
 

 

DIEPENBEEK, 2012 
STEUNPUNT MOBILITEIT & OPENBARE WERKEN 
SPOOR VERKEERSVEILIGHEID 

 

 

 

 

Time Series Models for Road Safety Accident Prediction 
 

 

 

 

 

RA-MOW-2011-020 

 

 

 

D. Karlis, E. Hermans 

 

Onderzoekslijn Risicobepaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Documentbeschrijving 

 

Rapportnummer: RA-MOW-2011-020 

Titel:  Time Series Models for Road Safety Accident Prediction 

 

Auteur(s):           D. Karlis, E. Hermans 

Promotor: Prof. dr. Geert Wets 

Onderzoekslijn: Risicobepaling 

Partner: Universiteit Hasselt 

Aantal pagina’s: 27 

 

Projectnummer Steunpunt: 6.1 

Projectinhoud:  In dit project worden prognoses op vlak van 
verkeersveiligheid in Vlaanderen gemaakt. Een eerste 
stap hierin is de bepaling van een geschikte 
methodologie.  

 

Uitgave: Steunpunt Mobiliteit & Openbare Werken – Spoor Verkeersveiligheid, februari 
2012. 

 

 

 

 

 

 

Steunpunt Mobiliteit & Openbare Werken 
Spoor Verkeersveiligheid  

Wetenschapspark 5 
B  3590  Diepenbeek 
 
T 011 26 91 12 
F 011 26 91 99 
E info@steunpuntmowverkeersveiligheid.be 
I www.steunpuntmowverkeersveiligheid.be 



 

Steunpunt Mobiliteit & Openbare Werken  3 RA-MOW-2011-020 
Spoor Verkeersveiligheid 

Samenvatting 

 

Titel: Tijdreeksmodellen voor verkeersongevallen predictie 

 

Korte samenvatting:  

In dit overzichtsrapport wordt een kritische blik geworpen op de variëteit aan 

prognosemodellen die er bestaan in de literatuur en welke bruikbaar kunnen zijn voor het 

maken van voorspellingen omtrent de evolutie in de tijd van verkeersongevallen. Er 

wordt hierbij de nadruk gelegd op gedisaggregeerde analyse, oftewel analyse gericht op 

verschillende subgroepen uit de verkeersveiligheidpopulatie. Naast de klassieke 

tijdreeksmodellen en modellen voor discrete waardes komen de moderne en krachtige 

state-space modellen aan bod. Deze blijken bijzonder geschikt om verder te gebruiken 

bij toekomstige modelberekeningen. Ook aspecten die te maken hebben met de 

beschikbaarheid van benodigde gegevens worden verder besproken waarna een 

algemeen besluit wordt gevormd met betrekking tot de selectie van geschikte 

prognosemodellen die toelaten om analyses omtrent verkeersveiligheid in de toekomst 

voor verschillende subgroepen in Vlaanderen uit te voeren.  
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English summary 

 

Title: Time series models for road safety accident prediction 

 

Abstract:  

In the present report we aim at providing a critical view to some existing time-series 

models for road safety accident prediction in order to allow for a better picture of the 

wide scope of the problem and also to be able to criticize approaches. A special focus is 

given to models that allow for disaggregate analysis, i.e. analysis that focus on different 

subgroups of the road safety population. Apart from simple time series models and 

discrete valued models, the currently fashionable and powerful state space models are 

investigated in more detail as they prove to be a promising technique for further 

analysis. Some issues related to data availability are also discussed. Conclusions and 

general comments with respect to the selection of appropriate models to forecast 

accident rates for different groups in Flanders for the forthcoming years are given.  
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1.    INTRODUCTION  

Road traffic crashes are one of the world’s largest public health and injury 

prevention problems. The problem has important consequences because the victims are 

overwhelmingly healthy prior to their crashes. A report published by the WHO (2009) 

estimated that approximately 1.3 million people die each year on the world's roads, 

between 20 and 50 million sustain non-fatal injuries and traffic accidents were the 

leading cause of death among children of 10 – 19 years of age.  

Undoubtedly there is awareness in most societies about this issue and reducing 

the fatalities from road accidents is always on every political agenda. Also, the issue of 

traffic safety is high in the academic agenda and a lot of research is undertaken in order 

to examine and improve traffic safety issues.  Lately, there was a downward trend in the 

number of fatalities in most countries in Western Europe, North America and Oceania 

(see Elvik, 2010, see also Lassarre, 2001), reflecting the awareness of the problems as 

well as all the measures undertaken to decrease it. However, apart from fatalities there 

is also a great concern for the public with respect to other types of non-fatal accidents as 

they also produce significant losses and thereby contribute to the economic costs. In 

Flanders, almost 40.000 casualties were registered in 2009 (FOD Economie, 2011).  

All the above issues make the need for successful accident analysis tools obvious. 

Organizations at national and regional level can benefit from advanced models that can 

be used for various scopes of the accident analysis agenda like:  

• Prediction of the future amount of unsafety and identification of groups at 

enlarged risk. 

• Examination of the important factors that may lead to an increase/decrease 

of accidents. 

Also, the evaluation of any safety measure taken by examining the pre- and post-

period of a new measure is important for policymakers. However the focus in the present 

report is on prediction. 

However accident prediction modeling is not easy and depends on various 

aspects, like the scope of the analysis, the available data and the level of application; 

several competing models are available and could be considered for an application. A 

variety of reasons illustrating the difficulty with this kind of analyses is given below. We 

would like to refer to some of them in order to show the level of the problem, later on we 

are going to discuss some of the issues in more detail and explain how problems can be 

overcome to a certain extent. Some of the reasons are the following:  

• Inhomogeneous definition: for certain series the definitions of the 

quantities measured are not homogeneous, especially if data from different sources or 

countries are used.  

• Data availability: in certain levels the data are far from being considered as 

complete. Elvik and Mysen (1999) reported that while data on fatalities can be trusted 

data on other categories like damage only accidents are by far underreported and 
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hence their completeness is questionable for any reasonable analysis if this factor is 

not accounted for.  

• Various covariate information: while the literature contains many models 

that try to fit and forecast accident fatalities in the future, it also has a huge variety 

on the covariate information used and the level of availability of such information. On 

the one hand this limits the comparability of different models not allowing to clearly 

select one as a general purpose model (if such a model exists) but also complicates 

the usage of particular variables as drivers of measuring fatalities.  

• Aggregation level: most of the available data are complete in an 

aggregated level but when we try to disaggregate them in different types of accidents 

or different areas this is difficult or even impossible. This implies that models 

developed for aggregated data are not necessarily valid for other categories/areas and 

hence special effort needs to be taken while interpretations should be cautious with 

respect to the disaggregated level.  

• Small area estimation problem: if prediction of fatalities is to be made at 

the local level typically the data are sparse and not detailed enough to achieve reliable 

estimators. On the other hand, such data would be very helpful for evaluating local 

measures of safety. In such circumstances special models need to be developed which 

allow for small area estimation and prediction. Such models, typically, borrow 

information from adjacent areas and use more advanced statistical methodologies.  

• Data discontinuity: for some data series it is evident that due to some 

policy measure there is a change in the time series data (i.e. a decrease (hopefully) in 

the number of fatalities). Hence the data show some kind of discontinuity that needs 

to be taken into account. Such an example, illustrating this point,  is the downward 

trend in the fatalities that occurred after the energy crisis in 1973. This trend should 

be taken into account when data are analyzed and appropriate methods need to be 

used. 

• Missing information: while a considerable improvement has been made 

towards the completeness of the data and in general the covariate information used, it 

is still possible that full data are not available and in some cases extrapolations or 

proxies need to be used. A typical example relates to the exposure which, while 

recognized as of particular importance, is still very difficult to have a clear number of 

the kilometers travelled or the time spent in traffic (at a detailed level). The number 

of vehicles or the consumption of fuels is then used as a proxy. Such proxies cannot 

be very detailed (for example consumption for small areas) and hence fail to provide 

sufficient information for example at a disaggregated level.  

• Purpose of the derived model: in certain cases the model has merely 

monitoring purposes, it tries to identify the important factors that may explain the 

current situation or evaluate a safety decision taken at the past by looking in the data 

for possible changes in the pattern. Such a model while interesting itself does not 

have necessarily a forecasting potential if the model development has mainly 
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descriptive purposes. Hence various models developed, based on different scopes are 

not comparable. 

• Different modeling approaches have been used to model accident fatalities 

across different countries. This implies that comparisons are not easy. For example, in 

different countries it is possible that the models used for prediction have different 

variables. Perhaps this has some theoretical reason (some variable while significant in 

some countries are not significant in other countries) but still problems of 

comparability across countries arise. 

• Statistical methods used: finally, the literature has a huge number of 

different methodologies applied to such data. While it is not the purpose of this section 

to criticize or not these methods, we put emphasis on the fact that from a statistical 

point of view it is hard to assume that one method fits in all cases and hence special 

effort is needed for any particular data set. Also note that the level of information 

makes some models applicable or not, e.g. when examining a small area where the 

fatalities are small counts, time series models based on normal random variables are 

meaningless. Note that if we treat data at a large aggregation level, e.g. the country 

level, then reasonably enough one may ignore the discreteness of the data and fit 

normal based models.  

 

Hakim et al (1991) provided a wide review on macro models for accident 

prediction. They also provided a long list (up to that date) of empirical studies including a 

comprehensive table about the variables that were considered for creating the models. 

The variables concerned demographics, economics variables, driving behavior variables 

and also dummies to allow for intervention effects. Of course after that time (1991) more 

studies have appeared increasing the level of “candidate” covariates to be used in an 

accident prediction model. To conclude, there is a wide range of covariate information in 

which the number of variables increases. In recent days, much more variables have been 

considered mainly accounting for different effects like weather conditions, geometrical 

details of the road and other.  

Hakim et al (1991) distinguished between 3 main avenues to model accidents and 

create accident prediction models. The first type of model is time series models where 

data from one area are considered across time perhaps with the available covariate 

information. The second category refers to panel data where more areas are considered. 

Such an approach allows for examining covariates related to the area and hence creates 

more detailed models. Availability of panel data of course implies much more detailed 

data and also implies more refined modeling because effects may disappear if they are 

not present to all the areas. The third avenue is the combination of time series and panel 

data. In this report we focus on time series models since the interest lies on models for 

one country (more specifically one region) only.  

In general, three important aspects of any accident forecasting approach can be 

stated; they relate to accident exposure, accident risk and accident severity. Exposure 

relates to the level of participation in traffic. That way, people are exposed to the risk of 
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having an accident. As mentioned above, exposure is considered as a dominant variable 

in order to examine accident data. A natural measure of exposure would be the mileages, 

i.e. the total kilometers travelled (or driven by cars on a given road segment of interest), 

but this is not available in most of the cases, especially if smaller subgroups are 

examined. Hence, several other proxies are used in literature. The SafetyNet (2008) 

project funded by the EU tried to list and qualify exposure candidates. Modeling the 

exposure variable is an important task for accident forecasting models. Secondly, it is 

important to define and work with appropriate risk measures in order to quantify the 

importance of the accident analysis. Typical risk measures are the number of accidents 

per kilometres travelled or the number of accidents per population. Finally, the third 

important component is the severity of the accident. Given the fact that an accident 

occurred, the severity of the casualties can be taken into account. The number of 

severely (or fatally) injured persons per accident can then be considered.  

In the present report we aim at providing a critical view to some of the existing 

models so as to allow for a clear picture of the wide scope of the problem. This report 

serves mostly as a guide to the selection of models for predicting accidents in Flanders 

for the period up to 2020, so some selection on the description of methods is made 

based on the data available for this study. It is not easy to include all kind of models, we 

have tried to include the most important ones. We focus on dynamic models like state-

space models as we found them as interesting candidates for the application at hand. 

State–space models are very flexible as they account for trend, covariate information 

while at the same time they allow the effects to change dynamically.  

Throughout the report, we will try to keep the mathematical details in a low level 

since such details can be found in the papers cited. More detailed reviews can be found in 

COST 329 (2004) and OECD (1997).  

The next section will introduce time series models. We provide a general 

framework, later on we describe discrete valued models that are recently popular. Next 

we discuss problems related to disaggregate analyses, i.e. analyses that focus on 

subgroups, and we show the kind of problems such approaches have. Then we present 

the currently fashionable and powerful state space models in section 4. Some issues 

related to data availability are discussed in Section 5. Conclusions and general comments 

with respect to the selection of appropriate models to forecast accident rates for different 

groups in Flanders for the forthcoming years can be found in Section 6.  



 

Steunpunt Mobiliteit & Openbare Werken  10 RA-MOW-2011-020 
Spoor Verkeersveiligheid 

2.    T IME  SERIES  MODELS  

 Most accident data are in a time series form, i.e. we have available observations 

in consecutive time intervals, like every day, every month or even on an annual basis. 

Time series modelling is a well understood and studied area in most of the disciplines and 

a wide range of time series models have been developed and applied to real data from 

several disciplines. 

A typical time series model assumes certain different effects like: 

• Trend, the general trend of the data (upwards or downwards for example), 

• Seasonal effects (for example when examining monthly fatal accident 

counts certain months have a larger frequency), 

• Cycles which are periodic effects not captured by the seasonal effects, 

typical for example in an economic model where economic cycles are present, 

• Covariate effects, i.e. some other variables that affect the variables we 

examine, 

• Random error term that creates the uncertainty around a hypothesized 

model. 

 

 

Figure 1. Monthly numbers (logged) of car drivers who were killed or seriously injured in road 
accidents in Great Britain. (Reproduced from Fig 1.1 from Harvey et al, 2004) 
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Figure 1 is a typical time series for accidents. One can see that examining the whole 

period from 1970 to 1985 there is a downward trend. Within each year we can see the 

repeated (more or less) pattern which is the seasonal effect. At the beginning of 1983 we 

can see that the series jumped to a lower level. This is due to the effects of the seat belt 

law enforced in January 1983. Such effects can be taken into account by appropriate 

usage of covariates (a dummy in this case). The remaining fluctuation can be considered 

as the random error term. Note that in this example there is no cyclical effect since it is 

not common in accidents.  

Existing time series models try to separate such effects and allow for prediction of 

forthcoming time periods. Classical textbooks on time series models can be used to check 

for the type of models available, we do not repeat this here. The interested reader can 

consult, for example, the books from Chatfield (2003) and Brillinger (1975)  

A natural question that arises is why accident counts should be correlated across 

time. Based on a Poisson process, accidents should occur randomly in time. However this 

is a rather simplistic assumption. Drivers share the same environment every day, road 

conditions are the same day by day and also driving behaviours do not change in short 

time intervals. Thus we expect that accident generating mechanisms are the same in 

successive time periods leading to correlated accident counts.  

 

2.1   Continuous data 

Various models were considered and applied to accident data: Spline models or 

any other general trend models, Box-Jenkins (ARIMA) models, and DRAG-type structural 

explanatory models. Spline models can be used to detect the overall trend of casualty 

series without considering a specific functional form as for example a linear trend model 

does. The short-term predictive capability of the ARIMA model is shown to be rather 

good. The DRAG-type models can investigate the influence of social and mobility factors 

on the development of safety (see, e.g. Van den Bossche  and Wets, 2003, Van den 

Bossche,  2006). It has been found once again that the choice of the most appropriate 

type of model will depend upon the policy context (in the sense of the kind of problems 

that are treated) and data availability. There are great differences between countries 

with respect to the time series models that have been applied. This results from the 

variety of national exposure data, scientific backgrounds and the particular aspects of 

road safety that have been of interest. Thus, comparisons are difficult with these types of 

models. 

One of the first models developed is the one proposed by Smeed (1949) where 

the number of deaths in car accidents was modelled as:  

b

t

a

tt PAND =  

where tD  is the number of dead persons at time t, tN  the number of registered vehicles 

at time t and tP  the population size at time t. The model actually assumes what is still 
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valid, i.e. that exposure is the most important factor. Parameters A, α and b were 

estimated. This law was then used in certain countries with great success and still now 

this kind of relationship which can be also put in a log scale as 

ttt PbNaAD loglog'log ++=  

is used as a basis for more complicated models. This model is not explicitly a time series 

model as current observations are not related to previous ones but since the covariates 

(population and vehicle numbers) are time series, autocorrelation is present. Figure 2 

presents the model fitted to data from the UK from the original paper of Smeed (1949) 

 

Figure 2: Smeed’s law. Figure taken from the original paper.  

 

After these basic models a lot of development of models took place. Most of the 

models assumed a normal random error term ignoring the discrete nature of the data. 

This can be attributed to the fact that continuous data time series are much better 

developed than integer valued time series and since most of the applications treated 

aggregated data, a normal approximation was reasonable.  

Following COST 239 (2004), the DRAG1 model (Gaudry 1984) did an important 

step forward by considering, (i) a substantially extended set of explanatory factors, (ii) a 

multi-equation modelling approach, in which the severity and the underlying amount of 

exposure were treated as endogenous variables to be explained, and (iii) an estimation 

technique allowing for estimably flexible (non-linear) functional forms for several 

dependent and independent variables. This technique, due to Liem et al (1993), is known 

under the acronym BC-GAUHESEQ (Box-Cox Generalised AUtoregressive HEteroskedastic 

Single EQuation estimation). Later modelling efforts within the DRAG tradition include a 

German model (Gaudry and Blum 1993), a French model (Jaeger and Lassarre 1997), a 
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local Swedish model (Tegnér and Loncar-Lucassi 1997), and a Norwegian model 

(Fridstrøm 1999).  

A detailed description of all the time series models applied to accident data is 

beyond the scope of the present report. However note that typically accident counts do 

not show complicated autocorrelation structures and hence rather simple (from the time 

series point of view) models are sufficient, like autoregressive and moving average 

models. State-space models are reviewed in a later section.  

 

2.2   Discrete models 

The discrete nature of the data has been recognized early in the literature. 

Especially, when particular types of accidents are considered or the areas or time of 

interest is small, then the data at hand are small integer numbers and it is not suitable 

(and for many reasons not reasonable) to apply time series models for 

normal/continuous data in that case. 

For example, if the observed data are small counts with an excess of zero values, 

normal models may fail considerably as they, for example, give positive probability to 

negative counts or since the data are typically skewed. This can be seen in Figure 3, 

which shows the frequencies from daily data on the number of fatal accidents (Brijs et al, 

2008). For the upper left graph, the number of accidents is large and hence some 

continuous approximation would make sense. However note that the data are skewed 

and the normality assumption is questionable. For the other two series with small counts 

the deviation from normality is apparent. 

Note that this depends on the nature of the data. When considering subgroups it 

is reasonable that we may have small counts and hence this family of models is more 

appropriate to use. It also depends on the time scale which is used. For daily accidents it 

is reasonable that the counts are small, aggregated yearly data may have a different 

behaviour. Thus in this report we describe different models with potential usage rather 

than already limiting ourselves to a particular class of model (as both aggregated and 

disaggregated data will be used).  

Next we describe the two most important classes of models in this framework: 

o Poisson regression models which assume that the number of accidents follow a 

Poisson distribution with a mean which is related to some covariate information, 

typically in the log scale, since the parameter of the Poisson distribution is 

positive. There are several applications of such models (see e.g. Fridstrøm and 

Ingebrigtsen 1991, Brännäs and Johansson 1992). A potential limitation of the 

model is the fact that the Poisson distribution assumes equality between the 

variance and the mean which is a rather restrictive assumption for real data. 

Note, however, that this cannot be seen easily from raw data since the 

introduction of covariates in fact assumes that the equality of the variance and 

the mean is conditional on the same covariate information, which is not easy to be 
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checked before the model is fitted to the data and a residual analysis is done. This 

is a common fallacy in certain applications. The choice of covariate information is 

a delicate task. Most of the existing models aim at examining rather certain 

potential covariates rather than creating a global model. 

  

 

Figure 3: Frequencies of daily counts from three different areas. Data taken from Brijs et 

al, (2008) 

 

o A next step, if the Poisson regression model fails, is a negative binomial 

regression model. First of all note that different models are used under the same 

name (see Cameron and Trivedi, 1998). The negative binomial model has an 

extra overdispersion parameter which allows the variance to exceed the mean, 

which is the limitation mentioned above for the Poisson regression model. Fitting 

negative binomial regression models is easy as several packages offer this 

capability. Again, covariates are assumed to the log scale of the mean, while one 

can select to add covariates to model the variance of the model as well. The 

negative binomial has a larger variance than the Poisson model with the same 

mean and hence typically has larger tails and a larger probability of a zero count. 



 

Steunpunt Mobiliteit & Openbare Werken  15 RA-MOW-2011-020 
Spoor Verkeersveiligheid 

Applications of a negative binomial regression model for accidents are given by 

Washington et al. (2005, see also the references therein). It is imperative to 

acknowledge that if a Poisson model is assumed while ignoring the overdispersion 

this may lead to erroneous conclusions. The reason is that since the assumed 

variability is smaller than the true one the standard errors derived underestimate 

the real ones and hence covariates may be found significant (since we divide by a 

smaller quantity when using a Z-score test). Hence one has to be cautious in 

order to select appropriately the underlying model in order to avoid erroneous 

results. 

These two models, the Poisson regression and the negative binomial model, are 

perhaps the most widely used ones. Several alternatives/improvements have been 

proposed however. 

Zero inflated Poisson and negative binomial models have been fitted in order to 

account for the excess of zeros found in several data sets (see Washington et al, 2005). 

Zero inflated models assume the existence of some additional component which has 

always zero accidents, in practice we assume that some sites have zero accidents for 

some reason. Such models have been criticized as not being reasonable to model the 

generating mechanism of accidents (see Washington et al, 2007) however they can have 

several other interpretations that make such model plausible with real data, especially for 

small areas or time frames, where an excess of zero accidents is observed.  

In addition, several other models have been considered. Like the generalized 

Poisson regression models which allow for both over- and underdispersion with respect to 

the Poisson model. Note that underdispersed data sets are rather rare in practice and 

typically they may reflect some underreporting mechanism. To this direction, recently 

Lord et al (2008) proposed a Conway-Maxwell Poisson regression model which can also 

fit both over- and underdispersion situations while Lord and Geedipally (2011) propose a 

Negative Binomial-Lindley Distribution model. It is evident that several other distributions 

could be fitted for accident data. 

In all the above, the time series framework can be implicitly introduced in the 

model by considering lagged observations. Discrete valued time series models are of 

increased interest especially the last years. There are two broad categories of such 

models: the observation driven model and the parameter driven ones (see Cox, 1981). 

The key difference is that in the parameter driven model the time correlation is 

introduced by a latent unobserved time series process in the parameter space, in fact 

they are a special case of state-space models (see later). Such models while they borrow 

strength from the corresponding time series models for continuous data are hard to work 

with without additional relaxing assumptions. The second category is the observation 

driven model where the current observation is directly related to the previous one(s). For 

some applications of such models we refer to Brijs et al (2008) and Quddus (2009).  
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2.3   Other models 

The range of potential models for accident prediction is wide and it would be 

difficult to mention all these models in this report. For example, there are applications 

where more than one type of accidents is considered together and they have been jointly 

modelled (see Park et al, 2007 or the work of Brijs et al, 2007). Hierarchical Bayesian 

models have also been proposed for modelling motor vehicle collisions (Schluter et al., 

1997, Tunaru, 2002). Also other approaches in the boundary between statistics and 

artificial intelligence have been applied like support vector machines (Li et al, 2008), 

Bayesian networks (Xie et al, 2007) or other artificial intelligence models (see Mussone 

et al, 1999 and Abdelwahab and Aty, 2002). 
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3.    D ISAGGREGATE  MODELS  

In most situations, data are aggregated in some extent, while existence of 

disaggregated data, i.e. data at a lower, more detailed level, are not available, or if they 

are they cover small time periods and hence they are not easy to use.  

It is acceptable that while aggregate models can be used to describe general 

trends for some country (i.e. increasing or decreasing rate of accident casualties), they 

are unable to represent changes in specific parts of the transport system or in the safety 

of subgroups of road users. So, while the general picture can be captured it is difficult to 

have a more detailed view focusing on specific groups of road user modes, or type of 

roads, or even age categories. From the policy point of view such approaches would be 

more interesting as many of the safety measures undertaken focus on particular 

subgroups and not necessarily on the entire range of road users (or at least we expect to 

see larger effects in some subgroups which may disappear or cancel out if the whole 

range of users is considered). It is therefore desirable to be able to analyse the current 

and future states of mobility and safety for each subgroup. Such approaches can be 

based on disaggregate modelling. 

For example, disaggregation of vehicle population data (by age and type), fuel 

consumption (by fuel sales by type) and population (by age and sex) are also commonly 

available annually, but details of traffic volume with respect to road type, vehicle type 

and distance travelled by mode are generally difficult to obtain. 

Accident data are now available in great detail in most countries, and over a long 

time period (dating back to 1970s in most cases). Their reliability, however, decreases 

with the level of disaggregation, and there are also problems of underreporting of non-

fatal accidents. Changes over time in the rate of underreporting cause significant issues 

for the analyses.  

Examples of disaggregated data analysis refer to examining the evolution in the 

accident or risk pattern of different transport modes, different age categories (i.e. young 

drivers versus elderly drivers), different genders, different road types (motorways, 

regional roads and local roads) or even examining particular areas of interest (e.g. 

crossroads, specific patches of a highway). As one can see, detailed accident data for 

some of the above categories exist but, data with respect to the covariates are not 

available at this detailed level. As an example, even if data are available for patches of 

roads, it is not easy to have the exposure data available also, and perhaps some more 

refined type of modelling is needed where the exposures in a disaggregated level are also 

estimated using some auxiliary model for example.  

Disaggregate models are the tools for assessing different policy options, setting 

goals for safety programmes and predicting future safety developments at the 

disaggregated level. The explanation of accidents, in terms of accident causation, 

however, should take place with more precise and detailed models. 

Disaggregate modelling suffers from some problems like: 
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• Scarcity of available data: typically, the available data are aggregated in 

some extent and hence it is hard to find reliable data so detailed in order to be able to 

look for small categories. This aggregation has to do with issues related to the way 

the data are collected (typically through official statistics resources) but also due to 

lack of appropriate definitions that are needed in order to classify appropriately 

according to subgroups. Moreover, data related to exposure are hard to find. As we 

have mentioned, typically exposure is measured through proxies and it is hard to 

disaggregate such proxies to the level that one would need in order to fit reasonable 

models.  

• Need for specific methodologies including special design in the collection of 

the data: typically, data in subgroups have a lot of zero or small counts, they suffer 

from some kind of underreporting and hence one may need special methodologies in 

order to handle these cases. This also implies that general methodologies applicable to 

the aggregated data due to their size are not available (e.g. typically with aggregated 

data the counts are large and hence assuming a continuous model is not a bad idea, 

but for small counts this can lead to large problems). Moreover, working with small 

data sets implies higher standard errors and hence prediction becomes much more 

difficult. Finally, disaggregated analysis aims at examining the effect of certain policies 

to specific subgroups and hence in most cases special designs (e.g. need of controls) 

must be taken into account making the analysis even more difficult.  

• Behavioural considerations generally play an important role in these 

modelling techniques since the level of analysis is focused on subgroups and hence 

particular information may be useful.  

In case of lack of disaggregated data one may work in the aggregated level and 

then based on particular (and typically strong) assumptions disaggregate the forecasts to 

lower levels. For example, Broughton (1988) derived forecasts based on an aggregated 

level. Then this total number was split in subgroups based on forecasts for the trends of 

different subgroups (types of road users).  

Forecasting in the case when disaggregated data are available is straightforward. 

However, even in this case the detailed data set may not be complete and hence 

extrapolation or smoothing approaches may be needed.  
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4.    STATE  SPACE  MODELS  

When modelling time series fitting dynamic models, i.e. models where the 

parameters may change over time, is commonly used. There are two main classes of 

univariate dynamic models: ARIMA models studied by Box and Jenkins and unobserved 

component models which are called structural models, by Harvey and Shephard  (2003). 

In a structural model each component or equation is intended to represent a specific 

feature or relationship in the system under study. State space methods described in this 

section, belong to the latter group of models. 

State space time series analysis began with the path breaking paper of Kalman 

(1960) and early developments in the subject took place in the field of engineering.  

The state space model in its simple form can be expressed as 
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where matrices tttt RTHZ ,,,  and tQ  are assumed known (however this assumption can 

be relaxed). The key idea of state space models is that a certain parameter ta  relates to 

the parameter at the previous time point, inducing a dynamic linear model. The first 

equation is called the observation equation and the second equation is called the state 

equation.  

In fact state space models generalise regression models so that the parameters 

can vary over time. The first equation is simply a linear regression equation. The state 

equation introduces a structure and time series component at the same time since 

parameters change dynamically across time. State space models are also called dynamic 

linear models. 

A typical time series may be decomposed in a trend, a seasonal and an irregular 

part. An important characteristic is that the components are stochastic. Moreover, 

explanatory variables can be added and intervention analysis carried out. The principal 

structural time series models are therefore nothing more than regression models in which 

the explanatory variables are functions of time and the parameters are time-varying. The 

key to handle structural time series models is the state space form, with the state of the 

system representing the various unobserved components. Once in state space form, the 

Kalman filter may be applied and this in turn leads to estimation, analysis and 

forecasting. 

The state space formulation for time series models is quite general and 

encompasses most of the classical time series models like MA and ARIMA models for 

example. Hence state space model is quite general. Also since the state equation(s) can 
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capture in a very flexible way the behaviour of the underlying (and unobservable) 

variables it offers great flexibility with real data. 

The advantages of state space modelling can be summarized as: 

• The basic advantage of state space models is that it is based on a 

structural analysis of the problem at hand. The different components that may 

comprise a time series model, like for example, the trend, the seasonal effect and the 

cycle, can themselves be modelled separately, offering great flexibility but also 

allowing to see more in detail their effect in the final time series. Hence the researcher 

can identify the components that (s)he really needs in the model and create a model 

that better fits the case under investigation. 

• Moreover, the state space model offers greater generality. In fact, several 

other models can be seen as special case of the state space models. Covariates can be 

easily added to the model in a clearly interpretable way while they can vary 

stochastically over time. 

• In fact, state space models satisfy the Markovian property and hence the 

necessary calculation can be put in a typical recursive manner. This also implies that 

the added computational difficulty is not large and it is in any case handable. Most 

well-known statistical packages offer state space models. Also the univariate theory 

can be extended to cover the multivariate case in a neat way. Even complicated 

multivariate state space models can be fitted rather easily.  

• Forecasting with state space models is relatively easy and simple. State 

space models in fact apply some smoothing in the data and hence forecasts are also 

smooth. Also diagnostic checking is simple as the Kalman filter employed provides 

such a framework.  

• State space models are adaptive and the benefits of this are usually 

realised by implementing them in real time since only minor calculations are needed. 

Hence, they have found tremendous applications to forecasting in real time situations. 

They also can be adapted by minor changes to create more complicated structures like 

nonlinear models for example.  

• Finally, they offer great flexibility as they can be used in certain 

circumstances, allowing for refined modelling in several problems. Other models are 

special cases while certain components of a state space model can be modelled 

separately adding a wide range of possible models that can be fitted to the data and 

also allowing testing several research hypotheses for the underlying structure of the 

data. State space models offer the ability to easily handle systems with multiple inputs 

and outputs in a reasonable and simple way and hence they allow for modelling rather 

complicated problems.  

 

At the same time, some disadvantages should be mentioned. The models are usually 

more complicated and less interpretable than standard time series models, especially 

for non-treated researchers making their acceptance in some problems not easy. In 
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addition, some added computational effort is needed with respect to much simpler 

models and hence the lack of their implementation in some widely used statistical 

packages (like SPSS) make a lot of researchers less reluctant to use the models. 

Finally, note that while for certain models state space modelling is well established 

and easy to use, there are models where it is not so easy, like for example discrete 

valued time series models. The model developed by Zeger (1988) is in fact a state-

space model for modelling discrete time series. However, assuming a Poisson 

distribution leads to rather complicated recursion for the state equation and makes 

estimation difficult.  

State space models are currently popular models for accident prediction mainly 

due to their generality and flexibility (see e.g. Gould et al 2004, Hermans et al 2006a, 

2006b, Bijleveld 2008). Several software packages (like R, EVIEWS, MATLAB, SAS just to 

name a few) are available for fitting such models removing computational difficulties. 

State space models provide a convenient and powerful framework for analyzing time 

series data. More details can be found in several textbooks devoted to such models, see 

e.g. Durbin and Koopman (2001) and Commandeur and Koopman (2007).  
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5.    DATA  AVAILABIL ITY  

When modelling accidents, one of the very difficult problems relates to data 

availability. For example, while it is considered that in general data related to fatal 

accidents are reliable in most countries, for less severe accidents it is known that a 

certain amount of underreporting is present. 

This lack of complete data is only one issue related to data availability. A second 

one relates to the availability of certain covariates that are considered of particular 

interest for accident forecasting models, like the exposure. Exposure defined as the 

number of kilometres travelled by the population of interest is typically not available or at 

least not in the full form that a researcher would like to have. Such difficulties are well 

described in literature (see e.g. Joly et al 1991, Qin et al 2004, among others).  

Even though exposure is recognized as playing a very important role to the 

development of accident models, its measurement is neither easy nor cheap. Data 

concerning proxies like the number of vehicles, fuel sales, road length and population 

size are available in most cases so in many cases in literature, a proxy is used. Thus all 

models considered are vulnerable on this “assumption” that the proxy measures well the 

variable that we aim to measure.  

Another issue on the data availability refers to the level at which they are 

available. We have discussed issues about disaggregation of the data. We also emphasize 

as mentioned above that the level of detail in the data is important for the selection of an 

appropriate methodology to work with.  
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6.    CONCLUSIONS  

The literature contains a huge variety of different models that can be used as 

accident prediction models. Their usage depends on the scope of the analysis as well as 

the availability of the data. For the latter, it is important to separate models that aim at 

examining the effect of some covariates on the accident counts and models created in 

order to predict future accidents/accident rates. Models that succeed in the former are 

not necessarily good for the latter. Also covariates that are significant are perhaps not so 

helpful for prediction as well. Note also that in order to predict future accidents one may 

need to have the future values of the predictor covariates available, which is an 

elaborated task and typically not an easy one. Thus the scope of the modelling is 

important for selecting the appropriate model to work with. 

Some more issues with respect to accident prediction modelling are important for 

developing a successful model although often ignored in practice.  

Goodness of fit of the derived model is important. In many published works it has 

been ignored to report how well the fitted model fits the data although the model is used 

for arguments and predictions. In a similar fashion, when developing a prediction model 

the prediction ability of the model needs to be checked carefully typically with out-of-

sample predictions.  

The existing literature has a large number of developed models which also contain 

a large number of potential covariates. As time passes more and more data are available 

and hence more candidate covariate information is available. This creates some new 

challenges related to variable selection problems. Model parsimony arises as an 

important aspect of the accident prediction modelling, where covariates measuring 

similar things need to be removed from the final model. The selected models then are 

not comparable across different surveys something that is typically ignored. We also 

mention the model uncertainty issue described in Draper (1995), which emphasizes that 

using only the selected model for inference ignores the variability present due to the 

model selection procedure.  

Another point that needs to be kept in mind is that nowadays more and more 

sophisticated models are available that take into account the  nature of the data as well 

as the mechanisms that may have generated them. This invalidates to a great extent 

models used in the past that could not capture all the features of the data. As an 

example, the usage of continuous time series models when the accident counts are too 

small can be dangerous. In recent years, there are several models (and perhaps more 

models will be developed in the forthcoming years) to better tackle such data.  

In this report, we tried to report on a wide range of models existing in the 

literature in order to capture the general framework. Among them, state space models 

are promising as they generalize most of the existing models in the literature while they 

are becoming more and more available in standard packages, including also that their 

interpretation is now easier and well understood. In the next step, the state space 

methodology will be applied to Flemish time series data consisting of accident and 



 

Steunpunt Mobiliteit & Openbare Werken  24 RA-MOW-2011-020 
Spoor Verkeersveiligheid 

casualty data, exposure data and possibly other covariate data, both at the aggregate 

and disaggregate level in order to identify the groups (i.e. transport modes, age classes 

and road types) that are expected to have a relatively high risk in the future and 

therefore need special attention.  
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