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Abstract. We study the expressive power of the static type system of
the Nested Relational Calculus NRC and show that on so-called homo-
geneous input and output types, the NRC type system is expressively
complete: every untyped but homogeneously well-defined NRC expres-
sion can be equivalently expressed by a well-typed expression. The NRC
static type system hence does not limit the expressive power of the query
writer.

Dedicated to Peter Buneman.

1 Introduction

Peter Buneman has been a longtime advocate of database query languages in the
style of functional programming [3,4,9]. He has also repeatedly pointed out the
relevance of union or variant types in the context of database applications [2,5,8].
Hence it seems fitting to contribute a paper on the expressive power of a typed
first-order functional database query language, where we make a heavy use of
union and variant types in our technical development.

Conventional wisdom states that programming errors should be caught as
soon as possible, preferably at program development time. To this end, most
programming languages come equipped with a static type system that accepts
only “well-defined” programs that do not “crash” or “go wrong”. Unfortunately,
however, although decidable static type systems can prove the absence of crashes,
they cannot prove their presence. For example, a program like

if <complex test> then <crash>

will be rejected as ill-typed even if <complex test> never terminates and the
<crash> expression is never executed, as termination of programs is undecidable
and hence cannot be statically checked.

For this reason, practical type systems only need to be sound (i.e., accept only
well-defined programs), but not complete (i.e., accept exactly all well-defined
programs). Note, however, that devising a type system that only needs to be
sound is trivial. It suffices to let every expression be ill-typed, as soundness
vacuously holds in the absence of well-typed programs. Of course, such a type
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system is useless as it precludes the definition of all programs that can be ex-
pressed in a well-defined (but untyped) manner. Although real type systems are
far from trivial, the question of their expressive power with regard to the class of
well-defined programs remains interesting: are there well-defined programs that
cannot be expressed by a well-typed program? If so, then the type system limits
the expressiveness of the programmer, and more expressive type systems should
be considered instead. If not, then we say that the type system is expressively
complete.

In this paper, we study the expressive power of the static type system of the
Nested Relational Calculus NRC [4]. The NRC is a database query language
that provides a generalization and elegant abstraction of the familiar select-
from-where SQL, OQL, and C] queries. In earlier work [12], we have studied
the decision problem of well-definedness for NRC, obtaining that the problem is
undecidable for NRC in general, but decidable for certain restricted fragments.
These results motivate the need for an (incomplete) static type system for NRC,
such as the one proposed by Buneman et al. [4] during NRC’s inception. Here
we show that, on so-called homogeneous input and output types, the NRC type
system is expressively complete. This hence confirms in the positive a conjecture
made by the authors in [11].

Most type systems for imperative Turing complete programming languages
are easily shown expressively complete: it suffices to show that one can sim-
ulate all Turing machine operations (including encoding and decoding of the
programming language objects on Turing machine tapes) in a well-typed man-
ner. Proving expressive completeness for the NRC type system, in contrast, is
more difficult exactly because NRC is not Turing complete.

Interestingly enough, there are type systems for functional turing complete
programming languages that are not expressively complete. For example, the
untyped lambda calculus can define all computable functions, while in the simply
typed lambda calculus only a restricted class of functions, the so-called extended
polynomials, are definable [1,10]. Moreover, as shown by Kahrs, the type system
of the Programmable language for Computable Functions PCF is expressively
complete [7], while the type system of ML 1990 is not [6].

This paper is further organized as follows. In Section 2 we formally introduce
the NRC and its static type system. We obtain our main result in Section 3.
In this extended abstract, we will omit the detailed proof but we indicate the
main steps toward the proof. It is anticipated that the full paper will appear in
a scientific journal.

2 Preliminaries

From the outset we assume a non-empty set of atomic data constants (which in
practice will include integers, strings, and so on). The NRC operates on complex
objects o, which are nested combinations of atomic data constants c; records; and
sets:

o ::= c | () | (o, o′) | {o, . . . , o′}.
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Here, () is the empty record, and (o, o′) is the pair of objects formed by o and o′.
Note that larger-arity records like, e.g., (o1, o2, o3) can be simulated by nesting
pairs as, e.g., (o1, (o2, o3)).

The NRC expressions e themselves are given by the syntax

e ::= x | c | () | (e, e′) | π1(e) | π2(e)

| {} | {e} | e1 ∪ e2 | {e2 | x ∈ e1} |
⋃
e

| if e1 = e2 then e3 else e4.

(Parentheses may be used to avoid ambiguity.) Here, x ranges over variables that
can be bound to input objects; c is data constant formation; () is empty record
formation; (e, e′) is pair formation; π1(e) and π2(e) is left and right projection
on pairs, repsectively; {} and {e} are empty and singleton set construction,
respectively; e1∪ e2 is set union; and {e2 | x ∈ e1} is set comprehension. The set
comprehension evaluates e2 for every x in the set returned by e1. For example,
{π1(x) | x ∈ R} returns the projection on the first component of the set of pairs
R. The expression

⋃
e flattens the set of sets e. Finally, if e1 = e2 then e3 else

is a conditional expression that evaluates e3 if e1 and e2 evaluate to the same
object, and evaluates e4 otherwise.

It should be emphasized that the x ∈ e1 part in the {e2 | x ∈ e1} construct
is not a membership test. It is an abstraction which introduces and binds the
variable x, whose scope is the expression e2. In light of this view, the free variables
FV (e) of an expression e are hence inductively defined as follows: FV (x) = {x},
FV (o) = {}, FV ({e2 | x ∈ e1} = FV (e1) ∪ (FV (e2) − {x}), and FV (e) is
the union of the free variables of e’s immediate subexpressions otherwise. We
write e(x, . . . , y) to indicate that e is an expression with FV (e) ⊆ {x, . . . , y}.
An expression without free variables is closed.

Some expressions, like π1({4}) and 5∪{6}, clearly apply primitive operators
to inappropriate objects and will therefore crash during evaluation. This intuition
is formalized as follows. First, define an environment to be a mapping α that
maps each variable x to an object α(x). We use the notation x/o, α to stand
for the environment that equals α on all variables except x, which it maps to o.
Let e[α] denote the expression obtained from e by replacing all free occurrences
of x by α(x), for every x ∈ FV (e). Clearly, e[α] is fully determined by the free
variables of e: if α and α′ agree on FV (e) then e[α] = e[α′]. We may therefore
write e[x/o, . . . , y/o′] as a shorthand of the more verbose e[x/o, . . . , y/o′, α] when
FV (e) = {x, . . . , y}. Evaluation of e(x, . . . , y) on o, . . . , o′ can then be seen as
running the operational semantics of Figure 1 on e[x/o, . . . , y/o′]. There, we use
the notation e → o to indicate that closed expression e evaluates to object o.
Evaluation crashes when there is no o such that e→ o.

Example 1. Evaluation of the expression
⋃
{{(π1(y), z) | z ∈ x2} | y ∈ x1} with

x1 bound to o1 = {(1, 2)} and x2 bound to o2 = {3} is successful:⋃
{{(π1(y), z) | z ∈ {3}} | y ∈ {(1, 2)}} → {(1, 3)}.
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c→ c ()→ ()

e1 → o e2 → o2

(e1, e2)→ (o1, o
′
2)

e→ (o1, o2)

π1(e)→ o1

e→ (o1, o2)

π2(e)→ o2

{} → {}
e→ o

{e} → {o}
e1 → {o1, . . . , om} e2 → {o′1, . . . , o′n}
e1 ∪ e2 → {o1, . . . , om, o′1, . . . , o′n}

e1 → {o′1, . . . , o′m} e[x/o′i]→ oi for 1 ≤ i ≤ m
{e | x1 ∈ e1} → {o1, . . . , om}

e→ {o1, . . . , om} where each oi is a set⋃
e→ o1 ∪ · · · ∪ om

e1 → o1 e2 → o2 o1 = o2 e3 → o

if e1 = e2 then e3 else e4 → o

e1 → o1 e2 → o2 o1 6= o2 e4 → o

if e1 = e2 then e3 else e4 → o

Fig. 1. The operational semantics of NRC.

Evaluation of this expression with x1 bound to o′1 = (1, 2) instead of o1 crashes,
however, as no inference rule applies to {{(π1(y), z) | z ∈ {3}} | y ∈ (1, 2)}.

Note that crashes only occur when (1) we apply projection to non-pairs, and
(2) when we apply set union, comprehension, or flattening to non-sets.

We are interested in the crashing behavior of expressions when the inputs
are taken from certain prescribed classes of objects. To this end, let the NRC
types be given by the syntax

s, t ::= atom | unit | s× t | {s} | s ∨ t.

The semantics of a type is just a set of objects: atom is the set of all atomic data
constants; unit is the type of the empty record (); s × t is the set of all pairs
(o, o′) with o of type s and o′ of type t; {s} is the set of all finite sets of objects of
type s; and s∨ t it is the set of all objects of type s or of type t. We write o : s to
indicate that o is an object of type s. Note that every object belongs to a type (in
fact infinitely many). For example, {5, (1, 2)} has type {atom∨(atom× atom)}
but also {atom∨(atom× atom) ∨ s} for every s.

Types of the form s ∨ t are called union types. A type in which no union
type occurs is called a homogeneous type. So, {atom} is a homogeneous type, but
{atom∨(atom× atom)} is not. An object is homogeneous if it has a homogeneous
type. It is heterogenous otherwise. So, {5, 1, 2} is a homogeneous set object (of
homogeneous type {atom}), but {5, (1, 2)} is heterogenous.

Definition 1. A type assignment is a mapping T that assigns a type T(x) to
each variable x. An environment α is compatible with a type assignment T,
written α : T if α(x) : T(x), for every x. An NRC expression e is said to be
well-defined under T if for every α : T there exists o with e[α] → o. We write
T |= e : t to indicate that e is well-defined under T and, moreover, every output
o of e under all α : T is of type t.
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T ` x : T(x) T ` c : atom T ` () : unit

T ` e1 : s1 T ` e2 : s2

T ` (e1, e2) : s1 × s2
T ` e : s1 × s2 i = 1, 2

T ` πi(e) : si

T ` {} : {s}
T ` e : s

T ` {e} : {s}
T ` e1 : {s} T ` e2 : {s}

T ` e1 ∪ e2 : {s}

T ` e1 : {s} x : s,T ` e2 : t

T ` {e2 | x ∈ e1} : {t}

T ` e : {{s}}

T `
⋃
e : {s}

T ` e1 : s T ` e2 : s T ` e3 : t T ` e4 : t

T ` if e1 = e2 then e3 else e4 : t

Fig. 2. Static type system of NRC.

Traditionally, the NRC is defined to operate only on homogeneous objects,
and its type system (which we will define shortly) hence considers only homo-
geneous types. For the discussion that follows, however, it will be convenient to
be able to assign a type also to heterogenous objects. Whence our inclusion of
the union types.

The static type system for NRC is given in Fig. 2. There, the notation x : s,T
stands for the type assignment that equals T on all variables except x, which it
maps to s. As usual, the notation T ` e : s indicating that e has type s under T
should be read as “assuming that the free variables x of e are bound to objects of
type T(x), e outputs objects of type s”. Observe that this relation only depends
on the free variables of an expression: if T and T′ agree on FV (e) and T ` e : s,
then also T′ ` e : s. We may therefore write x : r, . . . , y : s ` e : t as a shorthand
of the more verbose x : r, . . . , y : s, T ` e : t when FV (e) = {x, . . . , y}.

The obvious property one expects from a type system is soundness:

Theorem 1. The static type system of Fig. 2 is sound. That is, if T ` e : t then
T |= e : t.

Well-typedness hence implies well-definedness. The converse implication does not
hold however, as the static type system rejects certain well-defined expressions.
For example, {π1({}) | x ∈ {}} is well-defined, but is not well-typed (i.e., there
is no s such that ` e : s). In the following Section we will show, however, that e
can equivalently be expressed by a well-typed NRC expression.

A note on the NRC static type system. As mentioned earlier, traditionally the
type system of NRC does not include union types. Formally, this means that,
traditionally, in Fig. 2 the meta-variables s and t are restricted to range over
homogeneous types, and T is restricted to homogeneous type assignments (i.e.,
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a mapping from variables to homogeneous types). We do not require this re-
striction, and are hence able to derive, for example x : {r1 ∨ r2}, y : {r1 ∨ r2} `
x ∪ y : {r1 ∨ r2}.

Still, our setting treats union types in a conservative way, in the following
sense.

Proposition 1. Let T be a homogeneous type assignment (i.e., a mapping from
variables to homogeneous types) and let e be an NRC expression. If T ` e : t
then t is also a homogeneous type.

This implies that on homogeneous type assignments, the type system of Fig. 2
hence coincides with the traditional one.

3 Completeness

Our goal in this section is to obtain the following result. Let e ≡T f denote that
e and f are equivalent on inputs of type T. That is, for every α : T, either e[α]
and f [α] both crash or they evaluate to the same object o.

Theorem 2. Homogeneous well-defined NRC expressions can be expressed in
a well-typed way, in the following sense. For every NRC expression e, every
homogeneous type assignment T and every homogeneous type t such that T |=
e : t there exists an NRC expression h such that (1) T ` h : t and (2) e ≡T h.

The proof is effective and allows us to transform e into h, given T and t.
Intuitively, there are two problems to overcome. The first problem is that well-
defined expressions may contain ill-defined subexpressions. For example, e =
{π1({}) | x ∈ {}} is well-defined, but its subexpression e′ = π1({}) is not. Of
course, e′ is “dead code” (it is never executed) and we can therefore alternatively
express e by {⊥t | x ∈ {}} where ⊥t is an arbitrary constant object of type t,
the desired output type. Our transformation of e into f will therefore need
to detect dead subexpressions, and replace them by harmless constants. The
second problem is that even when evaluated on homogeneous inputs, well-defined
expressions may manipulate heterogeneous objects while well-typed expressions
cannot. For example, e = {π1(z) | z ∈ (x ∪ y)}, is well-defined under x : {s ×
s}, y : {s × t)} with s and t are two different types. It is not well-typed under
this type assignment, however, as the type rule for x∪y requires x and y to have
the same set type. Nevertheless, the same query is expressed by e′ = {π1(z) |
z ∈ x} ∪ {π1(x) | z ∈ y}, which is well-typed. In general, we will deal with this
problem by simulating heterogeneous objects by homogeneous ones.

The proof of Theorem 2 is divided into three steps as follows, where step 1
and 2 deal with the first problem, and step 2 and 3 deal with the second problem.

1. First, we show that homogeneous well-defined NRC expressions can be de-
fined in a well-typed way inNRC(cast), an extension ofNRC with a typecast
operator.
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2. Next, we show that well-typed NRC(cast) can be simulated in well-typed
NRC+, a variant of the NRC in which we disallow union types but add
sum types (also known as variant types) instead. In particular, since NRC+
does not have a typecasting operator, we show that casts can be simulated
on sum types.

3. We are thus left with well-typed NRC+ expressions with homogeneous input
and output types, which are already known to be expressible in a well-typed
manner in NRC itself [13].

We now develop each of these steps in turn.

3.1 Adding casts

Let NRC(cast) be the extension of NRC with expressions of the form 〈s〉 e, for
every type s:

e ::= · · · | 〈s〉 e.
Semantically, 〈s〉 e returns the same object as e if that object is of type s, oth-
erwise it returns an arbitrary (but fixed) object ⊥s of type s.

e→ o o : s

〈s〉 e→ o

e→ o ¬(o : s)

〈s〉 e→ ⊥s
Note that the output of 〈s〉 e is always of type s. We therefore add the following
type rule to the typesystem of NRC:

T ` e : t

T ` 〈s〉 e : s

It is easy to see that with this addition the typesystem of NRC(cast) is sound.
The following proposition shows that the typecast operator allows us to ex-

tend any expression into a well-typed (and therefore, well-defined) expression.
Intuitively, this is because we can always typecast subexpressions that do not
meet the type rule constraints of Fig. 2 into a type that does meet these con-
straints. Consider, for example, that we are type-checking π1(e) and suppose that
we have already derived T ` e : t with t = {unit} ∨ (s1 × s2). Then clearly, π1(e)
cannot be well-typed under T since the type rule for π1 requires e to have a pair
type. Suppose, however, that we know that π1(e) is well-defined under T. Then
clearly, although the type system derives {unit} ∨ (s1 × s2) as the output type
of e, we know that e can never output an object of type {unit}, otherwise π1(e)
would crash. Hence, π1(e) can equivalently be expressed on T by π1(〈s1× s2〉 e),
which is well-typed under T.

Similarly, suppose that we have derived T ` e : t with t = (s1×s2)∨(s′1×s′2).
Again, π1(e) is not well-typed under T since the type rule for π1 requires e
to have a pair type t1 × t2 instead of a union type. In this case, however, it
suffices to recognize that all objects of type (s1 × s2) ∨ (s′1 × s′2) also have type
t′ := (s1 ∨ s′1) × (s2 ∨ s′2). Hence, π1(e) can equivalently be expressed on T by
π1(〈t′〉 e), which is well-typed under T.

These two simple ideas form the basis of the following proposition.
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Proposition 2. For every NRC expression e and every type assignment T there
exists an expression fe,T ∈ NRC(cast) and type te,T such that

(a) T ` fe,T : te,T; and
(b) for every α : T, if e[α]→ o then fe,T[α]→ o.

Corollary 1. For every NRC expression e, every type assignment T, and every
type t with T |= e : t there exists a well-typed NRC(cast) expression T ` f : t
such that then e ≡T f .

3.2 Simulating union types and casts

In this subsection we explain how the union types and casts of NRC(cast) can
be simulated in NRC+, a variant of NRC in which we disallow union types but
add sum types (also known as variant types) instead. Note that NRC+ does not
have a typecasting operator.
NRC+ extends NRC on three levels: on the level of objects themselves, on

the level of types, and on the level of expressions. On the level of objects, NRC+
adjoins the atomic, records, and set objects of NRC with tagged objects of the
form left o and right o:

o ::= c | () | (o, o′) | {o, . . . , o′} | left o | right o.

One can see tagged objects as objects paired with either the label left or the
label right.

On the level of types, NRC+ adjoins the atomic, record, and set types of
NRC with sum types, as given by the syntax:

σ, τ ::= atom | unit | σ × τ | {σ} | σ+τ.

Note that every homogeneous type s as defined in Section 2 is syntactically also
an NRC+ type. Like NRC types, the semantics of a NRC+ type is just a set
of objects: atom is the set of all atomic data constants; unit is the type of the
empty record (); σ × τ is the set of all pairs (o, o′) with o of type σ and o′ of
type τ ; {σ} is the set of all finite sets of objects of type σ; and σ+τ is the set of
all objects left o and right o with o of type σ and τ , respectively.

On the level of expressions NRC+ extends NRC with two tagged object
assembly operations, and one dissembly operation:

e ::= ... | leftσ,τ e | rightσ,τ e | when e1 is leftx do e2 or right y do e3

where σ and τ range over NRC+ types. Intuitively, applying assembly opera-
tion leftσ,τ to object o adds the left label to o, returning left o. rightσ,τ works
similarly. The dissembly operation when e1 is leftx do e2 or right y do e3 first in-
spects the result of e1. If this is a tagged object left o then it evaluates e2 with x
bound to o. If this is a tagged object right o then it evaluates e3 with y bound to
o. The free variables of leftσ,τ e and rightσ,τ e are hence simply the free vari-
ables of e. In contrast, the free variables of when e1 is leftx do e2 or right y do e3
is FV (e1) ∪ (FV (e2)− {x}) ∪ (FV (e3)− {y}).
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NRC+ operational semantics.

e→ o

left
σ,τ e→ left o

e→ o

right
σ,τ e→ right o

e1 → left o1 e2[x/o1]→ o

when e1 is leftx do e2 or right y do e3 → o

e1 → right o1 e3[y/o1]→ o

when e1 is leftx do e2 or right y do e3 → o

NRC+ static type system.

T `+ x : T(x) T `+ c : atom T `+ () : unit

T `+ e1 : σ1 T `+ e2 : σ2

T `+ (e1, e2) : σ1 × σ2

T `+ e : σ1 × σ2 i = 1, 2

T `+ πi(e) : σi

T `+ {} : {σ}
T `+ e : s

T `+ {e} : {σ}
T `+ e1 : {σ} T `+ e2 : {s}

T `+ e1 ∪ e2 : {σ}

T `+ e1 : {σ} x : σ,T `+ e2 : τ

T `+ {e2 | x ∈ e1} : {τ}

T `+ e : {{σ}}

T `+
⋃
e : {σ}

T `+ e1 : σ T `+ e2 : σ T `+ e3 : τ T `+ e4 : τ

T `+ if e1 = e2 then e3 else e4 : τ

T `+ e : σ

T `+ left
σ,τ e : σ+τ

T `+ e : τ

T `+ right
σ,τ e : σ+τ

T `+ e1 : σ1+σ2 x : σ1,T `+ e1 : τ y : σ2,T `+ e2 : τ

T `+ when e1 is leftx do e2 or right y do e3 : τ

Fig. 3. The operational semantics and type system of NRC+.

In the type system, leftσ,τ e will have type σ+τ , provided that e has type σ.
Similarly, rightσ,τ e has type σ+τ provided that e has type τ . Finally, when e1
is leftx do e2 or right y do e3 has type τ provided that e1 has type σ1+σ2, and e2

and e3 both have type τ under the assumption that x : σ1 and y : σ2, respectively.
The formal evaluation rules, as well as the rules of the NRC+ static type

system are given in Fig. 3. There, we use the notation T `+ e : τ that NRC+
expression e has NRC+ type τ under NRC+ type assignment T. It is straight-
forward to show that this type system is sound.

Example 2. The expression

e = when z is leftx do π1(x) or right y do
⋃
y
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is well-typed under the type assignment z : ({atom} × atom)+{{atom}}. Intu-
itively, this type assignment indicates that z can take values that are either of
type {atom} × atom or of type {{atom}}. The expression evaluates π1 on its
input object z if that object is of pair type {atom} × atom. (To be precise, it
evaluates π1 on o when z is of the form left o). It evaluates

⋃
on its input object

if it is of type {{atom}} (i.e., z is of the form right o).

As this example illustrates, one can see sum types as a (better-behaved)
variant of union types. The crucial difference between union types and sum
types lies in the fact that, by means of the left and right labels, objects of a
sum type carry runtime type information, whereas objects of a union type (not
having labels) do not. Indeed, an expression similar to e in the example above
can intuitively not be defined in a well-defined manner in NRC(cast) under
the type assignment z : ({atom} × atom) ∨ {{atom}} since we have no means
in NRC(cast) to inspect whether z is of type {atom} × atom or {{atom}}. We
will exploit the fact that NRC+ has this form of runtime type information to
show that well-typed NRC(cast) can be simulated in well-typed NRC+. The
simulation is based on the following encoding.

The encoding We will use NRC+’s sum types to simulate NRC’s union types
by means of the following one-to-one correspondence between the syntax of sum
types and union types. Let s+ be the NRC+ type obtained by recursively re-
placing every union type t1 ∨ t2 in NRC type s by t1

++t2
+.

atom+ = atom unit+ = unit (s× t)+ = s+ × t+

{s}+ = {s+} (s ∨ t)+ = s++t+

Similarly, let σ be the NRC type obtained by recursively replacing every sum
type τ1+τ2 occurring in NRC+ type σ by the union type τ1 ∨ τ2.

atom+ = atom unit+ = unit (s× t)+ = s+ × t+

{s}+ = {s+} (s ∨ t)+ = s++t+

Clearly, s+ = s and σ+ = σ. Moreover, if s is a homogeneous type, then s+ =
s = s. We extend these operations pointwise to type assignments and write, for
example, T+ for NRC+ type assignment that maps x 7→ T(x)

+
, for every x.

The type assignment T is defined similarly.
Finally, let the erasure o of NRC+ object o be the object obtained by recur-

sively replacing all subobjects of the form left o′ and right o′ in o by o′.

c := c () = () (o1, o2) = (o1, o2)

{o, . . . , o′} := {o, . . . , o′} left o := o right o := o

Note that if o is a homogeneous object, then o = o. We extend erasure pointwise
to NRC+ environments, and write α for the environment with domain dom(α)
that maps x 7→ α(x), for every x ∈ dom(α).
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Definition 2. Let s be an NRC type. We say that u : s+ is an encoding of o : s
with respect to s if u = o.

It is easy to see that for every NRC type s and every o : s there is at least one
encoding. Hence, for every α : T there always an environment α′ : T+ encoding
α (i.e., α′ = α).

Lemma 1. Type casts can be simulated in NRC+. That is, for all NRC types
s and t there exists an NRC+ expression casts,t(x) such that:

(a) x : s+ `+ casts,t(x) : t+; and
(b) casts,t[x/o]→ o′ implies 〈t〉 o→ o′, for every o : s+.

Let us illustrate the proof idea by means of the following example.

Example 3. Let atomn with n ≥ 1 stand for the type of n-ary tuples of atomic
data constants: atom1 = atom; atom2 = atom× atom; atom3 = atom× atom2;
and so on. Let s = atom2 ∨ atom3 and t = atom3 ∨ atom4. Suppose that ⊥t =
(c, (c, (c, c))). Then casts,t(x) is given by

when x is left y do rightatom
3,atom4

(c, (c, (c, c))) or right z do leftatom
3,atom4

(z).

Lemma 2. For all NRC types s and t there exists an expression eqs,t(x, y) in
NRC+ that checks equality modulo encodings:

(a) x : s+, y : t+ `+ eqs,t(x, y) : {unit}; and
(b) eqs,t[x/ox, y/oy]→ {()} iff ox = oy, for every ox : s+, oy : t+.

Let us illustrate the proof idea by means of the following example.

Example 4. Using the notation of Example 3, let s = atom2 ∨ atom3 and t =
atom3 ∨ atom4. Then eqs,t(x, y) is given by

when x is left u do {}
or right u do
when y is left v do (if u = v then {()} else {})
or right v do {}

Proposition 3. For every NRC(cast) expression e, type assignment T and type
t with T ` e : t there exists NRC+ expression e+ such that:

(a) T+ `+ e+ : t+; and
(b) e+[α]→ o iff e[α]→ o, for every α : T+.

Corollary 2. For every NRC(cast) expression e, every homogeneous type as-
signment T, and every homogeneous type t with T ` e : t there exists a well-typed
NRC+ expression T `+ e+ : t such that e+ ≡T e.
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3.3 Removing sum types

To finalize the proof, we recall the following result by Wong [13, Corollary 2.3.5].

Proposition 4 (Wong [13]). For every NRC+ expression e, every homoge-
neous type assignment T and every homogeneous type t with T `+ e : t there
exists a well typed NRC expression T ` f : t such that e ≡T f .

We hence obtain the following proof of Theorem 2.

Proof (of Theorem 2). Let e be anNRC expression; let T be a homogeneous type
assignment; and let t be a homogeneous type such that T |= e : t. By Corollary 1
there exists NRC(cast) expression f ≡T e with T ` f : t. By Corollary 2 there
exists NRC+ expression g ≡T f with T ` g : t. Then, by Proposition 4 there
exists NRC expression h ≡T f such that T ` f : t, as desired. ut

4 Discussion

One may wonder whether Theorem 2 can be strengthened to the case where e
is well-typed under a heterogeneous type assignment T with output in a hetero-
geneous type t. It turns out that the static type system of Fig. 2 is too weak
for this purpose since it never introduces or manipulates union types; it merely
propagates them from the input type assignment to output type. Indeed, the
following proposition is straightforward to obtain by induction on e.

Proposition 5. Let T ` e : t. Then every union type t1∨ t2 that occurs in t also
occurs in T(x) for some x ∈ FV (e).

Hence, we cannot find a well-typed equivalent of the well-defined x : {s}, y : {t} |=
x ∪ y : {s ∨ t} when s and t are distinct types.

Alternatively, can Theorem 2 be strengthened to the case where e is well-
typed under a heterogeneous type assignment T with output in a homogeneous
type t? Proposition 5 does not exclude this possibility. We conjecture, however,
that it is also not possible to strengthen Theorem 2 in this sense.

Conjecture 1. There exists a heterogeneous type assignment T, NRC expression
e and homogeneous type t with T |= e : t that cannot be equivalently expressed
by a well-typed NRC expression.
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