. For instance, the clusters in

our setting parallel the role of the items in a test or psychiatric scale and the ratings of

the individual on these items would be equivalent to the ratings given by the experts

in our setting. In addition to the intuitive meaning attached to treating clusters as

fixed effects (just like items in Rasch model), it is also computationally convenient.

Nonetheless, differences in the inferential target and the dimension of the parametric

space imply that distinctive approaches are needed in both areas.

Parameter estimates for model (3.1) are obtained by maximizing the likelihood,

L(β, σ2) =

n∏
i=1

∫ ∞
−∞

∏
j∈Λi

π
yij
ij (1− πij)1−yij φ(bi|0, σ2) dbi, (3.2)

using, for example, a Newton-Raphson optimization algorithm, where

πij = P (Yij = 1|bi), β = (β1, . . . , βN ) is a vector containing all cluster effects and

φ(bi|0, σ2) denotes a normal density with mean zero and variance σ2. The integral

can be approximated applying numerical procedures like Gauss-Hermite quadrature.

Using model (3.1), one can calculate the marginal probability of success for cluster

Cj by integrating over the distribution of the random effects:

Pj = P (Yj = 1) =

∫
exp (βj + b)

1 + exp (βj + b)
φ(b|0, σ2) db. (3.3)

Essentially, in a first step one estimates the cluster effects βj , after adjusting for the

expert effect, by maximizing the likelihood (3.2). These estimates are then used,

in a second step, to estimate the probability of success by averaging over the entire

population of experts. However, the vector of fixed effects β in (3.2) has dimension

22,015, and the dimension of the response vector Y i ranges from 20 to 22, 015. Hence,

using maximum likelihood in this scenario is not feasible with the most commonly

available computing resources. The challenge is then to find a reasonable strategy to

solve this high-dimensional problem when estimating the probabilities of interest.
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3.2.1 A Permutational-Splitting Sample Procedure

Let C = {C1, . . . , CN} denote the collection of ratings on the N clusters, where Cj
is a vector containing all the ratings cluster Cj received. The main idea behind the

procedure described in this section is the partition of the set of cluster evaluations C
into disjoint subsets of relatively small size. As any splitting procedure, this approach

raises the problem of deciding on the size of these smaller subsets. In our setting, if

Nk denotes the number of vectors Cj in the k subset (where N1 +N2 + . . . ,+NS = N

and S is the total number of subsets), then one needs to determine the Nk’s so

that model (3.1) can be fitted, with commonly available computing resources, using

maximum likelihood and the information in each subset. Even though the search for

appropriate Nk’s may produce more than one plausible choice, a sensitivity analysis

could easily explore the impact of these choices on the conclusions. For instance, in

our case study, very similar results were obtained with Nk = 15 and 30, indicating a

degree of robustness with respect to this choice. In general, the choice of the subsets’

cardinality may vary from one application to another. However, values of around

30− 40 clusters per subset seem to be a reasonable starting point. Clearly, the choice

of Nk automatically determines S and it is possible that some subsets might have

slightly more or less clusters because S = N/Nk may not be a whole number. Taking

these ideas into account, the following procedure is implemented:

1. Splitting: The set C is split into S mutually exclusive and exhaustive subsets

Ck (k = 1, . . . , S) with Nk < N denoting the corresponding cardinality. The

information in these subsets may not be independent, as ratings from the same

expert may appear in more than one subset. Moreover, given that the subsets

are exclusive and exhaustive, all the information needed to estimate the effect

of a given cluster, say the vector of ratings Cj , is contained in one single subset.

While it is possible to include overlapping subsets into the methodology as well,

this is not necessary in view of bias, etc. The most important consideration is as

to whether all parameters to be estimated retain information from the partition.

2. Estimation: Using maximum likelihood and the information included in each

Ck, model (3.1) is fitted S times. For all k, Nk < N (typically Nk << N) and,

consequently, the dimensions of the response and fixed-effect vectors associated

with these models are now much smaller. Pooling all estimates obtained from

these fittings leads to an estimate for the vector of fixed-effect parameters and S

estimates for the random-effect variance σ2. Clearly, within each subset, the es-

timator for the inter-expert variability σ̂2
k uses information from only a subgroup
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of all experts and, therefore, it delivers a less efficient estimate of this parameter

than the estimator based on the entire data. The pooling of the subset-specific

estimates should not be done mechanically and a careful analysis should be car-

ried out to detect unusual behavior. In this regard, the procedure described in

the next step may help check the stability of the parameter estimates.

3. Permutation: The elements of C are randomly permuted and steps 1 and

2 repeated W times. This step is equivalent to sampling without replacement

from the set of all possible partitions introduced in step 1. Consequently, instead

of estimating the parameters of interest based on a single, arbitrary partition,

their estimation is now based on multiple, randomly selected partitions of the

set of clusters. The permutation step serves several purposes. It allows for the

estimation of the parameters based on different subsamples of the same data

and, hence, it makes possible to check the stability of these estimates. This

may be especially relevant for the variance component, since it is estimated

under different sample sizes. In addition, by combining estimates from different

subsamples it produces more reliable final estimates. To capitalize on these

issues, one should ideally consider a large number of permutations (W ), our

results however, indicate little gain by taking W larger than 20.

4. Estimating of the success probabilities: Step 3 produces the set of esti-

mates β̂w and σ̂2
kw, where w = 1, . . . ,W and k = 1, . . . , S. Subsequently, based

on β̂w and σ̂2
w = 1

S

∑S
k=1 σ̂

2
kw, estimates of the success probability of every clus-

ter can be obtained using (3.3), with the integral computed via Monte Carlo

integration by drawing Q elements bq from N(0, σ̂2
w). It is important to note

that, unlike the σ̂2
kw that only uses information from the experts in the kth

subset, σ̂2
w is based on information from all experts and, hence, it offers a better

assessment of the inter-expert variability. Eventually, the probability of success

for cluster Cj can be estimated as

P̂j =
1

W

W∑
w=1

P̂wj , where P̂wj = P̂w (Yj = 1) =
1

Q

Q∑
q=1

exp
(
β̂wj + bq

)
1 + exp

(
β̂wj + bq

) .
Similarly,

β̂j =
1

W

W∑
w=1

β̂wj , and σ̂2 =
1

W

W∑
w=1

σ̂2
w.

One may heuristically argue that step (3) also ensures that final estimates of the

cluster effects are similar to those obtained when maximum likelihood is used
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with the whole data. Indeed, let β̂wj denote again the maximum likelihood

estimators for the effect of cluster Cj computed in each of the W permutations

and β̂Nj the maximum likelihood estimator based on the entire set of N clusters.

Further, consider the expression β̂wj = β̂Nj + ewj , where ewj is the random

component by which β̂wj differs from β̂Nj . Given that maximum likelihood

estimators are asymptotically unbiased, one has E(ewj) ≈ 0 and extensions

of the law of large numbers for correlated, not identically distributed random

variables may suggest that, under certain assumptions, for a sufficiently large

W (Newman, 1984; Birkel, 1992)

β̂j =
1

W

W∑
w=1

β̂wj = β̂Nj +
1

W

W∑
w=1

ewj ≈ β̂Nj .

Similar arguments could be put forward for the variance component and the

success probabilities as well. The findings of the simulation study presented in

Section 3.4 support these heuristic results.

5. Confidence interval for the success probabilities: To construct a confi-

dence interval for the success probability of cluster Cj , we consider the results

from one of the W permutations described in step 3. To simplify notation,

we omit the subscript w in the following equations, but these calculations are

meant to be done for each of the W permutations.

If Ck denotes the unique subset of C containing Cj , then fitting model (3.1) to

Ck produces the maximum likelihood estimator θ̂j = (β̂j , σ̂
2
k)′. Classical likeli-

hood theory guarantees that, asymptotically, θ̂j ∼ N (θj ,Σ), where a consistent

estimator of the 2×2 matrix Σ can be constructed using the Hessian matrix ob-

tained upon fitting the model. Even though the estimator σ̂2
k is not efficient, its

use is necessary in this case to directly apply asymptotic results from maximum

likelihood theory.

The success probability Pj is a function of θj , such that, if one defines

γj = log {Pj/(1− Pj)}, then the delta method leads to γ̂j ∼ N
(
γj , σ

2
γ

)
asymp-

totically, where γ̂j = log
{
P̂j/(1− P̂j)

}
and

σ2
γ =

(
∂γj
∂θj

)
Σ

(
∂γj
∂θj

)′
,

∂γj
∂θj

=
1

Pj(1− Pj)
∂Pj
∂θj

,
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with

∂Pj
∂βj

=

∫
exp (βj + b)

{1 + exp (βj + b)}2
φ(b|0, σ2

k) db,

∂Pj
∂σ2

k

=

∫
exp (βj + b)

1 + exp (βj + b)

b2 − σ2
k

2σ4
k

φ(b|0, σ2
k) db.

The necessary estimates can be obtained from plugging θ̂j into the correspond-

ing expressions and using Monte Carlo integration as previously described. Fi-

nally, an asymptotic 95% confidence interval for Pj is given by

CIPj =
exp (γ̂j ± 1.96 · σ̂γ)

1 + exp (γ̂j ± 1.96 · σ̂γ)
.

The overall confidence interval follows from averaging the lower and upper

bounds of all confidence intervals from the W partitions. If information is not

uniformly divided over subsamples, then weighted averages rather than aver-

ages need to be used. In principle, one should adjust the coverage probabilities

using, for example, the Bonferroni correction when constructing these intervals.

If the overall coverage probability for the entire family of confidence intervals is

95%, then it is easy to show that the final average interval will have a coverage

probability of at least 95%. This implies construction of confidence intervals

to the level of (1− 0.05/W ) for Pj in each permutation, which are likely to be

too wide for useful inference. In Section 3.4, we study the performance of this

interval via simulation without using any correction, and the results confirm

that in many practical situations this simpler approach may work well.

3.3 Data Analysis

3.3.1 Unweighted Analysis

The procedure introduced in Section 3.2 was applied to the data described in Sec-

tion 2.1, using Nk = 30, Q = 10, 000, S = 734 and W = 20. Table 3.1 gives the results

for the 20 top-ranked clusters, i.e., the clusters with the highest estimated probability

of success. All clusters in the table have an estimated probability larger than 60%, and

the top 3 have probability of success around 75%. The observed probabilities (pro-

portion of ones for each cluster), are substantially different from the model estimated

probabilities for some clusters. Importantly, the proportions completely ignore the

correlation between ratings from the same expert. Therefore, they do not correct for
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the fact that some experts may tend to give higher/lower ratings than others and may

lead to biased estimates for clusters that are mostly evaluated by definite/skeptical

experts. In addition, the results also indicate a high heterogeneity among experts,

with estimated variance

σ̂2 =
1

W

W∑
w=1

σ̂2
w ≈ 10.

On the one hand, this large variance may indicate the need for selecting experts from

a more uniform population by defining, for example, more stringent selection criteria.

On the other hand, more stringent selection criteria may conflict with having experts

that represent an appropriately broad range of expert opinion. Finding a balance

between these two considerations is very important to guarantee the overall quality of

the study. In general, if substantial heterogeneity among experts is encountered, then

additional investigations should try to determine the source before further actions are

taken.

The general behavior of the estimated probabilities of success is displayed in Fig-

ure 3.1. Visibly, most clusters have a quite low probability of success, with the median

around 26%, and 75% of the clusters have an estimated probability of success smaller

than 40%. About 100 clusters are unanimously not recommended, as evidenced by

the peak at zero probability. This is in line with the observed data, given that none

of them got a positive recommendation despite their number of evaluations ranging

between 11 and 23. Another conspicuous group represents clusters that had only 1–3

positive evaluations and, as expected, produced low estimated probabilities of success

raging between 0.08–0.1.

The interpretation of these probabilities will frequently be subject-specific. Taking

into account the economic cost associated with the development of these clusters, the

time frame required to develop them, and the potential social and economic gains

that they may bring, researchers can define the minimum probability of success that

may justify further study.

The analysis of the confidence intervals also offers some important insight. First,

although moderately wide, the confidence intervals still allow for useful inferences.

Actually, the large inter-expert heterogeneity may hint at possible measures to in-

crease precision in future studies. Second, using the lower bound of the confidence

intervals to rank the clusters, instead of the point estimate of the probability of suc-

cess, may yield different results. By this criterion, cluster 265,222, ranked eighth

by the point estimate, would become the second most promising candidate. Clearly,

some more fundamental, substantive considerations may be needed to complement

the information in Table 3.1 during the decision making process.



24
Chapter 3. A Permutational-Splitting Sample Procedure to Quantify Expert

Opinion on Clusters of Chemical Compounds Using High-Dimensional Data

Estimated probabilities

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Figure 3.1: Distribution of estimated probabilities of success.

As a sensitivity analysis we also considered Nk = 15, W = 20, S = 1468. The

results obtained appear in the columns labeled “unweighted” in Table 3.2. Clearly,

the differences with the original analysis are negligible except for the σ̂2, resulting

into slight changes in the rankings.

3.3.2 Weighted Analysis

An important issue discussed in Section 2.1.2 was the differences encountered in the

number of clusters evaluated by the experts. One may wonder whether experts who

evaluated a large number of clusters gave as careful consideration to each cluster as

those who evaluated only a few. Importantly, the model-based approach introduced in

Section 3.2 can take into account these differences by carrying out a weighted analysis
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which maximizes the likelihood function

L(β, σ2) =

n∏
i=1

Wi

∫ ∞
−∞

∏
j∈Λi

π
yij
ij (1− πij)1−yij φ(bi|0, σ2) dbi, (3.4)

where Wi = N/|Λi| and |Λi| denotes the cardinality of Λi. Practically, a weighted

analysis using the SAS procedure NLMIXED, implies replication of each response

vector by Wi, resulting into a pseudo-dataset with larger sample size than in the

unweighted analysis. Using partitions with Nk = 30 was rather challenging and, con-

sequently, the weighted analysis was carried out with Nk = 15 and this was adopted

for all the other analyses. The main results are displayed in Table 3.2.

Interestingly, some important differences emerge from the two approaches. For

instance, the top-ranked cluster in the unweighted analysis received rank 2 in the

weighted approach. Some differences are even more dramatic; for example, the fourth

cluster in the unweighted analysis received rank 620 in the weighted approach. Clearly,

a very careful and thoughtful discussion of these differences will be needed during the

decision making process. In addition, these results also point out the importance of

a careful design of the study and may suggest to introduce changes in the design to

avoid large differences in the number of clusters evaluated by the experts. The cluster

ranked 20th is not in Table 3.1, probably due to the change in σ̂2.

Fitting model (3.1) to the entire data set using maximum likelihood was unfeasible

in this case study. Therefore, all previous conclusions were derived by implementing

the procedure described in Section 3.2. One may wonder how the previous procedure

would compare with maximum likelihood when the latter is tractable. In the next

section we investigate this important issue via simulation.

3.4 Simulation Study

The simulations were designed to mimic the main characteristics encountered in the

case study. Two hundred datasets were generated, with the following parameters

held constant in all datasets: (1) Number of clusters, N = 50, chosen to ensure

tractability of maximum likelihood estimation for the whole data, (2) number of

experts, n = 147, and (3) a set of 50 values assigned to parameters characterizing the

cluster-effects (βj), which was sampled from a N(−2, 2). Factors varying across the

datasets were: the number of ratings per expert, (Ni), independently sampled from

Poisson(25) and restricted to the range of 8 to 50 and a set of of 147 random-effects

(bi), independently sampled from N(0, 12.25). They were varied by using a dataset

specific seed in generatingNi and bi. It is only logical that bi varies from one dataset to
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another as a way of creating different random samples from the experts’ population

and Ni needs to simultaneously vary with bi. Each expert rated all the assigned

clusters and the assignment of number of ratings was random. This aspect is different

from the case study, and it was done to avoid complications arising from the design

as discussed in Section 2.1.2, so that the simulations investigate the performance of

the procedure without being confounded by the validity of the model used. Based on

these values, the probability that ith expert rates the jth cluster Pij = P (Yij = 1|bi),
was computed using model (3.1) and the response Yij ∼ Bernoulli(Pij). Finally,

model (3.1) was fitted using full maximum likelihood and the procedure introduced

in Section 3.2 and their corresponding probabilities of success, given by (3.3), were

compared. Parameters used in split-permutation procedure were: Ns = 5, W = 20,

Q = 10, 000 and S = 10.

The main results of the simulation study for the top 20 clusters (those with the

highest true probability of success) are summarized in Tables 3.3 and 3.4. Regarding

the point estimates of the cluster-effect, Table 3.3 clearly shows that the proposed

procedure performs as well as maximum likelihood. Figure 3.2 shows that this is

true for most of the clusters as the relative differences between the true values and

each of the methods’ estimates are close to zero. Full maximum likelihood cluster-

effect estimates for clusters 14, 27, and 30, have noticeably larger relative bias than

their split-procedure counterparts. An inspection of the estimates of these clusters

from the 20 permutations, clearly shows that even estimates from the sub-samples,

were biased, though the pooled estimates have reduced bias. This underscores the

observation in Step 2 that, the mean of random errors arising from estimating the

cluster-effects in a model with less clusters than the total would approximates to zero

and also emphasizes the importance of the permutation step.

Further scrutiny of the estimated success probabilities in (Table 3.4), rubber

stamps the similarity in performance between the two methods. Importantly, the

point estimates are very close to the true values in both cases, and the coverage of

the confidence intervals are around 95% when full likelihood is used, and is slightly

higher for the new procedure, a possible consequence of using a less efficient σ2
sw. The

percentage of confidence intervals that were entirely below the true value and those

entirely above are similar for both methods. Nevertheless, faced with the possibility

of not being able to analyze the data, a little loss in precision seems a reasonable

price to pay. In spite of the small differences, fitting model (3.1) using full maximum

likelihood and the procedure introduced in Section 3.2 basically yield the same results.
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Figure 3.2: Relative difference between the true values and the estimates obtained

from maximum likelihood (mle),
βj−β̂j

mle
βj

(left) and the permutational-splitting pro-

cedure(split)
βj−β̂j

split
βj

(right).
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3.5 Discussion

In our quest to quantify expert opinion on the potential of clusters of chemical com-

pounds, we have introduced a permutational-splitting sample procedure. A combina-

tion of maximum likelihood estimation, re-sampling, and Monte Carlo methods pro-

duced parameters estimates and confidence intervals, comparable to those obtained

from full maximum likelihood. Loss in precision with the permutational-splitting

sample procedure, apparent in wider confidence intervals is anticipated, since the

procedure splits the data into dependent sub-samples, resulting into a less efficient

random-effect variance estimate.

The model used for the statistical analysis and the conclusions derived from it rest

on a number of assumptions, like the distribution of the expert-specific effect bi. Al-

though the normality assumption for the random effects is standard in most software

packages, in principle, it would be possible to consider other random-effect distribu-

tions. For instance, using probability integral transformations in the SAS procedure

NLMIXED, other distribution could be fitted as well, but obtaining convergence is

much more challenging with these models Nelson et al..

One could also conceive extending the model by letting the rater effects vary

across cluster. However, this extension will dramatically increase the dimension of

the vector of random effects, aggravating the already challenging numerical problems.

In general, the successful application of the Rash model in psychometrics to tackle

problems similar to the one considered here, makes us believe that, although it cannot

be formally proven, model (3.1) may offer a feasible and reliable way to estimate the

success probabilities of interest.

Obviously, more simulation studies and applications to real problems will shed

light on the potential and limitations of the model and fitting procedure proposed in

the present work. Importantly, their application is possible with commonly available

software and a simulated data set with the corresponding SAS code for the analysis

can be freely downloaded from http://www.ibiostat.be/software/.

Even though it was not the focus of the present work, it is clear that the design

of the study is another important element to guarantee the validity of the results.

Optimal designs are a class of experimental designs that are optimal with respect to

some statistical criterion (Berger and Wong, 2009). For instance, one may aim to

select the number of experts, the number of clusters assigned to the experts and the

assignment mechanism to maximize precision when estimating the probabilities of

success. In principle, it seems intuitively desirable for each cluster to be evaluated by

the same number of experts and for each pair of experts to have a reasonable number
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of clusters in common. However, more research will be needed to clarify these issues

and establish the best possible design for this type of studies.
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Table 3.1: Top 20 clusters (ID) with highest estimated probability of success: Esti-

mated cluster-effect (β̂j), Estimated/Observed success probabilities (proportion of ones

for each cluster) and confidence interval limits.

probability 95% C.I.

ID β̂j estimated observed lower upper

295061 3.07 0.80 0.82 0.58 0.92

296535 2.51 0.76 0.81 0.51 0.90

84163 2.40 0.75 0.78 0.48 0.90

313914 2.30 0.74 0.80 0.39 0.93

265441 2.16 0.72 0.69 0.50 0.87

296443 2.09 0.72 0.62 0.52 0.86

277774 2.01 0.71 0.71 0.49 0.86

265222 1.96 0.71 0.70 0.53 0.84

178994 1.84 0.69 0.73 0.50 0.84

462994 1.73 0.69 0.69 0.44 0.86

292579 1.76 0.69 0.75 0.45 0.84

296560 1.71 0.68 0.72 0.47 0.83

277619 1.67 0.68 0.63 0.47 0.83

315928 1.67 0.68 0.75 0.47 0.84

296427 1.69 0.68 0.78 0.35 0.91

263047 1.60 0.68 0.76 0.45 0.84

333529 1.62 0.67 0.80 0.45 0.84

292805 1.52 0.67 0.72 0.43 0.85

178828 1.43 0.66 0.72 0.43 0.83

265229 1.39 0.65 0.65 0.47 0.80

σ̂2 10.279
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Table 3.2: Estimates for the fixed effects and probabilities of success obtained from the

weighted and unweighted analyses for previously reported top 20 clusters β̂weighted

and β̂unweighted are the estimated cluster-effect with the ranks in brackets, and

p̂robweighted and p̂robunweighted are the corresponding probabilities of success.

ID β̂weighted β̂unweighted p̂robweighted p̂robunweighted

295061 3.86 3.33 0.90 ( 2) 0.80 ( 1)

296535 1.99 2.71 0.74 ( 54) 0.76 ( 2)

84163 0.86 2.42 0.61 ( 376) 0.73 ( 3)

296443 0.54 2.41 0.57 ( 620) 0.73 ( 4)

313914 3.79 2.37 0.89 ( 3) 0.73 ( 5)

265222 0.56 2.40 0.57 ( 653) 0.73 ( 6)

333529 1.85 1.99 0.73 ( 67) 0.69 ( 7)

296560 1.26 1.91 0.66 ( 198) 0.69 ( 8)

178994 2.25 1.91 0.77 ( 28) 0.69 ( 9)

265441 1.22 1.94 0.66 ( 211) 0.69 (10)

277774 2.26 1.87 0.77 ( 29) 0.69 (11)

292579 2.69 1.91 0.81 ( 10) 0.69 (12)

315928 1.18 1.87 0.65 ( 233) 0.68 (13)

277619 -0.63 1.74 0.42 (3165) 0.67 (14)

263047 3.85 1.78 0.90 ( 1) 0.67 (15)

296427 2.70 1.65 0.81 ( 12) 0.67 (16)

292805 1.00 1.60 0.63 ( 313) 0.66 (17)

178828 2.26 1.52 0.77 ( 27) 0.66 (18)

462994 1.31 1.46 0.67 ( 183) 0.65 (19)

159643 1.93 1.50 0.74 ( 55) 0.65 (20)

σ̂2 3.19 15.80
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Table 3.3: True values and average parameter estimates for the top 20 clusters (ID),

estimated from full likelihood (likelihood) and the permutational-splitting procedure

(procedure).

βj
ID true likelihood procedure

3 2.33 2.38 2.36
1 1.60 1.63 1.65

33 1.52 1.56 1.54
47 1.43 1.45 1.48
50 1.04 1.03 1.05
27 0.13 0.07 0.11
30 0.06 0.01 0.05
32 0.06 0.03 0.06
14 -0.11 -0.14 -0.11
7 -0.30 -0.33 -0.29
9 -0.49 -0.50 -0.46

48 -0.63 -0.65 -0.61
10 -0.71 -0.70 -0.66
21 -0.97 -1.00 -0.98
11 -1.12 -1.19 -1.14
26 -1.13 -1.12 -1.07
15 -1.32 -1.33 -1.29
13 -1.40 -1.42 -1.38
4 -1.42 -1.47 -1.42

42 -1.61 -1.69 -1.66
σ̂2 12.25 12.96 12.74



3.5. Discussion 33

T
ab

le
3.

4:
A

ve
ra

ge
es

ti
m

a
te

d
su

cc
es

s
p
ro

ba
bi

li
ti

es
fo

r
to

p
2
0

cl
u

st
er

s
(I

D
),

u
si

n
g

fu
ll

li
ke

li
h
oo

d
(l

ik
)

a
n

d
th

e
pe

rm
u

ta
ti

o
n

a
l-

sp
li

tt
in

g

p
ro

ce
d

u
re

(p
ro

c)
,

pe
rc

en
ta

ge
o
f

co
ve

ra
ge

o
f

th
e

co
n

fi
d
en

ce
in

te
rv

a
ls

(c
o
ve

ra
ge

%
),

pe
rc

en
ta

ge
o
f

ti
m

es
th

e
tr

u
e

va
lu

e
w

a
s

le
ss

th
a
n

lo
w

er
co

n
fi

d
en

ce
li

m
it

,
(n

o
n

-c
o
v(

be
lo

w
)

%
),

a
n

d
pe

rc
en

ta
ge

o
f

ti
m

es
th

e
tr

u
e

va
lu

e
w

a
s

gr
ea

te
r

th
a
n

u
p
pe

r
co

n
fi

d
en

ce
li

m
it

,
(n

o
n

-

co
v(

be
lo

w
)

p
ro

b
ab

il
it

y
of

su
cc

es
s

co
v
er

a
g
e

%
n

o
n

-c
ov

(b
el

ow
)%

n
o
n

-c
ov

(a
b

ov
e)

%
R

an
k

ID
tr

u
e

li
k

p
ro

c
li

k
p

ro
li

k
p

ro
c

li
k

p
ro

c
1

3
0.

72
0.

72
0.

73
0
.9

4
0
.9

5
0
.0

2
0
.0

2
0
.0

5
0
.0

4
2

1
0.

66
0.

66
0.

66
0
.9

5
0
.9

6
0
.0

3
0
.0

2
0
.0

3
0
.0

3
3

33
0.

65
0.

65
0.

65
0
.9

8
0
.9

7
0
.0

1
0
.0

1
0
.0

2
0
.0

2
4

47
0.

64
0.

64
0.

65
0
.9

6
0
.9

6
0
.0

2
0
.0

2
0
.0

2
0
.0

2
5

50
0.

60
0.

60
0.

61
0
.9

6
0
.9

6
0
.0

2
0
.0

2
0
.0

3
0
.0

1
6

27
0.

51
0.

51
0.

51
0
.9

6
0
.9

6
0
.0

2
0
.0

2
0
.0

3
0
.0

2
7

30
0.

51
0.

50
0.

51
0
.9

3
0
.9

4
0
.0

3
0
.0

2
0
.0

4
0
.0

3
8

32
0.

51
0.

50
0.

51
0
.9

4
0
.9

6
0
.0

4
0
.0

2
0
.0

3
0
.0

1
9

14
0.

49
0.

49
0.

49
0
.9

7
0
.9

6
0
.0

1
0
.0

1
0
.0

3
0
.0

3
10

7
0.

47
0.

47
0
.4

7
0
.9

4
0
.9

6
0
.0

1
0
.0

2
0
.0

5
0
.0

2
11

9
0.

45
0.

45
0
.4

5
0
.9

7
0
.9

6
0
.0

2
0
.0

2
0
.0

2
0
.0

2
12

48
0.

44
0.

44
0
.4

4
0
.9

6
0
.9

6
0
.0

3
0
.0

3
0
.0

1
0
.0

1
13

10
0.

43
0.

43
0
.4

3
0
.9

2
0
.9

5
0
.0

4
0
.0

3
0
.0

5
0
.0

3
14

21
0.

40
0.

40
0
.4

0
0
.9

7
0
.9

7
0
.0

2
0
.0

2
0
.0

1
0
.0

1
15

11
0.

39
0.

38
0
.3

9
0
.9

5
0
.9

5
0
.0

3
0
.0

3
0
.0

3
0
.0

2
16

26
0.

39
0.

39
0
.3

9
0
.9

4
0
.9

5
0
.0

4
0
.0

4
0
.0

2
0
.0

1
17

15
0.

37
0.

37
0
.3

7
0
.9

6
0
.9

7
0
.0

3
0
.0

2
0
.0

1
0
.0

1
18

13
0.

36
0.

36
0
.3

6
0
.9

5
0
.9

6
0
.0

4
0
.0

3
0
.0

2
0
.0

2
19

4
0.

36
0.

36
0
.3

6
0
.9

4
0
.9

5
0
.0

3
0
.0

3
0
.0

4
0
.0

2
20

42
0.

34
0.

34
0
.3

4
0
.9

5
0
.9

7
0
.0

4
0
.0

2
0
.0

2
0
.0

1





Chapter 4

Impact of Selection Bias on

the Qualitative Assessment of

Clusters of Chemical

Compounds

The steady advance taking place in fields like genetics and molecular biology, is dra-

matically increasing our capacity to obtain new drugs. Nevertheless, developing a

chemical compound into an effective drug is often an expensive and lengthy process.

As a result, one needs to carefully evaluate the amount of evidence that supports the

potential of certain compounds before investing more resources into it (Alonso et al.,

2008). Chapter 3, noted that in addition to in-house, chemical compounds libraries,

pharmaceutical companies, occasionally acquire such potential compounds from third

party vendors. Also discussed was a new technique by Hack et al. (2011) to aid the

selection of appropriate clusters of compounds to acquire. In Section 2.1.2, several

statistical challenges associated with this technique are discussed and Chapter 3 tack-

les the high-dimensional data challenge. This chapter investigates problems arising

from the less restricted assignment of clusters to the experts.

35
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4.1 Introduction

The large number of clusters of chemical compounds that may be considered for

acquisition, implies that a selection procedure, by which every expert chooses or

gets assigned to a number of clusters for evaluation, needs to be implemented. The

approach discussed in Section 2.1, allows the experts to decide on the number of

clusters they want to evaluate depending on their schedules. In the present work, we

argue that such a procedure may lead to serious selection bias that can jeopardize

the entire evaluation process. Two possible strategies to avoid the previous problem

are: (i) to compel every expert to evaluate all clusters and (ii) to assign a single

subset of the clusters to experts randomly and compel them to finish their quota.

Strategy (i) may be practically infeasible, given the exorbitant number of candidates

one frequently is confronted with in this type of studies. Implementing strategy

(ii) may lead to some logistic difficulties, but it arguably is the most reasonable and

reliable option to avoid bias and simplify the posterior analysis of the data, we strongly

advocate (ii).

Problems that come with selection bias, as well as their possible correction, have

been documented in many fields (Horwitz and Feinstein, 1978; Hernán, Hernández-

Diaz, and Robins, 2004; Geneletti, Richardson, and Best, 2009). Geneletti et al.

(2011) noted that the crucial factor to determine the most appropriate bias correction

method is the underlying cause of bias. This is apparent in the methods available

in the literature, given that most of them are tailored towards a specific form of

bias origin (Torner et al., 2010; Heckman, 1979; Puhani, 2000; Lee and Marsh, 2000;

Baser et al., 2003; Jüni and Egger, 2005). A key similarity in the methods discussed

by some of these authors is the formulation of separate models for the outcome and the

selection process. Typically untestable assumptions are associated with these models,

simply because the outcomes of subjects that were not selected are never known.

Using theoretical elements and simulations, we show that, in the presence of selec-

tion bias, the probability of success for every cluster can be estimated only by making

strong and untestable assumptions. However, an upper bound for this probability

may be obtained under a weaker condition of monotonicity.

4.1.1 Naive Estimation of Probabilities

In Chapter 3, success probabilities were estimated without taking into account the

assignment of clusters as follows: denote the vector of ratings associated with expert

i by Y i = (Yij)j∈Λi , where Λi is the subset of all clusters evaluated by the ith expert
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and i = 1, . . . , n. A natural choice to model these data is the logistic-normal model

logit [P (Yij = 1|bi)] = βj + bi, (4.1)

where βj is a fixed parameter characterizing the effect of cluster Cj with j ∈ Λi

and bi ∼ N(0, σ2) is a random expert effect. Based on model (4.1), the marginal

probability of success for cluster Cj was obtained as:

Pj = P (Yj = 1) =

∫
exp (βj + b)

1 + exp (βj + b)
φ(b|0, σ2) db. (4.2)

where φ(b|0, σ2) denotes a normal density with mean zero and variance σ2. Results

for the top 20 ranked clusters, i.e., the clusters with the highest estimated probability

of success are given in the first part of Table 4.3 (under the ‘Naive’ columns). The

median estimated probability of success for all clusters was around 18%, rather a low

value, and 75% of the clusters had estimated probabilities of success smaller than

29%. However, at the top 20, all clusters had an estimated probability larger than

60% and those in the top 3 had probabilities of success around 90%.

In addition, we also found a lot of heterogeneity between experts with an estimated

variance σ̂2 ≈ 16 (whereNs = 15). As pointed out in Chapter 3, this high inter-expert

variability may have an impact on the precision of the estimates and, consequently, it

may hint on the need to select experts from a more uniform population by defining,

for example, more stringent selection criteria.

Finally and taking into account practical considerations like the economic cost

associated with the development of these clusters, the time frame required for such

a development and the social and economical gains that these clusters may bring,

researchers could define the minimum probability of success that may justify inclusion

into the library.

A limitation of the previous study was the varying numbers of clusters which every

expert evaluated. This raises concerns about the possible presence of selection bias.

In the next section, this important issue is studied in more detail. The problem of

high-dimensional data is suppressed because it was addressed in Chapter 3.

4.2 Selection Bias

Let Xi = (Xi1, . . . , XiN ) denote the vector containing the selection-indicators for

expert i, where Xij = 1 if expert i evaluates cluster j and 0 otherwise. The probability

that expert i would rate cluster j as 1, given that he actually evaluates it, can be
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conceptualized as

P (Yij = 1|Xij = 1, ai, bi) =
P (Yij = 1, Xij = 1|ai, bi)

P (Xij = 1|ai, bi)
, (4.3)

where (ai, bi) is a vector of expert-specific random effects, assumed to follow a bivariate

normal distribution with mean zero and covariance matrix Σ. We say that there is

selection bias in the rating process if

P (Yij = yij |Xij = 1, ai, bi) 6= P (Yij = yij |Xij = 0, ai, bi) .

Furthermore, the following conditional independence assumption will play an impor-

tant role in some of the subsequent developments

P (Yij = yij , Xij = xij |ai, bi) = P (Yij = yij |bi)P (Xij = xij |ai) , (4.4)

for all i, j. Essentially, (4.4) states that for every expert the rating and selection

procedures are independent and governed by different, although possibly correlated,

random effects. Some important scenarios covered by (4.4) are the ones described as

strategy (i) and (ii) in Section 4.1. Indeed, in strategy (i) all experts are compelled

to evaluate all clusters and, therefore, P (Xij = 1|ai) = 1 for all i, j. Moreover, in

strategy (ii) the possible dependence between Yij and Xij is broken by the random

allocation and in that case typically P (Xij = 1|ai) = P (Xij = 1). Under (4.4),

expression (4.3) can be rewritten as

P (Yij = 1|Xij = 1, ai, bi) = P (Yij = 1|Xij = 1, bi) = P (Yij = 1|bi) . (4.5)

Model (4.1), used in Section 4.1.1 to quantify the success probabilities, basically tries

to characterize P (Yij = 1|bi) and, hence, it is valid if the conditional independence

assumption holds. Some comments are in place. Note first that, on the one hand,

P (Yij = 1|bi) quantifies the chance that expert i will rate cluster j as 1, irrespective of

whether he actually evaluates the cluster or not. Thus, it is a marginal probability that

does not depend on the selection process. On the other hand, P (Yij = 1|Xij = 1, bi)

describes the chance that expert i will rate cluster j as 1 given that he evaluates it

and, in general, it might differ from P (Yij = 1|Xij = 0, bi). Actually, in the most

general scenario, the potential of cluster j can be quantified as

P (Yj = 1) =

∫ ∫
P (Yij = 1|ai, bi) φ(ai, bi|0,Σ) daidbi, (4.6)
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where φ(·|0,Σ) denotes a bivariate normal density with mean zero and covariance

matrix Σ and

P (Yij = 1|ai, bi) =EX [P (Yij = 1|Xij = xij , ai, bi)] (4.7)

=P (Yij = 1|Xij = 1, ai, bi)P (Xij = 1|ai, bi)

+ P (Yij = 1|Xij = 0, ai, bi)P (Xij = 0|ai, bi) .

This expression is very insightful. Note first that we have information about how the

experts rated the clusters they evaluated and, therefore, P (Yij = 1|Xij = 1, ai, bi)

can be estimated from the data. We also have information about which clusters every

expert evaluated and we could use this information to estimate P (Xij = 1|ai, bi).
The critical term in (4.7) is P (Yij = 1|Xij = 0, ai, bi). In fact, the event {Yij =

yij |Xij = 0, ai, bi} is counterfactual and we do not have information about how the

experts would have rated a cluster they did not evaluate if, contrary to fact, they had

evaluated it. As a result, this probability is not identifiable from the data without

additional assumptions.

The previous discussion illustrates that in the most general case computing (4.6)

requires: (1) to explicitly model P (Xij = 1|ai, bi) and (2) to make untestable assump-

tions about the counterfactual probabilities P (Yij = 1|Xij = 0, ai, bi). A reasonable

such assumption in many situations may be the following monotonicity condition

P (Yij = 1|Xij = 0, ai, bi) ≤ P (Yij = 1|Xij = 1, ai, bi) .

That may be the case, for instance, if experts choose to evaluate those clusters that

they find more promising or interesting. The previous inequality implies that

P (Yij = 1|ai, bi) ≤ P (Yij = 1|Xij = 1, ai, bi)

and, hence, one could use the data to provide an upper bound for (4.6). This up-

per bound suggests that in many applications discarding those clusters with a small

estimated probability of success may be reasonable, even if selection bias is present.

Nonetheless, one should be cautious when interpreting a large probability of success

if selection bias is suspected.

4.2.1 How Ignorable is the Selection Procedure in the Absence

of Selection Bias?

It is clear from the previous discussion that, in the presence of selection bias, one

needs to explicitly model the selection mechanism to compute (4.6). Nevertheless, the
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preceding arguments do not fully clarify whether the selection procedure can be safely

ignored when selection bias is not present. In what follows we will assume conditional

independence as a natural way to avoid selection bias and study the ignorability

of the selection process in some detail, but first we need to extend notation. Let

P (Xij = xij |ai, βj , αj) and P (Yij = yij |Xij = xij , bi, βj) denote the models for the

selection and rating procedure respectively. Note that in the previous formulation

we allow the selection procedure to depend on the parameters that characterize the

rating process (βj) and also on other selection-specific parameters (αj). It is easy to

see that, under conditional independence, (4.6) takes the simpler form

P (Yj = 1|βj) =

∫
P (Yij = 1|Xij = 1, bi, βj) φ(bi|0, σ2

b ) dbi. (4.8)

Expression (4.8) does not depend on the selection procedure and the estimation of the

success probabilities is reduced to the estimation of the clusters effect and the variance

component σ2
b . However, even though the selection procedure does not explicitly

appear in (4.8), one may need to take it into account when estimating the βjs and

σ2
b .

In fact, one estimates these parameters using the complete data Y i,Xi ∈ {0, 1}N .

The vector of ratings can be decomposed as Y i = (Y T
0i,Y

T
1i)

T , where Y 1i ∈ {0, 1}Ni

is the sub-vector associated with the clusters the expert evaluated, Y T
0i is the obvious

complement and Ni = 1TXi. The joint distribution of (Y i,Xi, ai, bi) takes the form

P (Y i = yi,Xi = xi, ai, bi|β,α,Σ)

= P (Y i = yi|Xi = xi, bi,β)P (Xi = xi|ai,β,α)φ(ai, bi|0,Σ).

Under the conditional independence assumption,

P (Y i = yi|Xi = xi, bi,β) = P (Y i = yi|bi,β) and, if one further assumes that con-

ditionally on the bi the components of the response vector Y i are independent, then

P (Y i = yi|bi,β) = P (Y 1i = y1i|bi,β)P (Y 0i = y0i|bi,β) and

P (Y 1i = y1i,Xi = xi, ai, bi|β,α,Σ)

=
∑
y0i

P (Y i = yi|bi,β)P (Xi = xi|ai,β,α)φ(ai, bi|0,Σ),

=
∑
y0i

P (Y 1i = y1i|bi,β)P (Y 0i = y0i|bi,β)P (Xi = xi|ai,β,α)φ(ai, bi|0,Σ),

= P (Y 1i = y1i|bi,β)P (Xi = xi|ai,β,α)φ(ai, bi|0,Σ),

=

Ni∏
j

P (Y1ij = y1ij |bi, βj)

 N∏
j

P (Xij = xij |ai, βj , αj)

φ(ai, bi|0,Σ).
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Marginally, the previous equations lead to

P (Y 1i = y1i,Xi = xi|β,α,Σ) (4.9)

=

∫ ∫
P (Y 1i = y1i|bi,β)P (Xi = xi|ai,β,α) φ(ai, bi|0,Σ) daidbi,

and the likelihood emerging from (4.9) takes the form

L
(
β,α, σ2

)
=

n∏
i

P (Y 1i = y1i,Xi = xi|β,α,Σ) . (4.10)

Using the maximum likelihood estimators β̂n, α̂n, σ̂2
bn, under conditional indepen-

dence, one can estimate the probabilities of success by substituting β̂n, σ̂2
bn into (4.8).

Note, however, that to estimate β, σ2
b , one may need to explicitly model the selection

process. An important special instance where the selection mechanism can be ignored

is when the selection and rating processes are also marginally independent, i.e., when

φ(ai, bi|0,Σ) = φ(ai|0, σ2
a)φ(bi|0, σ2

b ) and have a disjoint parametric space. In fact,

under these assumptions (4.9) simplifies to

P
(
Y 1i = y1i,Xi = xi|β,α, σ2

)
=

∫
P (Xi = xi|ai,α) φ(ai|0, σ2

a) dai

∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi.

Consequently, regarding the parameters of interest β and σ2
b , the contribution of

expert i to the likelihood becomes∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi,=

∫ ∏
j

P (Y1ij = y1ij |bi, βj)

 φ(bi|0, σ2
b ) dbi.

The previous expression is the contribution of expert i to the likelihood when the

selection mechanism has been discarded. Therefore, in this scenario, if conditional

independence holds, the selection procedure can be fully ignored.

Importantly, such a scenario will result if a random allocation of the clusters to ex-

perts is implemented, where the experts have not influence whatsoever on the selection

process. The previous discussion shows that fully random allocation is a powerful tool

not only to avoid selection bias, by guaranteeing conditional independence, but also

to considerably simplify the analysis by making the selection mechanism ignorable for

the estimation of the parameters.

4.3 Simulation Study

To numerically evaluate the ignorability of the selection procedure and the impact

of selection bias on the assessments, a simulation study was designed. The data
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were generated mimicking the main characteristics encountered in the case study.

Nonetheless, the size of the simulated data sets were chosen so that model (4.1) could

be fitted using maximum likelihood. To that effect, data for only 50 (N) clusters and

147 experts (n) were generated. The random expert effects bi were sampled from a

N(0, 10). Moreover, the values of the parameters characterizing the cluster effects βj

were generated once from a N(0, 2) and then held fixed throughout all simulations.

The selection and rating probabilities were computed using the following models

logit [P (Xij = 1|bi)] = bi, (4.11)

logit [P (Yij = 1|bi)] = bi + βj . (4.12)

Notice that models (4.11) and (4.12) are a special case of the general modeling frame-

work introduced in Section 4.2.1. In fact, to simplify the computational burden and

improve numerical stability, we considered the situation in which the selection and

rating procedures shared a common random effect or, equivalently, corr(ai, bi) = 1.

In the previous setting, like in the case study, some experts will tend to evaluate a

large number of clusters whereas others will tend to evaluate only a reduced number

of them. Note further that the rating process does not depend on the selection

procedure, i.e.,

P (Yij = 1|Xij = 1, bi, βj) = P (Yij = 1|Xij = 0, bi, βj) = P (Yij = 1|bi) ,

and, therefore, there is no selection bias. In total, 200 data sets were generated and

analyzed using model (4.1). Subsequently, the success probability of each cluster was

estimated by plugging the necessary maximum likelihood estimators into (4.2). The

integral was approximated as

PS0 = P (Yk = 1) =

Q∑
q=1

exp (βk + bq)

1 + exp (βk + bq)
,

where Q = 10, 000 and bq ∼ N(0, σ̂2) when using the β̂k values estimated from

model (4.1) and bq ∼ N(0, 10) when using the true βk values. Table 4.1 summarizes

the main results and the clusters are ordered decreasingly according to their true prob-

ability of success. Clearly, ignoring the selection procedure can have a huge impact

on the estimators β̂k and, consequently, on the estimates of the success probabilities.

Indeed, using the estimated probability of success P̂S0, cluster 32 would be consid-

ered the most promising one whereas, in reality, it should be ranked eighth, taking

into account its true probability of success. These findings unequivocally showed

that ignoring the selection process, when estimating the model parameters and the
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probabilities of success, may be extremely misleading even in the absence of selection

bias.

Further, we studied a scenario in which selection bias was present. To that effect

we considered the following rating mechanism

logit [P (Yik = 1|Xik = xik, bi)] =

βk + bi if xik = 1,

βk + bi − 0.223 if xik = 0.
(4.13)

Essentially, (4.13) implies that, for every expert i, the odds of rating a cluster as 1 is

25% larger when the cluster is evaluated than when it is not. The values of the true

success probabilities in this scenario, computed as (4.7), are given under the column

PS1 in Table 4.1. Note that, even if one can avoid bias when estimating βk and σ2,

a comparison between PS0 and PS1 clearly shows that, in the presence of selection

bias, a naive use of (4.2) would lead to an overestimation of the true probabilities of

success, as it was stated in Section 4.2.1.

In a second simulation study, we took into account the selection process when

estimating the parameters of interest. Basically, we maximized likelihood (4.10) con-

sidering the selection model logit [P (Xij = 1|bi)] = bi+α. The setting was essentially

the same as before but to alleviate the computational burden only 10 clusters were

now considered. The results are presented in Table 4.2. Once more, the naive ap-

proach that ignores the selection process led to biased estimates for the cluster effects,

the variance component and the probabilities of success. Importantly, for some clus-

ters, the relative bias in the estimated probability of success was as large as 25%.

Further, when the selection procedure was incorporated into likelihood (4.10), the

bias disappeared and the probabilities of success were always accurately estimated.

Additional simulations (not shown) with a reduced number of 50 experts confirmed

these conclusions.

4.4 Case Study Revisited

The case study introduced in Section 2.1 was reanalyzed taking into account the

selection process by maximizing likelihood (4.10) with logit [P (Xij = 1|ai)] = αj+ai.

The integrals in (4.10) were estimated with the less efficient Laplace instead of the

more efficient adaptive quadrature technique since the complexity of the model led

to convergence problems when the latter was used. Though it was possible to fit

a less complex model where Corr(bi, a1) = 1 using adaptive quadrature, Figure 4.1

shows that the assumption implied by this model i.e., experts who rate more clusters
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Table 4.1: Simulation results. ID: cluster id; βk: true cluster effect on the rating

process, PS0 and PS1 are success probabilities based on βk (i.e., no model is fitted

to estimate βk):PS0 accounts for the contribution of clusters that were not rated by

assuming that they have low success probability than the rated ones while PS1 ignores

contribution of clusters that were not rated. β̂k estimates βk using the naive model

(model that ignores the selection process) when conditional on the expert, the selection

and rating processes are independent and P̂S0 are the corresponding probabilities.

True values Naive

ID βk PS1 PS0 β̂k P̂S0

3 4.326 0.858 0.865 2.338 0.746
1 3.602 0.813 0.821 -0.259 0.471

33 3.518 0.807 0.815 -0.320 0.463
47 3.434 0.801 0.809 3.146 0.808
50 3.037 0.772 0.781 1.683 0.684
27 2.127 0.696 0.706 -1.216 0.364
30 2.059 0.690 0.700 1.272 0.642
32 2.056 0.690 0.700 10.228 0.947
14 1.892 0.675 0.685 2.374 0.749
7 1.701 0.657 0.668 1.591 0.676
9 1.505 0.639 0.650 3.366 0.804

48 1.369 0.625 0.637 1.950 0.711
10 1.293 0.618 0.629 2.581 0.767
21 1.032 0.592 0.604 1.690 0.685
11 0.876 0.577 0.588 -1.637 0.320
26 0.873 0.577 0.588 4.348 0.863
15 0.685 0.558 0.569 1.671 0.683
13 0.602 0.549 0.561 4.249 0.851
4 0.582 0.547 0.559 1.827 0.698

42 0.389 0.528 0.540 1.314 0.646

σ 10.00 9.080
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Table 4.2: Simulation results. βk: true value used to generate the data; PS0: true

probability of success. The mean of the estimated values are denoted using the hat

symbol. The estimates are obtained using the naive approach that ignores the selection

process and the joint model that takes this process into account.

True values Naive Joint Model

cid βk PS0 β̂k P̂S0 β̂k P̂S0

1 3.60 0.84 6.16 0.95 5.02 0.85
2 -1.98 0.29 -0.96 0.37 -2.01 0.29
3 4.33 0.88 9.58 0.97 7.96 0.90
4 0.58 0.56 1.57 0.70 0.59 0.56
5 0.11 0.51 1.07 0.64 0.10 0.51
6 -0.53 0.44 0.45 0.56 -0.54 0.44
7 1.70 0.68 2.75 0.82 1.73 0.68
8 -0.10 0.49 0.89 0.62 -0.08 0.49
9 1.51 0.66 2.51 0.80 1.51 0.66
10 1.29 0.64 2.29 0.78 1.31 0.64
σ̂2 10.00 7.103 10.28

tend to give more positive ratings, is not viable. We preferred to estimate the more

plausible model rather than precisely estimating the wrong model. The main results

are presented in the second part of Table 4.3 (under the ‘Joint Model’ columns).

The ‘Naive’ approach assumes absence of selection bias and thus fully ignores the

selection process while the ‘Joint Model’ approach assumes conditional absence of

selection bias and follows a different path to estimate the parameters of interest, that

takes the selection process into account.

Notably the variance estimate is very high (≈ 20), a possible consequence of

using Laplace estimation. The estimated probabilities from the two methods are

clearly different. In general the joint model produces lower estimates, for example,

the success probability for cluster ranked third is 0.87 and 0.72 for naive and joint

models respectively. Unlike with the naive approach, the results obtained from the

joint model seem to reflect a rather skeptical opinion regarding the potential of the

clusters. These results are not comparable to those in Chapter 3 since different

estimation techniques were used.

Table 4.4 gives results from joint models with the selection process modeled as,

logit [P (Xij = 1|ai)] = ai + βj and logit [P (Xij = 1|ai)] = ai + α. Results from

the model where logit [P (Xij = 1|ai)] = ai + βj are of different magnitude from all

the other models (e.g. success probability for second ranked cluster is 0.29). This

selection model is indeed restrictive as it implies positive correlation between X and
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Table 4.3: Estimates for the fixed effects and probabilities of success of the top 20

clusters ranked according to the Naive model (analysis that ignores selection bias)

and results from the joint model that accounts for selection process. β̂ and R are

the estimated cluster-effect and ranks respectively. P̂ is the estimated probability of

success, while lcl and ucl are the corresponding lower and upper 95% confidence limits.

Naive Joint

ID R β̂ P̂ lcl ucl R β̂ P̂ lcl ucl
265222 1 2.52 0.94 0.78 0.98 3 2.67 0.72 0.45 0.89
295061 2 3.83 0.92 0.66 0.98 4 2.61 0.71 0.48 0.87
359957 3 0.49 0.87 0.72 0.94 330 -0.25 0.48 0.18 0.79
69850 4 1.07 0.82 0.33 0.97 182 0.11 0.50 0.23 0.77
84163 5 5.24 0.77 0.41 0.97 9 1.83 0.65 0.21 0.97

296443 6 2.59 0.76 0.49 0.93 10 1.62 0.64 0.33 0.87
7451 7 1.28 0.74 0.16 0.96 55 0.66 0.56 0.24 0.81

277619 8 1.65 0.73 0.41 0.94 89 0.44 0.54 0.17 0.87
315928 9 2.04 0.72 0.37 0.92 14 1.47 0.62 0.28 0.83
296535 10 2.77 0.71 0.48 0.87 5 2.37 0.70 0.38 0.91
313914 11 2.18 0.70 0.40 0.89 7 2.06 0.68 0.28 0.91
277774 12 2.20 0.69 0.43 0.87 20 1.30 0.61 0.37 0.81
178994 13 1.85 0.68 0.45 0.84 11 1.57 0.64 0.34 0.84
296560 14 1.89 0.66 0.43 0.83 8 1.86 0.66 0.39 0.85
464822 15 1.21 0.66 0.43 0.83 72 0.56 0.55 0.31 0.77
265441 16 1.87 0.65 0.41 0.86 15 1.44 0.62 0.34 0.85
292805 17 1.47 0.65 0.38 0.84 19 1.20 0.61 0.29 0.84
432169 18 1.45 0.64 0.35 0.86 1 6.26 0.91 0.51 0.99
292579 19 1.85 0.64 0.24 0.90 13 1.50 0.63 0.21 0.89
278927 20 1.30 0.63 0.41 0.81 76 0.51 0.54 0.31 0.76

σ̂2 20.02 18.61

Y not only across the raters but also across the clusters.

When the joint model assuming Corr(ai, bi) = 1 is used, the differences between

the two methods are more striking. The joint model approach produces much lower

estimates of the success probabilities and leads to a completely different ranking of the

clusters. Additionally, it also produces a much smaller estimate of the between-experts

variability. This trend was also evident with other selection models, for instance,

when the selection process was modeled as logit [P (Xij = 1|bi)] = bi+βj , even smaller

estimates were obtained for the success probabilities (results available in Appendix A.

These and other additional models open the possibility of a carefully done sensitivity

analysis. Such is necessary because the presence of untestable assumption cannot be
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Table 4.4: Results for the top 20 clusters ranked using the naive approach that ignores

the selection process. Given are: estimated cluster effect (β̂k); rank assigned to the

cluster according to its probability of success obtained by fitting joint models whose

selection models are given in the first row.

logit [P (Xij = 1|ai)] = βj + ai logit [P (Xij = 1|ai)] = α+ ai

Estimated Estimated

ID β̂k Rank Probability β̂k Rank Probability
265222 -2.51 186 0.25 2.68 2 0.72
295061 -2.68 721 0.23 3.20 1 0.76
359957 -2.95 4386 0.21 -0.03 172 0.49
69850 -2.75 1259 0.23 0.65 36 0.56
84163 -3.75 20152 0.15 1.84 8 0.65

296443 -3.31 12333 0.18 1.62 10 0.64
7451 -2.92 3759 0.21 0.50 61 0.54

277619 -2.91 3180 0.21 0.92 21 0.58
315928 -2.47 172 0.25 1.97 4 0.67
296535 -2.91 3542 0.21 2.33 3 0.70
313914 -3.61 18883 0.16 1.94 5 0.66
277774 -2.78 1291 0.23 1.86 7 0.66
178994 -2.05 2 0.29 1.45 13 0.63
296560 -2.56 280 0.24 1.84 9 0.65
464822 -2.89 2840 0.21 0.76 34 0.56
265441 -3.36 13757 0.18 1.53 12 0.63
292805 -2.66 723 0.23 1.30 16 0.61
432169 -3.16 9361 0.19 1.38 15 0.61
292579 -3.06 6162 0.20 1.85 6 0.66
278927 -2.61 430 0.24 0.78 31 0.57

σ̂2 10.11 18.87
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avoided.

The findings presented in Section 4.2 indicate that the joint-model approach gives

a more reliable picture of reality and, Figure 4.1 suggest that the simple model where

Corr(ai, bi) = 1 is not appropriate, thus we are inclined to put more weight on the

results from the joint model in Table 4.3. Assessment of fit of the models is a little

more difficult than usual, because we have a non-likelihood method. One could assess

the fit in subsets, but then the question about overall fit would still remain. Proper

methodology for model fit with pseudo-likelihood methods requires further research.

Furthermore, the focus here is on sensitivity with respect to untestable assumptions.

Clearly, a very careful discussion incorporating domain-specific knowledge, will be

needed before a final conclusions can be drawn from this study.

4.5 Discussion

The topic studied here can be related to other statistical fields and perhaps the most

evident connection is with missing data analysis. Indeed, like many problems from

areas like hierarchical models (Lindstrom and Bates, 1988), causal inference, and

treatment compliance (Holland, 1986), selection bias could also be framed within

a missing data context. To illustrate this connection using a simpler notation, let

us focus on the special case in which the selection and rating procedures shared

a common random effect. Conditioning on the expert effect, one could think of

the selection and rating procedures introduced in Section 4.2, as analogous to the

pattern mixture framework often use to handle missing observations (Molenberghs and

Kenward, 2007). Similarly, the condition used to define selection bias in Section 4.2

is closely related to the concept of missing not at random (MNAR) that appears

in the classical missing data taxonomy (Rubin, 1976; Kenward and Carpenter, 2007;

Molenberghs and Kenward, 2007), and which means that the missing-data mechanism

is related to unobserved outcomes, in addition to observed outcomes and covariates.

To exemplify this, consider the expression

P (Yij = yij |Xij = xij , bi) = P (Xij = xij |Yij = yij , bi)
P (Yij = yij |bi)
P (Xij = xij |bi)

. (4.14)

If the probability of not evaluating a cluster is independent of its (unobserved) rating,

then we have P (Xij = 0|Yij = yij , bi) = P (Xij = 0|bi), which is the definition of

the Missing At Random mechanism (MAR) in the Rubin taxonomy (Rubin, 1976).

MAR means that, given observed outcomes and covariates, missingness does not

further depend on unobserved ones. It is easy to see that (4.14) and the subsequent
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Figure 4.1: A scatter plot for the number of clusters rated and the proportion of clusters

recommeded by each expert

expressions imply

P (Yij = yij |Xij = 1, bi) = P (Yij = yij |Xij = 0, bi) = P (Yij = yij |bi) ,

and, therefore, the absence of selection bias can be seen as an MAR process, given the

expert. Moreover, the conditional independence assumption for the rating and selec-

tion procedure introduced in Section 4.2, is closely related to the shared parameter

modeling (SPM) framework, regularly used to describe a MNAR mechanism (Foll-

mann and Wu, 1995; Little, 1995). This relationship with the SPM explains why,

unlike under MAR, where the likelihood paradigm implies ignorability, in the context

studied in this manuscript even in absence of selection bias the selection procedure will
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often be non-ignorable. The reason for this important difference is that the selection

and rating procedures share a common random effect bi and, therefore, marginally

independence does not hold. In the most general case when the selection and rating

processes are governed by two correlated random effects ai and bi parallels can be

drawn with the so-called generalized SPM (Creemers et al., 2011), but this will not

be explored further here.

It has been shown that in a missing data problem the data at hand do not provide

enough information to discriminate between MAR and MNAR (Molenberghs et al.,

2008). Likewise, the data at hand will not provide enough information to discard the

presence of selection bias if the assignment mechanism was non-random or had the

potential to be influenced by the experts. One could, however, conceive a sensitivity

analysis to evaluate the robustness of the conclusions with respect to the potential

presence of selection bias.



Chapter 5

A New modeling Approach

for Quantifying Expert

Opinion in the Drug

Discovery Process

In Chapter 4 we studied the conditions under which the selection process (process by

which experts are assigned the clusters to rate) could be safely ignored when analyzing

the data in Section 2.1 and showed that inappropriately ignoring it may seriously

threaten the validity of the study. As a consequence, one often needs to jointly model

the rating and selection processes in order to avoid bias. Ideally, one would like to

know all the factors influencing the selection process beforehand. However, in practice,

such information is seldom available and making assumptions on the selection process

is almost inescapable, and if these assumptions are wrong, estimates and inferences

may be wrong as well. In this chapter, a new modeling technique that produces

valid estimates even under misspecification of the assumptions made on the selection

process is introduced. This is unlike the joint model introduced in Chapter 4, which

is sensitive to misspecification of the assumptions.

51
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5.1 Introduction

We shall consider two approaches to account for the selection process. In the first

approach, two generalized linear mixed models (GLMM) are used to describe the rat-

ing and selection processes and it is assumed that, given some random effect common

to both models, both processes are independent. We shall refer to this approach as

the joint modeling approach. The previous conditional independence assumption is

at the core of the so-called shared-parameter models commonly used, for instance,

to jointly model longitudinal and survival outcomes or in the analysis of missing not

at random data (Rizopoulos, 2012; Vonesh, Green, and Schluchter, 2006; Rizopoulos,

Verbeke, and Molenberghs, 2008; Follmann and Wu, 1995). In the present work the

aforementioned assumption simplifies the joint distribution of the rating and selection

processes, facilitating the joint fit of both models.

The previous approach hinges on the assumption that the distribution for the

selection process is correctly specified. In general, if the selection model is misspecified

then the estimates of the parameters in the rating model may be biased and inferential

procedures, like confidence intervals, may be affected as well. Therefore, a sensitivity

analysis to assess the stability of the results is always highly recommended (Geneletti

et al., 2011).

Our second approach is based on the so-called combined model introduced by

Booth et al. (2003) and Molenberghs et al. (2010) for members of the exponential

family, where an extra set of random effects is used to account for overdispersion

in correlated outcomes. Similarly, in this work, we propose to take into account

the selection process by adding a new set of random effects to the rating model. It is

important to point out that, although the combined model has been shown to improve

model fit in overdispersed correlated data, its usefulness to account for selection bias

is yet to be investigated.

We extensively study the performance of both approaches via simulation. Our

results show that the combined model could be a robust alternative to the joint

model when analyzing the data. However, as one would expect, if the selection model

is correctly specified then the joint model will deliver better results. Therefore, we

think that the combined model may serve two purposes: (i) it may be a reliable tool

for sensitivity analysis and (ii) when there are doubts regarding the validity of the

selection model, it may be a safe alternative on which to base inferences.
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5.2 The Joint Modeling Approach

Recall that the marginal probability of success for cluster Cj was obtained as,

P (Yj = 1|βj) =

∫
P (Yij = 1|bi, βj) φ(bi|0, σ2

b ) dbi, (5.1)

where φ(bi|0, σ2
b ) denotes a normal density with mean zero and variance σ2

b . Even

though the selection procedure does not explicitly appear in (5.1), one may still need

to take it into account when estimating the βjs and σ2 in order to avoid bias. In

fact, one estimates these parameters using the complete data Y i,Xi ∈ {0, 1}N . The

vector of ratings can be decomposed as Y i = (Y T
0i,Y

T
1i)

T , where Y 1i ∈ {0, 1}Ni is

the sub-vector associated with the clusters the expert evaluated, Y T
0i is the obvious

complement and Ni = 1TXi. The joint distribution of (Y i,Xi, ai, bi) takes the form

P (Y i = yi,Xi = xi, ai, bi|β,α,Σ) (5.2)

= P (Y i = yi|Xi = xi, bi,β)P (Xi = xi|ai,β,α)φ(ai, bi|0,Σ).

with

P (Y 1i = y1i|bi,β) =

Ni∏
j

P (Y1ij = y1ij |bi, βj)

and, similarly,

P (Xi = xi|ai,β,α) =

N∏
j

P (Xij = xij |ai, βj , αj),

as shown in Chapter 4. In the previous formulation the selection procedure given

by P (Xij = xij |ai, βj , αj) is allowed to depend on the parameters that characterize

the rating process (βj) and also on other selection-specific parameters (αj). The

likelihood emerging from (5.2) is

L (β,α,Σ) =

n∏
i

P (Y 1i = y1i,Xi = xi|β,α,Σ) . (5.3)

Using the maximum likelihood estimators β̂n, α̂, Σ̂, one can estimate the probabilities

of success by substituting β̂, σ̂2
b into (5.1). Note, however, that to estimate β, Σ,

one may need to explicitly model the selection process. In Chapter 4, we showed that

if the selection probability is independent of the rater specific effect (bi, ai) and the

rating parameters β, i.e., P (Xi = xi|ai,β,α) = P (Xi = xi|α) then the selection

mechanism can be safely ignored. This setting will result, for instance, if a fully

random allocation of the clusters to raters is implemented, so that the raters have no
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influence on the selection process, else a selection model will need to be incorporated

into the analysis in order to avoid bias and this raises questions about the impact of

misspecifying this model on the estimates of the parameters of interest.

5.3 Combined Model Approach

The combined model follows a different path for estimating the parameters of interest,

namely, the βjs and σ2. To introduce this approach let us first notice that, in the

joint model, the selection process P (Xij = xij |ai, βj , αj) appearing in the integrand

in (5.2) is directly modeled using, for instance, a GLMM. Alternatively, we now

propose to account for the extra variability emanating from the selection process by

introducing a new set of random effects θij . Essentially, we propose to work with the

conditional distribution

f (Y i = yi,θi|bi) =P (Y i = yi|bi,θi) f (θi|bi)

=

N∏
j

P (Yij = yij |bi, θij) f (θij |bi) , (5.4)

where θi = (θi1, θi2, . . . , θiN )T . The previous expression assumes that, conditional on

the random effects, the ratings are independent and so are components of θi. Since

the two sets of random effects are meant to explain different sources of variability,

θi and bi are also assumed to be independent, hence, f (θi|bi) = f (θi). Finally,

θij ∼ Beta (λ, τ) and Yij |θij , bi ∼ Bernoulli(θijπij) with

πij =
exp(βj + bi)

1 + exp(βj + bi)
.

The previous model directly corresponds to the model introduced by Molenberghs et

al. (2010). Although there are obvious similarities between the distribution given in

(5.4) and the integrand used in expression (5.2), both approaches are fundamentally

different. Essentially, the strength of the combined model approach lies in using two

sets of random effects, one of which is conjugate to the distribution of the ratings.

The conjugate random effects account for the selection process, whereas the normal

random effect accounts for the correlation within the set of ratings of a given rater.

Often the selection process is not of particular scientific interest and does not need

to be exhaustively modeled. Therefore, using random effects to account for it is

both desirable and appealing. Considering the previously introduced partition Y i =

(Y T
0i,Y

T
1i)

T and the corresponding counterpart θi = (θT0i,θ
T
1i)

T , expression (5.4)
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takes the form

f (Y 0i,Y 1i,θ0i,θ1i|bi) = P (Y 0i|θ0i, bi)P (Y 1i|θ1i, bi) f (θ0i,θ1i) ,

and after marginalizing out the subvectors Y 0i, θ0i one gets

f (Y 1i,θ1i|bi) = P (Y 1i|θ1i, bi) f (θ1i) .

The parameter estimates are derived using the marginal likelihood obtained after

integrating out the random effects bi and θ1i. This process is carried out in two steps.

First after analytically integrating over θ1i the conditional likelihood contribution for

each rater follows as

L∗c(β, λ, τ, bi) =

∫
f (Y 1i,θ1i|bi) f (θ1i) dθ1i, (5.5)

=

Ni∏
j=1

{
1

λ+ τ
(πijλ)yij [(1− πij)λ+ τ ]

1−yij
}
,

and, eventually, in the second step the marginal likelihood can be obtained by numer-

ically integrating over the normal random effect bi, using readily available statistical

software, i.e., the parameter estimates follow from maximizing

Lm(β, λ, τ, σ2) =

n∏
i

∫
L∗c(β, λ, τ, bi)φ(bi|0, σ2) dbi. (5.6)

The parameters λ and τ are not simultaneously estimable and to ensure identifiability

of the model one parameter has to be fixed. To avoid subjectivity we estimate the

ratio λ
τ and not the individual parameters.

5.4 Simulation Study

When working with hierarchical models one often has to deal with likelihood functions

that do not have a closed form. For instance, combining normal random effects

and binary outcomes with logit links leads to an unclosed form for the marginal

likelihood and, therefore, one needs to resort to numerical algorithms to compute

the maximum likelihood estimators (MLE). Consequently, studying the properties of

the MLE theoretically is extremely difficult in many settings and simulation studies

become an indispensable tool to compare alternative approaches in these scenarios.

In this work, the data were generated mimicking the case study introduced in

Section 2.1, but the size of the simulated data sets were chosen so that both, the
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joint and combined models, could be fitted using maximum likelihood. To that effect

147 experts and 15 clusters were considered for the simulations. The fixed-effects βj ,

αj were sampled once from a N(0, 2) and N(0, 1) respectively and then held fixed

throughout all simulations, whereas the random rater specific effects bi were sampled

from N(0, 10). To mimic the random allocation used in the case study a number of

clusters Ni was randomly assigned to each rater, with Ni coming from a Poisson(25)

and 2 ≤ Ni ≤ 15. Finally, the actual clusters evaluated by each rater were defined

using the selection process Xij |bi ∼ Bernoulli (ρij) with logit(ρij) = αj + 0.5 · bi and

the corresponding ratings Yij |bi were generated from a Bernoulli(πij) with

πij =
exp(βj + bi)

1 + exp(βj + bi)
.

Using the previous settings, a total of 200 data sets were generated. Three analyses

were carried out for each data set and the main results are summarized in Tables 5.1–

5.4. In these tables, the column True gives always the true value of the corresponding

parameter, the column Combined refers to results obtained from the combined model

introduced in Section 5.3, the column J(·) displays the results obtained from fitting

the joint model using the selection probability derived from the logit in brackets and,

finally, the column Naive presents the results obtained from fitting model without

accounting for the different selection probabilities.

The model j(αj + 0.5 · bi), which assumes that selection probability of each clus-

ter vary within each expert, and the parameters governing the rating and selection

processes are different, is the correctly specified model. In contrast, j(βj + 0.5 · bi)
also postulates different selection probabilities for the clusters but now the parametric

space of the rating and selection processes are assumed to be equal. The last model

j(α+ 0.5 · bi) presupposes equal selection probabilities for all the clusters. Obviously

joint models with different random effects for the rating and selection processes would

have been more enlightening, but for computation convenience we used the joint model

with the shared random effects.

Tables 5.1–5.2 show that, as expected, when the selection model is correctly spec-

ified (j(αj + 0.5 · bi)) the joint modeling approach produces points estimates of the

parameters of interest that are very close to their true values. Nonetheless, when the

selection model is misspecified relative biases larger than 200% may appear. Similarly,

ignoring the selection process can also be problematic. Indeed, as the results from

the naive analysis show, relative biases larger than 400% can be obtained when the

selection process is incorrectly ignored. Unlike in the previous cases, the combined

model always led to unbiased estimates of the parameters. However, from all the
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models considered, it produced the largest standard errors as well. In fact, the mis-

specified joint models exhibited in some settings large bias and high precision, while

the combined model had smaller bias and lower precision.

It is important to point out that highly precise but incorrect estimates could lead

to seriously misleading inferences. In fact, as shown in Table 5.3, the fixed effects

parameters were estimated with high precision when model j(βj + 0.5bi) was used,

however, the confidence interval coverage for thirteen of them was below 50% and it

was even below 10% for seven of them. Similarly, the naive model also exhibited a

poor performance with coverage probabilities sometimes far below the pre-specified

95%. In contrast, the combined model always produced confidence intervals with

good coverage.

Finally, Table 5.4 displays the true and estimated probabilities of success for every

cluster. Here again the combined and correctly specified joint model [j(αj + 0.5 · bi)]
led to estimate values that are almost equal to the true probabilities. However, the

misspecified and naive models produced biased results with relative biases as large

as 40% in some scenarios. The joint model [j(α+ 0.5 · bi)] is performing as good as

the correctly specified model possibly because values of αj ∼ N(0, 1) do vary wide

enough, an extra simulation study with larger variance would be required to confirm

this.

The same trend is observed when a different joint model, say, [j(βj + 0.5 · bi)] is

correctly specified (results not shown). The combined model produces estimates that

are close to correctly specified model although its performance in presence of selection

bias and other forms of joint models is yet to be assessed.

5.5 Case Study Analysis

The case study introduced in Section 2.1 was analyzed by using the naive and joint

model approaches in Chapter 3 and 4. In this section, the combined model presented

in Section 5.3 was also fitted to these data. A summary of the analyses can be found

in Table 5.5 where the clusters are ordered according to the results obtained from the

naive model. Remarkably, the three approaches lead to strikingly different results.

First, notice that the probabilities of success derived from the combined model are

relatively smaller than those obtained from the naive and joint methods. Secondly,

the ranks given to the clusters by the three approaches also differ in important ways.

For instance, the third best cluster according to the naive approach (359,957) received

ranks 330 and 88 from the joint and combined models respectively. Moreover, cluster
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Table 5.1: Estimates (standard errors) for the parameters governing the rating process

obtained from the different models fitted to the data. The data were generated by a joint

model with selection probability, logit(ρij) = αj + 0.5 · bi. The column True gives the

true values, Combined gives the results obtained from the combined model, ‘J’ refers to

the results obtained from a joint model with the logit of the selection probabilities given

in brackets and Naive indicates results from the model that disregards the selection

process.

βj True Combined J(αj + 0.5 · bi) J(βj + 0.5 · bi) J(α+ 0.5 · bi) Naive

β1 3.60 3.60(0.77) 3.69 (0.54) 2.01(0.27) 3.72 (0.55) 3.96 (0.57)

β2 -1.98 -1.97(0.66) -1.98 (0.52) -1.42(0.22) -1.95 (0.53) -1.31 (0.50)

β3 4.33 4.33(0.94) 4.44 (0.59) 2.49(0.29) 4.45 (0.60) 4.70 (0.62)

β4 0.58 0.59(0.49) 0.62 (0.46) 0.12(0.22) 0.64 (0.46) 1.03 (0.45)

β5 0.11 0.11(0.49) 0.15 (0.46) -0.16(0.22) 0.14 (0.46) 0.56 (0.45)

β6 -0.53 -0.52(0.51) -0.54 (0.46) -0.53(0.22) -0.52 (0.46) -0.02 (0.45)

β7 1.70 1.70(0.56) 1.73 (0.47) 0.79(0.23) 1.76 (0.47) 2.06 (0.47)

β8 -0.10 -0.09(0.50) -0.14 (0.46) -0.30(0.22) -0.12 (0.47) 0.35 (0.45)

β9 1.51 1.52(0.51) 1.56 (0.46) 0.71(0.23) 1.59 (0.46) 1.90 (0.46)

β10 1.29 1.30(0.50) 1.32 (0.46) 0.56(0.23) 1.35 (0.47) 1.71 (0.46)

β11 0.88 0.91(0.50) 0.92 (0.46) 0.32(0.22) 0.93 (0.46) 1.28 (0.45)

β12 -3.52 -3.49(0.92) -3.56 (0.64) -2.27(0.24) -3.55 (0.64) -2.64 (0.59)

β13 0.60 0.61(0.49) 0.66 (0.46) 0.12(0.22) 0.71 (0.46) 1.08 (0.45)

β14 1.89 1.90(0.56) 1.88 (0.47) 0.91(0.23) 1.91 (0.47) 2.24 (0.47)

β15 0.68 0.71(0.48) 0.76 (0.46) 0.22(0.22) 0.78 (0.46) 1.17 (0.45)

σ2 10.00 10.17(4.31) 10.52 (2.10) 6.69(1.19) 10.53 (2.12) 8.41 (1.83)

265,222 ranked first and second by the naive and joint models respectively, was not

among the top ten clusters according to the combined model.

Sensitivity of the results with respect to the modeling approach represents a clear

dilemma when analyzing this problem. Several strategies could be implemented here,

for instance, one could compute the average rank (probability of success) over the dif-

ferent approaches and select those clusters with the largest average rank (probability).

On the other hand, given the results of the simulations one could argue that, unlike

the naive and joint models, the combined model seems to produce unbiased estimates

in most circumstances and, therefore, it should be the core of the decision making

process. While we can never be sure that the combined model would fit the data
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Table 5.2: Relative bias for the parameters governing the rating process obtained from

the different models fitted to the data. The data were generated by a joint model with

selection probability, logit(ρij) = αj + 0.5 · bi. The column Combined gives the results

obtained from the combined model, ‘J’ refers to the results obtained from a joint model

with the logit of the selection probabilities given in brackets and Naive indicates results

from the model that disregards the selection process.

βj Combined J(αj + 0.5 · bi) J(βj + 0.5 · bi) J(α+ 0.5 · bi) Naive

β1 0.00 0.02 0.44 0.03 0.10

β2 0.00 0.00 0.28 0.01 0.34

β3 0.00 0.03 0.42 0.03 0.09

β4 0.01 0.07 0.79 0.10 0.78

β5 0.06 0.42 2.46 0.34 4.26

β6 0.01 0.03 0.01 0.02 0.95

β7 0.00 0.02 0.53 0.03 0.21

β8 0.06 0.42 1.95 0.24 4.50

β9 0.01 0.03 0.53 0.06 0.26

β10 0.00 0.02 0.56 0.04 0.32

β11 0.03 0.05 0.63 0.06 0.46

β12 0.01 0.01 0.36 0.01 0.25

β13 0.01 0.10 0.79 0.17 0.79

β14 0.01 0.00 0.52 0.01 0.19

β15 0.03 0.10 0.68 0.14 0.71

σ2 0.02 0.05 0.33 0.05 0.16

well had the selection process be known, it is useful as a component of a sensitivity

analysis. Whatever strategy is finally adopted a careful discussion with the experts in

the field would always be advisable in a situation like this one. Eventually, weighting

together the quantitative elements emanating from the statistical analysis and more

field specific knowledge may help to make an optimal and thoughtful choice.

5.6 Discussion

Even in carefully designed studies it is not always possible to avoid bias in the es-

timates of the parameters of interest. This implies that, when quantifying expert

opinion in the drug discovery process, one often needs to jointly fit complex hierar-
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chical models describing the selection and rating mechanisms in order to obtain valid

estimates. However, in the present work it has been shown that misspecifying the

selection model may introduce severe bias in the estimates of the relevant parameters.

We have introduced a new approach using the so-called combined model that

accounts for the selection process using a new set of random effects. Simulations

results clearly showed that, unlike the naive and joint model approaches, the combined

model seems to produce unbiased, although less precise, estimates in most settings.

This loss of precision may be seen as the price to pay for the robustness archived by

the model.

We believe that even when factors suspected to drive the selection process are

known and available, one may still want to use the combined model as a sensitivity

tool for the analysis.

Table 5.3: Confidence interval coverage for the parameters governing the rating process

obtained from the different models fitted to the data. The data were generated by a

joint model with selection probability, logit(ρij) = αj + 0.5 · bi. The column Combined

gives the results obtained from the combined model, ‘J’ refers to the results obtained

from a joint model with the logit of the selection probabilities given in brackets and

Naive indicates results from the model that disregards the selection process.

βj Combined J(αj + 0.5 · bi) J(βj + 0.5 · bi) J(α+ 0.5 · bi) Naive

β1 0.99 0.96 0.00 0.96 0.95

β2 0.95 0.95 0.32 0.96 0.76

β3 0.98 0.95 0.00 0.95 0.95

β4 0.97 0.97 0.44 0.97 0.83

β5 0.97 0.96 0.74 0.97 0.85

β6 0.98 0.96 0.98 0.94 0.80

β7 0.99 0.95 0.03 0.95 0.87

β8 0.97 0.94 0.82 0.94 0.81

β9 0.99 0.96 0.07 0.97 0.84

β10 0.99 0.97 0.10 0.97 0.91

β11 0.98 0.93 0.27 0.93 0.87

β12 0.95 0.94 0.00 0.95 0.67

β13 0.96 0.96 0.45 0.95 0.87

β14 1.00 0.96 0.03 0.96 0.89

β15 0.97 0.95 0.40 0.95 0.85

σ2 0.98 0.93 0.26 0.93 0.79
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Table 5.4: Estimates for the success probabilities (Relative bias) obtained from the

different models fitted to the data. The data were generated by a joint model with

selection probability, logit(ρij) = αj + 0.5 · bi. The column True gives the true values,

Combined gives the results obtained from the combined model, ‘J’ refers to the results

obtained from a joint model with the logit of the selection probabilities given in brackets

and Naive indicates results from the model that disregards the selection process.Cid

identifies the cluster.

Rank Cid. True Combined J(αj + 0.5 · bi) J(βj + 0.5 · bi) J(α+ 0.5 · bi) Naive

1 3 0.88 0.88 (0.00) 0.89 (0.00) 0.79 (0.10) 0.89 (0.00) 0.91(0.03)

2 1 0.84 0.84 (0.00) 0.84 (0.00) 0.74 (0.12) 0.84 (0.00) 0.88(0.04)

3 14 0.70 0.70 (0.00) 0.70 (0.00) 0.62 (0.12) 0.70 (0.00) 0.75(0.07)

4 7 0.68 0.68 (0.00) 0.68 (0.00) 0.60 (0.12) 0.68 (0.00) 0.73(0.07)

5 9 0.66 0.66 (0.00) 0.66 (0.00) 0.59 (0.11) 0.67 (0.01) 0.71(0.08)

6 10 0.64 0.64 (0.00) 0.64 (0.00) 0.57 (0.11) 0.64 (0.01) 0.69(0.08)

7 11 0.60 0.60 (0.01) 0.60 (0.00) 0.54 (0.09) 0.60 (0.01) 0.65(0.09)

8 15 0.58 0.58 (0.00) 0.58 (0.01) 0.53 (0.08) 0.58 (0.01) 0.63(0.10)

9 13 0.57 0.57 (0.00) 0.57 (0.01) 0.52 (0.09) 0.57 (0.01) 0.62(0.10)

10 4 0.56 0.57 (0.00) 0.57 (0.01) 0.51 (0.09) 0.57 (0.01) 0.62(0.10)

11 5 0.51 0.51 (0.00) 0.52 (0.01) 0.48 (0.06) 0.52 (0.01) 0.56(0.10)

12 8 0.49 0.49 (0.00) 0.48 (0.01) 0.46 (0.06) 0.49 (0.00) 0.54(0.11)

13 6 0.44 0.44 (0.01) 0.44 (0.01) 0.43 (0.02) 0.45 (0.01) 0.50(0.12)

14 2 0.29 0.29 (0.01) 0.29 (0.01) 0.33 (0.11) 0.29 (0.01) 0.34(0.18)

15 12 0.17 0.17 (0.03) 0.17 (0.00) 0.23 (0.41) 0.17 (0.01) 0.22(0.32)
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Table 5.5: Estimated parameters (β̂), probabilities of success (P̂) and ranks for the

top 20 clusters (according to the naive approach) from the case study. The models

fitted are: Combined model (Combined), mixed logistic regression (Naive), and joint

model with selection probability given by logit[P (xij = 1|ai)] = αj + ai [J(αj + ai)].

The column CID gives the cluster id.

Naive J(αj + ai) Combined

CID β̂ P̂ Rank β̂ P̂ Rank β̂ P̂ Rank

265222 2.52 0.94 1 2.67 0.72 3 0.97 0.62 25

295061 3.83 0.92 2 2.61 0.71 4 1.69 0.71 1

359957 0.49 0.87 3 -0.25 0.48 330 0.71 0.59 88

69850 1.07 0.82 4 0.11 0.50 182 0.89 0.61 38

84163 5.24 0.77 5 1.83 0.65 9 1.34 0.67 6

296443 2.59 0.76 6 1.62 0.64 10 0.55 0.57 162

7451 1.28 0.74 7 0.66 0.56 55 0.61 0.57 147

277619 1.65 0.73 8 0.44 0.54 89 0.60 0.58 138

315928 2.04 0.72 9 1.47 0.62 14 1.26 0.66 9

296535 2.77 0.71 10 2.37 0.70 5 1.58 0.70 2

313914 2.18 0.70 11 2.06 0.68 7 1.47 0.68 4

277774 2.20 0.69 12 1.30 0.61 20 0.98 0.62 24

178994 1.85 0.68 13 1.57 0.64 11 1.14 0.65 13

296560 1.89 0.66 14 1.86 0.66 8 1.09 0.64 15

464822 1.21 0.66 15 0.56 0.55 72 0.90 0.61 40

265441 1.87 0.65 16 1.44 0.62 15 0.90 0.61 34

292805 1.47 0.65 17 1.20 0.61 19 1.06 0.64 20

432169 1.45 0.64 18 6.26 0.91 1 1.01 0.63 21

292579 1.85 0.64 19 1.50 0.63 13 1.23 0.65 11

278927 1.30 0.63 20 0.51 0.54 76 0.97 0.62 26

σ2 20.02 18.61 6.64



Chapter 6

Ignoring Overdispersion in

Hierarchical Models: Possible

Problems and Solutions

The combined model introduced in Chapter 5 can play a vital role in exploring the

impact of ignoring important sources of variation, like bias. This was already seen

when the model that ignores selection process was used to model data that clearly

needed data augmentation. Using overdispersion as an important source of variation,

this chapter investigates further, the impact of ignoring data enrichment when it is

necessary. In addition to the impact on estimates and standard errors, the impact on

type I error is also studied. We use the combined model as a tool for investigation,

whose performance in situations where the distribution of either both, or one set of

random effects is misspecified, is studied.

6.1 Introduction

The introduction of random effects to model correlated responses coming from the

same subject, was a milestone contribution to the analysis of complex data Fisher

(1918). Over the last decades, these hierarchical models have been applied in a

multitude of areas like, item response theory (De Boeck and Wilson, 2004), toxicology

(Molenberghs and Verbeke, 2005), survival analysis (Duchateau and Janssen, 2007)

and non-linear mixed models (Davidian and Giltinan , 1995). Many of the models

used in these fields fall under the umbrella of generalized linear mixed models (GLMM;

63
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Agresti (2002)). Basically, GLMMs are used to account for the heterogeneity that

arises from correlated measurements. However, in several applications, there may be

additional sources of heterogeneity that can affect our inferences if ignored. Poisson

longitudinal data are an archetypical example where heterogeneity may arise, not only

from the repeated measurements, but also from additional overdispersionHinde and

Demétrio (1998).

Several studies have explored the impact of misspecifying different aspects of

GLMMs on the inferential procedures emanating from them. For instance, Agresti

(2002) addressed the impact of omitting important confounding factors, Litière,

Alonso and Molenberghs (2007) investigated the effect of misspecifying the random

effects distribution and Ten Have and Tran (1999) assessed the impact of fitting an

incomplete multilevel structure. All the previous research has clearly shown that mis-

specification may seriously affect our conclusions. Along these lines, in the present

work we study the effect of ignoring overdispersion in hierarchical loglinear models.

Molenberghs et al. (2010) presented a model that deals with overdispersion by

introducing an additional set of random effects in the classical Poisson loglinear mixed

model. In the following, we shall refer to this model as the combined model. We will

use this combined model as a framework to assess the impact of ignoring overdisper-

sion via simulations. Essentially, we will study the impact of the misspecification on

the consistency of the maximum likelihood estimators (MLE) and the Type I error

rates.

Another important concern that arises when using this type of models is the dis-

tributional assumptions one needs to make for the random effects. Indeed Neuhaus,

Hauck, and Kalbfleisch (1992) showed that misspecfying the random effect distribu-

tion in a logistic model may result in estimates that are asymptotically biased, though

the bias is typically small. In a similar setting, Agresti, Caffo, and Ohman-Strickland

(2004) found that misspecification of the random effects distribution may produce

a loss of efficiency. Through extensive simulations Litière, Alonso and Molenberghs

(2007) and Litière, Alonso, and Molenberghs (2008) investigated the impact of this

misspecification on the consistency of the MLE, the power and Type I error rate of

commonly used inferential procedures in GLMM. They observed that, although in

most scenarios the estimates of many fixed effects were little affected, the estimates

of variance components were severely biased and the power and Type I error rates

were also gravely impacted.

Introducing an additional set of random effects obviously implies additional dis-

tributional assumptions for intrinsically unobservable latent variables. Therefore, in

the present work, we will also explore the impact of misspecifying the random effects
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distribution on both the classical Poisson loglinear mixed model and the combined

model introduced by Molenberghs et al. (2010). Let Yij represent the number of

epileptic seizures patient i experienced during week j of the follow-up period. Fur-

ther, let tij be the time-point at which Yij is measured, tij = 1, 2, . . . until at most

27. Following Molenberghs and Verbeke (2005) the next model was used to analyze

the data,

Yij ∼ Poisson(κij),

ln(κij) =

 (β0 + bi) + β1tij if placebo,

(β2 + bi) + β3tij if treated,
. (6.1)

where bi is assumed to follow N(0, σ2
b ). The first part of Table 6.1 summarizes the

main findings. The results indicate that the expected number of seizures significantly

decreases over time in both the placebo and experimental group with p-values 0.0017

and 0.0067 respectively. Importantly, the rate of decrease was the same for both

groups, i.e., no significant difference between the placebo and the new treatment was

detected with a p-value of 0.7115. Obviously, the preceding results are conditional

on the validity of the model used for the analysis. In that line, one relevant question

is if the previous model suffices to account for all the variability present in the data

and the impact of ignoring extra sources of variability on the inferences previously

described. We will address this important issue at the end of the manuscript.

6.2 Combining Conjugate and Normal Random

Effects

In this section, we will briefly introduce the model proposed by Molenberghs et al.

(2010). To that effect, let us denote by Yij the jth outcome in cluster i = 1, . . . , N

with j = 1, . . . , ni. Furthermore, it will be assumed that, conditionally upon two q-

ni-dimensional vectors of random effects bi and θi, the outcomes Yij are independent

with density function of the form

fi(yij |bi,β, θij , φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
, (6.2)

where the conditional mean µcij is further modeled as

E(Yij |bi,β, θij) = µcij = θijκij . (6.3)

In the preceding expression the random variable θij ∼ Gij(ϑij , σ2
ij) with ϑij and σ2

ij

denoting the mean and the variance of θij respectively and κij = g(x′ijβ + z′ijbi).

Moreover, it will be typically assumed that bi ∼ N(0,D).
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It is convenient, but not strictly necessary, to consider that the two sets of random

effects θi and bi are independent of each other. Regarding the components θij of θi,

three useful special cases result from assuming that: (1) they are independent; (2) they

are correlated, implying that the collection of univariate distributions Gij(ϑij , σ2
ij)

needs to be replaced with a multivariate one; and (3) they are equal to each other,

useful in applications with exchangeable outcomes Yij .

Obviously, parameterization (6.3) allows for random effects θij capturing overdis-

persion, and formulated directly at the mean scale, whereas κij could be considered

the GLMM component.

6.2.1 Combined Poisson Model for Count Data

From the general developments above, the Poisson model with gamma and normal

random effects naturally follows. By way of overview, let us assemble all model

elements

Yij ∼ Poisson(θijκij),

κij = exp
(
x′ijβ + z′ijbi

)
,

bi ∼ N(0,D),

θij ∼ Gamma(λ, τ)

E(θi) = E[(θi1, . . . , θini)
′] = ϑi,

var(θi) = Σi.

Essentially, this model has the same structure of the one by Booth et al. (2003)

The θij can be assumed independent and following a gamma distribution, producing,

what we could term, a Poisson-gamma-normal model or, equivalently, a negative-

binomial-normal model. This is natural in many cases in the sense that the bi will

induce association between repeated measurements, with then the θij taking care of

additional dispersion. In this case, Σi reduces to a diagonal matrix. Nevertheless, it

is perfectly possible to allow for general covariance structures. When a fully distribu-

tional specification would be desired, then one could choose, for example, multivariate

extensions of the gamma distribution .

The Poisson-gamma-normal model can be fitted following a two step procedure.

In fact, integrating the previous conditional model over the gamma random effects,

leaving the normal random effects untouched, leads to

f(yij |bi) =

(
λj + yij − 1

λj − 1

)
·
(

τj
1 + κijτj

)yij
·
(

1

1 + κijτj

)λj
κ
yij
ij , (6.4)
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where κij = exp(x′ijβ+z′ijbi). It is important to point out that in this approach the

gamma random effects are assumed to be independent. Model (6.4) can now be easily

fitted using maximization routines like the one implemented in PROC NLMIXED in

SAS.

6.3 Simulation Studies

6.3.1 Impact of Ignoring Overdispersion
In this set of simulations, and using the Poisson-gamma-normal model as suitable

framework to generate the data, we explore the impact of ignoring overdispersion

on the parameter estimates and their standard errors. Mimicking the case study,

longitudinal poisson responses Yij were generated with mean θijκij , where θij was

randomly sampled from Γ(λ, τ) and

κij = exp (β0 + bi + β1tj + β2zi + β3tjzi) . (6.5)

In the previous expression, i = 1, ..., 500 and tj = 1, 2, 3, 4, 5, 6 denote the subject and

the time of measurement, respectively. Moreover, bi ∼ N(0, σ2
b ) and zi is a treatment

group indicator variable taking values 0/1.

The data were generated using three sets of parameters, i) β0 = −2, β1 = −0.5,

β2 = −3 , β3 = 1, λ = 2, ii) β0 = 0.1, β1 = 0.2, β2 = 0.3 , β3 = 0.5, λ = 4, and iii)

like (ii) but with λ = 0.5. In order to vary the amount of overdispersion in the data,

the θijs were sampled from three different gamma distributions: Γ(4, 0.25), Γ(2, 0.5)

and Γ(0.5, 1) and in all the cases σ2
b = 4. In total 500 data sets were generated in

each setting and analyzed using the correct model

E(Yij |θijbi) = θij exp(β0 + bi + β1tj + β2zi + β3tjzi) (6.6)

and a model that ignores the overdispersion, i.e., the misspecified model

E(Yij |bi) = exp(β0 + bi + β1tj + β2zi + β3tjzi). (6.7)

The gamma distribution parameterization used in the above setting and all other

settings to follow is,

f(y;λ, τ) =
yλ−1 exp(− yτ )

τλΓ(λ)

6.3.2 Impact on Incorrectly Assuming Overdispersion

In these simulations we studied the performance of model (6.6) when it is used to

analyze data with no additional overdispersion. Basically, and using β0 = 0.1, β1 =
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0.2, β2 = 0.3 and β3 = 0.5, σ2
b = 4 as values for the parameters, the data were

generated using model (6.7) and latter analyzed using (6.6) and (6.7).

6.3.3 Impact of Misspecification of Random Effects

In order to study the impact of misspecifying the random effects distribution a new

set of simulations was designed. Essentially, data were generated following the scheme

presented in Section 6.3.1 using the following parameter values; β0 = 0.1, β1 = 0.2,

β2 = 0.3 and β3 = 0.5, but three main variations were introduced: Firstly, the bis

were generated using five different distributions: N(0, 2), exp(
√

0.5), t4, Γ(2, 0.5)

and χ2(1). Note that the parameters for the distributions were chosen such that

var(bi) = 2. The overdispersion random effects θijs were always sampled from a

Γ(4, 0.25). Secondly, the θijs were generated from Γ(4, 0.25) and χ2(2) and the bis

were always sampled from N(0, 2). Finally in the third scenario, the bis were sampled

from the distributions aforementioned in the first setting and the θijs were generated

from χ2(2).

Eventually, Models 6.6 and 6.7 were fitted to the generated data with the distri-

butional assumptions described in Section 6.2.1. The goal is to explore the impact of

misspecifying every set of random effects separately or simultaneously on the infer-

ences obtained from these models.

6.3.4 Type I Error

With these simulations we seek to establish whether the Type I error is preserved

in the combined model and also when we have ignored the overdispersion. The data

generation is as in section 6.3.1 but using β0 = −2, β1 = −0.5, β2 = 0 and β3 = 1,

σ2
b=4 λ = 4 as parameter values. The data were also fitted to both Models 6.6 and

6.7. For all situations, 500 datasets were generated and the sample size was 500.

6.4 Simulation Results

6.4.1 Ignoring Overdispersion

Table 6.2 summarizes the main findings of this study. Even though ignoring overdis-

persion may have a negative impact on the parameter estimates, particularly when

the overdispersion distribution is highly skewed (when λ = 0.5), this impact was in

general very mild. Indeed, for the covariates effect the relative bias never surpassed

7% and was frequently much smaller. Nevertheless, the intercept was severely affected
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by the misspecification in some scenarios and the variance of the random effect was

seriously biased in some settings as well.

Importantly, the standard errors for the Poisson-normal model were always un-

derestimated, especially for the interaction parameter which, in many cases, provides

the answer to the main research question.

Much as it is harmful to ignore overdispersion, it was found (results not shown)

that there is no harm in fitting the combined model when there is no overdispersion.

Actually, in this scenario, the parameter estimates and standard errors for the two

models (combined and Poisson-normal) were very close. When fitting the combined

model, the estimate of λ was very large in all cases, which implies no overdispersion.

This is a bit counterintuitive, but follows from the nature of the gamma distribution.

Basically, the combined model converges to the Poisson-normal model when it is fitted

to data that is not overdispersed.

6.4.2 Misspecification of Random Effects Distribution

The intangible nature of random effects makes the selection of their distributional

assumptions quite arbitrary. In Table 6.3 we show the impact of misspecifying the

distribution of bi on inferences based on both, the combine and the Poisson-normal

model. In the combined model the covariate effects were rather robust with respect

to the misspecification. Indeed, the relative bias was always smaller than 3% and

the associated standard errors were close to those obtained when the random effect

distribution was not misspecified. Nevertheless, like before, the intercept and the

estimates of σ2
b were seriously affected in some scenarios.

We also studied the impact of misspecifying the distribution of θij on inferences

emanating from the combined model. The main results are presented in Table 6.4.

Clearly, the impact of this misspecification is almost negligible and the estimates and

the standard errors of all covariate effects are very close to the those obtained under

the correctly specified model. The robustness of the combined models follows from

additional flexibility due to the presence of the overdispersion. Of course, one is not

certain that the posited form fully coincides with the true data generating mechanism.

Therefore, one might consider further extensions, such as shape parameters that are

not constant but a function of covariates. The key message, though, is that the step

from a conventional GLMM to the combined model is a crucial one.

Turning to the Poisson-normal model, it is important to point out that in this

setting this model misses two important features of the data: the presence of overdis-

persion and the real distribution of the random effect bi. When bi was sampled from
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a gamma and chisquare distribution, the Poisson-normal model never converged. For

the t-distribution with 4 degrees of freedom (t4) the parameter estimates for β2 had

a relative bias as large as 20%. Note that the t distribution has wider tails than its

normal counterpart. For large datasets, this can have non-negligible effect. This is

considerable larger than the bias found when the model only missed the overdispersion

in the data. Here again severe underestimation of the standard errors was observed.

Another important issue that emerged in this study was the low rate of convergence

observed for both models. In fact, the rates of convergence for the rows of Table 6.3

from top to bottom were: 100%, 55.8%, 36.6%, 75.6% and 31.6% respectively.

Perhaps the most relevant situation for practical purposes is when both distri-

butions are misspecified. Table 6.5 illustrates our findings in this scenario. In this

situation, estimates associated to the variance components of both distributions are

largely biased. Nonetheless, apart from the intercept, the other effects estimates are

generally close to the true values. Therefore, even when the distributions associated

with both sets of random effects are misspecified, the covariate effects can be reliably

estimated.

6.4.3 Type I Error

In Section 6.4.1, we discussed the impact of ignoring overdispersion on parameter es-

timates and standard errors, in which we saw that there is a large impact on standard

errors which can possibly lead to erroneous conclusions. In this section we studied

the impact of ignoring overdispersion on the Type I error by simulating data with no

treatment effect and fitting both the combined model and the Poisson-normal model

with treatment effect. The pre-specified Type I error was 5%. For the combined

model, out of the 500 datasets, the treatment effect was found to be significant in 27,

which translates into 5.4% Type I error. On the other hand, out of the 331 datasets

which converged for the Poisson-normal model, 61 found a significant treatment effect

which represents 18.4% Type I error. In the best case scenario, if we assume that

the models that failed to converge would not have detected a treatment effect, 61

out of 500 would translate into 12.2% which is still highly inflated. This finding is

inline with the underestimation of standard errors by the Poisson-normal model as

discussed in Section 6.4.1.
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6.5 Re-Analyzing the Case Study

We also fitted the combined model to the data introduced in Section 2.2. The main

findings are presented in the second part of Table 6.1. A number of remarks come

into place here. Note first that, informally assessing the estimates of the param-

eters for the overdispersion random effects distribution, one can conclude that the

overdispersion in these data should not be ignored. Complementing our findings is

the observation that, the standard errors of the Poisson-normal model, especially the

slope parameters are generally underestimated in the Poisson-normal. However, like

before, the difference in the expected number of seizures between the experimental

and placebo groups was not significant (p-value=0.2260) when the data were ana-

lyzed with the combined model. Note finally that, comparing the likelihood values,

the combined model achieves a much better fitting of the observable data than the

Poisson-normal model. In general, it is sensible to start with the combined model

and, if the overdispersion effect is not significant, then one can switch to the more

conventional GLMM.

6.6 Discussion

Blindly assuming that unobserved heterogeneity in repeated measurements data only

comes from the correlation in the responses can be too restrictive and sometimes

can lead to invalid conclusions. We have shown through simulations that ignoring

overdispersion in count data can have dire consequences on estimation of some co-

variate effects and their standard errors, as well as, on the variance components and

the Type I error rates. Importantly, we found that the Type I error rates were con-

siderably inflated when overdispersion was ignored, implying that the probability of

detecting a spurious effect increases. Remarkably, our findings are strikingly similar

to those reported by (Litière, Alonso and Molenberghs, 2007; Litière, Alonso, and

Molenberghs, 2008) when studying the impact of misspecifying the random effect dis-

tribution in a logistic model with a random intercept. It is interesting to see that

two related but different types of misspecification, i.e., ignoring overdispersions and

misspecifying the random effect distribution, may have very similar consequences.

Our simulations also indicate that the combined model may be a reasonable al-

ternative in this situation. When the combined model is fitted to data that has no

overdispersion, it converges to the Poisson-normal model and no numerical issues

emerge in this situation. Furthermore, the model is rather robust to misspecification

of the random effects distributions. All the previous characteristics seem to indicate



72
Chapter 6. Ignoring Overdispersion in Hierarchical Models: Possible

Problems and Solutions

Table 6.1: Epilepsy Study. Parameter estimates and standard errors for the regression

coefficients in the Poisson-normal model, and the combined model. Estimation was

done by maximum likelihood using numerical integration over the normal random

effect, if present.

Poisson-normal Combined

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept placebo β0 0.8179 (0.1677) 0.9112 (0.1755)

Slope placebo β1 −0.0143 (0.0044) −0.0248 (0.0077)

Intercept treatment β2 0.6475 (0.1701) 0.6555 (0.1782)

Slope treatment β3 −0.0120 (0.0043) −0.0118 (0.0074)

overdispersion parameter λ — 2.4640 (0.2113)

overdispersion parameter τ = 1/λ1 — 0.4059 (0.0348)

Variance of random intercepts σ2
b 1.1568 (0.1844) 1.1289 (0.1850)

−2log-likelihood −6810 −7664

that the combined model is a useful tool for the analysis of Poisson data with overdis-

persion and it there is no harm in always starting with the combined model in settings

where overdispersion is suspected.

. .

.

.
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Table 6.2: Median of Parameter Estimates, {relative bias in %} and (standard errors)

for simulations studying the impact of ignoring overdispersion. Data were generated

from combined model with normal (bi) and gamma (θij) random effects using dif-

ferent levels of skewness (λ). The data were analyzed with Comb=combined model,

PN=Poisson-normal. TV denotes the true values.

Parameter Estimates

β0 β1 β2 β3 σ2
b λ

TV 0.1 0.2 0.3 0.5 4 4

Comb 0.102{2} 0.200{0} 0.288{4} 0.500{0} 3.990{0.25} 4.020{0.5}
(0.139) (0.012) (0.1926) (0.0155) (0.0694) (0.176)

PN 0.112{12} 0.192{4} 0.315{5.1} 0.488{2.4} 3.974{0.65}
(0.1315) (0.0040) (0.1828) (0.0044) (0.0684)

TV -2 -0.5 -3 1 4 2

Comb -2.004{0.2} -0.499{0.2} -2.982{0.6} 1.003{0.3} 4.149{3.7} 2.002{0.1}
(0.2450) (0.0520) (0.3404) (0.0679) (0.1365) (0.4438)

PN -2.074{3.7} -0.496{0.8} -2.964{1.2} 0.995{0.6} 4.140{3.5}
(0.2312) (0.0395) (0.2989) (0.0498) (0.1343)

TV 0.1 0.2 0.3 0.5 4 0.5

Comb 0.106{6} 0.202{1} 0.271{9.7} 0.502{0.4} 3.938{1.6} 0.500{0}
(0.1837) (0.0300) (0.2433) (0.0403) (0.0792) (0.0190)

PN -0.706{805} 0.186{7} 0.287{4.3} 0.476{4.8} 4.485{12.1}
(0.1441) (0.0057) (0.1976) (0.0061) (0.0763)
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Table 6.4: Median parameter estimates, {relative bias in %} and (standard errors) for

simulations studying the impact of misspecfying the distribution of θij. The θijs were

sampled from Re-dist. The combined model was fitted assuming gamma distributed

overdispersion random effects.

RE-dist. Parameter Estimates

β0 β1 β2 β3 σ2
b λ

0.1 0.2 0.3 0.5 2 4

gamma 0.105{5} 0.199{0.5} 0.291{3} 0.501{0.2} 1.989{0.55} 4.027{0.68}
(0.1048) (0.0123) (0.1435) (0.0156) (0.0491) (0.1803)

chisquare 0.784{684} 0.201{0.5} 0.290{0.3} 0.501{0.2} 1.992{2} 1.002{75}
(0.1483) (0.0191) (0.2069) (0.0258) (0.0700) (0.0324)

Table 6.5: Median parameter estimates, {relative bias in %} and (standard errors) for

simulations studying the impact of misspecfying both θij and bi distributions. Data

were generated from a combined model with bi sampled from Re-dist. and θij sam-

pled from a chisquare distribution. The data were analyzed with the combined model

assuming normal and gamma random effects.

RE dist. Parameter Estimates

β0 β1 β2 β3 σ2
b λ

0.1 0.2 0.3 0.5 2 4

normal 0.105{5} 0.199{0.5} 0.291{3} 0.501{0.2} 1.989{0.55} 4.027{0.68}
(0.1048) (0.0123) (0.1435) (0.0156) (0.0491) (0.1803)

t4 0.804{704} 0.200{0} 0.276{8} 0.501{0.2} 1.714{14.3} 1.001{75}
(0.1112) (0.0184) (0.1546) (0.0251) (0.0485) (0.0320)

chisquare 1.751{1651} 0.192{4} 0.262{12.7} 0.504{8} 1.620{19} 1.002{75}
(0.009) (0.0171) (0.1438) (0.0238) (0.0418) (0.0285)
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Chapter 7

Properties of Estimators in

Exponential Family Settings

With Observation-based

Stopping Rules

Random sample size (RSS) trials are beneficial in medical research, although mean

estimators used in fixed sample size (FSS) trials are not confidently used after such

trials since they lose some good properties. In this chapter, we study the properties of

mean estimators in an RSS setting from a new perspective, that leads to interesting

findings.

7.1 Introduction

It is commonly known that statistical designs where the sample size is random pose

challenges beyond the fixed sample-size case and that many findings are counter-

intuitive. While this has been documented for situations where the sample size de-

pends on the data, such as in sequential trials (Siegmund, 1978; Hughes and Pocock,

1988; Emerson and Fleming, 1990) or incomplete data (Little and Rubin, 2002), it is

less widespread that such counterintuitive results apply even when the sample size is

completely random (Grambsch, 1983; Barndorff-Nielsen and Cox, 1984), in the sense

that both the collected and uncollected data have no relationship to the stochastic

79
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mechanism governing the sample size. Liu and Hall (1999) provided a general the-

ory for sequential studies, where the decision to either stop or continue the study at

every interim look depends deterministically on the data collected up to that point.

Molenberghs et al. (2013) generalized their results to the setting where the sample

size may depend stochastically rather than deterministically on the observed data,

a general setting that contains both sequential trials and completely random sample

sizes (CRSS) as special cases. We refer to these three settings together as a stochastic

stopping rule. Molenberghs et al. (2013) also discussed the related cases of incom-

plete longitudinal data, censored time-to-event data, joint modeling of survival and

longitudinal data, and clustered data with random cluster sizes.

An important finding of Liu and Hall (1999) was that the commonly used sufficient

statistics in deterministic stopping designs are incomplete, a property that will be

defined in the next section. Molenberghs et al. (2013) generalized this to stochastic

stopping rules and explore the implications of this for linear estimators based on

the sample sum as well as on so-called marginal and conditional estimators. They

found for stochastic stopping rules that the counterintuitive implications of a random

sample size follows from two properties: (a) excluding the CRSS case, the sample size

is non-ancillary given the sample sum; (b) the pair consisting of the accumulating

sample sum and the sample size is an incomplete minimal sufficient statistic. These

properties are defined in Section 7.2.

The work of Liu and Hall (1999) and Molenberghs et al. (2013) was confined to

the special case of normally distributed outcomes. Further, Molenberghs et al. (2013)

illustrated there developments with a random stopping rule of probit form. These

specific choices allow for insightful expressions. The latter choice is not however

necessary for deterministic stopping rules that can be cast in the form of continuation

and stopping regions or, equivalently, the boundaries between them.

Extending the results in Liu and Hall (1999), Liu et al. (2006) presented a gen-

eral deterministic stopping rule theory where the outcome follows a one-parameter

exponential family, and also established incompleteness for this case. This implies, in

particular, that there are infinitely many unbiased estimators, none with uniformly

minimum variance. In this chapter, we show incompleteness in the one-parameter

exponential family case, for a stochastic stopping rule, and derive explicit results for

linear estimators as well as for marginal and conditional likelihood estimators. These

general findings are then further illustrated in the normal case, making the connec-

tion to Molenberghs et al. (2013), and in the case where the outcomes are binary, and

hence the sample sum is binomial.

Our findings are essentially as follows. The classical sample average is biased in
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finite samples, though asymptotically unbiased for a broad classes of stopping rules.

An unbiased estimator follows from the conditional likelihood, where the conditioning

is on the (non-ancillary) sample size. Contrary to intuition, the conditional estimator

has larger mean squared error than the ordinary sample average for sufficiently large

sample size, the latter resulting from the joint likelihood, where ‘joint’ means a simul-

taneous model for the outcomes and the sample size. In some cases, the result holds

for all sample sizes, large and small. Thus, the sample average is a valid and sensible

estimator, contrary to some claims in the sequential-trial literature, for stochastic

and deterministic stopping rules. The literature on sequential trials is indeed very

large, with a relatively early review given by Whitehead (1999). Tsiatis, Rosner, and

Mehta (1984) and Rosner and Tsiatis (1988) address precision estimation after group

sequential trials. Emerson and Fleming (1990) propose estimators within an order-

ing paradigm. Much of this work is placed in a unifying framework by Liu and Hall

(1999). A review can be found in Molenberghs et al. (2013).

The finite-sample bias in the sample average disappears only in the CRSS case.

Even then, it is not unique in that a whole class of so-called generalized sample average

estimators can be defined, all of which are unbiased. This enables us to show that the

ordinary sample average is only asymptotically optimal. Indeed there is no uniformly

optimal unbiased estimator in finite samples for most exponential-family members;

the exponential distribution is a noteworthy exception.

The case of two possible sample sizes, N = n and N = 2n is simple yet generic,

and will be adopted here. All developments can be generalized with ease to the setting

with L possible sample sizes and accrual numbers n1, . . . , nL.

7.2 Notation, Basic Concepts, and Problem Formu-

lation

As stated in the introduction, we consider a simple sequential trial, where n measure-

ments Yi are observed, after which a stochastic stopping rule is applied and, depending

on the outcome, another set of n measurements is or is not observed. Let Y be the

(2n× 1) vector of outcomes that could be collected, with the sample sum denoted by

K, and N be the realized sample size, that is, N = n or N = 2n. A joint model for

the stochastic outcomes is

f(y, N |θ,ψ) = f(y|θ) · f(N |y,ψ) (7.1)

= f(y|N,θ,ψ) · f(N |θ,ψ). (7.2)
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The sample sum is denoted by K. If necessary, a subscript will indicate over which

batch the sample is calculated. Molenberghs et al. (2013) noted the similarity with

missing-data concepts, where (7.1) is a selection model factorization and (7.2) is a

pattern-mixture factorization (Little and Rubin, 2002). In all cases, it is assumed

that f(N |y,ψ) = f(N |yo,ψ) depends on observed outcomes only, and hence the

sample size is determined by the first batch of observations (Y1, . . . , Yn). We may

then write f(N |Kn,ψ). This corresponds to the frequentist concept of missingness

at random (Little and Rubin, 2002). In the limiting case of a deterministic stopping

rule, f(N |y,ψ) is degenerate and f(N = n|y,ψ) equals 1 when Kn ∈ S ⊂ IR and 0

over its complement C, with the reverse holding for f(N = 2n|y,ψ). The CRSS case

follows by assuming Y and N to be independent, meaning that both factorizations

(7.1) and (7.2) trivially reduce to f(y|θ) · f(N |ψ).

In the stopping-rule case ψ is not estimable from the data and will be assumed

to be specified by design. This is different for the other settings that can also be cast

in terms of (7.1)–(7.2), such as incomplete longitudinal data, clusters of random size,

censored time-to-event data, joint models for longitudinal and time-to-event data,

and random measurement times settings, as noted by Molenberghs et al. (2013). In

these cases, a subject-specific index i needs to be introduced into (7.1)–(7.2) and N

needs to be replaced by the missing data indicators, censoring indicators, and so on.

7.2.1 Basic Concepts

In line with Molenberghs et al. (2013), we will review several fundamental concepts

that are essential in what follows.

In agreement with Rubin (1976), we consider ignorability. For pure likelihood or

Bayesian inferences, under missingness at random (MAR), inferences about θ can be

made using f(yoi |θ) only, without the need for an explicit missing-data mechanism

or, in our case, without the need for an explicit sample-size model. This is, provided

the regularity condition of separability holds true, i.e., that the parameter space of

(θ′,ψ′)′ is the Cartesian product of their individual product spaces. In other words,

this means that the sample size model does not contain information about the outcome

model parameter. It implies that N could then be considered ancillary in the sense of

(Cox and Hinkley, 1974, pp. 32–35). We will see that this is true for CRSS, but not

for the other situations. Excluding MNAR, ignorability can be violated in three ways.

First, even in the likelihood and Bayesian frameworks and under MAR, ignorability

does not apply in a non-separable situation. Second, frequentist inferences are not

necessarily ignorable under MAR. Third, assuming MAR and separability hold and
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we are in a likelihood or Bayesian framework, ignorability in the selection model

decomposition (7.1) does not translate to the pattern-mixture model (7.2), as is clear

from the presence of both θ and ψ in both factors of (7.2). The latter statement

is symmetric and could be made starting from a pattern-mixture view as well. The

bottom line is that ignorability holds in at most one of these, except in the trivial

MCAR setting, such as for CRSS.

There is a connection between ignorability and ancillarity (Cox and Hinkley, 1974).

They define an ancillary statistic T to be one that complements a minimally sufficient

statistic S such that, given S, T does not contain information about the parameter of

interest. Arguably the best known example is the sample size T = n when estimating

a mean, provided the sample size is fixed by design or the law governing it does not

depend on the mean parameter to be estimated, as with CRSS. Counterexamples are

the stochastic and deterministic stopping rules.

The crucial property for Liu and Hall (1999), Liu et al. (2006), Molenberghs et

al. (2013), as well as for us here is that of completeness (Casella and Berger, 2001,

pp. 285–286). A statistic s(Y ) of a random variable Y , with Y belonging to a family

Pµ, is complete if, for every measurable function g(·), E[g{s(Y )}] = 0 for all µ, implies

that Pµ[g{s(Y )} = 0] = 1 for all µ. The relevance of completeness for us surfaces

in two ways. First, from the Lehman-Scheffé theorem (Casella and Berger, 2001), if

a statistic is unbiased, complete, and sufficient for some parameter µ, then it is the

best mean-unbiased estimator for µ. The lack of this property in the stopping-rule

case will manifest itself when studying generalized sample averages in Section 7.4.

Second, completeness and ancillarity are connected through Basu’s theorem (Basu,

1955; Casella and Berger, 2001, p. 287): a statistic both complete and sufficient is

independent of any ancillary statistic.

7.2.2 General Model Formulation

Assume that we collect n i.i.d. observations Y1, . . . , Yn, with exponential family density

fµ(y) = h(y) exp {µy − a(µ)} , (7.3)

where µ is the natural parameter, a(µ) the mean generating function, and h(y) a

normalizing constant. Assume a stochastic stopping rule

π(N = n|kn) = F (kn|ψ) = F (kn) , (7.4)

with Kn =
∑n
i=1 Yi. The form for (7.4) is left unspecified at this time. The CRSS

setting follows as F (kn) ≡ F , a constant. Likewise, when F (·) is degenerate, a deter-

ministic stopping rule ensues. When the trial is not stopped, a further n observations
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Yn+1, . . . , Y2n are collected, also with density (7.3). The inferential goal is to estimate

µ or a function of this, such as the population mean µ. From the exponential-family

structure, the density of Kn can be expressed

fn,µ(k) = hn(k) exp {µk − na(µ)} . (7.5)

When no ambiguity can arise, the subscript n may be dropped from Kn. Because the

density integrates to 1, it trivially follows that

ena(µ) =

∫
hn(k)eµkdk = L{hn(k)} . (7.6)

While expression (7.6) is well known to be a Laplace transformation, it is useful to

state it explicitly in preparation of the derivations in Section 7.3.

When, in addition, the conditional probability of stopping an exponential family

form is chosen, e.g.,

F (kn) = F (k) =

∫ z=A(k)

z=−∞
f̃1(z)dz, (7.7)

then an appealing form for the marginal stopping probability can be derived. Here

f̃1(z) can be seen as an exponential family member, underlying the stopping process.

When the outcomes Y and hence K do not range over the entire real line, the lower

integration limit in (7.7) should be adjusted accordingly, and the function A(k) should

be chosen so as to obey the range restrictions. It is convenient to assume that f̃1(z)

has no free parameters; should there be the need for such, then they can be absorbed

into A(k). Hence, we can write

f̃1(z) = h̃1(z) exp {−ã(0)} . (7.8)

Using (7.5) and (7.8), the marginal stopping probability becomes:

P (N = n) =

∫ k=+∞

k=−∞

∫ z=A(k)

z=−∞
fn,µ(k)f̃1(z)dz dk

= exp {−na(µ)− ã(0)}
∫ k=+∞

k=−∞
hn(k)

[∫ z=A(k)

z=−∞
h̃1(z)dz

]
eµkdk

= exp {−na(µ)− ã(0)}L {H1(A(k)) · hn(k)} , (7.9)

where

H1(t) =

∫ z=t

z=−∞
h̃1(z)dz.

In the special case of a CRSS, A(k) ≡ A and (7.9) reduces to

f(N = n) = exp {−na(µ)− ã(0)}H1(A)L{hn(k)}

= exp {−na(µ)− ã(0)}H1(A)ena(µ) =

∫ A

k=−∞
f̃1(k)dk.
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In our two special cases, (7.3) will be chosen as standard normal and Bernoulli,

respectively. In the first of these, in concordance with Molenberghs et al. (2013), (7.4)

will be assumed to be of probit form:

F (k) = Φ

(
α+ β

k

n

)
. (7.10)

In the binary case, we will generally leave (7.4) unspecified, but for some developments

it is useful to consider an explicit example, for which we will resort to the beta

distribution, i.e.,

f̃1(z) =
zα−1(1− z)β−1

B(α, β)
, (7.11)

with B(·, ·) the beta function. It is convenient to choose integer values, for illustrative

purposes: α = p+ 1, β = q + 1, with p and q integers, changing (7.11) to:

f̃1(z) = (p+ q + 1)

(
p+ q

p

)
zp(1− z)q. (7.12)

Choosing (7.12) leads to the conditional stopping probability:

F (k) = (p+ q + 1)

(
p+ q

p

)
q∑
`=0

(−1)`

p+ `+ 1

(
q

`

)
A(k)p+`+1. (7.13)

It is instructive to consider some special cases of this. When p = q = 0, (7.12)

reduces to the uniform distribution on the unit interval, and it immediately follows

that F (k) = A(k). When p = 1 and q = 0, we find F (k) = A(k)2. As a third and last

instance, when p = q = 1, F (k) = 3A(k)2 − 2A(k)3.

A useful function is A(k) = k/n, implying that stopping is certain when K = n

and continuation is certain when K = 0, while for 0 < K < n stopping is probabilistic.

The actual probability in these cases depends on the choice for p and q.

These choices are made to illustrate our general developments and our emphasis

is not on, say, designing a particular trial. However, the class of beta-based stopping

rules, for example, potentially leads to rich families of stopping rules and spending

functions (Whitehead, 1997; Jennison and Turnbull, 2000).

7.3 Incomplete Sufficient Statistics

7.3.1 The General Case

We now consider the role of completeness in this setting, building upon the work of

Liu and Hall (1999), Liu et al. (2006), and Molenberghs et al. (2013). A sufficient
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statistic for this setting is (K,N). In line with the developments in the above papers,

the joint distribution for (K,N) is:

p(k, n) = fn(k) · F (k), (7.14)

p(k, 2n) = f2n(k)−
∫
fn(z)fn(k − z)F (z)dz. (7.15)

When the stopping rule leads to range restrictions in the sense of Lehman (1950), it is

known that the sufficient statistic is complete. Hence, for the rest of this section, we

assume their necessary and sufficient conditions do not hold. It is known that these

conditions do not hold for the normal distribution, in contrast to classes of stopping

rules for the Poisson and binomial distributions, for example.

Assume now that a function g(K,N) exists such that its expectation is zero for all

values of the parameter and further that integrands are not zero almost everywhere

over their integration ranges. Such a function must satisfy:∫
g(k, n)fn(k)F (k)dk +

∫
g(k, 2n)f2n(k)dk − (7.16)∫ ∫

g(k, 2n)fn(z)fn(k − z)F (z)dk dz = 0.

Substituting the general exponential form (7.5) into (7.17), and using (7.6), leads to∫
g(k, 2n)h2n(k)eµkdk −

∫
g(k, 2n)

[∫
hn(z)hn(k − z)F (z)dz

]
eµkdk (7.17)

=

∫
hn(k)eµk ·

∫
g(k, n)hn(k)F (k)eµkdk

Because the left hand side of (7.18) is a convolution, and using the uniqueness of the

Laplace transform, we find:

g(k, 2n) = −
∫
g(z, n)hn(z)hn(k − z)F (z)dz

h2n(k)−
∫
hn(z)hn(k − z)F (z)dz

. (7.18)

Hence, when g(k, n) is chosen arbitrarily, (7.18) prescribes the choice for g(k, 2n)

which leads to a counterexample to completeness, hence establishing incompleteness.

For the CRSS case, when F (k) ≡ F , a constant, and also choosing g(k, n) = c, a

constant, it follows that

g(k, 2n) =
−F

1− F
· c.

In the limiting case of a deterministic stopping rule, F (z) = 1 over the stopping

region S and 0 over its set complement C. It then follows that (7.14)–(7.15) reduce
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to:

p(k, n) = fn(k) · I(k ∈ S), (7.19)

p(k, 2n) =

∫
C
fn(z)fn(k − z)dz. (7.20)

For the deterministic case, (7.18) becomes:

g(k, 2n) = −
∫
S g(z, n)hn(z)hn(k − z)dz

h2n(k)−
∫
S hn(z)hn(k − z)dz

= −
∫
S g(z, n)hn(z)hn(k − z)dz∫
C hn(z)hn(k − z)dz

. (7.21)

Expression (7.21) follows from the fact that, in the deterministic case, F (k) = 1

over the stopping region S and 0 elsewhere. The transition from one denominator to

the other follows from observing that the convolution of fn(k) with itself produces

f2n(k), and then replacing all of these by their explicit exponential-family form (7.5).

Alternatively, it is easy to show that (7.21) follows immediately from the definition

of a function G(K,N) and (7.19)–(7.20).

The implication of these findings is that whenever they hold, the Lehmann-Scheffé

theorem cannot be applied (see Section 7.2). It follows that a best mean-unbiased

estimator does not necessarily exist for the average. In the next section, it will be

shown that this is indeed the case for many, but not all outcome distributions and

stopping rules, given that, for example, the exponential distribution does admit a

uniform optimum. It will be shown that no optimum exists for the normal case, in

line with Molenberghs et al. (2013), and neither for the Bernoulli and Poisson cases,

for a wide class of stopping rules.

7.3.2 The Normal Case

Following Molenberghs et al. (2013), consider the outcome to be standard normal with

mean µ and let stopping be governed by (7.10). They derived from first principles

that the marginal probability of stopping is:

P (N = n) = Φ

(
α+ βµ√
1 + β2/n

)
. (7.22)

This expression also follows as a special case of (7.9) by choosing (7.10) as the stopping

rule, i.e., f̃1(z) as the standard normal density and A(k) = α + βk/n, and further

fn,µ=µ = ϕµ,n(k), where ϕµ,s(k) is the normal density with mean µ and variance s.

Details of this derivation are provided in Appendix B.

Clearly, (7.22) depends on µ, implying that this pattern-mixture formulation is

non-separable. In contrast, although the observed data are present in the conditional

stopping probability, µ is not, implying separability in the selection model formulation.
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In this case (7.14)–(7.15) takes the form

pµ(N, k) = p0(N, k) · exp

(
kµ− 1

2
nµ2

)
(7.23)

with

p0(n, k) = φn(k) · Φ
(
α+

β

n
k

)
, (7.24)

p0(2n, k) = φ2n(k) ·

1− Φ

 α+ βk
2n√

2n+β2

2n

,

 . (7.25)

Here, φs(k) is the normal density with mean 0 and variance s. Expression (7.25)

is more explicit than (7.15), making use of the fact that the outcome densities are

normal and the stopping probability is written as a normal cumulative distribution

function. The derivation can be found in Molenberghs et al. (2013). Based on the

fact that integrating the joint densities specified by (7.23)–(7.25) over K and summing

over N should be equal to one, leads to the identity:

∫
ϕµ,n(k) · Φ

(
α+

β

n
k

)
dk =

∫
ϕµ,2n(k) · Φ

 α+ βk
2n√

2n+β2

2n

,

 dk. (7.26)

In Section 7.4.1, (7.26) will be derived in general.

The specific form of condition (7.18) is:

g(k, 2n) · p0(2n, k) = −
∫
φn(k − z) · g(z, n) · φn(z) · Φ

(
α+

β

n
z

)
dz. (7.27)

In the CRSS case, (7.24)–(7.25) reduce to:

p0(n, k) = φn(k) · Φ, (7.28)

p0(2n, k) = φ2n(k) · (1− Φ), (7.29)

where Φ ≡ Φ(α). Then here, as in the general case, (7.27) simplifies and leads to

an explicit solution for a number of cases, especially when g(k, n) is chosen to be a

constant.

In addition, for this case, other explicit examples can be constructed, even when

β 6= 0. We reproduce the two examples of Molenberghs et al. (2013).

Example 1. For the first of two examples, choose

g(k, n) = λ̃, (7.30)
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an arbitrary constant. Then it immediately follows from (7.27) that

g(k, 2n) = −λ̃ ·
Φ

(
α+ βk

2n√
2n+β2

2n

,

)

1− Φ

(
α+ βk

2n√
2n+β2

2n

,

) . (7.31)

When β = 0, then the right hand side of (7.31) is constant and we can set λ̃ = λ(1−Φ),

leading to g(k, n) = λ(1− Φ) and g(k, 2n) = −λΦ.

Such g(k,N) functions lead to entire classes of estimators. To see this, assume

that an estimator for µ is available, µ̂, say. For example, µ̂ could be the sample

average

µ̂ =
1

N
K. (7.32)

We can then construct a class of estimators derived there from.

Applying this to our example and choosing (7.30) and (7.31) for the special case

of β = 0 leads to the following class of estimators:

µ̂λ = µ+ λ · [(1− Φ)I(N = n)− ΦI(N = 2n)] . (7.33)

It follows directly from the construction of g(k,N) that E(µ) = E(µ̂λ) and hence, if

µ is unbiased, then so is µ̂λ.

For the variance of (7.33), we obtain var(µ̂λ) = var(µ) +λ2Φ(1−Φ) which, within

this class, is minimal for λ = 0. Hence, for β = 0, i.e., the CRSS case, the original

estimator is more efficient than any member of the new class. This will change when

β 6= 0. We also need to consider the basic estimator itself, e.g., either (7.32) or (7.51).

before moving on to this, we first complete the second example.

When β → +∞, (7.24)–(7.25) reduces to

p0(n, k) = φn(k) · I(k > 0), (7.34)

p0(2n, k) =

∫ k=0

k=−∞
f0(z, n) · φn(k − z) dz. (7.35)

In this case, the G(K,N) functions will take a particular form.

With g(k, n) as in (7.30), when β → +∞ (7.31) becomes

g(k, 2n) = −λ̃ ·
Φ
[
(2n)−1/2k

]
1− Φ

[
(2n)−1/2k

] . (7.36)

To see that the considerations particular to the above example are not unique, we

consider a second one.
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Example 2. Choose

g(k, n) =
λ

Φ
(
α+ β

nk
) , (7.37)

with λ a given constant, then

g(k, 2n) = − λ

1− Φ

(
α+ βk

2n√
2n+β2

2n

,

) . (7.38)

Choosing (7.37) and (7.38) now produces the estimator

µ̃λ = µ+ λ ·

 I(N = n)

Φ
(
α+ β

nk
) − I(n = 2n)

1− Φ

(
α+ βk

2n√
2n+β2

2n

,

)
 . (7.39)

When now taking the limit β → +∞, (7.37)–(7.38) become:

g(k, n) = λ, defined for k > 0, (7.40)

g(k, 2n) = − λ

1− Φ
[
(2n)−1/2k

] . (7.41)

The fact that the function g(k, n) in (7.40) is undefined over the negative real numbers

is unproblematic, because the stopping region is confined to the non-negative half line.

7.3.3 The Binary Case

While the binary case follows from the general considerations given in Section 7.3.1, it

is insightful to examine this outcome type in some detail; here, integration is replaced

by summation. Let the Bernoulli probability be π. The sample sum K then follows

a Bin(π,N) distribution and

fN,π(k) =

(
N

k

)
πk(1− π)N−k. (7.42)

For now, as in the general case, we leave F (k) unspecified. The joint distribution of

(K,N) now takes the form

p(k, n) =

(
n

k

)
πk(1− π)n−kF (k), (7.43)

p(k, 2n) = πk(1− π)2n−k

[(
2n

k

)
−H(k)

]
= πk(1− π)2n−kH̃(k), (7.44)
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where

H(k) =

k∧n∑
z=0∨(k−n)

(
n

z

)(
n

k − z

)
F (z), (7.45)

the meaning of H̃(k) is obvious, a ∨ b = max(a, b), and a ∧ b = min(a, b).

When stopping rule (7.13) is chosen, (7.43) becomes:

p(k, n) = (7.46)(
n

k

)
πk(1− π)n−k(p+ q + 1)(

p+ q

p

)
q∑
`=0

(−1)`

p+ `+ 1

(
q

`

)
A(k)p+`+1.

The marginal stopping probability can be derived by summing (7.47) over k but is

generally unwieldy. In the particular case that p = q = 0 and A(k) = k/n, we find

p(k, n) =
k

n

(
n

k

)
πk(1− π)n−k, (7.47)

p(k, 2n) =
2n− k

2n

(
2n

k

)
πk(1− π)2n−k. (7.48)

While the derivation of (7.47) is obvious, that of (7.48) is less straightforward and

details are given in Appendix B. From (7.47), we deduce immediately that

P (N = n) =
1

n

n∑
k=0

k

(
n

k

)
πk(1− π)n−k = π.

In other words, this particular choice of conditional stopping rule produces essentially

the simplest possible marginal stopping probability that depends on the parameter π

that governs the outcomes.

The condition for the existence of a non-trivial function g(K,N) with expectation

zero for all π is a discrete version of (7.17) and reads:

n∑
k=0

g(k, n)F (k)

(
n

k

)
πk(1− π)n−k +

2n∑
k=0

g(k, 2n)H̃(k)πk(1− π)2n−k = 0. (7.49)

Writing γ = π/(1− π), (7.49) becomes

n∑
k=0

g(k, n)F (k)

(
n

k

)
γk +

2n∑
k=0

g(k, 2n)H̃(k)(1− π)nγk = 0.. (7.50)
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Using the discrete-data version of (7.6), i.e.,

(1− π)−n =

n∑
k=0

(
n

k

)
γk,

it follows that

−
2n∑
k=0

 k∧n∑
z=0∨(k−n)

(
n

z

)(
n

k − z

)
g(z, n)F (z)

µk =

2n∑
k=0

g(k, 2n)H̃(k)µk.

Owing to equality of polynomial coefficients, we find:

g(k, 2n) = −

k∧n∑
z=0∨(k−n)

(
n

z

)(
n

k − z

)
g(z, n)F (z)

H̃(k)
,

the discrete-data version of (7.18).

7.4 Generalized Sample Averages

7.4.1 The General Case

To underscore the impact of incompleteness of the statistics (K,N), Molenberghs et

al. (2013) generalized the sample average (7.32) to

µ =
K

N
·[c · I(N = n) + d · I(N = 2n)] = K ·

[
c · I(N = n)

n
+
d · I(N = 2n)

2n

]
, (7.51)

for some constants c and d. We will refer to it as the generalized sample average

(GSA). The ordinary sample average follows as c = d = 1. In this section, (7.51) will

be considered from a general exponential-family perspective. Sections 7.4.2 and 7.4.3

bring out some further specifics for the normal and Bernoulli cases, respectively.

From (7.5), the mean follows as µ = ∂a(µ)/∂µ. The expectation is:

E(µ) =
c

n

∫
kfn(k)F (k)dk +

d

2n

∫
kf2n(k)dk (7.52)

− d

2n

∫ ∫
kfn(z)fn(k − z)F (z)dk dz.

This form can be simplified. We will derive two identities that are useful here and in

what follows. Because integrating (7.14)–(7.15) over K and summing over N should

lead to unity, it follows that∫
fn(k)F (k)dk =

∫ ∫
fn(z)fn(k − z)F (z)dk dz. (7.53)
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This equation obviously also follows from first principles. Likewise, we have that∫ ∫
kfn(z)fn(k − z)F (z)dk dz =

∫
z

fn(z)F (z)

[∫
k

kfn(k − z)dk
]
dz

=

∫
z

fn(z)F (z) [nµ+ z] dz

= nµAn(µ) +Bn(µ), (7.54)

where

An(µ) =

∫
fn(k)F (k)dk, Bn(µ) =

∫
kfn(k)F (k)dk. (7.55)

Using (7.54), we can rewrite (7.53) as

E(µ) = d · µ+
2c− d

2n
Bn(µ)− d · µ

2
An(µ) (7.56)

= d · µ+
1

2

[
(2c− d)E

(
K

N

∣∣∣∣N = n

)
− d · µ

]
· P (N = n). (7.57)

While obvious, it is useful to spell out (7.56)–(7.57) for the ordinary sample average:

E(µ) = µ+
1

2n
Bn(µ)− µ

2
An(µ) (7.58)

= µ+
1

2

[
E

(
K

N

∣∣∣∣N = n

)
− µ

]
· P (N = n). (7.59)

It is very intuitive that the bias in the sample average is a simple function of the

difference between conditional and marginal expectation of K/N on the one hand,

and the probability of stopping on the other.

The specific form of (7.53) will depend on both the exponential family member

considered and the form of the stopping rule. In general, the expectation may be a

non-linear function of µ and hence there may be no constants c and d for which the

expectation is µ. Hence, in many situations, all linear estimators of the form (7.51)

may be biased. Examples are given in Sections 7.4.2 and 7.4.3.

We now turn to the asymptotic behavior of the GSA, i.e., the case where n→ +∞.

Because K converges to a N(nµ, nσ2) variable, and using a first-order Taylor series

expansion F (k) ≈ F (nµ) + F ′(nµ)(k − nµ), we find from first principles:

An(µ) ≈ F (nµ), (7.60)

Bn(µ) ≈ nµF (nµ) + nσ2F ′(nµ). (7.61)

Using (7.60) and (7.61), (7.56) converges to:

E(µ)
n→+∞−→ d · µ+ (c− d) · µ lim

n→+∞
F (nµ) +

2c− d
2

σ2 lim
n→+∞

F ′(nµ). (7.62)
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In particular, for the ordinary sample average:

E(µ)
n→+∞−→ µ+

1

2
σ2 lim

n→+∞
F ′(nµ). (7.63)

In Section 7.4.2, we we will see that (7.62) is finite and, moreover, (7.63) equals µ.

Sufficient conditions for this to hold in general can be given. Assume that F (·) is

a continuously differentiable function that depends on k as a function of k/n. To

emphasize this, write

F (k) = F (η(k/n)). (7.64)

Then F (nµ) = F (η(µ), independent of n and F ′(nµ) = η′(µ)F ′(η(µ))/n, which

depends on n only through the factor n−1 and hence converges to zero. More generally,

a stopping rule that satisfies F ′(nµ)
n→+∞−→ 0 ensures that the sample average is

asymptotically unbiased.

For a GSA to be asymptotically unbiased, (7.62) should equal µ. Assume that the

third term on the right hand side of (7.62) is zero and F (nµ) = F̃ (µ) does not depend

on n. The GSA is unbiased if d+ (c− d)F̃ (µ) = 1 for all values of µ (note that, when

µ = 0, the limit is trivially equal to zero). This equation can be satisfied if F̃ (µ) is

constant, i.e., in the CRSS case to be discussed next. Otherwise, the equation can be

satisfied only for c = d = 1, i.e., the ordinary sample average.

For the GSA to be unbiased in the finite-sample case, (7.56) needs to equal µ,

leading to the requirement:

d =
2µ− 2cµ̃P (N = n)

2µ− (µ̃+ µ)P (N = n)
, (7.65)

with µ̃ = E(K/N |N = n). Evidently, this is a function of µ in the non-CRSS case and

hence no uniformly unbiased estimator exists. Further, unless in the CRSS case, the

ordinary sample average never satisfies (7.65) because this would imply that µ̃ = µ

and hence the stopping probability would be independent of µ.

In the specific case of a CRSS, the constant F is taken out of the integrals on the

right hand side of (7.56) and we easily find:

ECRSS(µ) = [cF + d(1− F )]µ, (7.66)

which is unbiased if and only if

d =
1− cF
1− F

. (7.67)

An obvious solution is c = d = 1, the sample average, next to an infinite number of

unbiased linear estimators of the type (7.51). Note that (7.67) follows from (7.65)

upon observing that in the CRSS case µ = µ̃ and P (N = n) = F .
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In addition to studying the overall expectation of the GSA, it is of interest to

consider the conditional expectations. These are:

E(µ|N = n) =
c

n
· Bn(µ)

An(µ)
, (7.68)

E(µ|N = 2n) =
d

2n
· 2nµ− nµAn(µ)−Bn(µ)

1−An(µ)
. (7.69)

The ordinary sample average versions follow by setting c = d = 1 in (7.68)–(7.69).

The asymptotic behavior of (7.68)–(7.69), follows from applying (7.60) and (7.61):

E(µ|N = n)
n→+∞−→ c

(
µ+ σ2 lim

n→+∞

F ′(nµ)

F (nµ)

)
, (7.70)

E(µ|N = 2n)
n→+∞−→ d

(
µ− 1

2
σ2 lim

n→+∞

F ′(nµ)

1− F (nµ)
.

)
. (7.71)

For the ordinary sample average, when F ′(nµ) converges to zero, the conditional

expectations converge to µ. In case the limits in (7.70) and (7.71) differ from zero,

there is a choice for c and d that produces conditional expectations equal to µ: c =

µ/[µ+σ2Q1(µ)] and d = µ/[µ−0.5σ2Q2(µ)], with obvious notation. Evidently, these

are not uniform and therefore not useful in practice. These values for c and d lie

at different sides of unity. We will return to the implications of limiting expressions

(7.63) and (7.70)–(7.71) in Section 7.4.2.

A natural follow-up question is whether there is a, perhaps a uniform, optimal

estimator in the CRSS case. From straightforward algebra we find that

var(µ) = µ2(1− c)2

(
F

1− F

)
+
σ2

n

1− 2Fc+ 2Fc2 − F 2c2

2(1− F )
, (7.72)

which is minimal for

copt =
2µ2n+ σ2

2µ2n+ σ2(2− F )
, dopt =

2µ2n+ 2σ2

2µ2n+ σ2(2− F )
. (7.73)

In (7.72) and (7.73), σ2 is the variance. It follows as either the first derivative of the

mean function or, in the slightly more general case where there is an overdispersion

parameter, as the first derivative of the mean multiplied with the overdispersion

parameter.

Whereas constraint (7.67) on the pair (c, d) does not depend on the particular

exponential family considered, rather only on the constant probability of stopping,

this is not true for the optimality condition (7.73). Because of its dependence on µ and

σ2, (7.73) will not generally allow for a uniform optimum, expect in specific examples.

A few examples are given in Table 7.1. As Molenberghs et al. (2013) observed for



96
Chapter 7. Properties of Estimators in Exponential Family Settings With

Observation-based Stopping Rules

Exp. fam. member c d

Normal
2µ2n+ σ2

2µ2n+ σ2(2− F )

2µ2n+ 2σ2

2µ2n+ σ2(2− F )

Bernoulli
2πn+ (1− π)

2πn+ (1− π)(2− F )

2πn+ 2(1− π)

2πn+ (1− π)(2− F )

Poisson
2λn+ 1

2λn+ 2− F
2λn+ 2

2λn+ 2− F

Exponential
2n+ 1

2n+ 2− F
2n+ 2

2n+ 2− F

Table 7.1: Coefficients for optimum unbiased generalized sample average estimators,

in the case of a completely random sample size.

the normal case, most solutions indeed indicate that there is no uniform minimum,

even though all coefficients converge to 1 if the sample size increases. A noteworthy

exception is the exponential family distribution, for which there is a uniform solution

common to all values of the mean parameter and different from 1, for every value of

the sample size n.

In all cases, when F = 0 then d = 1 and c is irrelevant, while for F = 1, the

reverse is true.

We have seen above that, even for CRSS, the sample average is not optimal, and

that there is no uniform optimal solution, even though the sample average approxi-

mately is. The exponential case is an exception to this, as we saw above. However,

the sample average is optimal in the restricted class of estimators that is invariant

to future decisions. Indeed, if stopping occurs, then the choice of the coefficient c

leads to an unbiased estimator, provided the appropriate d is chosen. However, this

d will never be used as it pertains to ‘future’ observations. This can be avoided only

by setting both coefficients to be equal, from which the conventional sample average

emerges.

The asymptotic behavior for a deterministic stopping rule is completely captured

by the normal case, described in Section 7.4.2, because the stopping rule F (k) has

the effect of restricting the integrals over the stopping and continuation regions S and

C, respectively. This, together with the fact that fn(k) approaches a normal density

with mean nµ and variance nσ2 establishes this fact. As a result, we can restrict

considerations regarding the deterministic case to the finite-sample situation. But

also this one is very straightforward. Given that the joint distribution (7.14)–(7.15)
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becomes (7.19)–(7.20), the functions An(µ) and Bn(µ) in (7.55) take the form:

An(µ) =

∫
S
fn(k)dk, Bn(µ) =

∫
S
kfn(k)dk. (7.74)

and all results, such as marginal and conditional expectations of the GSA, carry over.

7.4.2 The Normal Case

Molenberghs et al. (2013) showed that expectation (7.53) of generalized sample aver-

age (7.51) becomes, for the normal case with probit stopping probability:

E(µ) = dµ+ (c− d)µΦ(ν) +
2c− d

2n

β√
1 + β2/n

· φ(ν) (7.75)

with ν = (α+ βµ)/
√

1 + β2/n.

The specific case of a CRSS, here corresponding with β = 0, has been considered

in Section 7.4.1.

When β 6= 0, expression (7.75) does not in general simplify. It is easy to see here

that there cannot be a uniformly unbiased estimator, i.e., that there cannot exist c

and d such that (7.75) reduces to µ, for all µ, and in particular for µ = 0. For this

special case

0 =
2c− d

2n
· β√

1 + β2/n
· φ(ν0),

where ν0 = (α)/
√

1 + β2/n. Given that β 6= 0, this expression leads to the condition

2c = d. Substituting this back into (7.75), which should be µ for every value of

µ, and not just for µ = 0, produces E(µ) = cµ [2− Φ(ν)], which equals µ only if

c = [2− Φ(ν)]
−2

. Based on this, given that Φ(ν) is not constant but rather depends

on µ, unless β = 0, we see that there can be no uniformly unbiased estimator for

the generalized sample average type. In other words, a simple average estimator,

that merely uses the observed measurements in a least-squares fashion, can never be

unbiased unless β = 0.

Molenberghs et al. (2013) quantified the asymptotic bias. In Section 7.4.1 this was

done in general for CRSS. Turning to the case of β 6= 0, Molenberghs et al. (2013)

began with the ordinary sample average c = d = 1, which leads to expectation:

E(µ̂) = µ+
1

2n

β√
1 + β2/n

· φ(ν)
n→+∞−→ µ+

1

2n
β · φ(α+ βµ)

n→+∞−→ µ. (7.76)

In particular, when β → +∞, we see that

E(µ̂) = µ+
1

2
√
n
· φ
(√
nµ
) n→+∞−→ µ. (7.77)



98
Chapter 7. Properties of Estimators in Exponential Family Settings With

Observation-based Stopping Rules

There exist other choices that also lead to asymptotically unbiased generalized sample

averages. For β 6= 0 but finite, the expectation becomes

E(µ)
n→+∞−→ dµ+ (c− d)µΦ(α+ βµ), (7.78)

which equals µ if and only if:

d =
1− cΦ(α+ βµ)

1− Φ(α+ βµ)
. (7.79)

While (7.79) and (7.67) are similar, there is a crucial difference between these: the

latter is independent of µ, while the former is not, except when c = d = 1. In other

words, there is no uniformly asymptotically unbiased generalized sample average for

finite, non-zero β, except for the ordinary sample average itself.

The above limits also follow from (7.62) and (7.63), because now η(k/n) = α +

βk/n and the derivative therefore is F ′(nµ) = φ(α+ βµ) · β/n, which leads to (7.76).

Molenberghs et al. (2013) also studied the deterministic stopping rule case, fol-

lowing from β →∞, because then (7.78) becomes

E(µ) = dµ+ (c− d)µΦ(
√
nµ) +

2c− d
2
√
n
φ(
√
nµ)

n→+∞−→


cµ if µ > 0,

dµ if µ < 0,

0 if µ = 0.

(7.80)

This provides us with the interesting situation that, for positive µ, c = 1 yields

an asymptotically unbiased estimator, regardless of d, with the reverse holding for

negative µ. In the special case that µ = 0, both coefficients are immaterial. In

addition, we see here as well that the only uniform solution is obtained by requiring

that the bias asymptotically vanishes for all values of µ, that is c = d = 1.

The pleasing asymptotic behavior of the sample average is connected to the choice

of the stopping rule, in view of limiting expressions (7.63), (7.70), and (7.71). In this

case, limn→+∞ F (nµ) = Φ(α + βµ), a constant in ]0, 1[, while limn→+∞ F ′(nµ) =

(β/n)φ(α + βµ) = 0. Hence, the limits of F ′(nµ), F ′(nµ)/F (nµ), and F ′(nµ)/[1 −
F (nµ)] are zero. The essence is that the stopping rule is a cumulative density function

based transformation of a linear predictor in k/n. It is therefore of interes to examine

the consequences of switching to a different class of stopping rule. Therefore, we

change the stopping rule to Φ(α + βk). Then F ′(nµ) = βφ(α + βnµ) which again

tends to zero. However, depending on the sign of β and µ, Φ(α+βnµ) tends to either

zero or one. Applying de l’Hôpital’s rule to the case where F (nµ) tends to zero as

well, produces −β(α+βnµ) which tends to infinity, and hence the regularity condition
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(7.70) appears not to be satisfied. This requires careful qualification, because not only

does F (nµ) appear in (7.70), it is also the probability with which N = n, which then

equally well tends to zero. Thus, for this case, in the limit, E(µ|N = 2n) = E(µ)

and unbiasedness still applies. Evidently, when 1 − F (nµ) tends to zero rather than

F (nµ), we are in the mirror image of the above situation, and the result is the same.

This result applies more generally. If F (k) = Φ(α+ βknm), with m any real number,

then F ′(nµ) converges to zero whatever m is. Further, F (nµ) converges to Φ(α+βµ)

for m = −1, Φ(α) for m < −1, and Φ(±∞) (i.e., 0 or 1) for m > −1. This means

that the sample average is asymptotically unbiased in all cases, and even conditionally

asymptotically unbiased, based on the same logic as before.

7.4.3 The Binary Case

An explicit form for the expectation of the generalized sample average in the Bernoulli

case is

E(π) = dπ+
c

n

n∑
k=0

k

(
n

k

)
πk(1−π)n−kF (k)− d

2n

2n∑
k=0

kπk(1−π)2n−kH(k), (7.81)

with H(k) as in (7.45).

The CRSS has been covered in Section 7.4.1, and the coefficients for optimal

estimators listed in Table 7.1.

As an example, when stopping rule (7.13) is chosen, with p = q = 0 and A(k) =

k/n, we have that F (k) = A(k) = k/n and

H(k) = k/2n ·

(
2n

k

)
.

Hence, (7.81) becomes

E(π) = dπ +
c

n2
En(K2)− d

(2n)2
E2n(K2)

= π

[
d+

c

n
(1− π + nπ)− d

2n
(1− π + 2nπ)

]
. (7.82)

Clearly, the estimator is unbiased if and only if

d =
1− c

n (1− π + nπ)

1− 1
2n (1− π + 2nπ)

.

Hence, there is no uniform solution, neither in π nor in n. When n→ +∞,

d
n→+∞−→ 1− cπ

1− π
. (7.83)
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Note that the ordinary sample average, i.e., c = d = 1, is a solution to (7.83), as it

should.

Turning to the case of a deterministic stopping rule, assume that the stopping

region S is defined by (k ≤ k0), i.e., F (k) = 1 if k ≤ k0 and 0 otherwise. Functions

An(π) and Bn(π) as in (7.74) are here:

An(π) =

k0∑
k=0

(
n

k

)
πk(1− π)n−k = I(k0, n, π), (7.84)

Bn(π) =

k0∑
k=0

k

(
n

k

)
πk(1− π)n−k = nπI(k0 − 1, n− 1, π). (7.85)

I(k, n, π), the binomial cumulative distribution function, is actually defined by (7.84).

Various alternative formulations exist, but none is of direct use to us here. The

expectation of the GSA becomes:

E(π) = π

[
d+

2c− d
2
I(k0 − 1, n− 1, π)− d

2
I(k0, n, π)

]
. (7.86)

For the ordinary sample average, (7.86) reduces to

E(π) = π

{
1 +

1

2
[I(k0 − 1, n− 1, π)− I(k0, n, π)]

}
.

7.5 Likelihood Estimators

7.5.1 The General Case

For notational convenience, we introduce the indicator variable Z = I(N = n).

The joint likelihood for the observed data and stopping occurrence is:

L(µ) = hN (k) exp{µk −Na(µ)} · F (k)z · [1− F (k)]1−z. (7.87)

Likelihood decomposition (7.87) is of a selection model type. The factors pertaining to

stopping are free of the mean parameter µ. This simplifies the kernel of the likelihood

`(µ), score function S(µ), and Hessian H(µ):

`(µ) = lnhN (k) + µk −Na(µ), (7.88)

S(µ) = k −Na′(µ) = k −Nµ, (7.89)

H(µ) = −Na
′′
(µ) = −Nµ′. (7.90)

The simplicity of this estimator is a direct consequence of ignorability. Based on

(7.14)–(7.15), the conditional probability for the sample sum K, given the sample
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size N , can be derived. For the case that N = n, the likelihood function is:

Ln(µ) =
F (k)hn(k)eµk∫
F (k)hn(k)eµkdk

, (7.91)

leading to the following expressions for the log-likelihood, score, and Hessian:

`n(µ) = lnF (k) + lnhn(k) + µk − ln

∫
F (k)hn(k)eµkdk, (7.92)

Sn(µ) = k − Bn(µ)

An(µ)
= k − E(K|N = n), (7.93)

Hn(µ) = −

[
Cn(µ)

An(µ)
−
{
Bn(µ)

An(µ)

}2
]

= −
[
E(K2|N = n)− E(K|N = n)2

]
= −var(K|N = n). (7.94)

Here An(µ) and Bn(µ) are as defined in (7.55), and

Cn(µ) =

∫
k2fn(k)F (k)dk.

When N = 2n, the likelihood takes the form:

L2n(µ) =
Dn(µ)

1−An(µ)
, (7.95)

with

Dn(µ) = exp{µk − 2na(µ)}
[
h2n(k)−

∫
hn(z)hn(k − z)F (z)dz

]
.

Then, the counterparts to (7.92)–(7.94) are: Then, the counterparts to (7.92)–(7.94)

are:

`2n(µ) = µk − 2na(µ) + ln

[
h2n(k)−

∫
hn(z)hn(k − z)F (z)dz

]
− ln {1−An(µ)} , (7.96)

S2n(µ) = k − 2nµ− nµAn(µ)−Bn(µ)

1−An(µ)

= k − E(K|N = 2n), (7.97)

H2n(µ) = −2nσ2 − nσ2An(µ) + (nµ)2An(µ)− Cn(µ)

1−An(µ)

+
[Bn(µ)− nµAn(µ)][2nµ− nµAn(µ)−Bn(µ)]

[1−An(µ)]2

= −
[
E(K2|N = 2n)− E(K|N = 2n)2

]
= −var(K|N = 2n). (7.98)

From the form of (7.93) and (7.97), it is immediately clear that the conditional ex-

pectations of the conditional scores are equal to zero and therefore also the marginal

expectation.
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The expectation of the joint likelihood based estimator, which is the ordinary

sample average, was presented in Section 7.4.1. Even though there is small-sample bias

in most cases different from CRSS, wide classes of stopping rules are asymptotically

unbiased. The bias expressions in the conditional expectation of the sample average,

which of course are also the bias expressions for the joint likelihood estimator, are of

the form E(K/N |N)−µ. These expressions coincide with the correction in conditional

score equations (7.93) and (7.97) relative to (7.89), which follows immediately upon

rewriting the former as SN (µ) = k −Nµ+ {Nµ− E(K|N)}.
Turning to precision and information, first note that for CRSS, Hn(µ) = −nσ2

and H2n(µ) = −2nσ2; hence the marginal and conditional information in this case

reduces to I(µ) = Ic(µ) = nσ2(2− F ).

In the general case, the marginal and conditional information are

I(µ) = nσ2[2−An(µ)], (7.99)

Ic(µ) = nσ2[2−An(µ)]− [nµAn(µ)−Bn(µ)]2

An(µ)[1−An(µ)]
. (7.100)

Using information expressions (7.99)–(7.100), the bias for the marginal likelihood

estimator, and the fact that the conditional likelihood estimator is unbiased, the

mean squared error expressions are:

MSEn(µ̂) =
1

nσ2[2−An(µ)]
+

1

4n2
[nµAn(µ)−Bn(µ)]

2
, (7.101)

MSEn(µ̂c) =
1

nσ2[2−An(µ)]
+

[nµAn(µ)−Bn(µ)]2

Dn(µ)
, (7.102)

where

Dn(µ) = An(µ)[1−An(µ)]{nσ2[2−An(µ)]}2

−nσ2[2−An(µ)][nµAn(µ)−Bn(µ)]2.

Recall that for CRSS Bn(µ) = nµAn(µ) and both MSE expressions coincide. In the

asymptotic case, (7.101)–(7.102) can be approximated, using (7.60)–(7.61), as:

MSEn→+∞(µ̂) ' 1

nσ2[2− F (nµ)]
+
σ4

4
F ′(nµ)2, (7.103)

MSEn→+∞(µ̂c) ' 1

nσ2[2− F (nµ)]
+
F ′(nµ)2

En(µ)
, (7.104)

where, En(µ) = [2− F (nµ)]
{
F (nµ)[1− F (nµ)][2− F (nµ)]− nσ2F ′(nµ)2

}
.

Returning to the exact expressions (7.101)–(7.102), it is relatively straightforward to

show that (7.101) is smaller than (7.102) if and only if σ2An(µ)[1−An(µ)][2−An(µ)] ≥
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4. Requiring that this inequality is satisfied for all values of An(µ) in the unit interval

comes down to requiring that σ2 ≤ 2.54. Hence, the MSE is smaller in the marginal

case if the variance is sufficiently small. For binary data, for example this is always

satisfied given that the variance takes the form π(1−π). Also, asymptotically, An(µ)

typically tends to either 0 or 1, and the above requirement is then also satisfied. In

case F ′(nµ) tends to zero as n tends to infinity, both MSE expressions tend to the

same limit.

7.5.2 The Normal Case

Molenberghs et al. (2013) studied this case in detail. Because of the relatively simple

expressions for the normal density and the probit stopping rule (7.22), additional

insight can be gained We summarize their arguments.

Joint-likelihood expressions (7.87)–(7.90) for this case are:

L(µ) =

N∏
i=1

φ(yi;µ) · F
(
α+

β

n
k

)z
·
{

1− F
(
α+

β

n
k

)}1−z

, (7.105)

`(µ) = −1

2

N∑
i=1

(yi − µ)2, (7.106)

S(µ) =

N∑
i=1

(yi − µ), (7.107)

H(µ) = −N. (7.108)

By contrast, one can start from the conditional probability for the outcomes:

f(y1, . . . , yN |Z = z) =∏N
i=1 φ(yi;µ)Φ

(
α+ β

nk
)z [

1− Φ
(
α+ β

nk
)]1−z

Φ

(
α+βµ√
1+β2/n

)z [
1− Φ

(
α+βµ√
1+β2/n

)]1−z . (7.109)

Write, for convenience, α̃ = α/
√

1 + β2/n and β̃ = β/
√

1 + β2/n. Further, let

ν = α̃ + β̃µ. Consider first the case where N = n. The kernel of the likelihood `(µ),
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score function S(µ), and Hessian H(µ) are:

`n(µ) = −1

2

N∑
i=1

(yi − µ)2 − ln Φ(ν), (7.110)

Sn(µ) =

N∑
i=1

(yi − µ)− β̃ · φ(ν)

Φ(ν)
, (7.111)

Hn(µ) = −N + β̃2 · [ν · Φ(ν) + φ(ν)] · φ(ν)

Φ(ν)2
. (7.112)

When N = 2n, the corresponding expressions are:

`2n(µ) = −1

2

N∑
i=1

(yi − µ)2 − ln [1− Φ(ν)] , (7.113)

S2n(µ) =

N∑
i=1

(yi − µ) + β̃ · φ(ν)

1− Φ(ν)
, (7.114)

H2n(µ) = −N − β̃2 · {ν · [1− Φ(ν)]− φ(ν)} · φ(ν)

[1− Φ(ν)]
2 . (7.115)

Next, we consider bias, consistency, precision, and mean squared error of the joint

and conditional likelihood estimators.

In the CRSS case, µ vanishes from the joint stopping model, and both estimators

coincide with the ordinary sample average, amply studied in Section 7.4.

Asymptotic unbiasedness of the sample average follows simultaneously from direct

calculation as well as from the fact that it is the maximum likelihood estimator from

the joint likelihood (7.106). In terms of the conditional likelihood, the estimator is

obtained from the solution to the score equations, (7.111) and (7.114). These can be

reformulated as:

S̃(µ) =
1

N

N∑
i=1

yi − µ−
β√

1 + β2/n
· φ(ν) ·

{
I(N = n)

n · Φ(ν)
− I(N = 2n)

2n · [1− Φ(ν)]

}
. (7.116)

The expectation of (7.116) results from (7.76), combined with the observation that

the probability of stopping is Φ(ν):

E[S̃(µ)] = µ+
1

2n

β√
1 + β2/n

· φ(ν)− µ

− β√
1 + β2/n

· φ(ν) ·
{

1

n · Φ(ν)
· Φ(ν)− 1

2n · [1− Φ(ν)]
· [1− Φ(ν)]

}
= 0.

Finite-sample unbiasedness follows directly from the linearity of the score in the data.

Thus, the difference between both score equations is bias-correcting. The correction
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is a non-linear function of µ and has no closed-form solution, underscoring the point

that no simple algebraic function of K and N will lead to the same estimator.

Finally, we note that the conditional likelihood estimator is also conditionally

unbiased, i.e., it is unbiased for both situations N = n and N = 2n separately, in

agreement with our results of Section 7.5.1. To see this explicitly, it is convenient to

rewrite the expectation of the generalized sample average (7.75):

E(µ) = c ·

{
µ+

β√
1 + β2/n

· φ(ν)

nΦ(ν)

}
· Φ(ν)

+d ·

{
µ− β√

1 + β2/n
· φ(ν)

2n[−1Φ(ν)]

}
· [1− Φ(ν)],

from which both expectations E(µ|N) follow:

E(µ|N = n) = µ+
β√

1 + β2/n
· φ(ν)

nΦ(ν)
, (7.117)

E(µ|N = 2n) = µ− β√
1 + β2/n

· φ(ν)

2n[1− Φ(ν)]
. (7.118)

In conclusion, the sample average is conditionally and marginally biased, with the bias

vanishing as n goes to infinity, except in the situations that correspond to vanishing

probabilities. In contrast, the conditional estimator is unbiased, whether considered

conditionally on the observed sample size or marginalized over it.

Turning to precision, the expected information in the joint approach is

I(µ) = E(N) = n · Φ(α̃+ β̃µ) + 2n · [1− Φ(α̃+ β̃µ)] = n[2− Φ(α̃+ β̃µ)], (7.119)

where α̃ and β̃ are as above. In the conditional case, this is

Ic(µ) = n[2− Φ(α̃+ β̃µ)]− β̃2φ(α̃+ β̃µ)2

Φ(α̃+ β̃µ)[1− Φ(α̃+ β̃µ)]
(7.120)

When n→∞, the information approaches

Ic(µ)
n→+∞−→ n

{
[2− Φ(α+ βµ)]− 1

n
· β2φ(α+ βµ)2

Φ(α+ βµ)[1− Φ(α+ βµ)]

}
.

The difference between joint and conditional information tends to zero when n tends

to infinity.

We conclude that the conditional estimator is less precise than the joint one, in

contrast to many familiar settings such as contingency table analyses. The important

feature here is that conditioning is done on a non-ancillary statistic. In line with the
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general theory in Section 7.5.1, we have also seen that the joint approach leads to the

ordinary sample average, an estimator that has met with considerable concern in the

past in the sequential setting.

Because of the opposing results for bias and precision, it is useful to calculate the

mean squared error for both estimators. The expressions from Molenberghs et al.

(2013), are

MSE(µ̂) =
1

n[2− Φ(ν)]
+

1

4n2
β̃2φ(ν)2, (7.121)

MSE(µ̂c) ' 1

n[2− Φ(ν)]
+

1

[2− Φ(ν)]2Φ(ν)[1− Φ(ν)]n2
β̃2φ(ν)2. (7.122)

Comparing these, we see that g(ν) = [2 − Φ(ν)]2Φ(ν)[1 − Φ(ν)] < 4, the inequality

being strict. In fact, the maximal value for g(ν) equals 0.619. Hence, the joint

estimator has the smallest MSE of both, even though the difference will be very small

for moderate to large sample sizes. This holds regardless of the choice for α, β, and

n, and of the true value of µ. For β finite and when n→∞, ν approaches α+βµ and

β̃ approaches β. Then, Φ(α+ βµ) and φ(α+ βµ) become constant and the difference

between the two expressions disappears because the second terms on the right hand

sides of (7.121) and (7.122) are of the order of 1/n2.

To conclude this section, we examine the above quantities for the limiting case of

a deterministic stopping rule, i.e., β → ±∞. Focusing on the positive limit, we obtain

α+ βµ√
1 + β2/n

β→+∞−→
√
nµ.

The marginal outcome model retains its normal-density form, while the other three

expressions change. First, the conditional outcome model (7.109) becomes

f(y1, . . . , yN |Z = z) =

∏N
i=1 φ(yi;µ)

Φ (
√
nµ)

z
[1− Φ (

√
nµ)]

1−z . (7.123)

Second, (7.4) is given by P (N = n|yi) = 1 if K > 0 and 0 otherwise. Third, (7.22)

takes the limiting form P (N = n) = Φ (
√
nµ).

Molenberghs et al. (2013) derived the following bias expressions under determin-

istic stopping:

E(µ|N = n) = µ+
φ(
√
nµ)√

nΦ(
√
nµ)

, (7.124)

E(µ|N = 2n) = µ− φ(
√
nµ)

2
√
n[1− Φ(

√
nµ)]

, (7.125)

from which it follows that E[S̃(µ)|N ] = 0. For the sample average a little more caution

is required. From (7.117) and (7.118), it follows that E(µ|N) converges to µ at a rate
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of n, because ν → α+βµ. The situation is more subtle when β →∞. To show this, we

take the limit of (7.124) and (7.125) as n→∞. When µ < 0, applying de l’Hôpital’s

rule whenever needed, the limits are E(µ|N = n) → 0 and E(µ|N = 2n) → µ.

Similarly, when µ > 0, the corresponding expressions are E(µ|N = n) → µ and

E(µ|N = 2n) → µ/2. It follows that when µ = 0, these are both equal to 0.

Somewhat surprising, this shows there is no bias in the conditional means: when

n→∞, the probability itself that N = n (N = 2n) for negative (positive) µ goes to

zero. This implies that, overall, conditional inference based on the ordinary sample

average is still acceptable.

For precision, the second term in (7.120) approaches

nφ(
√
nµ)2

Φ(
√
nµ)[1− Φ(

√
nµ)]

.

This term is non-zero for finite n but can be shown to approach 0 if n → ∞. This

has the interesting consequence that there is no difference in precision when β = 0

and β →∞, but that there is for finite non-zero β.

For the mean squared error, the argument differs from the one used in the stochas-

tic stopping rule case, because now ν =
√
nµ and β̃ =

√
n, which leads to

MSE(µ̂|β →∞) =
1

n[2− Φ(
√
nµ)]

+
1

4n
φ(
√
nµ)2,

MSE(µ̂c|β →∞) ' 1

n[2− Φ(
√
nµ)]

+
1

[2− Φ(
√
nµ)]2Φ(

√
nµ)[1− Φ(

√
nµ)]n

φ(
√
nµ)2.

When n → ∞, both expressions converge to 1/(2n) if the trial continues and 1/n if

the trial stops, and the difference between them disappears.

7.5.3 The Binary Case

Joint-likelihood expressions for the binary case, in the probability parameter π are:

L(π) =

(
N

k

)
πk(1− π)N−k · F (k)z · [1− F (k)]1−z, (7.126)

`(π) ∝ k lnπ + (N − k) ln(1− π), (7.127)

S(π) =
k

π
− N − k

1− π
, (7.128)

H(π) =
−K + 2πK − π2N

π2(1− π)2
. (7.129)
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The expected Hessian, for fixed sample size, is well known to be −N/[π(1 − π)].

However, with our stopping rule F (k) = k/n, it can be shown to be

E[H(π)] = − (2− π)n

π(1− π)
. (7.130)

Likewise, given that the solution to S(π) is the sample average, the bias is

Bias(π̂) =
π(1− π)

2n
. (7.131)

We will return to this in what follows. Turning to the conditional expressions, for

N = n, (7.91)–(7.94) become:

Ln(π) =

(
n

k

)
πk(1− π)n−kF (k)

An(π)
, (7.132)

with

An(π) =

n∑
`=0

(
n

`

)
π`(1− π)n−`F (`),

leading to:

`n(π) ∝ k lnπ + (n− k) ln(1− π)− lnAn(π), (7.133)

Sn(π) =
k

π
− n− k

1− π
− nπAn(π)−Bn(µ)

An(π)
. (7.134)

For the case where N = 2n we obtain:

L2n(π) =

(
2n

k

)
πk(1− π)2n−k[1− F (k)]

1−An(π)
, (7.135)

`2n(π) ∝ k lnπ + (2n− k) ln(1− π)− ln[1−An(π)], (7.136)

S2n(π) =
k

π
− 2n− k

1− π
+
nπAn(π)−Bn(µ)

1−An(π)
. (7.137)

The fact that E[SN (π)|N ] = 0 follows from the derivations in Section 7.5.1, as well

as from first principles.

It is clear that the above expressions are slightly different than the general ex-

pressions (7.87)–(7.90), because π is not the natural parameter. This does not pro-

hibit further derivations but makes them cumbersome from an algebraic standpoint.

Therefore, we switch to the logit form, i.e., α = ln[π/(1 − π)] will be used. Further-

more, we restrict attention to the particular stopping rule used in previous sections,
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F (k) = k/n. Then, (7.126)–(7.129) become:

L(α) =

(
N

k

)
eαk

(1 + eα)
N
·
(
k

n

)z
·
(
n− k
n

)1−z

, (7.138)

`(α) ∝ αk −N ln (1 + eα) , (7.139)

S(α) = k −Nπ, (7.140)

H(α) = −Nπ(1− π). (7.141)

The use of π on the right hand sides of (7.140) and (7.141) rather than α is for

convenience only. The expected Hessian is straightforward to derive, given that

E(N) = n(2− π):

E[H(α)] = −n(2− π)π(1− π). (7.142)

In fact, this calculation is considerably easier than the derivation of (7.130), even

though they are equivalent. Indeed, (7.130) follows from (7.142) by applying the

delta method. Because π = expit(α), the derivative is ∆ = ∂α/∂π = [π(1 − π)]−1,

and E[H(π)] = ∆2 · E[H(α)], as it should.

The forms for (7.133)–(7.137), supplemented with the Hessians, are:

`n(α) ∝ αk − n ln (1 + eα)− α+ ln (1 + eα) , (7.143)

Sn(α) = (k − 1)− (n− 1)π, (7.144)

Hn(α) = −(n− 1)π(1− π), (7.145)

`2n(α) ∝ αk − 2n ln (1 + eα) + ln (1 + eα) , (7.146)

S2n(α) = k − (2n− 1)π, (7.147)

H2n(α) = −(2n− 1)π(1− π). (7.148)

Note that the conditional Hessians are in line with what one would expect from condi-

tioning upon the sample size: one ‘degree of freedom’ is removed for mean parameter

estimation. Such an operation though, is standard only when the sample size is fixed.

The counterintuitive effect on the efficiency was seen in general in Section 7.5.1 and

very explicitly for the normal data setting in Section 7.5.2. Straightforward algebra

then establishes:

E[HN (α)] = −π(1− π)[(2− π)n− 1] = E[H(α)] + π(1− π). (7.149)

Thus, the conditional information is expected to take one subject less into account

than the marginal expectation, precisely the opposite of what one would expect in

the fixed sample-size case. The bias in the estimators is easy to quantify, given that
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the estimators are π̂ = k/N in the marginal case and π̂c = (k − 1)/(n − 1) when

N = n and π̂c = k/(2n − 1) when N = 2n. The biases are (n − k)/([n(n − 1)] and

−k/[2n(2n− 1)], respectively. This follows from the difference between the marginal

and conditional estimators, given that the latter is unbiased. For this stopping rule,

E(K|N = n) = nπ + 1 − π and E(K|N = 2n) = π(2n − 1), and so the average bias

is (7.131), as we expect.

The variances are equal to the negative inverses of the expected Hessians. These,

combined with bias (7.131), readily leads to the MSE. Of course, (7.145) and (7.148)

are for α̂c and hence the delta method needs to be applied to obtain the variances

for π̂c. Note that the variance for π̂ was already derived in (7.130), but applying the

delta method to (7.141) gives the exact same result. The additional expressions are

var(π̂c|N = n) =
π(1− π)

n− 1
, (7.150)

var(π̂c|N = 2n) =
π(1− π)

2n− 1
, (7.151)

with the expected conditional Hessians the inverses of these quantities:

var(π̂c) = var(π̂c|N = n) · π + (7.152)

var(π̂c|N = 2n) · (1− π)

=
(nπ + n− 1)

(n− 1)(2n− 1)
π(1− π).

Note that the derivation of overall variance (7.153) involves the expectation of the

conditional variances only, while the variance of the conditional expectations is zero,

because both conditional estimators are unbiased. Finally,

MSE(π̂) = var(π̂) + Bias(π̂) (7.153)

=
π(1− π)

n(2− π))
+
π2(1− π)2

(2n)2
=

1

n
· π(1− π)

2− π
+O(n−2),

MSE(π̂c) = var(π̂c) =
(nπ + n− 1)π(1− π)

(n− 1)(2n− 1)
(7.154)

=
1

n
· π(1− π)(π + 1)

2
+O(n−2).

Calculating the difference between (7.154) and (7.153), we find

MSE(π̂c)−MSE(π̂) =
1

n

π2(1− π)2

2(2− π)
+O(n−2).

Hence, like in the normal case, the joint estimator is more efficient than the marginal

one. Of course, the MSE increase when moving from the joint to the conditional
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estimator is modest, with MSE(π̂) ≤ MSE(π̂c) ≤ 1.125MSE(π̂), the maximum dis-

crepancy reached for π = 0.5, and equality for π = 0 or π = 1. Because the stopping

rule depends on Kn, and because (7.4) combined with the conditional outcome model

is a pattern-mixture factorization (7.2), N is not ancillary to K.

7.6 Discussion

we have considered the consequences for statistical inference of a random sample size.

Our setting is that of univariate random variables from the exponential family that

are subject to a stopping rule such that the sample size is either N = n or N = 2n,

with n specified by design. Though the context considered here is for a single group

trial, n can specified by other designs, such as two-arm clinical trials, whether parallel

or cross over. The stopping rule is stochastic and is allowed to depend on the sample

sum K over the first n observations. The rule is generic in the sense that its limiting

cases are a deterministic stopping rule, such as in a sequential trial, and a completely

random sample size, independent of the data. This setting extends those of both

Liu et al. (2006) and Molenberghs et al. (2013); the former restrict attention to a

deterministic stopping rule, although they do so for an arbitrary number of interim

looks. The latter confined attention to normally distributed outcomes only.

We have focused on three important inferential aspects. First, we have shown

that the sufficient statistic (K,N) is incomplete. Second, we have examined the con-

sequences of this for the sample average, as well as for linear generalizations thereof.

We have shown that there is small-sample bias, except for the CRSS case. Even then,

there is no optimal estimator, except for the exponential distribution, for which the

optimum differs from the ordinary sample average. Third, we have studied maxi-

mum likelihood estimation in both a joint as well as a conditional framework. The

joint likelihood is for the exponential-family parameter and the stopping rule simul-

taneously. The conditional likelihood starts from the conditional distribution of the

outcomes, given the sample size. Also here, counterintuitive results are derived. The

joint likelihood produces the sample average as maximum likelihood estimator, which

is biased in finite samples but is asymptotically unbiased, provided a regularity con-

dition on the stopping rule applies. The conditional likelihood estimator is unbiased,

even in small samples. This notwithstanding, the sample average has smaller MSE

than the conditional estimator in many important cases, such as the normal and bi-

nary examples considered, as well as when the variance of the outcomes is sufficiently

small. Under regularity conditions, both estimators are asymptotically equivalent,
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with the difference between both being O(n−1). The regularity condition is not very

restrictive; it essentially comes down to requiring that F ′(k = nµ) approaches zero

where F is the stopping rule. For broad classes of parametric functions, this condi-

tion is satisfied. We have shown that the corresponding conditional expectations are

unbiased.

Hence, when the regularity conditions are satisfied, the sample average remains an

attractive and sensible choice for sequential trials. Thus, while some familiar inferen-

tial properties no longer hold, estimation after sequential trials is more straightforward

than commonly considered and there is little need for complicated, modified estima-

tors, given that the ordinary sample average is acceptable for wide classes of stopping

rules, whether stochastic or deterministic.

Molenberghs et al. (2013) considered several ramifications of their developments.

They commented on the situation of an arbitrary number of looks in a sequential

trial, and considered in detail the CRSS case for more than two possible sample sizes.

All of this was done for normally distributed outcomes. They also commented on the

connection between their derivations and longitudinal outcomes subject to dropout

of an MAR type, where dropout depends on observed but not further on unobserved

outcomes. While similar, there are subtle differences because now the randomness

in the sample size pertains to the number of measurements per subject, rather than

to the number of subjects. The difference lies in the fact that measurements within

a subject are not independent. Our results extend to these settings as well for the

exponential family. Furthermore, connections can be made with a variety of other

settings with random sample sizes, such as clustered data with informative cluster

sizes, time-to-event data subject to censoring, jointly observed longitudinal and time-

to-event data, and random observation times. These settings are currently scrutinized

further, and will be reported in a separate manuscript



Chapter 8

Estimation After a Group

Sequential Trial

Group sequential trials(GST) are the most popular form of RSS trials in medical

research and estimation after such trial is still hot topic research area. Using the

findings in Chapter 7, we shall in this chapter, that estimation after GST can be as

flexible as after a FSS trial.

8.1 Introduction

Principally for ethical and economic reasons, group sequential clinical trials are in

common use (Wald, 1945; Armitage, 1975; Whitehead, 1997; Jennison and Turnbull,

2000). Tools for constructing such designs, and for testing hypotheses from the re-

sulting data, are well established both in terms of theory and implementation. By

contrast, issues still surround the problem of estimation (Siegmund, 1978; Hughes and

Pocock, 1988; Todd, Whitehead, and Facey, 1996; Whitehead, 1999) following such

trials. In particular, various authors have reported that standard estimators such

as the sample average are biased. In response to this, various proposals have been

made to remove or at least alleviate this bias and its consequences (Tsiatis, Rosner,

and Mehta, 1984; Rosner and Tsiatis, 1988; Emerson and Fleming, 1990). An early

suggestion was to use a conditional estimator for this Blackwell (1947).

To successfully address the bias issue, it is helpful to understand its origins.

Lehman (1950) showed that it stems from the so-called incompleteness of the suf-

ficient statistics involved, which in turn implies that there can be no minimum vari-
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ance unbiased linear estimator. Liu and Hall (1999) and Liu et al. (2006) explored

this incompleteness in group sequential trials, for outcomes with both normal and

one-parameter exponential family distributions. For these distributions, Chapter7

and Molenberghs et al. (2013) and embedded the problem in the broader class with

random sample size, which includes, in addition to sequential trials, incomplete data,

completely random sample sizes, censored time-to-event data, and random cluster

sizes. In so doing, they were able to link incompleteness to the related concepts of

ancillarity and ignorability in the missing-data sense. By considering the conventional

sequential trial with a deterministic stopping rule as a limiting case of a stochastic

stopping rule, these authors were able to derive properties of families of linear esti-

mators as well as likelihood-based estimators. The key results are as follows: (1) the

sample average (SA) exhibits finite sample bias, although it is asymptotically unbi-

ased; (2) apart from the exponential distribution setting, there is no optimal linear

estimator, although the sample average is asymptotically optimal; (3) the validity of

the sample average as an estimator also follows from standard ignorable likelihood

theory; (4) there exists a maximum likelihood estimator that conditions on the real-

ized sample size (CL), which is finite sample unbiased, but has slightly larger variance

and mean square error (MSE) than the SA.

There is a subtle issue surrounding the properties of the SA. Evidently, the CL

is unbiased both conditionally and marginally with respect to the sample size. By

contrast, the SA is marginally unbiased, but there exist classes of stopping rules

where, conditionally on the sample size, there is asymptotic bias for some values of

the sample sizes. Surprisingly, this is not of concern. In Chapter 7, we showed this

for the case of two possible sample sizes, N = n and N = 2n. With such a stopping

rule, it is possible that, for example when N = n, the bias grows unboundedly with n;

when this happens though, the probability that N = n shrinks to 0 at the same rate.

As a consequence, in large but finite samples, simulations have confirmed this bias,

which has led to attempts to make corrections. The developments in Molenberghs

et al. (2013) and those in Chapter 7, however, show that a correction is not strictly

necessary since SA, because of its likelihood basis, it can be used in conjunction

with standard likelihood-based measures of precision, such as standard errors and

associated confidence intervals to provide valid inferences. If, on the other hand,

strict finite sample unbiasedness is regarded as essential, the conditional MLE can be

used, which, like MLE, also admits the standard likelihood-based precision measures.

This is a very important result and should be contrasted with the various ad hoc

precision estimators that have been developed in the past. Although there is a mild

computation cost involved, being a likelihood estimator, CL follows from a general
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principle and avoids the ad hoc nature of existing alternatives, which themselves are no

simpler computationally, and some are considerably more demanding. Thus, in spite

of some less conventional properties, the SA and its associated precision measures can

be used in some settings without problem.

A major limitation of Molenberghs et al. (2013) and results in Chapter 7 is the

restriction to two looks of equal size. It is the main aim of this paper to extend this

work to the practically more useful setting of multiple looks of potentially different

sample sizes.

8.2 Problem and Model Formulation

Consider a sequential trial with L pre-specified looks, with sample sizes n1 < n2 <

. . . , < nL. Assume that there are nj i.i.d. observations Y1, . . . , Ynj , from the jth look

that follow an exponential family distribution with density

fµ(y) = h(y) exp {µy − a(µ)} , (8.1)

for µ the natural parameter, a(µ) the mean generating function, and h(y) the nor-

malizing constant.

Subsequent developments are based on a generic data-dependent stochastic stop-

ping rule, which we write

π(N = nj |knj ) = F
(
knj
∣∣ψ) = F

(
knj
)
, (8.2)

where Knj =
∑nj
i=1 Yi also has an exponential family density:

fnj (k) = hnj (k) exp
{
µknj − nja(µ)

}
. (8.3)

Our inferential target is the parameter µ, or a function of this.

8.2.1 Stochastic Rule As A Group Sequential Stopping Rule

. While we do not need to provide an explicit expression for the stopping rule at

this point, as our developments apply to a broad class, it is useful to note that In

Chapter 7, have studied in detail the behavior of stopping rules taking the form

F
(
αj + βknj/n

m
j

)
, for some power m where it was shown that the limiting cases,

β → ∞ and β → −∞ correspond to deterministic stopping rules commonly used in

sequential trials. In the specific example of normally distributed responses, we assume

F
(
knj
∣∣ψ) = Φ

(
αj + βknj/nj

)
, where m = 1, and ψ = (α, β) is specified by design
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and Φ(.) represent the cumulative probability function for the normal distribution.

Clearly, if β is too large, the probability of stopping is either 0 or 1 depending on the

value of knj/nj , which is similar to group sequential trial rules, where one decides to

stop or continue based on the observed statistic and pre-specified boundaries. The

value of α is paramount to deciding the behavior of stopping boundaries. Consider

O’Brien and Fleming stopping boundaries where it is difficult to stop in early stages;

one can then specify αj such that the probability of stopping increases with the stages.

In addition to the computational advantages and the associated practicality, we use

the stochastic rule to maintain the focus of this paper, which is estimation.

8.3 Incomplete Sufficient Statistics

Several concepts play a crucial role in determining the properties of estimators fol-

lowing sequential trial: incompleteness, a missing at random (MAR) mechanism,

ignorability, and ancillarity (Molenberghs et al., 2013). We consider the role of in-

completeness first: a statistic s(Y ) of a random variable Y , with Y belonging to a

family Pµ, is complete if, for every measurable function g(·), E[g{s(Y )}] = 0 for all µ,

implies that Pµ[g{s(Y )} = 0] = 1 for all µ (Casella and Berger, 2001, pp. 285–286).

Incompleteness is central to the various developments (Liu and Hall, 1999; Liu et al.,

2006; Molenberghs et al., 2013) because of the the Lehman-Scheffé theorem which

states that “if a statistic is unbiased, complete, and sufficient for some parameter µ,

then it is the best mean-unbiased estimator for µ,” (Casella and Berger, 2001). In the

present setting, the relevant sufficient statistic is not complete, and so the theorem

can not be applied here.

In line with extending the work of Molenberghs et al. (2013) and findings in Chap-

ter 7, to a general number of looks, we explore incompleteness and its consequencies

in studies with more than two looks using the stochastic rule.

In a sequential setting, a convenient sufficient statistic is (K,N). Following the de-

velopments in the above papers, the joint distribution for (K,N) is:

p(K,N) = f0(K,N) F (KN ), (8.4)

f0(kn1
, n1) = fn1

(kn1
), (8.5)

f0(knj , nj) = (8.6)∫
f0(knj−1

, nj−1)fnj−nj−1
(knj − knj−1

)
[
1− F (knj−1

)
]
dknj−1

.

If (K,N) were complete, then there would exist a function g(K,N) such that
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E [g(K,N)] = 0 if and only if g(K,N) = 0, implying that

0 =

∫
g(kn1

, n1)fn1
(kn1

)F (kn1
)dkn1

+

L−2∑
j=2

∫
g(knj , nj)H(knj )F (knj )dknj

+

∫
g(knL , nL)H(knL)F (knL)dknL , (8.7)

with

H(knj ) =∫ . . .︸︷︷︸
j−1

∫
f0(knj−1 , nj−1)fnj−nj−1(knj − knj−1)

[
1− F (knj−1)

]
dkn1 . . . dknj−1

]
.

Substituting the general exponential form (8.3) into (8.7), and applying properties of

exponential family probability distribution, gives

0 =

∫
hnL−n1

e(µkn1 )

∫
g(kn1

, n1)F (kn1
)hn1

(kn1
) exp(µkn1

)dkn1

+

L−2∑
j=2

∫
hnL−nje

(µknj )

∫
g(knj , nj)H̃(knj ) exp(µknj − nj)F (knj )dknj

+

∫
g(knL , nL)H̃(knL) exp(µknL)F (knL)dknL , (8.8)

where

H̃(knj ) =

[∫
. . .︸︷︷︸
j−1

∫ j−1∏
i=1

hn1
(kn1

)hni+1−ni(kni+1
− kni) [1− F (kni)]dkn1

. . . dknj−1

]
.

The right hand side is a convolution and making use of properties of linearity and

uniqueness of the Laplace transform it can be shown that:

g(knL , nL)H̃(knL) = −
L−1∑
j=1

∫
g(zj , nj)H̃(zj)F (zj)dzj ,

g(knL , nL) =

∑L−1
j=1

∫
g(zj , nj)H̃(zj)F (zj)dzj

H̃(knL)
.

Assigning, for example, arbitrary constants to g(n1, kn1) . . . g(nL−1, knL−1
), a value

can be found for g(nL, knL) 6= 0, contradicting the requirement for (K,N) to be

complete, hence establishing incompleteness. From applying the Lehmann-Scheffé

theorem, that no best mean-unbiased estimator is guaranteed to exist. The practical

consequence of this is that even estimators as simple as a sample average need care-

ful consideration and comparison with alternatives. For this, we embed the sample

average in a broader class of linear estimator, and also study it from a likelihood

perspective.
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8.4 Generalized Sample Averages

Extending the definition in Molenberghs et al. (2013), the generalized sample average

(GSA) can be be defined as:

µ̄g =

L∑
j=1

aj
nj
knj , (8.9)

for a set of constants a1, . . . , aL. The SA follows as the special case where each aj = 1.

To explore the properties of the GSA we make use of the fact that:∫
fn1(kn1)dkn1 +

L∑
j=2

∫
H̃(knj )F (knj ) exp(µknj − nja(µ))dknj = 1,

and derive three useful identities:∫
fn1

(kn1
)dkn1

= 1−
L∑
j=2

Anj (µ), (8.10)

L∑
j=1

Bnj (µ) =

L∑
j=1

nja
′(µ)Anj (µ), (8.11)

L∑
j=1

Cnj =

L∑
j=1

2nja
′(µ)Bnj (µ)− [nja

′(µ)]2Anj (µ) + nja
′′(µ)Anj (µ),

where

An1(µ) =

∫
fn1(kn1)dkn1 ,

Bn1
(µ) =

∫
kn1

fn1
(kn1

)dkn1
,

Cn1(µ) =

∫
k2
n1
fn1(kn1)dkn1 ,

Anj (µ) =

∫
H̃(knj )F (knj ) exp(µknj − nja(µ))dknj , (j > 1)

Bnj (µ) =

∫
knj H̃(knj )F (knj ) exp(µknj − nja(µ))dknj ,

Cnj (µ) =

∫
k2
nj H̃(knj )F (knj ) exp(µknj − nja(µ))dknj (j > 1).

Using identities (8.10) and (8.11), the expectation of (8.9) can then be formulated as

E [µ̄g] =
a1

n1
Bn1(µ) +

L∑
j=2

aj
nj
Bnj (µ) (8.12)

= a1µ+

L∑
j=2

a1Anj (µ)
n1 − nj
n1

[
n1aj − nja1

a1(n1 − nj)
E

{
K

N

∣∣∣∣∣N = nj

}
− µ

]
,
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establishing the bias as a function of the difference between the marginal and con-

ditional means. When (8.12) is unbiased, at least one value among a1, . . . , aL will

depend on µ. This means that none of the GSA can be uniformly unbiased. Focusing

on the SA, the expectation reduces to

E [µ̄] = µ+

L∑
j=2

Anj (µ)
n1 − nj
n1

[
Bnj (µ)

njAnj(µ)
− µ

]

= µ+

L∑
j=2

Anj (µ)
n1 − nj
n1

[
E

{
K

N

∣∣∣∣∣N = nj

}
− µ

]
, (8.13)

from which we get the bias as

L∑
j=2

Anj (µ)
n1 − nj
n1

[
Bnj (µ)

njAnj(µ)
− µ

]
=

L∑
j=2

n1 − nj
n1nj

[
Bnj (µ)−Anjnjµ

]
=

L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

. (8.14)

Thus, the SA is unbiased when the conditional and marginal means are equal.

8.5 Likelihood Estimation

We now consider the marginal, or joint maximum likelihood estimator, as well as its

conditional counterpart. Likelihood methods, while allowing for a unified treatment

across a variety of settings (e.g., data types, stopping rules), they do rely heavily on

correct parametric specification. This should be taken into account when opting for

a particular approach.

Our results consider the MLE from a specific angle, that of ignorability, and take

a deterministic stopping rule as a limiting case. This provides additional information

in a setting where some take the MLE for granted, while others prefer different, often

tailor made estimators.

Molenberghs et al. (2013) connected sequential trials and incomplete data theory

and a brief summary was presented in Section ??. Using a selection model factor-

ization for the joint distribution of observed data and sample size, they showed that

separability and ignorability hold, such that under a missing at random (MAR) as-

sumption, maximizing the joint likelihood is equivalent to maximizing the likelihood

of the observed data only. This connection is crucial when considered against the

background of Kenward and Molenberghs (1998), where it was shown that under

frequentist inference and the missing at random (MAR) assumption, the observed
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information matrix gives valid inferences. Provided that use is made of the likelihood

ratio, Wald or score statistics based on the observed information, then reference to

a null asymptotic χ2 distribution will be appropriate because this is derived from

the implicit use of the unconditional sampling framework. We therefore explore joint

modeling of observed data and sample sample size for a general number of looks, the

properties of which will be compared to the likelihood of observed data conditional

on the sample size.

8.5.1 Joint Likelihood

The joint distribution of the sufficient statistics (K,N) is given by;

f(K,N) = hN (K) exp [Kµ−Na(µ)] ·
L−1∏
i=1

[
1− F (knj )

]
F (knL)I(i<L). (8.15)

Because our stopping rule is independent of the parameter of interest, the log-

likelihood, the score, the Hessian, and the expected information simplify as follows:

`(µ) = ln[hN (K)] +Kµ−Na(µ) (8.16)

+ ln

{
L−1∏
i=1

[
1− F (knj )

]
F (knL)I(i<L)

}
,

S(µ) = K −Na′(µ), (8.17)

H(µ) = −Na′′(µ), (8.18)

I(µ) =

L∑
j=1

nja
′′(µ)Anj (µ). (8.19)

In deriving the score (8.17) from (8.17) the rightmost term drops out, i.e., conventional

ignorability applies. As a consequence, the maximum likelihood estimator reduces to

µ̂ = a′(µ) = K/N , the SA. Under the usual likelihood regularity conditions, the SA

is then consistent and asymptotically normally distributed, and the likelihood-based

precision estimator and its corresponding confidence interval are valid. In other words,

this conventional asymptotic behavior contrasts with the idiosyncratic small-sample

properties of the GSA derived in the previous section.

Because of the bias, a finite sample comparison among estimators needs to be

based on the MSE. For µ̂, this is

MSE(µ̂) =
1∑L

j=1 nja
′′(µ)Anj (µ)

+

 L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

2

. (8.20)
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8.5.2 Conditional Likelihood

The conditional distribution for N = n1 is

fn1
(n1, kn1

) = fn1
(kn1

)F (kn1
),

fn1
(n1) =

∫
fn1

(kn1
)F (kn1

)dkn1
= An1

(µ),

f(kn1
|n1) =

fn1(kn1)F (kn1)

An1
(µ)

,

from which the log-likelihood, score, Hessian, and information follow as:

`n1
(µ) = ln [hn1

(kn1
)] + µkn1

− n1µ− ln [An1
(µ)] , (8.21)

Sn1
(µ) = kn1

− Bn1(µ)

An1
(µ)

= kn1
− E

[
K
∣∣N = n1

]
, (8.22)

Hn1(µ) = −

{
Cn1

(µ)

An1(µ)
−
(
Bn1

(µ)

An1(µ)

)2
}

(8.23)

= −
{
E
[
K2
∣∣N = n1

]
−
(
E
[
K
∣∣N = n1

])2}
,

In1(µ) = E
[
K2
∣∣N = n1

]
−
{
E
[
K
∣∣N = n1

]}2
.

Similarly for N = nj where j > 1, we have the conditional distribution:

fnj (nj , knj ) = H̃(knj )F (knj ) exp
[
µknj − nja(µ)

]
, (8.24)

fnj (nj) =

∫
H̃(knj )F (knj ) exp

[
µknj − nja(µ)

]
= Anj (µ), (8.25)

f(knj |nj) =
H̃(knj )F (knj ) exp

[
µknj − nja(µ)

]
Anj (µ)

. (8.26)

The following expressions for the likelihood, score, Hessian, and information are:

`nj (µ) = ln[H̃(knj )F (knj )] + µknj − njµ− lnAnj (µ), (8.27)

Snj (µ) = knj −
Bnj (µ)

Anj (µ)
= knj − E

[
K
∣∣N = nj

]
, (8.28)

Hnj (µ) = −

{
Cnj (µ)

Anj (µ)
−
[
Bnj (µ)

Anj (µ)

]2
}

(8.29)

= −
{
E
[
K2
∣∣N = nj

]
−
(
E
[
K
∣∣N = nj

])2}
,

Inj (µ) = E
[
K2
∣∣N = nj

]
−
{
E
[
K
∣∣N = nj

]}2
. (8.30)
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The overall information for the conditional likelihood estimator is given by

Ic(µ) =

L∑
j=1

Anj (µ)

{
Cnj (µ)

Anj (µ)
−
[
Bnj (µ)

Anj (µ)

]2
}
,

=

L∑
j=1

nja
′′(µ)Anj (µ)−

L∑
j=1

[Bnj (µ)− nja′(µ)Anj (µ)]2

Anj (µ)
. (8.31)

From the scores (8.22) and (8.28), it can be seen that conditional likelihood estimator

is unbiased. Clearly, the bias correction in the CLE mirrors the bias expression of the

SA, as can be seen from (8.13). Upon writing (8.22) and (8.28), as

Snj (µ) = knj − njµ+

[
njµ−

Bnj (µ)

Anj (µ)

]
,

the bias-correction factor in the CLE becomes even more apparent.

In contrast to the case of a fixed sample size, conditioning on the sample size in

this case leads to loss of information, as can be seen by the subtraction of a positive

factor in (8.31). This is a consequence of conditioning on a non-ancillary statistic, as

discussed in Casella and Berger (2001).

For the CLE the MSE is:

MSE(µ̂c) =
1

Ic(µ)
(8.32)

=
1∑L

j=1 nja
′′(µ)Anj (µ)

+
y[∑L

j=1 nja
′′(µ)Anj (µ)

]2
− y

∑L
j=1 nja

′′(µ)Anj (µ)
, (8.33)

where

y =

L∑
j=1

[
Bnj (µ)−Anjnj(µ)

]2
Anj (µ)

.

The condition that MSE(µ̂) ≥ MSE(µ̂c) is equivalent to the requirement that L∑
j=1

[
Bnj (µ)−Anjnjµ

]
nj

2

≥ 1∑L
j=1 nja

′′(µ)Anj (µ)

holds. For the special case of equal sample sizes this can never be true, hence the SA

has the smaller MSE. More generally, neither is uniformly superior in terms of MSE.
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8.6 Asymptotic Properties

We now turn to the large-sample properties of the estimators discussed in the pre-

vious sections. When N → ∞, approximately K ∼ N(Nµ,Nσ2), so normal-theory

arguments can be used. Considering a first-order Taylor series expansion of F (knj )

around njµ results in F (knj ) ≈ F (njµ) + F ′(njµ)(knj − njµ). Without loss of gen-

erality, consider a class of stopping rules for which F ′(nj)
n→∞→ 0. In this setting, the

expressions derived above can be approximated by

An1(µ) ≈ F (n1µ),

Bn1
(µ) ≈ F (n1µ)n1µ,

Anj (µ) ≈
j−1∏
i=1

[1− F (niµ)]F (njµ), (j > 1)

Bnj(µ) ≈
j−1∏
i=1

[1− F (niµ)]F (njµ)njµ, (j > 1).

These approximations will be useful in what follows.

8.6.1 Asymptotic Bias

Recall that the bias for the SA was given by (8.14), which asymptotically tends to

the limit

lim
n→∞

L∑
j=1

∏j−1
i=1 [1− F (niµ)]F (njµ)njµ−

∏j−1
i=1 [1− F (niµ)]F (njµ)njµ

nj
−→ 0.

Although the sample average is finite-sample biased in general for data-dependent

stopping rules, it is asymptotically unbiased and hence can be considered an appro-

priate candidate for practical use following a sequential trial. Emerson (1988) estab-

lished the same result for two possible looks and further noted that this property is

not relevant in group sequential trials, because large sample sizes are unethical, hence

making the study of small sample properties crucial. On the other hand, results from

a comprehensive analysis, comparing randomized controlled trials (RCTs) stopped

for early benefit (truncated) and RCTs not stopped for early benefit (non-truncated),

indicated that treatment effect was over-estimated in most of truncated RCTs re-

gardless of the pre-specified stopping rule used (Bassler et al. , 2010). They further

advocate stopping rules that demand large number of events. In the exploration of

properties of estimators, in Chapter 7 it was shown that in the general class of linear
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mean estimators, only the sample average has asymptotic unbiasedness property thus

giving it an advantage in cases where asymptotic unbiasedness would play a role.

It has been noted previously that the bias reduces to zero when the conditional

and marginal means are equal. We turn now to the asymptotic conditional behavior

of the bias of the sample average given the sample size. Two cases are considered:

Case I. F (nµ)
n→∞−→ a ∈]0, 1[ and F ′(nµ)

n→∞−→ 0. For this case E[µ̄|N = nj ]
n→∞−→ µ,

for j = 1, . . . , L.

Case II. Here, both the function F (·) and its first derivative F (·) converge to zero.

When this happens, it does so for all but one of the sample sizes that can pos-

sibly be realized. The one exception is the sample size that will be realized,

asymptotically, with probability one. Without loss of generality, we illustrate

this case for stopping at the first look, assuming that the sample size realized

at the first look corresponds to a set of values for µ taht do not contain the

true one. Thus, F (nµ)
n→∞−→ 0 and F ′(nµ)

n→∞→ 0. This case can corre-

spond for particular forms of F (knj ). Given that K is asymptotically normally

distributed, letting F (K) = Φ(k) is a mathematically convenient choice from

which it follows that F (njµ) = Φ(njµ). Consider first N = n1. Then,

lim
n1→∞

E[µ̄|N = n1] = µ− lim
n1→∞

φ(n1µ)σ2

Φ(n1µ)
,

of which the right hand term approaches 0/0. We therefore apply l’Hopital’s

rule and obtain:

lim
n1→∞

E[µ̄|N = n1] = µ− lim
n1→∞

−n1µφ(n1µ)

φ(n1µ)
→∞,

with the sign opposite to that of µ. Hence, conditional on the fact that stop-

ping occurs after the first look, the estimate may grow in an unbounded way.

However, recalling that F (nµ), the probability of stopping when N = n1, also

approaches zero, these extreme estimates are also extremely rare. In the same

case, for N = nj (j > 1), limn→∞E[µ̄|N = nj ] → µ. So for these sample sizes

no asymptotic bias occurs.

Recall from Chapter 7, that a large class of stopping rules corresponds to either

Case I or Case II. For example, for stopping rule Φ(α + βk/n), they found that

Case I applies. Switching to Φ(α + βk), F ′(nµ) = βφ(α + βnµ) which again tends

to zero. However, Φ(α + βnµ) may tend to either zero or one. For a general rule

F (k) = Φ(α+βknm), with m any real number, F ′(nµ) converges to zero whatever m
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is. Further, F (nµ) converges to Φ(α+βµ) for m = −1, Φ(α) for m < −1, and Φ(±∞)

(i.e., 0 or 1) for m > −1. They showed that the sample average is asymptotically

unbiased in all cases, and even conditionally asymptotically unbiased, based on the

same logic as before. The above shows that this carries over to the case of an arbitrary

number of looks.

8.6.2 Asymptotic Mean Square Error

Given that the bias for the sample average tends to zero as the sample size increases

and that∑L
j=1Bnj (µ)−Anj (µ)njµ

n→∞−→ 0, it follows that

lim
n→∞

MSE(µ̂) = lim
n→∞

MSE(µ̂c)→
1∑L

j=1 nja
′′(µ)Anj (µ)

.

8.7 Simulation Study

8.7.1 Design

The simulation study has been designed to corroborate the theoretical findings on

the behavior of joint likelihood estimators, in comparison to commonly used biased

adjusted estimators. Assume a clinical trial comparing a new therapy to a control,

designed to follow O‘Brien and Fleming’s group sequential plan with four interim

analyses.

The objective of the trial is to show that the mean response from the new therapy

is higher than that of the control group. Let Yit ∼ N(µt, 1) and Yic ∼ N(µc, 1) be

the responses from subject i in the therapy and control groups, respectively. The null

hypothesis is formulated as H0 : µ = µt − µc = 0 vs. H1 : µ = µ1 > 0. Further, allow

a type I error of 2.5% and 90% power to detect the clinically meaningful difference.

Given that we are interested in asymptotic behavior, different values of the clin-

ically meaningful difference, µ1 = 0.5, 0.25, and 0.15 are considered so as to achieve

different sample sizes, with smaller µ1 corresponding to larger sample size.

With the settings described above, datasets are generated as follows; at each stage,

Yit ∼ N(2, 1), i = 1 . . . nj , j = 1 . . .m m = 4 and Yic ∼ N(µc, 1), where µc = 1.5,

1.75, and 1.85 for the first, second, and third setting, respectively.

Estimation proceeds by obtaining the maximum likelihood estimator (sample av-

erage: µ̂t − µ̂c) at each stage and apply the stopping rule:

F (knj ) = Φ

(
αj + β

kj
nj

)
, (j = 1 . . . 4),
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where β = 100 to represent the rules applied to the group sequential trials case as

noted in Chapter 7. To follow O’Brien and Fleming boundaries, a value of α is chosen

to make sure that the probability of stopping increases with the increase in number

of looks, i.e., αj = 2(q−j+1)
q α1, where α1 = −50, −25, and −15 for µ1 = 0.5, 0.25,

and 0.15, respectively. q is the number of planned looks. Obviously, the choice of αj

depends on the design and goals of the trial. In this setting, α1 was chosen such that

P (N = n3|µ = µ1) ≥ 0.5. The decision to stop is made when F (knj ) > U , where

U ∼ Uniform(0, 1); otherwise, we continue.

The objective of the simulation is to show that the performance of the joint maxi-

mum likelihood estimator (MLE) as the mean estimator after a group sequential trial

is as good as the other bias adjusted estimators, and that the confidence intervals

obtained by using the observed information matrix, lead to valid conclusions.

The MLE will be compared against the median unbiased estimator (MUE), the

bias adjusted estimator (BAM; Todd, Whitehead, and Facey 1996), and Rao’s bias-

adjusted estimator (RBADJ; Emerson and Fleming 1990).

Additional simulations with two possible looks and a smaller value of β for both

joint and conditional likelihood are presented in Appendix C.

8.7.2 Results

Table 8.1 gives the mean estimates for different estimators of µ. On average MLE

exhibits large relative bias compared to the bias adjusted estimates, for example, for

µ1 = 0.15 which corresponds to maximum sample size of 1949, relative bias for MLE

is 6% compared to 0.7% for BAM. On the other hand, MLE shows the asymptotic un-

biasedness behaviour, seen by the reduction (though small) in relative bias as sample

size increases. This is not the same for BAM and RBADJ.

While point estimates are useful in giving the picture of the magnitude of the

treatment difference, confidence intervals (CI) are highly important in decision mak-

ing. A comparison of adjusted confidence intervals provided with the RCTdesign

package in R (Emerson et al., 2012), to the likelihood based confidence intervals, ob-

tained by using observed variance as precision estimates, indicates that their coverage

probabilities are comparable. The coverage probabilities were (94.6%, 94.6%, 97.6%)

for the adjusted CI and (93.8%, 92.8%, 96.8%) for MLE based CI, for the three set-

tings in the order of increasing sample size. Using the same design parameters, we

also investigated the type I error rate for MLE and adjusted estimators, by setting

µ1 = 0 and obtaining the percentage times the confidence interval does not contain

zero. Type I error rates for likelihood based CI were (5.6%,6.4%,2.8%), which are
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similar to those based on adjusted CIs, (5.4%,4.8%,2.8%) for the three settings in

the order of increasing sample size. Certainly using either of the CIs will lead to

similar conclusions, which calls into question the necessity of adjusted methods in the

analysis after group sequential trials, in line with the results derived.

We also explore the bias of each of the estimators at the sample level in contrast

to the averaged bias as presented in Table 8.1. Recall that we had 500 samples for

each setting, Table 8.2 gives the proportion of samples whose estimates’ relative bias

fell into a specified category. Indeed it is hard to pick a a preferred estimator based

on these results since each of the estimator has about 75% of the estimates having

relative bias of > 10%. It is also clear from Figure 8.1, which plot the difference in

relative bias, between each of the bias adjusted estimates and MLE, that none of the

estimates discussed above is uniformly unbiased in comparison to MLE, i.e is some

instances MLE may do better.

Table 8.1: Mean estimates (Est.) and relative bias (R.Bias) for the three different

settings of O’Brien and Fleming’s design. Parameters common to all the three settings

include, power=90%, type I error=0.025, H0 : µ = 0 vs. H1 : µ = µ1 > 0, where only

the detectable difference (µ1) was changed to initiate change in maximum sample size

(Size). MLE is the maximum likelihood estimate, BAM is the bias-adjusted maximum

likelihood estimate, RBADJ is the Rao bias adjusted estimate and MUE is the median

unbiased estimate.

MLE BAM RBADJ MUE

Size Est. R.Bias Est. R.Bias Est. R.Bias Est. R.Bias

176 0.5448 (0.0895) 0.5142 (0.0285) 0.5019 (0.0037) 0.5251 (0.0502)

702 0.2665 (0.0661) 0.2508 (0.0031) 0.2473 (0.0108) 0.2557 (0.0228)

1949 0.1595 (0.0635) 0.1489 (0.0070) 0.1469 (0.0209) 0.1520 (0.0130)

8.8 Discussion

As a result of the bias associated with joint maximum likelihood estimators following

sequential trials, much work has been applied to providing alternative estimators.

The origin of the problem lies with the incompleteness of the sufficient statistic for

the mean parameter Lehman (1950), implying, among others, that there is no best

unbiased linear mean estimator.



128 Chapter 8. Estimation After a Group Sequential Trial

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
b

a
m

 &
 m

le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
rb

a
d

j 
&

 m
le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
m

u
e

 &
 m

le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
b

a
m

 &
 m

le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
rb

a
d

j 
&

 m
le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
m

u
e

 &
 m

le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
b

a
m

 &
 m

le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
rb

a
d

j 
&

 m
le

0 100 200 300 400 500

−
2

−
1

0
1

2

sample

d
if
f.
 b

ia
s
 f
o

r 
m

u
e

 &
 m

le

Figure 8.1: Difference in relative bias between MLE and each the biased adjusted

estimates (BAM, RBADJ and MUE). The first row is for µ1 = 0.5, second row,

µ1 = 0.25 and third row, |
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Table 8.2: Results from three different settings of O’Brien and Fleming’s design.

Parameters common to all three settings include: power=90%, type I error=0.025,

H0 : µ = 0 vs. H1 : µ = µ1 > 0, where only the detectable difference (µ1) was changed

to initiate change in maximum sample size (Size). Out of 500 datasets generated for

each setting, we compare the proportion of estimates (Prop.) whose relative bias falls

in the specified range (R.Bias). MLE is the maximum likelihood estimate, BAM is the

biased adjusted maximum likelihood estimate, RBADJ is Rao’s bias adjusted estimate,

and MUE is the median unbiased estimate.

Prop.

µ1(Size) R.Bias BAM RBADJ MUE MLE

0.5(176) ≤ 0.99 2.6 2.0 2.2 2.2

1− 4.99 8.4 11.4 11.0 10.6

5− 10 10.6 11.6 12.6 15.0

> 10 78.4 75.0 74.2 72.2

0.25(702) ≤ 0.99 2.0 3.2 1.4 2.6

1− 4.99 7.2 9.0 8.8 9.0

5− 10 9.4 9.8 10.8 9.8

> 10 81.4 78.0 79.0 78.6

0.15(1949) ≤ 0.99 2.6 1.8 1.4 2.2

1− 4.99 7.4 13.2 8.0 13.2

5− 10 9.2 9.0 11.8 11.0

> 10 80.8 76.0 77.6 74.4

Using stochastic stopping rules, which encompass the deterministic stopping rules

used in sequential trials as special cases, we have studied the properties of joint

maximum likelihood estimators afresh, in an attempt to enhance our understanding

of the behaviour of estimators (for both bias and precision) based on data from such

studies.

First, the incompleteness of the sufficient statistic when using a stochastic stopping

rule has been established. Using a generalized sample average, it is noted that in

almost no case is there an unbiased estimator. Even when such an estimator does

exist, with a completely random sample size, it cannot be uniformly best.

Second, although for a sequential trial with a deterministic stopping rule, the or-

dinary sample average is finite sample biased, it can be been shown both directly and

through likelihood arguments, that it is asymptotically unbiased and so remains a
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good candidate for practical use. Further, it is computationally trivial, has a corre-

spondingly simple estimator of precision, derived from observed information matrix

and hence a well behaved asymptotic likelihood-based confidence interval. In addi-

tion, the mean square error of the sample average is smaller than that of the estimator

based on the conditional likelihood, even though the latter is finite sample unbiased.

The conditional estimator is also computationally more involved, because there is

no closed-form solution. Asymptotically, the mean square errors of both estimators

converge.

Third, there is the subtle issue that the sample average may be asymptotically

biased for certain stopping rules, when its expectation is considered conditionally

on certain values of the sample size. However, this is not a real practical problem

because this occurs only for sample sizes that have asymptotic probability zero of

being realized. We placed emphasis on joint and conditional likelihood estimators.

While in the former the stopping rule is less present than sometimes thought, it is

not in the latter. Also, when alternative frequentist estimators are considered, the

stopping rule is likely to play a role in synchrony with the rule’s influence on hypothesis

testing due to the duality between hypothesis testing and confidence intervals.

While in some circumstances other sources of inaccuracy may overwhelm the issue

studied here, we believe it is useful to bring forward implications of our findings for

likelihood-based estimation.

In conclusion, the sample average is a very sensible choice for point, precision, and

interval estimation following a sequential trial.



Chapter 9

Reliability Measures In Item

Response Theory: Manifest

Versus Latent Correlation

Functions

Reliability of a scale of measurement is of paramount importance in measurement

studies. For continuous scales the exact reliability measures, are easily obtained

in contrast to categorical scales, where computational obstacles are rampant and

approximations preferred instead. The commonly used approximation functions have

drawbacks that limit their usability in some situations. In this chapter, we introduce

new reliability approximation functions that overcome some of the limitations, elude

the computational obstacles and provide close approximations to the true reliability.

Though the implementation is to behavior and education psychology data, reliability

of a scale, is also important in studies evaluating a drug for its impact on quality of

life, and thus the results discussed in this chapter are relevant for clinical development

of a drug.

9.1 Introduction

Measurement studies play a vital role in exploring various attributes, like social and

intellectual behavior. The relevance of such studies depend on several, equally im-

131
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portant factors, which include reliability of the tool used for measurement. Culligan

(2008) defines reliability as a measure of the consistency of the application of an in-

strument to a particular population at a particular time. Classical test theory (CTT)

remains one of the most used paradigms for the analysis of measurement studies,

within which the concept of reliability is well developed. In CTT. the reliability mea-

sure is simply the proportion of true to observed variance. Limitations in classical

theory (Schaeffer et al., 1986; O’Brien, 1995) have led to development of several al-

ternatives, in some of which deriving a reliability measure is straightforward, such as

in CTT, while in others it is not.

Examples include generalizability theory (GT), which makes use of linear mixed

models to estimate various variance components used in estimating reliability (Van

Leeuwen et al., 1998). With linear mixed models, the definition of reliability as a

proportion of true to observed variance is easily carried forward due to the nice prop-

erties of the normal distribution, which is usually assumed for the observed responses.

The most notable being the separation of mean and variance parameters.

For binary response items, Item response theory (IRT) has indisputably com-

manded wide application among measurement studies, mostly for its advantages over

classical theory (Rasch, 1960; De Ayala, 2009). Much as IRT models are commonly

used for measurement of variables like attributes and attitudes (Van der Linden and

Hambleton, 1997), the question of reliability of measurement (Spearman, 1904), which

is crucial for such studies, cannot be ignored.

Unfortunately, peculiarities emerge when dealing with binary responses. For nor-

mally distributed outcomes, reliability of measurement reduces to, σ2
θ/(σ

2
θ+σ2

ε), where

σ2
θ is the variance of the person trait θ and σ2

ε is the variance of the distribution

assumed for the errors. This is commonly referred to as intraclass correlation (Molen-

berghs and Verbeke, 2005). Directly using intraclass correlation for dichotomous re-

sponses, produces what is known as latent correlation because it gives the correlation

between responses at a logit or probit scale. It follows that reliability measured using

latent correlation will be at a latent scale. More often than not, scientific interest is in

the reliability of the observed scores rather than the latent ones such that meaningful

reliability measures have to be based on manifest correlation, i.e., correlation between

observed scores. While for normally distributed outcomes latent and manifest corre-

lations coincide, this is no longer the case for binary, or other non-normal outcomes.

Hence, to obtain the meaningful reliability measures, appropriate quantities for the

intraclass correlation formula have to be derived.

Reliability measures based on manifest correlations are not as well developed for

dichotomous responses as is the case for continous responses. Briggs and Wilson
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(2007) and Rodŕıguez and Elo (2003) note that these are usually difficult to derive

because they involve the evaluation of integrals that lack closed forms and thus are

not widely used. To bypass such difficulties, approximate reliability measures are

preferred and these include: Cronbach’s α, the intra-class correlation, and Fisher’s

Information measure. Drawbacks for using Cronbach’s alpha in IRT, have been well

documented (Cronbach and Shavelson, 2004), and Fisher’s Information measure has

limited application, given that under some conditions it can be negative (Mesbah et

al., 2002). Therefore it is not meaningful in some cases. Furthermore, its extension

to models with multi-dimension traits is not clear. Some drawbacks regarding the

use of the intraclass correlation in IRT, i.e., using reliability measures based on latent

correlation, will be highlighted in the sections to follow.

Most of the IRT models fall into the family of generalized linear mixed model

(GLMM), an extension of linear mixed models to a special family of non-linear mixed

models (Molenberghs and Verbeke, 2005; Rijmen et al., 2003), where the outcome is

of a non-Gaussian type, but the effects of predictor variables still enter a so-called

linear predictor function. Vangeneugden et al. (2010) derived approximate manifest

variance-covariance functions and correlation functions for the GLMM family. The

approximation totally evades the need to evaluate integrals and requires the input of

estimates that are easily obtained during models estimation.

Taking into account that One- and Two-parameter Logistic (1PL and 2PL) mod-

els belong to the GLMM family, we explore the usefulness of such approximations

in these two IRT models, towards obtaining reliability measures. Whereas the goal

of Vangeneugden et al. (2010) was to estimate manifest correlations between two bi-

nary outcomes within a subject (which are the correlations of interest for most model

members of the GLMM), by studying these approximation in the context of a combi-

nation of Classical Test Theory (CTT) and IRT, we derive reliability measures, both

at the expected item score and expected sum score levels, that directly correspond

to the definition of reliability in CTT, i.e., proportion of true to observed variance,

which are based on manifest correlations. The performance of these measures will be

assesed through a simulation study which will compare the newly derived approxima-

tions, latent and Fisher Information based reliability measures to the exact reliability.

Applicability will be shown through an empirical data analysis of Verbal Aggression

and Law School Admission Test datasets.
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9.2 Reliability Measures in One Parameter Logistic

(1PL) and Two Parameter Logistic (2PL) Mod-

els

Reliability measures of common interest for 1PL and 2PL models, which are also the

focus of this work, include, reliability of expected item score and reliability of the

expected sum score. This section reviews both exact and approximate methods for

estimating such measures.

9.2.1 Exact Reliability Measures

Customarily, expected item and sum score reliability measures are computed based

on observed scores, which are binary in nature for 1PL and 2PL models. While ex-

act methods for estimating such measures are widely known, they are rarely used

in practice because they are computationally intensive; instead, approximations are

preferred. The exact measures are reviewed to facilitate comparison with the approx-

imated one.

Define Yij as a realized score on item j = 1, . . . , N by person i = 1, . . . , I. It is

common to express the observed score as:

Yij = µij + εij ,

where µij is the true score and εij is the error score. Equivalently, the 2PL model

formulates the observed score as

Yij = µij + εij =
exp [αj(θi − βj)]

1 + exp [αj(θi − βj)]
+ εij , (9.1)

where θi is the person trait score, with θi having variance σ2
θ , αj and βj are the

discrimination and difficulty values for item j, and εij the error term, which in this

case is a function of µij .

Recall that our focus is on the expected item and expected sum scores, which are

given by:

Yj =

∫ {
exp [αj(θi − βj)]

1 + exp [αj(θi − βj)]
+ εij

}
φ(θi|0, σ2

θ) dθ = µj + εj (9.2)

ST =

∫ N∑
j=1

{
exp [αj(θi − βj)]

1 + exp [αj(θi − βj)]
+ εij

}
φ(θi|0, σ2

θ) dθ = µ+ ε,



9.2. Reliability Measures in One Parameter Logistic (1PL) and Two Parameter
Logistic (2PL) Models 135

respectively. Dimitrov (2003) defines their corresponding variances as:

var(εj) =

∫
µij(1− µij) φ(θi|0, σ2

θ) dθ,

var(µj) = µj(1− µj)− var(εj),

var(ε) =

N∑
j=1

var(εj),

var(µ) =

∫ 
N∑
j=1

exp [αj(θi − βj)]
1 + exp [αj(θi − βj)]


2

φ(θi|0, σ2
θ) dθ

+


∫ N∑

j=1

exp [αj(θi − βj)]
1 + exp [αj(θi − βj)]

φ(θi|0, σ2
θ) dθ


2

,

with reliability defined as the proportion of true variance to observed variance. Fur-

ther,

ρi =
var(µj)

var(µj) + var(εj)
,

ρs =
var(µ)

var(µ) + var(ε)

measure the expected item score and expected sum score reliability, respectively.

Each of the components for obtaining these measures involves integration of normal

random effects over binary data distributions, which are known to lack a closed form.

The computational burden associated with these measures arguably results into their

infrequent use in practice.

9.2.2 Intra-class Correlation (Latent)

The definition of the intra-class correlation stems directly from the definition of reli-

ability in CTT, which is the ratio of the true over the observed variance. Let Yij be

a continuous observed score for person i = 1, . . . , I on item j = 1, . . . , N , and further

Y c
i = (Yi1, . . . , Yij). Using a linear mixed model, the observed score can be expressed

in terms of the true score µi and error as follows:

Y c
j = µi + εi = θi − β + εi, (9.3)

where β is the vector of item difficulties, θi ∼ N(0, σ2
θ), and εi ∼ N(0, σ2

εII), are the

measures of person trait and random errors, respectively. Further, Cov(θi, εi) = 0. It

has been shown that

Var(Y c
i ) = Var(µi) + Var(εi) = 1Iσ

2
θ1
′
I + σ2

εII
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(Verbeke and Molenberghs, 2000). For illustrative purposes, consider the case of

I = 2. Then,

Var(µi) =

[
σ2
θ σ2

θ

σ2
θ σ2

θ

]
, Var(εi) =

[
σ2
ε 0

0 σ2
ε

]
. (9.4)

Item and sum score reliability measures follow as:

ρi1 =
σ2
θ

σ2
θ + σ2

ε

, ρs2 =
2σ2

θ

2σ2
θ + σ2

ε

, (9.5)

which correspond to ICC(1) and ICC(k) measures in McGraw and Wong (1996).

The same arguments can be followed when µi = α(θi − β) and the equivalent

quantities are:

Var(Y c
i ) = Var(µi) + Var(εi) = αIσ

2
θα
′
I + σ2

εII ,

Var(µi) =

[
α2
jσ

2
θ αjαi′σ

2
θ

αjαj′σ
2
θ α2

i′σ
2
θ

]
,

Var(εi) =

[
σ2
ε 0

0 σ2
ε

]
,

ρi2 =
α2
jσ

2
θ

α2
jσ

2
θ + σ2

ε

, (9.6)

ρs2 =
σ2
θ(αj + αj′)

2

σ2
θ(αj + αj′)2 + 2σ2

ε

. (9.7)

Now, consider a binary observed score modeled through the 1PL model as:

logit [P (Y j = 1)] = θi − β. (9.8)

It has been noted (Agresti, 2002; Rodŕıguez and Elo, 2003) that (9.8) can be expressed

in the form of (9.3), as follows:

Y ∗j = µi + εi = θi − β + ε∗i , (9.9)

where Y ∗ij is assumed to be a latent continuous score underlying the dichotomization

of Yij , such that Yij = 1 if Y ∗ij ≥ C and 0 otherwise, with C a pre-specified threshold

and ε∗ ∼ Logistic(0, 1). Model (9.9) is a typical linear mixed model, hence the theory

behind the derivation of reliability measures (9.5), (9.6), and (9.7), can be applied

directly and the corresponding reliability measures are:

ρil1 =
σ2
θ

σ2
θ + π2

3

and ρsl1 =
2σ2

θ

2σ2
θ + π2

3

, (9.10)
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for item and test score, respectively, for the 1PL model. Equivalent expressions for

the 2PL model are:

ρil2 =
α2
jσ

2
θ

α2
jσ

2
θ + π2

3

, and ρsl2 =
σ2
θ(αj + αj′)

2

σ2
θ(αj + αj′)2 + 2π2

3

, (9.11)

for the item and test reliability, respectively, π2/3 is the variance of the underlying er-

ror distribution, the standard logistic density. While the mathematical motivation is

appealing, it is evident that (9.10) and (9.11) only depend on σ2
θ . Hence,‘ any change

in this value, for example, due to change in identification restrictions, will result in

varying reliability. These are examples of reliability measures based on latent corre-

lation and, as noted before, for the binary case such measures do not coincide with

their manifest correlation based counterparts. In a way this is unfortunate, especially

in cases where there are no closed forms for the marginal model stemming from the

hierarchical formulation. Note that the difference between latent and manifest cor-

relation is independent of the existence of a closed form. For example, a probit link

with normal random effects allows for a closed-form formulation (Molenberghs et al.

, 2010), but also there the two correlations have a different expression. Depending on

the research question, either manifest or latent or both correlations can be of inter-

est, in spite of the fact that manifest correlation is more difficult to work with than

latent correlation, latent correlation should not be used when manifest correlation is

of interest.

9.2.3 Fisher Information

I(θi; I) =

I∑
i=1

α2
j

exp(ηij)

[1 + exp(ηij)]2
,

with ηij = αj(θi − βj), where βj is the difficulty value for item i, θi is the value

of the latent trait for person j, and I is the total number of items. The expression

is intuitively appealing, given that it is a sum over standard logistic variances. An

approximation of the reliability coefficient follows as:

ρf = 1− 1

N

N∑
j=1

I(θi; I)−1

σ2
θ̂

(9.12)

(Lord, 1983), where σ2
θ̂

is the variance of the estimated latent trait, e.g., the observed

variance of person parameters and N the total number of persons. This approximation

is only valid when the number of items is large; it also requires the knowledge of true

values of difficulty parameters, information which usually is beyond reach. A 1PL

equivalent follows by setting α = 1.
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9.3 Taylor-series-based Derivation of the Correla-

tion Function

9.3.1 Manifest Correlation Functions For GLMM

We present here a brief review of the explicit but approximate correlation functions,

as based on Taylor-series approximations as derived for GLMM family and explained

in detail in Vangeneugden et al. (2010). Let Yij be the jth outcome measured on

person i , j = 1, . . . N and i = 1, . . . , I; further let Y i = Yi1, . . . , YiN .

Write the general model as Y i = µi + εi, where the conditional mean, given the

random effects are written as µj = h(Xiβ +Ziθi), and where β is a vector of fixed

effects parameters, θi are random effects,Xi and Zi are known design matrices, and h

is a known link function. Finally, εi = (εi1, . . . , εiN )′ is the residual error component.

The general formula for the variance-covariance matrix of Y i was derived without

any restriction on the distribution of the outcome variable, nor on the complexity

of the model, e.g., allowing for serial correlation or not. This maximizes the simi-

larity with the case of continuous, normally distributed outcomes. However, a key

distinction is that in the Gaussian case the mean and variance are functionally in-

dependent parameters, whereas here the residual variance will follow from the mean.

The variance-covariance matrix can be written as:

V i = Var(Y i) = Var(µi + εi) = Var(µi) + Var(εi) + 2Cov(µi, εi). (9.13)

Because µi depends on θi only, which is independent of εi, it follows that Cov(µi, εi) =

0, and the first term in (9.13), using a first-order Taylor series expansion around θi = 0

reduces to:

Var(µi) = Var[µi(ηi)] = Var[µi(Xiβ +Ziθi)]

∼=
(
∂µi
∂ηi

∂ηi
∂θi
|θi=0

)
D

(
∂µi
∂ηi

∂ηi
∂θi
|θi=0

)′
∼= ∆iZiDZ

′
i∆
′
i, (9.14)

where ∆i =
∂µi
∂ηi
|θi=0

. The second term in (9.13), leads to:

Var(εi) = Var[E(εi | θi)] + E[Var(εi|θi)] = E[Var(εi | θi)] = Ξ
1
2
i ΣiΞ

1
2
i , (9.15)

where Ξ is a diagonal matrix with the overdispersion parameters along the diagonal. If

there are no overdispersion parameters, Ξ is set equal to the identity matrix. Expand

the variance function Σi so that

Var(εi) = Ξ
1
2
i A

1
2
i RiΞ

1
2
i A

1
2
i , (9.16)
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where Ri is the correlation matrix and Ai is a diagonal matrix containing the vari-

ances following from the generalized linear model specification of Yij given the random

effects θi = 0, i.e., with diagonal elements v(µij)|θi=0
. Using (9.14) and (9.16), we

have the following expression for the variance-covariance matrix (9.13):

V i = ∆iZiDZ
′
i∆
′
i + Ξ

1
2
i A

1
2
i RiΞ

1
2
i A

1
2
i . (9.17)

Evidently, from this variance-covariance matrix, we can easily obtain the correlations.

While the above derivation is referred to as a first-order Taylor series expansion, the

exact same expression follows if a second-order expansion is considered, owing to terms

vanishing. Therefore, we are authorized to refer to it as a second-order Taylor series

expansion which according to Vangeneugden et al. (2011), who explored the quality

of approximation by considering higher-order series, gives a good approximation.

9.3.2 Taylor Series Based Reliability Measures For 1PL and

2PL Models.

Loosely, reliability is an indicator of strength of agreement of particular scores (de-

pending on the form of reliability); usually it takes the form of a correlation function.

To obtain reliability measures on the scale of observed scores, manifest correlation

functions have to be used. While such functions are easily obtained for continuous

data, usually for binary data, approximations are employed. This section digests the

relevance of the approximate variance-covariance matrix in a GLMM for assessing

reliability of the expected item score and the expected sum score.

Without loss of generality, consider a measurement tool with j = 1, . . . , N items,

responded to by i = 1, . . . , I persons and further let Yij be the binary score on item

j by person i. Then, parameterize the 2PL model as

Yij =
exp [αj(θi − βj)]

1 + exp [αj(θi − βj)]︸ ︷︷ ︸
µij

+εij , (9.18)

where θi ∼ N(0, σ2
θ), βj and αj are the difficulty value and discrimination parameters,

respectively, for item i. The model formulation in Section 9.3.1, Y i = µi + εi, is

basically the matrix representation of (9.18), where Y i is the vector of Yij ’s, for

person j on all items; we proceed similarly for µi and εi.

Vangeneugden et al. (2010) approximate Var(Y i) by using a first-order Taylor

series expansion of the variance function around θi = 0. Implicitly, this assumes that

P (yij = 1|θi) = P (yi = 1), which defines the expected item score (Section 9.2.1).
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Further, Y i = Y j′ , j 6= j′ and Y i = Y i, where Y i = µi + εi, is the vector of

expected item scores. Consequently,

var(Y i) = var(Y i) ∼= Var(µi) + Var(εi), where (9.19)

Var(µi)
∼=

(
∂µi
∂ηi

∂ηi
∂θi
|θi=0

)
D

(
∂µi
∂ηi

∂ηi
∂θi
|θi=0

)′
, (9.20)

Var(εi) ∼= A
1
2
i A

1
2
i . (9.21)

The fact that Ri and Ξi disappear is a result of conditional independence and the

assumption of no overdispersion in the 2PL model. From (9.2), it is easy to deduce

that the expected sum score merely is the sum over all expected item scores. Hence,

the variance of ST is just the sum of all components in Var(Y i), i.e.,

Var(ST ) =
∑

Var(Y i) =
∑

Var(µi) +
∑

Var(εi).

Using the classical definition of reliability, i.e., the proportion of true to observed

variance, we obtain:

ρiA =
Var(µi)

Var(ui) + Var(εi)
and ρsA =

Var(
∑
i µij)

Var(
∑
i µij) + Var(

∑
i εij)

, (9.22)

as reliability measures for the expected item and test scores, respectively. Var(µi) and

Var(εi) correspond to the ith diagonal elements of Var(µi) and Var(εi), respectively.

Equivalent expressions for the 1PL model follow when αj = 1.

It is assumed that variance estimation comes after estimation of other model pa-

rameters. As such, the assumptions made in this section apply to variance estimation

only.

We acknowledge alternative approximations for reliability measures based on man-

ifest correlations (Dimitrov, 2003). Nevertheless, the simplicity and easy-to-follow

nature of our approximations make them a valuable addition to the existing methods.

9.3.2.1 Illustration For 1PL Model

This section illustrates computation of (9.19) and (9.22) for 1PL, a step that also

allows the exploration of differences in latent and manifest correlations.

Define the 1PL model as (9.18), where αj = 1. It follows that:

ηij = θi − βj ,
∂ηij
∂θj
|θi=0 = 1, (9.23)

∂µij
∂ηij
|θi=0 =

exp(βj)

[1 + exp(βj)]
2 = v(µij)|θi=0

.
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Assume a test with only two items, then,

∂µij
∂ηij

|θi=0 = Ai =

[
vij(0) 0

0 vij′(0)

]
, D =

[
σ2
θ

]
,

∂ηij
∂θj
|θi=0

= 1 =

[
1

1

]
, (9.24)

Var(µi) =

[
v2
ij(0)σ2

θ vij(0)vij′(0)σ2
θ

vij′(0)vij(0)σ2
θ v2

ij′(0)σ2
θ

]
, Var(εi) =

[
vij(0) 0

0 vij′(0)

]
,

ρiA1
=

vij(0)σ2
θ

1 + vij(0)σ2
θ

, ρsA1
=

σ2
θ [vij(0) + vij′(0)]

1 + σ2
θ [vij(0) + vij′(0)]

,

where vij(0) = v(µij)|θi=0
.

Manifest versus Latent Correlation

The latent correlation measure presented in Section 9.2.3 is obviously appealing

and easy to obtain, and one can be tempted to use it as a reliability measure. We

study the relationship between the reliability measures based on latent and manifest

correlation.

Consider ρiA1
and ρsA1

at their maximum possible values, which are easily obtained

by realizing that the maximum value for vij(0) = 0.25. A comparison of these to the

latent reliability measures in (9.10), reveals the following relationship;

ρiA1
=

σ2
θ

4 + σ2
θ

< ρil1 =
σ2
θ

π2

3 + σ2
θ

, (9.25)

ρsA1
=

σ2
θ

2 + σ2
θ

< ρsl1 =
σ2
θ

π2

6 + σ2
θ

. (9.26)

Latent correlation based score reliability is always greater than its manifest correlation

based counterpart, hence if scientific interest is on reliability of observed scores, great

caution has to be exercised in using latent correlation based reliability measures.

9.3.2.2 Illustration For 2PL Model

Similar to Section (9.3.2.1) we illustrate computation of (9.19) and (9.22) for the 2PL

model, and further explore the relationship between latent and manifest correlations.

Define the 2PL model as (9.18), it follows that,

ηij = αj(θi − βj),
∂ηij
∂θj
|θi=0 = αj (9.27)

∂µij
∂ηij
|θi=0 =

exp(αjβj)

[1 + exp(αjβj)]
2 = v(µij)|θi=0

.
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Again consider a test with only two items, then,

∂µij
∂ηij

|θi=0 = Ai =

[
vij(0) 0

0 vj′i(0)

]
, D =

[
σ2
θ

]
,

∂ηij
∂θj
|θi=0

=

[
αj

αj′

]
, (9.28)

Var(µi) =

[
α2
i v

2
ij(0)σ2

θ αj′αjvij(0)vij′(0)σ2
θ

αj′αjvij′(0)vij(0)σ2
θ α2

i′v
2
ij′(0)σ2

θ

]
,

Var(εi) =

[
vij(0) 0

0 vij′(0)

]
,

ρiA2
=

vij(0)α2
iσ

2
θ

1 + vij(0)α2
iσ

2
θ

, ρsA2
=

σ2
θ [vij(0)αj + vij′(0)αj′ ]

2

[vij(0) + vij′(0)] + σ2
θ [vij(0)αj + vij′(0)αj′ ]

2 ,

where vij(0) = v(µij)|θi=0
.

Manifest versus Latent Correlation.

The following relationship exists between latent and manifest correlation based

reliability measures for the 2PL model:

ρiA2
=

α2
jσ

2
θ

4 + α2
jσ

2
θ

< ρil2 =
α2
jσ

2
θ

π2

3 + α2
jσ

2
θ

, (9.29)

ρsA2
=

σ2
θ(αj + αj′)

2

8 + σ2
θ(αj + αj′)2

< ρsl2 =
σ2
θ(αj + αj′)

2

2π2

3 + σ2
θ(αj + αj′)2

(9.30)

The relationship between latent and manifest correlations based reliability measures

observed in the 1PL model is the same for the 2PL model.

9.4 Simulation Study

Due to lack of closed form quantities, the performance of reliability measures based

on Taylor series approximations of the variance-covariance matrix in Section 9.3.2,

will be assessed through a simulation study. We will compare them with the exact

measures described in Section 9.2.1. Additionally, the relationship observed between

manifest and latent correlation based measures in Sections 9.3.2.1 and 9.3.2.2, will be

studied for more than two items.
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9.4.1 Design of the Simulation Study

Measuring tools calibrated under the 1PL and 2PL models are considered. Each

has 24 items, whose difficulty values (βj) are generated from a uniform distribution

within the range [−4, 4], the discrimination parameter values (αj) for the 2PL model

are sampled from N(2, 0.64), and the number of respondents is set to 400. To assess

the quality of our approximations at different levels of reliability, three values for the

variance of person trait scores (θi), which influences reliability, were considered, i.e.,

σ2
θ = (0.25, 1, 4), implying that each model will produce three measuring tools that

will be responded to by three different sets of individuals. With these values, the

score Yij for item j by person i is generated from a Bernoulli(π), where

π =

{
exp(θi−βj)

1+exp(θi−βj) for the 1PL model,
exp[αj(θi−βj)]

1+exp[αj(θi−βj)] for the 2PL model.

For the exact, Taylor series approximation and latent correlation based approxima-

tions, both expected item reliability and expected sum score reliability will be com-

puted, while for the Fisher information coefficient, only the expected sum score will be

obtained. To concentrate on the performance of the reliability measures, the models

are not fit. Rather, we assume that the generated samples represent the true popu-

lation. As such, simulated values are plugged into all the formulas and the integrals

in Section 9.2.1 are obtained by simply averaging over the relevant quantities. This

helps to eliminate behavior that may be observed due other issues, like lack of model

convergence resulting into poor estimates.

9.4.2 Simulation Results

Table 9.1 indicates that the reliability of the expected sum, estimated using the newly

introduced, Taylor series approximation is very similar to the exact reliability. Prac-

tically, using one in place of the other should lead to virtually the same substantive

conclusions. In addition, Taylor series approximations are not computationally in-

tensive, because they do not involve the evaluation of integrals with no closed forms,

and quantities for approximating the variance-covariance matrix follow directly from

model estimation. Clearly, these strengths make the Taylor series approximation a

valuable addition to the theory of reliability measurement.

Also revealed in Table 9.1 is a possible drawback for the commonly used Fisher

information based measure: when σ2
θ = 0.25, reliability is negative and does not have

a meaningful interpretation. Further, in other cases, like for the 2PL model with

σ2
θ = 1, it overestimates the exact reliability while in the 1PL model with σ2

θ = 0.25,
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it underestimates the exact reliability. In general, Fisher information based reliability

will not always yield a truthful picture of the reliability of the expected sum.

In line with theory, latent correlation based reliability is consistently greater than

the manifest correlation based measures (Taylor approximation and exact). If reli-

ability at the logit scale is of interest, latent correlations are meaningful; otherwise,

they should be avoided.

Even though maximum information is the target when creating item banks, ex-

pected item score reliability can also be useful, as it can help in choosing items that

are reliable. Results in Table 9.2 emphasize why latent correlation based reliability

may not be best suited to be used for such a process, especially for the 1PL model,

because not only is it always greater than the manifest correlation based version, but

it is also constant for all items. The Taylor series based versions approximate the

exact expected item score reliability closely for the 1PL model, such that decision

making based on the former is likely to reflect the decisions that would result from

using the latter. For the 2PL model, Taylor series approximation is not good for some

items like 3, 4, 8, 9, 11, 13, 15, and 21, which greatly underestimate the exact relia-

bility, suggesting the need to improve the approximations if they are to be used for

item reliability in the 2PL model. Possible considerations include expansion of Taylor

series around θi = θ̂i, the maximum likelihood estimate of the trait score, instead of

θi = 0, but this is beyond the scope of the current work. Latent reliability in 2PL

increases with discriminative power, i.e., items with high discriminative power have

high reliability, regardless of the difficulty level. Results for cases with σ2
θ = 0.25, 4

are presented in the Appendix.

9.5 Analysis of Case Study

The application of the reliability measures introduced in Section 9.3.2 is demonstrated

through the analysis of the two datasets described in Sections 2.3 and 2.4. Using

various datasets that are measuring different attributes brings out just how broadly

these measures can be used to assess reliability of measuring tools across different fields

of research. Both 1PL and 2PL models were fitted using the NLMIXED procedure

in SAS, which employs adaptive Gauss-Hermite quadrature to compute the integrals

and ultimately the maximum likelihood based parameter estimates.

Results for the LSAT6 data are presented in Table 9.3. These generally indicate

low reliability both at the expected item score level and at the expected sum score

level. With a five-item measuring tool, this is not surprising as these may not be

enough to capture all the relevant information. In addition, the negative estimates
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Table 9.1: Expected sum score reliability estimated for 1PL and 2PL models, using

various approximation methods. ρSA gives the reliability estimated using the Taylor

series approximation, ρf , uses the Fisher information measure, ρSl is the latent vari-

ance of logistic regression, i.e., π2

3 , is used as variance of error (σ2
ε) and ρS is the

exact sum score reliability. σ2
θ is the variance of person trait.

Measure of Reliability
σ2
θ Model ρSA ρf ρSl ρS

0.25 1PL 0.461 -0.120 0.646 0.480

2PL 0.687 0.615 0.889 0.704

1 1PL 0.774 0.676 0.879 0.778
2PL 0.898 0.881 0.970 0.895

4 1PL 0.932 0.887 0.967 0.928
2PL 0.972 0.891 0.992 0.963

for the difficulty parameters for both the 1PL and 2PL models indicate a low difficulty

level for all items and the small person trait variance of 0.570 suggests that examinees

exhibit similar levels of ability, a scenario that is well known to be less informative.

Latent based reliability is larger than the Taylor series approximation and in this

case this would lead to different conclusions regarding reliability of the expected sum

score. The Fisher information based measure is not useful in this case given that it

is negative, which can also be attributed to the relatively small number of items.

The questionnaire for Verbal Aggression data has 24 items, which can be consid-

ered of average length and according to Table 9.4, the expected sum score reliability

is high: above 0.85 for all measures. Further, the item difficulty estimates for 1PL

and 2PL models have maxima, 2.976 and 2.439, and minima, −1.748 and −1.212,

respectively, suggesting a mixture of high and low difficulty level items. The person

trait variance of 1.919 suggests a cross-section of persons with varying abilities, form-

ing a desirable scenario to achieve high reliability. Again, the latent correlation based

reliability is higher than the manifest correlation based counterpart, although in this

case, similar conclusions regarding reliability of both the expected item and the sum

score would be reached, regardless of the measure of reliability used.
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Table 9.2: Item reliability for 1PL and 2PL, where person trait variance σ2
θ = 1. ρSA

is the item reliability obtained using the Taylor series approximation, ρSl , is the latent

correlation based item reliability and ρS is the exact item reliability and finally, β and

α are the simulated item difficulty and discrimination parameter values.

1PL 2PL

Item β ρil ρiA ρi β α ρil ρiA ρi
1 1.221 0.233 0.150 0.168 0.444 3.441 0.782 0.634 0.608

2 -0.670 0.233 0.183 0.173 3.785 1.210 0.308 0.015 0.054

3 1.205 0.233 0.151 0.169 0.974 3.731 0.809 0.258 0.608

4 0.162 0.233 0.199 0.185 -1.389 2.233 0.602 0.170 0.352

5 0.780 0.233 0.177 0.179 -0.490 2.043 0.559 0.450 0.398

6 -3.850 0.233 0.020 0.047 3.008 1.789 0.493 0.014 0.135

7 3.330 0.233 0.032 0.071 -0.623 2.680 0.686 0.489 0.487

8 -0.197 0.233 0.198 0.182 2.971 1.960 0.538 0.011 0.150

9 2.373 0.233 0.072 0.119 1.244 2.602 0.673 0.197 0.465

10 2.037 0.233 0.093 0.135 -0.711 2.517 0.658 0.437 0.458

11 0.423 0.233 0.193 0.184 -1.353 2.350 0.627 0.175 0.372

12 -1.702 0.233 0.115 0.136 -2.184 0.590 0.096 0.056 0.061

13 0.948 0.233 0.168 0.176 -2.332 2.241 0.604 0.026 0.267

14 2.979 0.233 0.044 0.088 -0.061 2.757 0.698 0.654 0.521

15 3.873 0.233 0.020 0.049 -2.552 2.274 0.611 0.015 0.251

16 0.288 0.233 0.197 0.185 -0.519 2.020 0.554 0.440 0.393

17 0.042 0.233 0.200 0.185 -1.281 2.046 0.560 0.209 0.336

18 -1.461 0.233 0.133 0.146 0.118 0.395 0.045 0.038 0.040

19 0.480 0.233 0.191 0.184 -0.156 2.106 0.574 0.519 0.423

20 -3.227 0.233 0.035 0.069 -1.769 1.286 0.334 0.123 0.177

21 3.741 0.233 0.022 0.054 3.688 2.413 0.639 0.001 0.053

22 0.096 0.233 0.200 0.185 -1.501 2.011 0.551 0.152 0.309

23 -2.821 0.233 0.050 0.086 1.581 1.981 0.544 0.136 0.342

24 3.780 0.233 0.021 0.052 0.630 1.619 0.443 0.338 0.330

9.6 Discussion

Beyond doubt, reliability measures based on manifest correlations are of considerable

importance in IRT. The reason for their relatively rare use can be largely attributed

to lack of efficient means of estimation given that marginalizing the joint distribution

of normal random effects, combined with binary data distributions is computationally

challenging.

This chapter has outlined a procedure for approximating reliability measures based
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on manifest correlations, and illustrated their application for 1PL and 2PL models

for both expected item score and expected sum score. We have further explored

the relationship between latent and manifest correlations based reliability measures,

where it was shown that latent based reliability measures are always greater than their

manifest correlation based counterparts. Hence, using one in place of the other should

be avoided. A simulation study to assess the performance of the newly introduced

Taylor series based reliability measures indicated that they give a true reflection of the

exact reliability, especially at the expected sum score level. In comparison to Fisher

information based sum score reliability, Taylor series based approximations, perform

consistently better, including in the cases where the Fisher information based measure

gives negative values, which are not meaningful.

Taylor series based reliability measures do not involve evaluation of integrals with

no closed forms. Rather, they use quantities that are easily obtained during model

estimation; computation can be handled by most standard statistical software tools.

Thus, they represent a less computationally intensive, readily available solution to

obtaining reliability of either item score or sum score, whichever truly reflects the

required reliability. However, the quality of reliability estimates heavily relies on the

quality of model estimated parameters. For example, results from poorly converged

models may not reflect the true reliability.

Generally, our findings are useful and relevant for practice and expand on the

available tools for measuring reliability. When studying reliability or generalizability,

manifest correlation is a more intuitive measure, as it captures the correlation between

what is actually observed, and not what happens at the level of a latent construct.
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Table 9.3: Results from the analysis of the LSAT6 data. β̂ and α̂ are item difficulty and

discrimination parameters estimates; ρiA indicates the Taylor series approximated expected

item score reliability; ρil corresponds to the latent correlation based counterpart; ρs gives the

expected sum score reliability of the corresponding item reliability; ρf is the Fisher informa-

tion based reliability measure.

1PL 2PL

item β̂ ρiA ρil β̂ α̂ ρiA ρil
1 -2.730 0.032 0.148 -3.359 0.826 0.036 0.172
2 -0.999 0.101 0.148 -1.370 0.723 0.094 0.137
3 -0.240 0.123 0.148 -0.280 0.891 0.163 0.194
4 -1.306 0.087 0.148 -1.866 0.688 0.074 0.126
5 -2.099 0.053 0.148 -3.126 0.657 0.042 0.116
ρS 0.304 0.464 0.312 0.465
ρf -1.343 -1.240
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Table 9.4: Results from the analysis of the Verbal Aggression Data. β̂ is the esti-

mate of item difficulty; α̂, is the discrimination parameter estimate; ρiA indicates

the Taylor series approximated expected item score reliability; ρil corresponds to the

latent correlation based counterpart; ρs gives the expected sum score reliability of the

corresponding item reliability; ρf is the Fisher information based reliability measure.

1PL 2PL

item β̂ ρiA ρil β̂ α̂ ρiA ρil

1 -1.221 0.252 0.368 -0.886 1.372 0.249 0.364

2 -0.565 0.307 0.368 -0.387 1.551 0.355 0.422

3 -0.080 0.324 0.368 -0.062 1.373 0.320 0.364

4 -1.748 0.195 0.368 -1.212 1.483 0.211 0.400

5 -0.707 0.298 0.368 -0.476 1.601 0.357 0.438

6 -0.012 0.324 0.368 -0.012 1.285 0.292 0.334

7 -0.529 0.309 0.368 -0.510 0.891 0.159 0.194

8 0.686 0.299 0.368 0.479 1.436 0.315 0.385

9 1.527 0.220 0.368 1.438 0.933 0.125 0.209

10 -1.082 0.266 0.368 -0.877 1.148 0.205 0.286

11 0.349 0.318 0.368 0.223 1.628 0.391 0.446

12 1.044 0.270 0.368 0.935 0.996 0.167 0.232

13 -1.221 0.252 0.368 -0.786 1.720 0.326 0.473

14 -0.389 0.316 0.368 -0.230 2.351 0.563 0.627

15 0.871 0.285 0.368 0.606 1.451 0.304 0.390

16 -0.872 0.285 0.368 -0.602 1.512 0.319 0.410

17 0.057 0.324 0.368 0.023 2.030 0.507 0.556

18 1.482 0.225 0.368 0.963 1.656 0.278 0.454

19 0.211 0.322 0.368 0.173 1.116 0.236 0.274

20 1.504 0.222 0.368 1.094 1.361 0.218 0.360

21 2.976 0.081 0.368 2.439 1.140 0.067 0.283

22 -0.707 0.298 0.368 -0.510 1.401 0.302 0.373

23 0.384 0.316 0.368 0.261 1.471 0.343 0.397

24 2.000 0.168 0.368 1.571 1.209 0.142 0.307

ρS 0.900 0.933 0.908 0.936

ρf 0.859 0.863





Chapter 10

Concluding Remarks and

Further Research

10.1 Concluding Remarks

10.1.1 Flexible Methodology For Hierarchical Data and Data

with Selection Bias

Motivated by an interesting case study that aims at quantifying expert opinion on

clusters of compounds marked for acquisition, we have proposed solutions to statistical

problems arising from high-dimensional nature of the data and bias originating from

less restricted assignment of the clusters to the experts.

In our quest to quantify expert opinion on the potential of clusters of chemical com-

pounds marked for acquisition, in Chapter 3 we have presented permutational-splitting

sample procedure, that involves splitting the data into well calculated sub-samples,

maximum likelihood estimation within each sub-sample, permuting and re-splitting

the data to improve the estimates, and using Monte Carlo methods to approximate

integrals, as a means of overcoming the high-dimension problem. While research in

high-dimensional problems is at an advanced level, the new procedure was necessary

because, unlike many high-dimensional methods that deal with either variable se-

lection, large sample size, or long repeated response vector, our problem had both,

long repeated response vector and high-dimensional fixed-effects vector, hence exist-

ing methods needed modification.

Results of a simulation study, assessing the performance of the procedure, in compar-
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ison to full maximum likelihood estimation, show that parameter estimates and con-

fidence intervals, from the procedure are similar to those obtained through maximum

likelihood estimation using a non-split dataset. Parameter estimates showed minimal

bias, coverage of confidence intervals for success probability was slightly higher than

the expected 95%, but the range was narrow enough for meaningful inferences. Loss

in precision, apparent in wider confidence intervals is anticipated, since the procedure

splits the data into dependent sub-samples, resulting into a less efficient random-effect

variance estimate, which is used in estimating the confidence intervals.

A key issue to guarantee the validity of the process of evaluating the clusters,

is the mechanism used to assign the clusters to the experts. It was shown that

disregarding this process when quantifying expert opinion can produce misleading

results. Essentially, to guarantee validity of the results while using less complicated

techniques that are less prone to error, one needs to ensure that the selection and

rating processes are independent or that the selection process does not depend on the

expert characteristics and does not share any parameter with the rating process. The

random allocation of the clusters to the experts seems to be the most, if not the only,

practical way to achieve these conditions. Therefore, we strongly advocate for its use

in the present work.

Even in carefully designed studies it is not always possible to avoid bias in the

estimates of the parameters of interest, for example, in the case study described in

Section 2.1. For practical reasons, experts were unknowingly given the choice to

select the number of clusters they want to rate, which introduced selection bias. In

Chapter 4, we recommended jointly fitting the complex hierarchical models describing

the selection and rating mechanisms in order to obtain valid estimates. However, it

has been shown that misspecifying the selection model may introduce severe bias in

the estimates of the relevant parameters. In response, we have introduced a new

approach using the so-called combined model that accounts for the selection process

using a new set of random effects. Simulations results clearly showed that, unlike the

naive and joint model approaches, the combined model seems to produce unbiased,

although less precise, estimates in most settings. This loss of precision may be seen

as the price to pay for the robustness archived by the model. When factors suspected

to drive the selection process are known and available, the combined model is still

useful as a sensitivity analysis tool.

As noted in Chapter 4, blindly assuming that unobserved heterogeneity in re-

peated measurements data only comes from the correlation in the responses can be

too restrictive, as other unobserved sources of variation, like bias also need to be taken

into account. In Chapter 6, we have shown through simulations that ignoring other
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sources of variation in hierarchical model can have dire consequences on estimation

of some covariate effects and their standard errors, as well as, on the variance com-

ponents and the Type I error rates. Though we used a specific source of variation,

namely, overdispersion in count data, it is obvious that the results are applicable to

other sources of variation, like bias studied in Chapters 4 and 5. Importantly, we

found that the Type I error rates were considerably inflated when overdispersion was

ignored, implying that the probability of detecting a spurious effect increases. Re-

markably, our findings are strikingly similar to those reported by Litière, Alonso, and

Molenberghs (2008) when studying the impact of misspecifying the random effects

distribution in a logistic model with a random intercept. It is interesting to see that

two related but different types of misspecification, i.e., ignoring overdispersion and

misspecifying the random effect distribution, may have very similar consequences.

10.1.2 Flexible Methodology For Data With Random Sample

Size

In Chapter 7 we have considered the consequences for statistical inference of a random

sample size. Our setting is that of univariate random variables from the exponential

family that are subject to a stopping rule such that the sample size is either N = n

or N = 2n, with n specified by design. The stopping rule is stochastic and is allowed

to depend on the sample sum K over the first n observations. The rule is generic

in the sense that its limiting cases are a deterministic stopping rule, such as in a

sequential trial, and a completely random sample size, independent of the data. This

setting extends those of both Liu et al. (2006) and Molenberghs et al. (2013); the

former restrict attention to a deterministic stopping rule, although they do so for

an arbitrary number of interim looks. The latter confined attention to normally

distributed outcomes only.

We have focused on three important inferential aspects. First, we have shown

that the sufficient statistic (K,N) is incomplete. Second, we have examined the con-

sequences of this for the sample average, as well as for linear generalizations thereof.

We have shown that there is small-sample bias, except for the CRSS case. Even then,

there is no optimal estimator, except for the exponential distribution, for which the

optimum differs from the ordinary sample average. Third, we have studied maxi-

mum likelihood estimation in both a joint as well as a conditional framework. The

joint likelihood is for the exponential-family parameter and the stopping rule simul-

taneously. The conditional likelihood starts from the conditional distribution of the

outcomes, given the sample size. Also here, counterintuitive results are derived. The
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joint likelihood produces the sample average as maximum likelihood estimator, which

is biased in finite samples but is asymptotically unbiased, provided a regularity con-

dition on the stopping rule applies. The conditional likelihood estimator is unbiased,

even in small samples. This notwithstanding, the sample average has smaller MSE

than the conditional estimator in many important cases, such as the normal and bi-

nary examples considered, as well as when the variance of the outcomes is sufficiently

small. Under regularity conditions, both estimators are asymptotically equivalent,

with the difference between both being O(n−1). The regularity condition is not very

restrictive; it essentially comes down to requiring that F ′(k = nµ) approaches zero

where F is the stopping rule. For broad classes of parametric functions, this condi-

tion is satisfied. We have shown that the corresponding conditional expectations are

unbiased.

Hence, when the regularity conditions are satisfied, the sample average remains an

attractive and sensible choice for sequential trials. Thus, while some familiar inferen-

tial properties no longer hold, estimation after sequential trials is more straightforward

than commonly considered and there is little need for complicated, modified estima-

tors, given that the ordinary sample average is acceptable for wide classes of stopping

rules, whether stochastic or deterministic.

Molenberghs et al. (2013) considered several ramifications of their developments.

They commented on the situation of an arbitrary number of looks in a sequential

trial, and considered in detail the CRSS case for more than two possible sample sizes.

All of this was done for normally distributed outcomes. They also commented on the

connection between their derivations and longitudinal outcomes subject to dropout

of an MAR type, where dropout depends on observed but not further on unobserved

outcomes. While similar, there are subtle differences because now the randomness

in the sample size pertains to the number of measurements per subject, rather than

to the number of subjects. The difference lies in the fact that measurements within

a subject are not independent. Our results extend to these settings as well for the

exponential family. Furthermore, connections can be made with a variety of other

settings with random sample sizes, such as clustered data with informative cluster

sizes, time-to-event data subject to censoring, jointly observed longitudinal and time-

to-event data, and random observation times. These settings are currently scrutinized

further, and will be reported in a separate manuscript.

While the settings discussed above are enlightening and intuitive, in practice, more

than two looks are commonly required. We therefore extended the methodology to

general number of looks with the GST framework in Chapter 8, since it is the most

used form of RSS trials. Our findings can be summarized as follows.
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First, although for a sequential trial with a deterministic stopping rule the ordi-

nary sample average is finite sample biased, it can be been shown both directly and

through likelihood arguments that it is asymptotically unbiased and so remains a

good candidate for practical use. Further, it is computationally trivial, has a corre-

spondingly simple estimator of precision, derived from observed information matrix

and hence a well behaved asymptotic likelihood-based confidence interval. In addi-

tion, the mean square error of the sample average is smaller than that of the estimator

based on the conditional likelihood, even though the latter is finite sample unbiased.

The conditional estimator is also computationally more involved, because there is

no closed-form solution. Asymptotically, the mean square errors of both estimators

converge to each other.

Second, there is the subtle issue that the sample average may be asymptotically

biased for certain stopping rules, when its expectation is considered conditionally

on certain values of the sample size. However, this is not a real practical problem

because this occurs only for sample sizes that have asymptotic probability zero of

being realized.

In addition to estimation in trials with RSS,in Chapter 9 we have also looked

at the aspect of reliability of a scale of measurement in studies that measure some

unobserved traits, like quality of life, intelligence and some specific behaviors. Based

on manifest correlation functions, reliability for a continuous scale is easily obtained

as the ratio of true over observed variance, since manifest and latent correlations

coincide, a phenomenon that is not carried forward to the categorical scale. Although

reliability on a latent scale is easily obtained for the categorical scale, it is usually

not of interest. Rather, reliability measures based on manifest correlations are of

considerable importance. The reason for their relatively rare use is to a large extent

the lack of efficient means of estimation given that marginalizing the joint distribution

of normal random effects, combined with binary data distributions is computationally

challenging.

We have outlined a procedure for approximating reliability measures based on

manifest correlations, and illustrated their application for 1PL and 2PL models for

both expected item score and expected sum score. We have further explored the rela-

tionship between latent and manifest correlations based reliability measures, where it

was shown that latent based reliability measures are always greater than their man-

ifest correlation based counterparts. Hence, using one in place of the other should

be avoided. A simulation study to assess the performance of the newly introduced

Taylor series based reliability measures indicated that they give a true reflection of the

exact reliability, especially at the expected sum score level. In comparison to Fisher
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information based sum score reliability, Taylor series based approximations, perform

consistently better, including in the cases where the Fisher information based measure

gives negative values, which are not meaningful.

Taylor series based reliability measures do not involve evaluation of integrals with-

out closed forms. Rather, they use quantities that are easily obtained during model

estimation; computation can be handled by most standard statistical software tools.

Thus, they represent a less computationally intensive, readily available solution to

obtaining reliability of either item score or sum score, whichever truly reflects the

required reliability. However, the quality of reliability estimates heavily relies on the

quality of model estimated parameters. For example, results from poorly converged

models may not reflect the true reliability.

Generally, our findings are useful and relevant for practice and expand on the

available tools for measuring reliability. When studying reliability or generalizability,

manifest correlation is a more intuitive measure, as it captures the correlation between

what is actually observed, and not what happens at the level of a latent construct.

10.2 Further Research

10.2.1 Connections Between Combined Model and Missing

Data Methodology

Given the robust performance of the combined model in the presence of bias, and

given the relationship between bias and missingness, it is only logical that we ex-

plore possible connections between the combined model and models for missing data.

There is potential that it can lead to a powerful modeling framework for missing data

problems.

10.2.2 Reliability Measures for Models Multidimensional

Traits

Reliability for measurement scales assuming multidimensional traits is still a gray area

in measurement studies. The advantage of the reliability approximation functions

that we have presented is that they can be easily extended to such settings. Such an

extension will be a valuable addition to reliability measures research.



Bibliography

Agrafiotis, D. K., Alex, S., Dai, H., Derkinderen, A., Farnum, M., Gates, P., Izrailev,

S., Jaeger, E. P., Konstant, P., Leung, A., Lobanov,V. S., Marichal, P., Martin, D.,

Rassokhin, D. N., Shemanarev, M., Skalkin, A., Stong, J., Tabruyn, T., Vermeiren,

M., Wan, J., Xu, X. Y., and Yao, X. (2007). Advanced Biological and Chemical

Discovery (ABCD): Centralizing discovery knowledge in an inherently decentralized

world. J. Chem. Inf. Model, 47, 1999-2014.

Agresti, A. (2002). Categorical Data Analysis (2nd ed.). New York: John Wiley &

Sons.

Agresti, A., Caffo, B., and Ohman-Strickland, P. (2004). Examples in which misspecif-

cation of a random effects distribution reduces efficiency, and possible remedies.

Computational Statistics & Data Analysis, 47, 639–653.

Alonso, A. and Molenberghs, G. (2008). Surrogate endpoints: Hopes and perils. Phar-

macoeconomics and Outcomes Research, , 255–259.

Alonso, A., Milanzi, E., Molenberghs, G., Buyck, C., and Bijnens, L. (2013). Impact

of selection bias on the qualitative assessment of Cluster of Chemical compounds.

Submitted for publication and in Revision.

Armitage, P. (1975) Sequential Medical Trials. Oxford: Blackwell.

Barndorff-Nielsen, O. and Cox, D.R. (1984). The effect of sampling rules on likelihood

statistics. International Statistical Review, 52, 309–326.

Baser, O., Bradley, C.J., Gardiner, J. C., and Given, C. (2003). Testing and correcting

for mon-random selection bias due to censoring: An application to medical costs.

Health Services & Outcomes Research Methodology, 4, 93–107.

157



158 Chapter BIBLIOGRAPHY

Bassler, D., Briel, M., Montori, V. M., Lane, M., Glasziou, P., Zhou, Q., Heels-

Ansedell, D., Walter, S.D., Guyatt, G.H. and the STOPIT-2 Study Group. (2010).

Stopping randomized trials early for benefit and estimation of treatment effects.

Systematic review and meta-regression analysis. Journal of the American Medical

Association,303, 1180–1187.

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya,

15, 377–380.

Berger, M. and Wong, W.(2009) An introduction to optimal designs for social and

biomedical research. Oxford : Wiley-Blackwell.

Birkel, T. (1992). Laws of large numbers under dependence assumptions. Statistics &

Probability Letters, 14, 355–362.

Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation.

Annals of Mathematical Statistics, 18 ,105-110.

Bock, R.D., and Lieberman M. (1970). Fitting a response curve model for dichoto-

mously scored items. Psychometrika, 35, 179–198.

Bond, T.G. & Fox, C.M. (2007) . Applying the Rasch Model: Fundamental measure-

ment in the human sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates.

Booth, J.G., Casella, G., Friedl, H., and Hobert, J.P. (2003). Negative binomial log-

linear mixed models. Statistical Modelling, 3:179–181.

Briggs, D.C., and Wilson, M. (2007). Generalizability in item response modelling.

Journal of Education Measurement, 44, 131–155.

Casella, G. and Berger, R.L. (2001). Statistical Inference. Pacific Grove: Duxbury

Press.

Chen, X. and Xie, M. (2012). A split-and-conquer approach for analysis of extra ordi-

nary large data. DIMACS technical report 2012-01, [cited 2013 June 15], Available

from:

http://dimacs.rutgers.edu/TechnicalReports/TechReports/2012/2012-01.pdf

Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. London: Chapman & Hall.

Creemers, A., Hens, N., Aerts, M., Molenberghs, G., Verbeke, G., and Kenward,

M.G. (2011). Generalized shared-parameter models and missingness at random.

Statistical Modeling, 11, 279–311.



BIBLIOGRAPHY 159

Cronbach, L.J., and Shavelson, R.J. (2004). My Current Thoughts on Coefficient

Alpha and Successor Procedures. Educational and Psychological Measurement, 64,

391-418.

Culligan, B. (2008). Estimating word difficulty using Yes/No tests in an IRT frame-

work and its application for pedagogic objectives. Unpublished dissertation. Tokyo:

Temple University Japan.

Davidian, M. and Giltinan, D.M (1995) Nonlinear Models for Repeated Measurement

Data. New York: Chapman & Hall.

De Ayala, R.J. (2009). The Theory and Practice of Item Response Theory. New York,

NY: The Guilford Press.

De Boeck, P. and Wilson, M. (2004).(Eds.) Explanatory Item Response Models: A

Generalized Linear and non-linear Approach. New York: Springer.

De Boeck, P. (2009). Random Item Item Response Theory Models. Technical Report.

Diggle, P.J. and Kenward, M.G. (1994). Informative drop-out in longitudinal data

analysis (with discussion). Applied Statistics, 43, 49-93.

Dimitrov, D.M. (2003). Marginal true score measures and reliability for binary items

as a function of their IRT parameters. Applied Psychological Measuremen, 27, 440–

458.

Donoho, D.L. (2000). High-dimensional data analysis: The curses and blessings of

dimensionality. Aide-Memoire, [cited 2013 June 15], Available from:http://www-

stat.stanford.edu/ donoho/Lectures/AMS2000/Curses.pdf

Doran, H., Bates, D., Bliese, P., and Dowling, M. (2007). Estimating the multilevel

Rasch model with the lme4 package. Journal of Statistical Software, 20, 1–18.

Duchateau, L. and Janssen, P. (2007). The Frailty Model. New York: Springer.

Dunbar, J. B. (2000). Compound acquisition strategies. Pacific Symposium on Bio-

computing, 5, 552–562.

Emerson,S.S., Gillen, D.L., Kittelson, J.K., Emerson, S.C., and Levin, G.P (2012).

RCTdesign: Group Sequential Trial Design. R package version 1.0.

Emerson, S.S. and Fleming, T.R. (1990). Parameter estimation following group se-

quential hypothesis testing. Biometrika, 77, 875–892.



160 Chapter BIBLIOGRAPHY

Emerson, S.S. (1988). Parameter estimation following group sequential hypothesis

testing. PhD dissertation. University of Washington.

Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number

of parameters. The Annals of Statistics, 32, 928–961.

Fan, J., Guo, S. and Hao, N. (2012). Variance estimation using refitted cross-validation

in ultrahigh dimensional regression. J.R Statist. Soc. B, 74, 37–65.

Faught, E., Wilder, B.J., Ramsay, R.E., Reife, R.A., Kramer, L.D.,Pledger, G.W., and

Karim, R.M. (1990.) Topiramate placebo-controlled dose-ranging trial in refractory

partialepilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 46, 1684–

1690.

Fieuws, S. and Verbeke, G. (2006). Pairwise fitting of mixed models for joint modelling

of multivariate longitudinal profiles. Biometrics, 62, 424–431.

Fisher, R.A. (1918). The correlation between relatives on the supposition of Mendelian

inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.

Follmann, D. and Wu, M. (1995). An approximate generalized linear model with

random effects for informative missing data. Biometrics, 51, 151–168.

Gaure, S. (2013). OLS with Multiple High Dimensional Category Variables. Compu-

tational Statistics and Data Analysis, 66, 8-18.

Genelletti, S., Mason, A., and Best, N. (2011). Adjusting for selection effects in

epidemiologic studies: Why sensitivity analysis is the only “solution.” Commentary

in Epidemiology, 22, 36–39.

Geneletti, S., Richardson, S., and Best, N. (2009) Adjusting for selection bias in

retrospective, case-control studies. Biostatistics, 10, 17–31.

Grambsch, P. (1983). Sequential sampling based on the observed Fisher information to

guarantee the accuracy of the maximum likelihood estimator. Annals of Statistics,

11, 68–77.

Guimaraes, P. and Portugal, P. (2010). A Simple Feasible Alternative Procedure to

Estimate Models with High-Dimensional Fixed Effects. Stata Journal, 10, 628–649.

Hack, M.D., Rassokhin, D.N., Buyck, C., Seierstad, M., Skalkin, A., ten Holte, P.,

Jones, T.K., Mirzadegan, T., Agrafiotis, D.K. (2011). Library enhancement through



BIBLIOGRAPHY 161

the wisdom of crowds. Journal of Chemical Information and Modeling, 51, 3275–

3286.

Hambleton, R.K., Swaminathan, H., and Rogers, H.J. (1991). Fundamentals of Item

Response Theory. Newbury Park, CA: Sage Press.

Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47,

153–161,

Hernán, M.A., Hernández-Diaz, S., and Robins, J.M. (2004). A structural approach

to selection bias. Epidemiology, 15, 615–625.

Hinde, J. and Demétrio, C.G.B. (1998). Overdispersion: Models and Estimation. São

Paulo: XIII Sinape.

Holland, P.W. (1986). Statistics and causal inference. Journal of the American Sta-

tistical Association, 81, 945–960.

Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without

replacement from a finite universe. Journal of the American Statistical Association,

47, 663–685.

Horwitz, R. and Feinstein, A. (1978). Alternative analytic methods for case-control

studies of estrogens and endometrial cancer. New England Journal of Medicine,

299, 368–387.

Hughes, M.D. and Pocock, S.J. (1988). Stopping rules and estimation problems in

clinical trials. Statistics in Medicine, 7, 1231–1242.
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Appendix A

Additional Material Related

to the Case Study Revisited

A.1 Results Emanating From Different Selection

Models

The case study was also analyzed with the restrictive model that assumes corr(ai, bi) =

1 . Tables A.1 display the results.
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Table A.1: Results from shared parameter models estimated by Laplace. The rating

process model is Logit[P (Yij = 1|bi)] = βj + bi. The selection model Logit[P (Xij =

1|bi)] = g(.) where g(.) is given under the columns “selection models” and the logistic-

normal model(Naive) is included for comparison. CID is the cluster identification,

β̂ is the cluster effect estimate, P̂ is the estimated success probability and R is its

corresponding rank.

Selection Models

Naive αj + bi βj + bi α+ bi

CID β̂ P̂ R β̂ P̂ R β̂ P̂ R β̂ P̂ R

265222 2.52 0.94 1 -1.10 0.34 15 -2.46 0.16 430 -1.59 0.27 62
295061 3.83 0.92 2 -0.58 0.42 1 -2.47 0.16 556 -0.43 0.44 1
359957 0.49 0.87 3 -1.47 0.29 47 -2.68 0.14 2896 -1.59 0.28 56
69850 1.07 0.82 4 -0.91 0.37 9 -2.47 0.16 594 -1.15 0.33 17
84163 5.24 0.77 5 -2.03 0.22 239 -3.47 0.08 20619 -1.97 0.23 202

296443 2.59 0.76 6 -2.31 0.19 488 -3.22 0.10 17009 -2.54 0.17 894
7451 1.28 0.74 7 -2.06 0.22 272 -2.78 0.13 5050 -2.06 0.21 276

277619 1.65 0.73 8 -1.97 0.23 191 -2.76 0.13 4286 -1.77 0.25 117
315928 2.04 0.72 9 -0.73 0.39 5 -2.28 0.18 94 -0.57 0.42 3
296535 2.77 0.71 10 -0.65 0.40 3 -2.71 0.14 3393 -0.63 0.40 4
313914 2.18 0.70 11 -1.91 0.23 166 -3.33 0.09 18903 -1.47 0.29 43
277774 2.20 0.69 12 -1.11 0.34 18 -2.63 0.14 2260 -1.42 0.30 40
178994 1.85 0.68 13 -0.63 0.41 2 -1.98 0.21 2 -0.65 0.40 5
296560 1.89 0.66 14 -1.07 0.34 17 -2.45 0.16 408 -1.00 0.35 14
464822 1.21 0.66 15 -1.45 0.29 45 -2.70 0.14 3057 -1.48 0.29 47
265441 1.87 0.65 16 -1.95 0.23 175 -3.12 0.10 14099 -1.98 0.22 215
292805 1.47 0.65 17 -0.72 0.39 4 -2.54 0.15 951 -0.72 0.40 6
432169 1.45 0.64 18 -1.09 0.34 20 -2.89 0.12 7546 -1.19 0.32 24
292579 1.85 0.64 19 -1.48 0.29 48 -2.79 0.13 4832 -1.30 0.31 28
278927 1.30 0.63 20 -1.61 0.27 59 -2.41 0.16 322 -1.30 0.31 32

σ̂2 20.02 4.05 3.06 3.96



Appendix B

Additional Material

Derivation of Properties of

Estimators

B.1 Stopping Probability for Normally Distributed

Outcomes

Molenberghs et al (2012) derived (7.22) from first principles. It is also possible to

derive this expression from (7.9), by plugging in the standard normal density for f̃1(z)

with A(k) = α+ βk/n, combined with fn,θ=µ = ϕµ,n(k).

With these choices, we find:

f(N = n) = exp
(
−n

2
µ2
)
· I

with

I =

∫ k=+∞

k=−∞

eµk−
1
2
k2

n

√
n
√

2π

∫ z=α+βk/n

z=−∞

e−
1
2 z

2

√
2π

dz dk (B.1)

=
1

√
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√

2π)2
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2
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exp
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(k − `)2
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− 1
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− 1

2
M

]
dt dk,
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with

` =
nµ− βt
β2 + n

· n,

q =
n√
β2 + n

,

L = −µβ,

Q =

√
β2 + n√
n

,

M = −µ2n.

This implies that

f(N = n) = exp
(
−n

2
µ2
)
· 1√

n
· q ·Q ·Φ

(
α− L
Q

)
exp

(
+
n

2
µ2
)

= Φ

(
α+ βµ√
1 + β2/n

)
,

which equals (7.22).

B.2 Joint Probability for Binary Outcome with

Beta-driven Stopping Rule
Considering (7.44), expression (7.48) is valid if we can show that

2n− k
2n

(
2n
k

)
=

(
2n
k

)
−H(k), (B.2)

with

H(k) =

k∧n∑
z=0∨(k−n)

(
n
z

)(
n

k − z

)
z

n
. (B.3)

In other words, we need to show

k

2n

(
2n
k

)
= H(k),

i.e., (
2n− 1
k − 1

)
=

k∧n∑
z=1∨(k−n)

(
n− 1
z − 1

)(
n

k − z

)

=

k−1∧n−1∑
z′=0∨(k−1−n)

(
n− 1
z′

)(
n

k − 1− z′
)
,

which is obviously correct.
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B.3 Conditional Expectations for the Conditional

Likelihood in the Binary Case
As stated in Section 7.5.3, it is easy to show from first principles and instructive that

the conditional expectations of the conditional scores (7.134) and (7.137).

An explicit expression for A′n(π) in (7.134) is

A′n(π) =

n∑
k=0

(
n
k

)
kπk−1(1− π)n−kF (k)−

n∑
k=0

(
n
k

)
nπk(1− π)n−k−1F (k)

+

n∑
k=0

(
n
k

)
kπk(1− π)n−k−1F (k).

The expectation becomes

E[Sn(π)|N = n] = E

[
k
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− nπ

π(1− π)
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]

=
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P (π)
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An(π)π(1− π)
· π

= 0,

where

P (π) =

n∑
k=0

(
n
k

)
kπk(1− π)n−kF (k)

Because (7.137) is slightly more involved than (7.134), we proceed differently.
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Writing

S2n(π) =

1
π(1−π)

K − 2nπ
1−A(K,π) +

∑2n
`=0 `π

`(1−π)2n−`
∑
z

 n
z

 n
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 ,

with
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2n∑
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(
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)(
n
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and using the result that

2nπ =

2n∑
k=0

kπk(1− π)2n−k,

we can write the score as:

S2n(π) =
1

π(1− π)

{
K −

∑2n
`=0Kp(`, 2n)

1−A(K,π)

}

=
1
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p(N = 2n)

}

which immediately implies that E[S2n(π)|N = 2n] = 0.



Appendix C

Additional Simulation Studies

for GST

C.1 Simulation Study for Stopping Rule Φ(α + βk)

C.1.1 Simulation Settings
The results presented in this section are from the simulation study run with the

purpose of investigating the behavior of the joint and conditional likelihood estimators

in non-fixed sample size trials. The sample size N can take the values n and 2n.

Specifically, we generated Yi ∼ N(µ, 1) i = 1 . . . n, from which F = Φ (α+ βk)

is calculated, with K =
∑n
i=1 Yi. The decision to stop or continue is reached by

generating Q ∼ U(0, 1) and that if Q ≤ F , the trial stops, otherwise we generate

another Yi ∼ N(µ, 1) i = n + 1 . . . 2n. Finally the estimate of µ is obtained by

maximizing the relevant likelihood (joint or conditional). The following values were

considered: µ = 2; 4; 10 and n = 25; 50; 250; 500; 5000. To also allow for small effects

to show up, a total of 1 million simulations were done for each setting.

C.1.2 Simulation Results
The results indicate small biases in all cases, the highest bias value being 0.1%, which

comes from the conditional likelihood estimator for N = 25 and µ = 2. In general,

though, the conditional likelihood estimator shows little or no bias. For the sample

average, comparing the overall results with the ones conditional on sample size, reveals

that the bias is slightly higher in the conditional estimates than the marginal ones for

the small sample size. The asymptotic behavior of bias is in line with theory, given
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Table C.1: Estimates were obtained by maximizing the joint likelihood and averag-

ing was done over estimates from all the simulated samples; n is the sample size

generated at a particular stage, µ is the true mean,µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are

the lower and upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9985 .00077 0.02550 1.68972 2.3072

50 2 1.9990 .00052 0.01136 1.79192 2.2060

250 2 2.0001 .00003 0.00200 1.91241 2.0877

500 2 2.0000 .00002 0.00100 1.93805 2.0620

5000 2 2.0000 .00001 0.00010 1.98041 2.0196

25 4 3.9991 .00024 0.02272 3.70628 4.2918

50 4 3.9998 .00004 0.01018 3.80238 4.1973

250 4 4.0001 .00002 0.00200 3.91241 4.0877

500 4 4.0000 .00001 0.00100 3.93805 4.0620

5000 4 4.0000 .00000 0.00010 3.98041 4.0196

25 10 10.0001 .00001 0.02009 9.72242 10.2779

50 10 10.0001 .00000 0.01000 9.80405 10.1961

250 10 10.0001 .00001 0.00200 9.91241 10.0877

500 10 10.0000 .00000 0.00100 9.93805 10.0620

5000 10 10.0000 .00000 0.00010 9.98041 10.0196

that it decreases with increasing sample size. Loss of information in the conditional

estimates is noticeable but very small in the settings studied, again in line with theory.

Details are provided in Tables C.1–C.6.

C.2 Simulation Study for Stopping Rule Φ(α+βk/n)

C.2.1 Simulation Settings
The results presented here are from a simulation study run with the purpose of investi-

gating the behavior of joint and conditional likelihood estimators in non-fixed sample

size trials. In contrast to Section C.1.1 the stopping rule is now F = Φ
(
α+ β kn

)
. All

other settings are as in Section C.1.1.
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Table C.2: Estimates were obtained by maximizing the joint likelihood and averaging

was done over estimates from all the simulated samples where we stopped at N = n; n

is the sample size generated at a particular stage, µ is the true mean, µ̂ is the average

estimated mean, Rel. bias= |(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’

and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.98573 0.00714 0.04009 1.59438 2.3771

50 2 1.95704 0.02148 0.02062 1.68982 2.2243

250 2 1.90287 0.04856 0.01343 1.77891 2.0268

25 4 3.97778 0.00555 0.04022 3.58737 4.3682

50 4 3.85891 0.03527 0.03438 3.62663 4.0912

25 10 9.97525 0.00248 0.04061 9.58325 10.3673

C.2.2 Simulation Results
The results show small biases in all cases, the highest bias value being 0.1% which

comes from the conditional likelihood estimate for N = 25 and µ = 2, though in

general the conditional likelihood estimator shows little or no bias. Comparing the

marginal and conditional estimators for the sample average reveals that the bias is

slightly higher in the conditional estimators than the marginal ones for the small

sample size. Also here, the asymptotic behavior of the bias is in line with that

expected from the theoretical developments, as it decreases with increasing sample

size. Loss of information in the conditional estimator is discernable but small.

The results are presented in Tables C.7–C.12.
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Table C.3: Estimates were obtained by maximizing the joint likelihood and averaging

was done over estimates from all the simulated samples where we continued to N = 2n,

n is the sample size generated at a particular stage, µ is the true mean, µ̂ is the average

estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’

and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0033 .00166 0.02001 1.72613 2.2805

50 2 2.0067 .00332 0.01004 1.81065 2.2027

250 2 2.0001 .00003 0.00200 1.91241 2.0877

500 2 2.0000 .00002 0.00100 1.93805 2.0620

5000 2 2.0000 .00001 0.00010 1.98041 2.0196

25 4 4.0025 .00061 0.02001 3.72526 4.2796

50 4 4.0057 .00144 0.01003 3.80974 4.2017

250 4 4.0001 .00002 0.00200 3.91241 4.0877

500 4 4.0000 .00001 0.00100 3.93805 4.0620

5000 4 4.0000 .00000 0.00010 3.98041 4.0196

25 10 10.0003 .00002 0.02000 9.72306 10.2774

50 10 10.0001 .00000 0.01000 9.80405 10.1961

250 10 10.0001 .00001 0.00200 9.91241 10.0877

500 10 10.0000 .00000 0.00100 9.93805 10.0620

5000 10 10.0000 .00000 0.00010 9.98041 10.0196

Table C.4: Estimates were obtained by maximizing the conditional likelihood and av-

eraging was done over estimates from all the simulated samples; n is the sample size

generated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are

the lower and upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0069 0.00687 0.02560 1.69777 2.3160

50 2 2.0195 0.01951 0.01182 1.81170 2.2273

25 4 4.0196 0.01961 0.02318 3.72629 4.3129

50 4 4.0423 0.04227 0.01206 3.84389 4.2406

25 10 10.0527 0.05272 0.02295 9.77448 10.3310
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Table C.5: Estimates were obtained by maximizing the conditional likelihood and av-

eraging was done over estimates from all the simulated samples where we stopped at

N = n, n is the sample size generated at a particular stage, µ is the true mean, µ̂ is

the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error

and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂

.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.98129 0.01871 0.04029 1.58970 2.3729

50 2 1.95747 0.04253 0.02062 1.68994 2.2250

25 4 3.97558 0.02442 0.04035 3.58500 4.3662

50 4 3.88135 0.11865 0.02860 3.64853 4.1142

25 10 9.97511 0.02489 0.04062 9.58309 10.3671

Table C.6: Estimates were obtained by maximizing the conditional likelihood and av-

eraging was done over estimates from all the simulated samples where we continued

to N = 2n, n is the sample size generated at a particular stage, µ is the true mean, µ̂

is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error

and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0166 0.01661 0.02035 1.73890 2.2943

50 2 2.0309 0.03089 0.01104 1.83403 2.2277

25 4 4.0266 0.02664 0.02080 3.74884 4.3044

50 4 4.0490 0.04901 0.01250 3.85207 4.2459

25 10 10.0531 0.05308 0.02289 9.77537 10.3308
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Table C.7: Estimates were obtained by maximizing the joint likelihood and averaging

was done over estimates from all the simulated samples, n is the sample size gen-

erated at a particular stage, µ is the true mean, µ̂ is the average estimated mean,

Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’ are

the lower and upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00014 0.02904 1.67065 2.3288

50 2 2.0001 .00007 0.01452 1.76743 2.2329

250 2 1.9999 .00005 0.00291 1.89581 2.1040

500 2 2.0000 .00001 0.00145 1.92638 2.0736

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 3.9998 .00006 0.02888 3.67160 4.3279

50 4 4.0001 .00002 0.01444 3.76801 4.2322

250 4 4.0001 .00002 0.00289 3.89630 4.1038

500 4 4.0000 .00001 0.00144 3.92663 4.0734

5000 4 4.0000 .00000 0.00014 3.97681 4.0232

25 10 9.9997 .00003 0.02841 9.67427 10.3252

50 10 10.0001 .00001 0.01421 9.76993 10.2303

250 10 10.0001 .00001 0.00284 9.89715 10.1030

500 10 10.0000 .00000 0.00142 9.92723 10.0728

5000 10 10.0000 .00000 0.00014 9.97700 10.0230
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Table C.8: Estimates were obtained by maximizing the joint likelihood and averaging

was done over estimates from all the simulated samples where we stopped at N = n, n

is the sample size generated at a particular stage, µ is the true mean, µ̂ is the average

estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’

and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0005 .00026 0.0200 1.72333 2.2777

50 2 2.0002 .00009 0.0100 1.80418 2.1962

250 2 2.0001 .00006 0.0020 1.91246 2.0878

500 2 2.0001 .00002 0.0010 1.93807 2.0620

5000 2 2.0000 .00000 0.0001 1.98041 2.0196

25 4 4.0003 .00007 0.0200 3.72309 4.2775

50 4 4.0001 .00003 0.0100 3.80412 4.1961

250 4 4.0001 .00001 0.0020 3.91240 4.0877

500 4 4.0000 .00001 0.0010 3.93806 4.0620

5000 4 4.0000 .00000 0.0001 3.98041 4.0196

25 10 10.0004 .00004 0.0200 9.72320 10.2776

50 10 10.0002 .00002 0.0100 9.80421 10.1962

250 10 10.0001 .00001 0.0020 9.91240 10.0877

500 10 10.0000 .00000 0.0010 9.93805 10.0620

5000 10 10.0000 .00000 0.0001 9.98041 10.0196
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Table C.9: Estimates were obtained by maximizing the joint likelihood and averaging

was done over estimates from all the simulated samples where we continued to N = 2n,

n is the sample size generated at a particular stage, µ is the true mean, µ̂ is the average

estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’

and ‘upper’ are the lower and upper confidence interval limits respectively, obtained

as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9994 .00031 0.03291 1.64807 2.3507

50 2 2.0001 .00006 0.01646 1.75168 2.2486

250 2 1.9998 .00009 0.00330 1.88866 2.1110

500 2 2.0000 .00002 0.00165 1.92137 2.0786

5000 2 2.0000 .00001 0.00016 1.97518 2.0249

25 4 3.9995 .00012 0.03287 3.64846 4.3506

50 4 4.0001 .00002 0.01643 3.75188 4.2483

250 4 4.0001 .00002 0.00328 3.88910 4.1111

500 4 4.0000 .00000 0.00164 3.92154 4.0785

5000 4 4.0000 .00000 0.00016 3.97521 4.0248

25 10 9.9994 .00006 0.03265 9.64959 10.3492

50 10 10.0001 .00001 0.01634 9.75262 10.2475

250 10 10.0001 .00001 0.00327 9.88944 10.1107

500 10 10.0000 .00000 0.00163 9.92178 10.0783

5000 10 10.0000 .00000 0.00016 9.97529 10.0248
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Table C.10: Estimates were obtained by maximizing the conditional likelihood and

averaging was done over estimates from all the simulated samples; n is the sample

size generated at a particular stage, µ is the true mean, µ̂ is the average estimated

mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error and ‘lower’ and ‘upper’

are the lower and upper confidence interval limits respectively, obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9997 .00031 0.02904 1.67061 2.3288

50 2 2.0001 .00010 0.01454 1.76728 2.2329

250 2 2.0000 .00000 0.00290 1.89594 2.1041

500 2 2.0001 .00006 0.00713 1.85669 2.1434

5000 2 2.0000 .00001 0.00015 1.97675 2.0233

25 4 4.0000 .00004 0.02888 3.67186 4.3282

50 4 4.0001 .00013 0.01445 3.76798 4.2323

250 4 4.0000 .00000 0.00289 3.89622 4.1038

500 4 4.0001 .00005 0.00144 3.92666 4.0734

5000 4 4.0000 .00001 0.00014 3.97681 4.0232

25 10 10.0000 .00004 0.02841 9.67458 10.3255

50 10 10.0001 .00010 0.01422 9.76984 10.2304

250 10 10.0000 .00002 0.00284 9.89709 10.1029

500 10 10.0001 .00005 0.00142 9.92726 10.0728

5000 10 10.0000 .00001 0.00014 9.97700 10.0230
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Table C.11: Estimates were obtained by maximizing the conditional likelihood and

averaging was done over estimates from all the simulated samples where we stopped

at N = n, n is the sample size generated at a particular stage, µ is the true mean, µ̂

is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error

and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 1.9988 .00118 0.04000 1.60682 2.3908

50 2 1.9999 .00006 0.02000 1.72276 2.2771

250 2 1.9999 .00007 0.00400 1.87597 2.1239

500 2 2.0000 .00002 0.01001 1.82802 2.1720

5000 2 2.0000 .00003 0.00020 1.97232 2.0278

25 4 3.9995 .00055 0.04000 3.60745 4.3915

50 4 4.0002 .00017 0.02000 3.72298 4.2774

250 4 3.9998 .00016 0.00400 3.87588 4.1238

500 4 4.0000 .00003 0.00200 3.91238 4.0877

5000 4 4.0000 .00003 0.00020 3.97231 4.0278

25 10 9.9993 .00068 0.04000 9.60732 10.3913

50 10 10.0001 .00012 0.02000 9.72293 10.2773

250 10 9.9999 .00014 0.00400 9.87590 10.1238

500 10 10.0000 .00003 0.00200 9.91238 10.0877

5000 10 10.0000 .00004 0.00020 9.97232 10.0278
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Table C.12: Estimates were obtained by maximizing the conditional likelihood and

averaging was done over estimates from all the simulated samples where we continued

to N = 2n, n is the sample size generated at a particular stage, µ is the true mean, µ̂

is the average estimated mean, Rel. bias=|(µ− µ̂)|/µ, ‘MSE’ is the mean square error

and ‘lower’ and ‘upper’ are the lower and upper confidence interval limits respectively,

obtained as µ̂± 1.96σ̂.

n µ µ̂ Rel. bias MSE lower upper

25 2 2.0004 .00041 0.02000 1.72322 2.2776

50 2 2.0002 .00023 0.01000 1.80423 2.1962

250 2 2.0001 .00006 0.00200 1.91241 2.0877

500 2 2.0001 .00009 0.00515 1.87638 2.1238

5000 2 2.0000 .00000 0.00010 1.98040 2.0196

25 4 4.0005 .00051 0.02000 3.72332 4.2777

50 4 4.0001 .00011 0.01000 3.80411 4.1961

250 4 4.0001 .00013 0.00200 3.91247 4.0878

500 4 4.0001 .00006 0.00100 3.93808 4.0620

5000 4 4.0000 .00000 0.00010 3.98040 4.0196

25 10 10.0006 .00057 0.02000 9.72338 10.2778

50 10 10.0001 .00008 0.01000 9.80408 10.1961

250 10 10.0001 .00013 0.00200 9.91248 10.0878

500 10 10.0001 .00006 0.00100 9.93808 10.0620

5000 10 10.0000 .00000 0.00010 9.98040 10.0196
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Chapter D. Additional Results From The Simulation Study on reliability

Measures

Table D.1: Item reliability for 1PL and 2PL, where person trait variance, σ2
θ = 4.

ρSA is the item reliability obtained using the Taylor series approximation; ρSl is the

latent correlation based item reliability; ρS is the exact item reliability; β and α are

the simulated item difficulty and discrimination parameter values.

1PL 2PL

Item β ρil ρiA ρi β α ρil ρiA ρi

1 1.221 0.549 0.413 0.407 0.444 3.441 0.935 0.874 0.782

2 -0.670 0.549 0.472 0.398 3.785 1.210 0.640 0.056 0.380

3 1.205 0.549 0.415 0.407 0.974 3.731 0.944 0.582 0.817

4 0.162 0.549 0.498 0.410 -1.389 2.233 0.858 0.451 0.655

5 0.780 0.549 0.463 0.411 -0.490 2.043 0.835 0.766 0.642

6 -3.850 0.549 0.075 0.268 3.008 1.789 0.795 0.055 0.555

7 3.330 0.549 0.118 0.337 -0.623 2.680 0.897 0.793 0.715

8 -0.197 0.549 0.498 0.406 2.971 1.960 0.824 0.043 0.586

9 2.373 0.549 0.238 0.377 1.244 2.602 0.892 0.496 0.736

10 2.037 0.549 0.290 0.389 -0.711 2.517 0.885 0.756 0.700

11 0.423 0.549 0.489 0.411 -1.353 2.350 0.870 0.459 0.672

12 -1.702 0.549 0.343 0.367 -2.184 0.590 0.297 0.191 0.197

13 0.948 0.549 0.446 0.410 -2.332 2.241 0.859 0.097 0.598

14 2.979 0.549 0.155 0.353 -0.061 2.757 0.902 0.883 0.723

15 3.873 0.549 0.074 0.309 -2.552 2.274 0.863 0.058 0.589

16 0.288 0.549 0.495 0.411 -0.519 2.020 0.832 0.758 0.638

17 0.042 0.549 0.500 0.409 -1.281 2.046 0.836 0.514 0.631

18 -1.461 0.549 0.379 0.376 0.118 0.395 0.160 0.135 0.130

19 0.480 0.549 0.486 0.411 -0.156 2.106 0.844 0.812 0.653

20 -3.227 0.549 0.128 0.297 -1.769 1.286 0.668 0.359 0.450

21 3.741 0.549 0.083 0.316 3.688 2.413 0.876 0.003 0.652

22 0.096 0.549 0.499 0.409 -1.501 2.011 0.831 0.418 0.617

23 -2.821 0.549 0.175 0.316 1.581 1.981 0.827 0.386 0.644

24 3.780 0.549 0.080 0.314 0.630 1.619 0.761 0.671 0.585
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Table D.2: Item reliability for 1PL and 2PL, where person trait variance, σ2
θ = 0.25.

ρSA is the item reliability obtained using the Taylor series approximation; ρSl is the

latent correlation based item reliability; ρS is the exact item reliability; β and α are

the simulated item difficulty and discrimination parameter values.

1PL 2PL

Item β ρil ρiA ρi β α ρil ρiA ρi

1 1.221 0.071 0.042 0.048 0.444 3.441 0.473 0.303 0.342

2 -0.670 0.071 0.053 0.055 3.785 1.210 0.100 0.004 0.006

3 1.205 0.071 0.042 0.048 0.974 3.731 0.514 0.080 0.286

4 0.162 0.071 0.058 0.060 -1.389 2.233 0.275 0.049 0.097

5 0.780 0.071 0.051 0.055 -0.490 2.043 0.241 0.170 0.169

6 -3.850 0.071 0.005 0.007 3.008 1.789 0.196 0.004 0.009

7 3.330 0.071 0.008 0.012 -0.623 2.680 0.353 0.193 0.220

8 -0.197 0.071 0.058 0.060 2.971 1.960 0.226 0.003 0.008

9 2.373 0.071 0.019 0.025 1.244 2.602 0.340 0.058 0.149

10 2.037 0.071 0.025 0.031 -0.711 2.517 0.325 0.163 0.194

11 0.423 0.071 0.056 0.059 -1.353 2.350 0.296 0.050 0.106

12 -1.702 0.071 0.032 0.036 -2.184 0.590 0.026 0.015 0.016

13 0.948 0.071 0.048 0.053 -2.332 2.241 0.276 0.007 0.025

14 2.979 0.071 0.011 0.016 -0.061 2.757 0.366 0.320 0.277

15 3.873 0.071 0.005 0.007 -2.552 2.274 0.282 0.004 0.017

16 0.288 0.071 0.058 0.060 -0.519 2.020 0.237 0.164 0.164

17 0.042 0.071 0.059 0.061 -1.281 2.046 0.241 0.062 0.099

18 -1.461 0.071 0.037 0.041 0.118 0.395 0.012 0.010 0.010

19 0.480 0.071 0.056 0.059 -0.156 2.106 0.252 0.213 0.194

20 -3.227 0.071 0.009 0.012 -1.769 1.286 0.111 0.034 0.043

21 3.741 0.071 0.006 0.008 3.688 2.413 0.307 0.000 0.001

22 0.096 0.071 0.059 0.061 -1.501 2.011 0.235 0.043 0.078

23 -2.821 0.071 0.013 0.017 1.581 1.981 0.230 0.038 0.078

24 3.780 0.071 0.005 0.008 0.630 1.619 0.166 0.113 0.124


