
Noname manuscript No.
(will be inserted by the editor)

The impact of transitive closure on the expressiveness of
navigational query languages on unlabeled graphs

George H. L. Fletcher · Marc Gyssens · Dirk

Leinders · Jan Van den Bussche · Dirk Van

Gucht · Stijn Vansummeren · Yuqing Wu

the date of receipt and acceptance should be inserted later

Abstract Several established and novel applications motivate us to study the ex-
pressive power of navigational query languages on graphs, which represent binary
relations. Our basic language has only the operators union and composition, to-
gether with the identity relation. Richer languages can be obtained by adding other
features such as other set operators, projection and coprojection, converse, and the
diversity relation. The expressive power of the languages thus obtained can not
only be evaluated at the level of path queries (queries returning binary relations),
but also at the level of boolean or yes/no queries (expressed by the nonemptiness
of an expression). While, in general, adding transitive closure always augments the
expressive power of the language under consideration, this is no longer true in the
context on unlabeled graphs (i.e., in the case where there is only one input rela-
tion). In this paper, we show that this is indeed not the case for the basic language
to which none, one, or both of projection and the diversity relation are added. In
combination with earlier work [10,9], this result yield a complete understanding
of the impact of transitive closure on the languages under consideration.

This author carried out most of his research as a Senior Research Assistant of the Fund of
Scientific Research—FWO Flanders.

George H. L. Fletcher
Eindhoven University of Technology, Department of Mathematics and Computer Science,
P.O. Box 513, NL-5600 MB Eindhoven, the Netherlands.
E-mail: g.h.l.fletcher@tue.nl

Marc Gyssens · Dirk Leinders · Jan Van den Bussche
Hasselt University and Transnational University of Limburg, School for Information Technol-
ogy, Agoralaan, Building D, B-3590 Diepenbeek, Belgium.
E-mail: {marc.gyssens,dirk.leinders,jan.vandenbussche}@uhasselt.be

Dirk Van Gucht · Yuqing Wu
Indiana University, School of Informatics and Computing, Lindley Hall, 150 S. Woodlawn Ave.,
Bloomington, Indiana 47405
E-mail: {vgucht,yuqwu}@cs.indiana.edu

Stijn Vansummeren
Université Libre de Bruxelles, Campus du Solbosch, CP165/15, av. F.D. Roosevelt 50, B-1050
Brussels, Belgium.
E-mail: stijn.vansummeren@ulb.ac.be

2 George H. L. Fletcher et al.

1 Introduction

In previous work [10], the present authors studied the relative expressive power
of query languages on graphs (i.e., binary relations). They considered a basic
language, consisting of union, composition, and the identity relation, to which
one or more features can be added, such as intersection, set difference, projection,
coprojection, converse, and the diversity relation. We refer to the basic language
to which all the non-basic features have been added as the relation algebra.

A relation algebra expression can be seen as a function mapping the input
binary relation to a binary relation. We call such queries path queries because the
result can be interpreted as all the ways in which the input graph can be navigated
in accordance with the expression. By identifying nonemptiness with the boolean
value true and emptiness with false, as is standard in database theory [2], we
can also express yes/no queries within this framework. To distinguish them from
general path queries, we shall refer to the latter as boolean queries.

The present authors were able to establish the complete Hasse diagram for the
relative expressive power of the various relation algebra fragments, and this both
at the levels of (1) path queries and (2) boolean queries, both for the cases where
the input graph is (1) labeled (i.e., may represent multiple binary relations) and
(2) is unlabeled (i.e., represents a single relation).

This study was motivated by similar work on the expressive power of XPath
fragments as query languages for navigating on trees, which is now well understood
(e.g., [6,13,18,19,25]). Motivated by data on the Web [1,11] and new applications
such as dataspaces [12], Linked Data [7,15], and RDF [22], it is natural to look at
similar navigational query languages for graphs. The languages we study are very
natural and similar to languages already considered in the fields of description
logics, dynamic logics, arrow logics, and relation algebras [5,8,14,16,20,23]. More-
over, graph query languages have a rich history in database theory, in particular
in the context of object-oriented and semi-structured database systems. We refer
to Angles and Gutiérrez [4] for a comprehensive review.

In addition to what has been described above, we also investigated whether
adding transitive closure to a relation algebra fragment yields additional expressive
power. At the level of path queries, this is obviously the case for all fragments, as
the transitive closure of a binary relation is not expressible in FO [3], whereas the
full relation algebra is known to be equivalent to FO3 [24]. We were also able to
show [10] that adding transitive closure does not result in a collapse at the level
of boolean queries, provided the input graph is labeled (i.e., there may be several
input relations). The argument used to prove this could not be generalized to the
boolean queries on unlabeled graphs (i.e., on a single input relation), however.
With different arguments, we were able to show [10,9] that, for labeled graphs,
there is still no collapse if the language to which transitive closure is added has
one one of the operators set difference, intersection, coprojection, or converse.

The purpose of the present paper is to show that in the remaining cases, i.e., if
the language under consideration is the basic language augmented with none, one,
or all of the features projection and diversity, adding transitive closure does not

yield more expressive power at the level of boolean queries on unlabeled graphs.
This result completes our understanding of whether or not the relation algebra
fragments with transitive closure collapse to their counterparts without transitive
closure at the level of boolean queries on unlabeled graphs.

Boolean expressiveness of transitive closure on unlabeled graphs 3

To see the practical relevance of these results, consider the following exam-
ple. Facebook is a large social network which maintains a graph of people that
are connected via a friendship relationship. It is customary that people wish to
communicate with their friends, navigate recursively to friends of friends etc. This
navigation can be expressed with path expressions in a suitable relation algebra
fragment, either with or without using transitive closure. In addition to naviga-
tion, certain topological properties of the Facebook graph can be discovered. For
example, one can discover whether there are people whose friends are all friends
of each other. Again, some of these topological properties can be formulated as
boolean queries in a suitably chosen relation algebra fragment, either with or with-
out using transitive closure. The proliferation of social networks is thus a real-world
phenomenon to which our theory applies.

From this perspective, the collapse results are very meaningful.

The emphasis of this paper is on the proof technique used for establishing the
collapse results, which we think is interesting in its own right.

The remainder paper is organized as follows. In Section 2, we define syntax and
semantics of the class of languages studied in the paper. In Section ??, we show
that for any relation algebra fragment in which coprojection can be expressed,
adding transitive closure yields additional expressive power at the level of boolean
queries, thus settling the previously open cases for (1) the basic language to which
coprojection is added and (2) the basic language to which both coprojection and
the diversity relation are added. In Section ??, we describe a two-step proof strat-
egy to show that adding transitive closure to (3) the basic language to which both
projection and the diversity relation are added does not increase the expressive
power, and we deal with the first step. In Sections 8 to 13, we deal with the much
more elaborate second step. We conclude in Section 14 by summarizing our under-
standing of the impact of adding transitive closure to relation algebra fragments,
which has now been completed.

2 Graphs and languages

In this paper, we are interested in navigating over graphs. For our purposes, a
graph is a relational structure G, consisting of a set of nodes V and a binary
relation R ⊆ V × V , the set of edges of G. In what follows, both V and R may be
either finite or infinite.

An extension of this model consists of allowing multiple binary relations, by
labeling the edges.1 For comparison, we shall sometimes refer to labeled graphs,
though the emphasis of this paper is on unlabeled graphs.

The most basic language for navigating over graphs we consider is the algebra
N whose expressions are built recursively from the edge set symbol R, the primitive
∅, and the primitive id , using composition (e1 ◦ e2) and union (e1 ∪ e2).

2

Semantically, each expression e ∈ N defines a path query. A path query takes as
input a graph G and returns a binary relation e(G) ⊆ adom(G)× adom(G), where
adom(G) denotes the active domain of G, which is the set of all entries occurring

1 In this case, the number of relation names is always finite.
2 By abuse of notation, we shall use “R” both as a symbol in the algebra N and as the name

of the corresponding edge relation in G.

4 George H. L. Fletcher et al.

in one of the relations of G, i.e.,

adom(G) = {v | ∃w : (v, w) ∈ R ∨ (w, v) ∈ R}.

In particular, the semantics of N is inductively defined as follows:

R(G) = R ;
∅(G) = ∅ ;
id(G) = {(v, v) | v ∈ adom(G)} ;
e1 ◦ e2(G) = {(v, w) | ∃z : (v, z) ∈ e1(G) & (z, w) ∈ e2(G))} ;
e1 ∪ e2(G) = e1(G) ∪ e2(G) .

The basic algebra N can be extended by adding some of the following features:
diversity (di), converse (e−1), intersection (e1∩e2), difference (e1 \e2), projections
(π1(e) and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure (e+).
We refer to the operators in the basic algebra N as basic features; we refer to the
extensions as nonbasic features. The semantics of the extensions is as follows:

di(G) = {(v, w) | v, w ∈ adom(G) & v 6= w} ;
e−1(G) = {(v, w) | (w, v) ∈ e(G)} ;
e1 ∩ e2(G) = e1(G) ∩ e2(G) ;
e1 \ e2(G) = e1(G) \ e2(G) ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (w, v) ∈ e(G)} ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (w, v) ∈ e(G)} ;

e+(G) =
S

k≥1 ek(G) .

Here, ek denotes e ◦ · · · ◦ e (k times). For future use, we put e0 := id .

If F is a set of nonbasic features, we denote by N (F) the language obtained by
adding all features in F to N . For example, N (∩) denotes the extension of N with
intersection, and N (∩, π,+) denotes the extension of N with intersection, both
projections,3 and transitive closure.

We refer to the language N (\, di ,−1) as the relation algebra. For each set F

of nonbasic features considered above not containing transitive closure, all path
queries expressible in N (F) are also expressible in the relation algebra [16].

For the purpose of showing the main result, we also consider conditionals as
nonbasic atomic features in this paper. At the syntactic level, a conditional is an
expression denoted by some symbol, say c. The semantics of c is given by some
(implicit) mapping that associates to each directed graph G a set c(G) of identical
pairs of G. Hence, c(G) ⊆ id(G). Informally, (v, v) ∈ c(G) means that node v

“satisfies” c in G. In this paper, we shall use conditionals to eliminate projection
subexpression temporarily, as explained in Section 8 and illustrated in Example 2.

Language expressiveness can be considered at the level of path queries and at
the level of boolean queries.

3 We do not consider extensions of N in which only one of the two projections, respectively
one of the two coprojections, is present.

Boolean expressiveness of transitive closure on unlabeled graphs 5

Definition 1 A path query q is expressible in a language N (F) if there exists an
expression e ∈ N (F) such that, for every graph G, we have e(G) = q(G). Similarly,
a boolean query q is expressible in N (F) if there exists an expression e ∈ N (F) such
that, for every graph G, we have that e(G) is nonempty if and only if q(G) is true.
In both cases, we say that q is expressed by e.

In this paper, we are mainly interested in boolean queries. Compared to path
queries, this means that we are not interested in the precise set of pairs returned
by an expression on a given input graph, but rather in whether or not this set is
empty. Hence, if we can establish that adding transitive closure to a language does
not increase its expressive power at the level of path queries, this must necessarily
also be the case at the level of boolean queries. The converse, however, need not
be true. Therefore, studying expressiveness issues is considerably more difficult at
the level of boolean queries than at the level of path queries.

To conclude these preliminaries, we formally define what we mean by a subex-

pression of a given expression.

Definition 2 Let F be a set of nonbasic features, and let e be an expression in
N (F). The set of all subexpressions of e, denoted Sub(e), is defined recursively, as
follows:

1. if e is either R, ∅, id , di , or a conditional, then Sub(e) = {e};
2. if “�” is either composition or a set operation, and if, for some expressions e1

and e2 in N (F), e = e1 � e2, then Sub(e) = Sub(e1) ∪ Sub(e2) ∪ {e}; and
3. if “θ” is either projection, coprojection, converse, or transitive closure, and if,

for some expression f in N (F), e = θ(f), then Sub(e) = Sub(f) ∪ {e}.

An expression that is either “R”, “id”, “di”, or a conditional is called atomic.
For an expression e in the relation algebra with or without transitive closure, we
denote by |e| the number of its atomic subexpressions and by |e| the number of
occurrences of “R” in e.

3 Trace expressions

If we evaluate an expression e in N (Γ, π, di , +), with Γ a set of conditionals, then,
to validate that, for some nodes v and w in a graph G, (v, w) ∈ e(G), we must in
general make some choices to arrive at that result. In particular, when evaluating
a subexpression f1 ∪ f2, we must decide whether to evaluate f1 or f2, Similarly, if
we encounter a subexpression f+, we must decide how many times we are going
to iterate over f . To formalize this, we introduce trace expressions.

Definition 3 Let e be an expression in N (Γ, di , +), with Γ a set of conditionals.
Then, T (e), the set of trace expressions of e, is defined recursively, as follows:

– if e is an atomic expression, then T (e) = {e};
– if for i = 1, 2, T (πi(e)) = {πi(f) | f ∈ T (e)};
– T (e1 ∪ e2) = T (e1) ∪ T (e2);
– T (e1 ◦ e2) = {f1 ◦ f2 | f1 ∈ T (e1) & f2 ∈ T (e2)}; and
– T (e+) =

S
k≥1{f1 ◦ · · · ◦ fk | ∀i = 1, . . . , k : fi ∈ T (e)}.

6 George H. L. Fletcher et al.

Notice that, indeed, trace expressions do not contain union and transitive clo-
sure. Our earlier intuition is now captured by Proposition 1, which follows from a
straightforward structural induction argument.

Proposition 1 Let e be an expression in N (Γ, di , +). Let G be a graph and v and

w nodes of G. Then, (v, w) ∈ e(G) if and only if there exists f ∈ T (e) such that

(v, w) ∈ f(G).

Notice that it is possible to formally link a trace expression with a particular
way of evaluating the original expression (hence the name “trace”). Formally, this
can be done by first marking the original expression. That is, we tag each symbol
in that expression with its index in that expression, interpreted as a mathematical
sequence. We can then define marked traces in much the same way as above, which
allow us to associate symbols in the trace with symbols in the original expressions
in an unambiguous manner.

Notice that it is possible that different marked traces define the same unmarked
expression. In other words, it is not always possible to link the symbols of an
unmarked trace with the symbols of the original expression in an unambiguous
manner.

In this work, we shall not introduce marked traces formally, to avoid overload-
ing the notation. Nevertheless, we shall assume implicitly for each trace we consider
that a marking is available that links the symbols in the trace with symbols in the
original expressions.

4 Describing the context

In this section, we describe some results [10,9] necessary to understand the context
of the results of the present paper.

First, we observe that there exists the following interdependencies between the
features introduced in Section 2:

π1(e) = (e ◦ e−1) ∩ id = (e ◦ (id ∪ di)) ∩ id = π1(π1(e));

π2(e) = (e−1 ◦ e) ∩ id = ((id ∪ di) ◦ e) ∩ id = π2(π2(e));

π1(e) = id \ π1(e);

π2(e) = id \ π2(e);

e1 ∩ e2 = e1 \ (e1 \ e2).

For a set of nonbasic features F not containing transitive closure, let F̄ be the
set obtained by augmenting F with all nonbasic features that can be expressed
in N (F) through a repeated application of the above equalities. For example,
{\,−1} = {\,−1,∩, π, π}.

The present authors have been able to show the following result.

Proposition 2 [10] Let F1 and F2 be sets of nonbasic features not containing transi-

tive closure. The language N (F1) is at most as expressive as the language N (F2) at

the level of path queries if and only if F1 ⊆ F̄2.

For boolean queries, the situation is slightly more complicated. at turns out
that, under certain conditions, converse can be eliminated.

Boolean expressiveness of transitive closure on unlabeled graphs 7

Proposition 3 [10] Let F be a set of nonbasic features not containing transitive clo-

sure. If F̄ does not contain intersection, then N (F ∪ {−1}) is at most as expressive as

N (F ∪ {π}).

So, in the presence of projection and in the absence of intersection, converse
does not add expressive power at the boolean level. To accommodate this addi-
tional result, we define the following notion, given a set set of nonbasic features F

not containing transitive closure:

F̃ =

(
F̄ ∪ {−1} if π ∈ F̄ and ∩ 6∈ F̄ ;

F̄ otherwfise.

For example, {̃π, di} = {−1, π, π, di}.
The present authors were able to establish the following analogue of Proposi-

tion 2for boolean queries.

Proposition 4 [10] Let F1 and F2 be sets of nonbasic features not containing transi-

tive closure. The language N (F1) is at most as expressive as the language N (F2) at

the level of boolean queries if and only if F1 ⊆ F̃2.

In particular, Proposition 4 establishes which relation algebra fragments not
containing transitive closure are equivalent in expressive power at the level of
boolean queries.

What happens if we add transtive closure to these fragments?

At the level of path queries, the answer is straightforward, as it is well-known
that the expression R+ represents a query not expressible in FO (see, e.g., [2]).
Hence, adding transitive closure always strictly increases the expressive power at
the level of path queries. At the level of boolean queries, the situation is more
subtle. Indeed, the argument above is no longer applicable, as R+ 6= ∅ if and
only if R 6= ∅. Using a straightforward Ehrenfeucht-Fräıssé argument (see, e.g.,
[2]), it is nevertheless still possible to show that the boolean query represented
by the expression R ◦ S+ ◦ R is not expressible in FO. However, this expression
contains two relation names. Hence, also at the level of Boolean queries, adding
transitive closure always strictly increases the expressive power, but only if labeled
input graphs with at least two relation names are allowed. This begs the question
whether this result still holds for unlabeled input graphs. Using ad-hoc arguments,
the present authors were able to establish the following.

Proposition 5 [10,9] Let F be a set of nonbasic features such that F̄ contains at least

one of intersection, converse, or coprojection. Then, adding transitive closure to N (F)
strictly increases the expressive power.

Taking into account Proposition 4, four relation algebra fragments are not
covered by Proposition 5: N , N (π), N (di), and N (π, di). It is the purpose of the
present paper to prove that adding transitive closure to these fragments does not

increase their expressive power.

8 George H. L. Fletcher et al.

5 General proof strategy

In this section, we describe in very general terms the proof strategy we use to show
that N (F ∪ {+}) collapses to N (F) for all sets of nonbasic features F for which
F ⊆ {π, di}.

We start with an introductory example.

Example 1 Consider the expression e := π1(R
3)◦R+ ◦di ◦π2(R)◦R2 in N (π, di , +).

Let G be a graph. For e(G) to be nonempty, the subexpressions to the right of
“di” must return nonempty. Hence, there must exist a chain w0 → w1 → w2 → w3

in G. Unless, for each such chain, w1 = w2 = w3, it is readily seen that this
condition is also sufficient for e(G) 6= ∅. In the other case, there must exist an
edge v0 → v1 with a self-loop in v1 for which v1 6= w1 in order for e(G) to be
nonempty. It can now be readily verified that, in both cases, e′(G) 6= ∅, with
e′ := π1(R

3) ◦ (R ∪ R2) ◦ di ◦ π2(R) ◦ R2 in N (π, di). As always e′(G) ⊆ e(G), the
converse implication also holds, so e′ ∈ N (π, di) is equivalent to e ∈ N (π, di , +) at
the level of boolean queries. ut

The argument used to show that transitive closure can be eliminated from the
expression in Example 1 is very ad-hoc. Moreover, the considered expression is
very simple. We therefore need a general technique to show that, for F ⊆ {π, di},
N (F ∪ {+}) collapses to N (F) at the level of boolean queries. In this section, we
outline this technique, and, in subsequent sections, we work it out in further detail.
It consists of two steps. Given an expression e in N (F ∪ {+}),

1. find an expression suffF,e N (F) such that, for every graph G, suffF,e(G) 6= ∅
implies e(G) 6= ∅; and

2. find an expression e′ in N (F) that is equivalent to e at the level of boolean
queries on all graphs G for which suffF,e(G) = ∅.

It then follows immediately that, on all graphs, e is equivalent to suffF,e ∪ e′ at
the level of boolean queries, i.e., for every graph G, suffF,e ∪ e′(G) 6= ∅ if and
only if e(G) 6= ∅. Intuitively, suffF,e(G) 6= ∅ is a sufficient condition for e(G) to be
nonempty. It therefore suffices to show the collapse on graphs that do not satisfy
this condition, i.e., for which suffe(G) = ∅. If suffF,e is well-chosen, then the latter
condition will turn out to be sufficiently restrictive for our purposes.

6 The first step

The first step of the proof strategy described in Section 5 is, given F ⊆ {π, di} and
an expression e in N (F ∪ {+}), finding an expression suffF,e in N (F) for which
suffF,e(G) 6= ∅ implies e(G) 6= ∅ for every input graph G. This first step is secured
by a series of lemmas, summarized in Theorem 1.

We start with the following straightforward observations.

Lemma 1 Let G1 and G2 be graphs, and let h be a homomorphism from G1 to G2.

– Let e be an expression in N (π, +). Then (v, w) ∈ e(G1) implies (h(v), h(w)) ∈
e(G2).

– Let e be an expression in N (π, di , +). If f is injective, then (v, w) ∈ e(G1) implies

(h(v), h(w)) ∈ e(G2).

Boolean expressiveness of transitive closure on unlabeled graphs 9

Arguably, the simplest graphs we can consider in this contexts are chains. A
chain of length m, denoted Cm, is a graph consisting of nodes v0, . . . , vm and edges
between subsequent nodes. Lemma 1 can then help us to link the behavior of an
expression on a such a chain to the behavior of that expression on the given input
graph.

Lemma 2 Let e be an expression in N (π, +). Then, for m ≥ |e|, e(Cm) 6= ∅.

Proof The proof is a structural induction argument. The only non-straightforward
case to consider is the induction step for composition. Thus, suppose that e =
e1 ◦ e2, and that e1 and e2 satisfy Lemma 2. In particular, e1(C|e1|) 6= ∅ and
e2(C|e2|) 6= ∅. Let the chain C|e1| consist of the nodes v0, . . . , v|e1| and C|e2| consist
of the nodes w0, . . . , w|e2|. Let (vi, vj) ∈ e1(C|e1|) and (wk, wl) ∈ e2(C|e2|). Finally,
for m ≥ |e| = |e1|+ |e2|, let Cm consist of the nodes z0, . . . , zm. We now distinguish
two cases.

1. j ≥ k. Consider the homomorphism from C|e1|) to Cm mapping v0 to z0, and
hence vi to zi and vj to zj . By Lemma 1, (zi, zj) ∈ e1(Cm). Since j ≥ k, there
exists a homomorphism from C|e2|) to Cm mapping wk to zj , and hence wl to
zj+l−k. By Lemma 1, (zj , zj+l−k)) ∈ e2(Cm). Hence, (zi, zj+l−k) ∈ e(Cm).

2. j < k. Consider the homomorphism from C|e2|) to Cm mapping w|e2| to zm, and
hence wk to zk+m−|e2| and wl to zl+m−|e2|. By Lemma 1, (zk+m−|e2|, zl+m−|e2|) ∈
e2(Cm). Since j < k, there exists a homomorphism from C|e1|) to Cm mapping
vj to zk+m−|e2|, and hence vi to zk+i−j+m−|e2|. By Lemma 1, (zk+i−j+m−|e2|, zk+m−|e2|) ∈
e1(Cm). Hence, (zk+i−j+m−|e2|, zl+m−|e2|) ∈ e(Cm).

In both cases, we find that e(Cm) 6= ∅.

Using the above lemmas, we can easily find an expression suffF,e if F ⊆ {pi}.

Lemma 3 Let e be an expression in N (π, +), and let G be a graph. If R|e|(G) 6= ∅,
then e(G) 6= ∅.

Proof The condition R|e|(G) 6= ∅ is equivalent to the existence of a homomorphism
from C|e| to G. By Lemma 2, e(C|e|) 6= ∅. Hence, by Lemma 1, e(G) 6= ∅.

We now consider the case where F = {di}.

Lemma 4 Let e be an expression in N (di , +), and let G be a graph. If R|e| ◦ di ◦
R|e|(G) 6= ∅, then e(G) 6= ∅.

Proof We first consider an expression f in N (di) of the form f := Rm1 ◦ di ◦Rm2 ◦
di ◦ · · · ◦ diRmn , n ≥ 1, 1 ≤ m1, . . . , mn ≤ |e|, and prove that it returns a nonempty
result on graphs satisfying R|e| ◦ di ◦ R|e|(G) 6= ∅.4 Thereto, we distinguish two
cases.

1. There exist nodes v1, w1, v2, and w in G such that (v1, w1) ∈ R|e|(G), (v2, w2) ∈
R|e|(G), and v1 6= v2. For i = 1, . . . , n, let fi = Rm1 ◦ diRm2 ◦ di ◦ · · · ◦ di ◦Rmi .
We prove by induction that there exist nodes z1, . . . , zn in G such that (v1, zi) ∈
fi(G). For the base case, i = 1, this follows from m1 ≤ |e|. Assume that we
have already established that for some node zi of G, (v1, zi) ∈ fi(g). Since

4 Notice that this statement is voidly true if |e| = 0.

10 George H. L. Fletcher et al.

v1 6= v2, zi 6= v1 or zi 6= v2. Without loss of generality, assumme the latter.
Since (v2, w2) ∈ R|e|(G) and mi+1 ≤ |e|, it follows that there exists a node zi+1

in G such that (v2, zi+1) ∈ Rmi+1(G). Hence, (v0, zi+1) ∈ fi+1(G), as was to be
shown. We find in particular that f(G) = fn(G) 6= ∅.

2. There is only one node v in G such that, for some node w in G, (v, w) ∈ R|e|(G).
From R|e| ◦ di ◦R|e|(G) 6= ∅, it follows that v 6= w.
We distinguish two subcases.
(a) (v, v) ∈ R. Notice that there must also exist a node z in G with (v, z) ∈ R and

v 6= z. Otherwise, it would be impossible that (v, w) ∈ R|e|. From (v, v) ∈ R

and (v, z) ∈ R, it follows that, for all m ≥ 1, (v, z) ∈ Rm(G). Since v 6= z,
we may conclude that also (v, z) ∈ f(G). In particular, f(G) 6= ∅.

(b) (v, v) /∈ R. By assumption, there exists nodes v = v0, v1, . . . , v|e| = w, such
that, for m = 0, . . . , |e| − 1, (vm, vm+1) ∈ R. From the assumption in this
subcase, it immediately follows that v = v0 6= v1. Next, consider node vm

for 2 ≤ m ≤ |e|. If v = v0 = vm, then there exists k, 0 ≤ k ≤ m−1, such that
(v1, vk) ∈ R|e|(G), contradicting the assumption that v = v0 is the unique
node for which there exist a node w such that (v, w) ∈ R|e|(G). Now, for
m = 1, . . . , |e|, (v, vm) ∈ Rm(G), and v 6= vm. Therefore, we may conclude
as in Subcase 2a that (v, vmn) ∈ f(G). In particular, f(G) 6= ∅.

Notice that it also follows from our reasoning that expressions of the form

di ◦Rm1 ◦ di ◦Rm2 ◦ di ◦ · · · ◦ diRmn ;
Rm1 ◦ di ◦Rm2 ◦ di ◦ · · · ◦ diRmn ◦ di ; and

di ◦Rm1 ◦ di ◦Rm2 ◦ di ◦ · · · ◦ diRmn ◦ di ,

n ≥ 1, 1 ≤ m1, . . . , mn ≤ |e|, returns a nonempty result on graphs satisfying
R|e| ◦ di ◦ R|e|(G) 6= ∅, since this condition implies that G contains at least two
nodes.

Now, consider a trace expression f ∈ T (e) for which |f | ≤ |e|. (All trace ex-
pressions obtained by iterating only once over all transitive closure subexpressions
satisfy this condition.) First, superfluous occurences of “id” can be eliminated
from f . Next, remember that a graph G satisfying R|e| ◦ di ◦R|e|(G) 6= ∅ contains
at least two nodes. If G contains extactly two nodes, then dik is equivalent to id

if k is even and to di if k is odd. Otherwise, dik is equivalent to id ∪ di . It follows
that, if |e| = 0, then, on G, f is equivalent to either id , di , or id ∪ di . In each case
f(G) 6= ∅. If |e| > 0, then, on G, f is equivalent to a union of expressions of the
type considered before. Hence, also in this case, we may conclude that f(G) 6= ∅.

From Proposition 1, it now immediately follows that, in all cases, e(G) 6= ∅.

Finally, we deal with the case where F = {π, di}.

Lemma 5 Let e be an expression in N (π, di , +), and let G be a graph. If π2(R
|e|) ◦

π1(R
|e|) ◦ di ◦ π2(R

|e|) ◦ π1(R
|e|) 6= ∅, then e(G) 6= ∅.

Proof We first observe that the condition π1(R
|e|)◦π2(R

|e|)◦di◦π1(R
|e|)◦π2(R

|e|)(G) 6=
∅ is equivalent to the existence of two sequences of not necessarily all different nodes
v−|e|, . . . , v−1, v0, v1, . . . , v|e| and w−|e|, . . . , w−1, w0, w1, . . . , w|e| in G such that, (1)
for i = −|e|, . . . , |e| − 1, (vi, vi+1) ∈ R and (wi, wi+1) ∈ R and (2) v0 6= w0.

Let H be the subgraph of G consisting of the nodes and edges singled out above.
Let f be in N (π, di) with |f | ≤ |e|. We show by a nested inductive argument that,

Boolean expressiveness of transitive closure on unlabeled graphs 11

1. for all i = 0 . . . , |e| − |f |, there exists j with 0 ≤ j ≤ i + |f | such that (vi, vj) ∈
f(H) or (vi, wj) ∈ f(H);

2. for all i = −|e| . . . , 0, there exists j with i ≤ j ≤ |f | such that (vi, vj) ∈ f(H) or
(vi, wj) ∈ f(H);

3. for all i = 0, . . . , |e| − |f |, there exists j with 0 ≤ j ≤ i + |f | such that (wi, vj) ∈
f(H) or (wi, wj) ∈ f(H);

4. for all i = −|e| . . . , 0, there exists j with i ≤ j ≤ |f | such that (wi, vj) ∈ f(H)
or (wi, wj) ∈ f(H);

5. for all i = −|e| + |f |, . . . , 0, there exists j with i − |f | ≤ j ≤ 0 such that
(vj , vi) ∈ f(H) or (wj , vi) ∈ f(H);

6. for all i = 0, . . . , |e|, there exists j with −|f | ≤ j ≤ i such that (vj , vi) ∈ f(H)
or (wj , vi) ∈ f(H);

7. for all i = −|e| + |f |, . . . , 0, there exists j with i − |f | ≤ j ≤ 0 such that
(vj , wi) ∈ f(H) or (wj , wi) ∈ f(H); and

8. for all i = 0, . . . , |e|, there exists j with −|f | ≤ j ≤ i such that (vj , wi) ∈ f(H)
or (wj , wi) ∈ f(H).

We first show the first statement for the case that f is projection-free, i.e., that f is
in N (di). First, observe that, always, (vi, vi) ∈ id(H). We can view each union-free
expression in N (di) as a composition of “id” with none, one, or more factors “R”
or di”. Thus, assume that f is a union-free expression in N (di) with |f | ≤ |e|, and
let f = g ◦R, where g satisfies the first statement above. Let 0 ≤ i ≤ |e|− |f |. Since
|f | = |g|+ 1, 0 ≤ i ≤ |e| − |g|. By the first statement of the induction hypothesis,
there exists j with 0 ≤ j ≤ i + |g| such that (vi, vj) ∈ f(H) or (vi, wj) ∈ f(H).
Observe that j ≤ i + |g| ≤ |e| − |f | + |g| = |e| − 1. Hence, (vj , vj+1) ∈ R and
(wj , wj+1) ∈ R, as a consequence of which (vi, vj+1) ∈ f(H) or (vi, wj+1) ∈ f(H).
Finally, notice that j+1 ≤ i+ |g|+1 = i+ |f |. Alternatively, assume that f = g◦di ,
where g satisfies the first statement above. Let 0 ≤ i ≤ |e| − |f |. Since |f | = |g|,
0 ≤ i ≤ |e| − |g|. By the induction hypothesis, there exists j with 0 ≤ j ≤ i + |g|
such that (vi, vj) ∈ f(H) or (vi, wj) ∈ f(H). Without loss of generality, assume the
latter. Since v0 6= w0, wj 6= v0 or wj 6= w0. Again without loss of generality, assume
the latter. Then (vi, w0) ∈ f(H). We have thus shown that the first statement holds
for all union-free expressions f in N (di) with |f | ≤ |e|. The other statements this
case are shown analagously.

We now consider the general case, and use the case above as the basis for
an induction on the number of projection subexpressions in the expression under
consideration. We focus again of the first statement. Thus, assume that f is in
N (π, di) with |f | ≤ |e|, and that 0 ≤ i ≤ |e| − |f |. If f is not projection-free, we
can write f = f1 ◦ π1(f2) ◦ f3 or f = f1 ◦ π2(f2) ◦ f3, with f1 projection-free,
and f2 and f3 containing fewer projection subexpressions than f . By the first
statement of the basis of this induction, there exists j, 0 ≤ j ≤ i + |f1|, such that
(vi, vj) ∈ f1(H) or (vi, wj) ∈ f1(H). Without loss of generality, assume that latter.
Clearly, j ≤ |eR| − (|f2| + |f3|), in particular, j ≤ |eR| − |f2| and j ≤ |eR| − |f3|.
By the latter condition and the third statement of the induction hypothesis, there
exists k, 0 ≤ k ≤ j + |f3| ≤ i + |f1| = |f3| ≤ i + |f | such that (wj , vk) ∈ f3(H) or
(wj , wk) ∈ f3(H). We now distinguish the two cases.

1. f = f1 ◦ π1(f2) ◦ f3. As above, we can derive from the the third statement of
the induction hypothesis that there exists l, 0 ≤ l ≤ j + |f2| such that (wj , vl) ∈
f2(H) or (wj , wl) ∈ f2(H). In particular, (wj , wj) ∈ π1(f2)(H). Combining

12 George H. L. Fletcher et al.

Table 1 Expressions suffF,e in N (F) for which suffF,e(G) 6= ∅ implies e(G) 6= ∅, F ⊆ {π, di}.

F suffF,e

∅ R|e|

{π} R|e|

{di} R|e| ◦ di ◦ R|e|

{π, di} π1(R|e|) ◦ π2(R|e|) ◦ di ◦ π1(R|e|) ◦ π2(R|e|)

everything together, we find that (vi, vk) ∈ f(H) or (vi, wk) ∈ f(H), with k in
the desired range.’

2. f = f1◦π2(f2)◦f3. By the last statement of the induction hypothesis, it follows
that there exists l, −|f2| ≤ l ≤ j, such that (vl, wj) ∈ f2(H) or (wl, wj) ∈ f2(H).
In particular, (wj , wj) ∈ π2(f2)(H). Combining everything together, we find
that, also in this case, (vi, vk) ∈ f(H) or (vi, wk) ∈ f(H), with k in the desired
range.

The induction step for the other seven statements is analagous.
We thus shown that, for every union-free expression f in N (π, di) with |f | ≤ |e|,

that f(H) 6= ∅, and, hence, by Lemma 1, that f(G) 6= ∅. Since all trace expressions
f ∈ T (e) obtained by iterating only once over transitive closure subexpressions
satisfy |f | ≤ |e|, it follows from Proposition 1 that also e(G) 6= ∅.

Theorem 1 below summarizes Lemmas 3, 4, and 5.

Theorem 1 Let F ⊆ {π, di}. Let e be an expression in N (F, +). Let suffF,e in N (F)
be as tabulated in Table 1. Then, for every graph G, suffF,e(G) 6= ∅ implies e(G) 6= ∅.

7 Proof strategy for the second step

In Section 6, we established, for F ⊆ {π, di} and e an expression in N (F ∪{+}), the
existence of an expression suffF,e inN (F) such that, for every graph G, suffF,e(G) 6=
∅ implies e(G) 6= ∅.

The second step in our general proof strategy requires finding an expression e′

in N (F) such that, for every graph G satisfying suffF,e(G) 6= ∅, e′(G) 6= ∅ if and
only if e(G) 6= ∅. (As explained before, we may then conclude that e is equivalent
to suffF,e(G) ∪ e′ at the level of Boolean queries.)

For that purpose, we need to know some information on how a graph G satis-
fying suffF,e(G) 6= ∅ looks like.

For our purpose, we extend the notion of directed acyclic graph (DAG).

Definition 4 An extended directed acyclic graph (EDAG) is a (not necessarily con-
nected) DAG to which self-loops may be added provided each path in the DAG
contains at most one node with a self-loop. The DAG obtained from an EDAG by
removing all self-loops (but not the nodes in which these self-loops occur) is called
the underlying DAG. The depth of an EDAG is the depth of the underlying DAG,
i.e., the maximal length of a path in that DAG.

We now have the following.

Boolean expressiveness of transitive closure on unlabeled graphs 13

Lemma 6 Let m be a nonzero natural number, and let G be a graph such that π1(R
m)◦

π2(R
m) ◦ di ◦ π1(R

m) ◦ π2(R
m)(G) = ∅. Then G is an EDAG of depth at most 2m.

Proof If π1(R
m) ◦ π2(R

m) ◦ di ◦ π1(R
m) ◦ π2(R

m)(G) = ∅, then it is the case
that, for any two sequences of nodes v−m, . . . , v−1, v0, v1, . . . , vm and w−m, . . . , w−1,

w0, w1, . . . , wm in G such that, for i = −m, . . . , m−1, (vi, vi+1) ∈ R and (wi, wi+1) ∈
R, we have that v0 = w0 (cf. the proof of Lemma 5). Clearly, this is not the case
if G contains either one loop of length at least two; or two self-loops; or a non-
selfintersecting path of length at least 2m + 1. Hence, G is an EDAG of depth at
most 2m.

Notice that G being an EDAG of depth at most 2m is not a sufficient condition
for the expression in Lemma 6 to evaluate to the empty set. For instance, an EDAG
may contain more than one self-loop in total (at most one on each path in the
underlying DAG). Also, a DAG (which is a special case of an EDAG) of depth 2m

may contain two paths of length 2m of which the middle nodes do not coincide.
Hence, G being an EDAG of depth at most 2m is only a necessary condition for
π1(R

m) ◦ π2(R
m) ◦ di ◦ π1(R

m) ◦ π2(R
m)(G) = ∅. For our purposes, however, this

is all we need.
We are now ready to bootstrap Lemma 6, as follows.

Proposition 6 Let F ⊆ {π, di}, and let e be an expression in N (F, +). Let G be a

graph such that suffF,e(G) = ∅. Then G is an EDAG of depth at most 2|e|.

Proof We first observe that R|e|(G) = ∅ implies that R|e|(G) ◦ di ◦R|e|(G) = ∅ and
that R|e|(G)◦di◦R|e|(G) = ∅ implies that π1(R

|e|)◦π2(R
|e|)◦di◦π1(R

|e|)◦π2(R
|e|) =

∅. Proposition 6 now follows from Lemma 6.

Now assume that we are given an expression e in N (π, di , +) and an EDAG G

of depth at most 2|e|. The remainder of this paper is concerned with proving that
there exists a nonzero natural number me depending only on e such that e(G) = ∅
if and only e′(G) = ∅, where e′ is obtained from e by exhaustively replacing each
subexpression of the form f+ by

Sme
i=1 f i.

Notice that this expression is in N (F), F ⊆ {π, di}, whenever e is in N (F∪{tc}).
Hence, there is no need to threat the cases F = ∅, F = {π} and F = {di} separately.

To achieve our goal, we intend to show (Proposition 14) that there exists a
nonzero natural number me such that, for any node v of G, there exists a subgraph
Gv of G containing v which has at most me nodes and satisfies the following
property: there exists a node w for which (v, w) ∈ e(G) if and only if there exists a
node w′ in Gv for which (v, w′) ∈ e(Gv). To see that this property is sufficient for
our purposes, assume first that e(G) = ∅. Then e′(G) = ∅, since, by construction,
e′(G) ⊆ e(G). Therefore, assume next that e(G) 6= ∅. Then, for some nodes v and w

of G, (v, w) ∈ e(G). Hence, there exists a node w′ in Gv such that (v, w′) ∈ e(Gv).
Since Gv has at most me nodes, e(Gv) = e′(Gv). It follows that e′(Gv) 6= ∅. By
Lemma ??, e′(Gv) ⊆ e′(G), and, hence, we also have that e′(G) 6= ∅.

In the remaining sections, we shall establish that such subgraphs Gv exist.

8 Expressions with conditionals

To facilitate achieving the goals set at the end of the previous section, we shall
first simplify the expressions under consideration. In Section 2, we introduced con-

14 George H. L. Fletcher et al.

ditionals, which are constants at the syntactical level, representing at the semantic
level functions that associate to each graph a set of identical pairs of that graph.
Now, notice that any subexpression of the form π1(f) or π2(f) of an expression in
N (π, di , +) can be interpreted as a function defining the semantics of some condi-
tional. Given an expression in N (π, di , +), we shall therefore as a first step replace
all projection subexpressions which themselves do not occur within a projection
subexpression by a conditional with the same semantics. In this way, projection is
formally eliminated, which simplifies the further development considerably.

Example 2 Consider the expression (R ◦ π1((R
3 ◦ di ◦ π2(R

2) ◦ R)+))+ ◦ R2. If we
associate a conditional c to π1((R

3 ◦ di ◦ π2(R
2) ◦ R)+), the expression can be

rewritten as (R ◦ c1)
+ ◦R2, i.e., the projection has formally been eliminated.

Once we have a partial result for this case, we will reintroduce the projections
and bootstrap the initial result to the desired result.

To this end, we introduce a finite set of conditionals Γ = {c1, . . . , cp}, and
consider the language N (Γ, di , +), as well as some of its sublanguages. Later on,
we will choose p as a function of the number of projection subexpressions in the
expression under consideration.

9 Line patterns and graph patterns

Let Γ = {c1, . . . , cp} be a finite set of conditionals. A useful property for union-
free expressions in N (Γ, di) is that the presence of a particular pair of nodes of
a graph in the output of the expression applied to the graph can be rephrased
as the existence of a particular homomorphism from a chain-like directed graph,
representing the expression, into the graph.

More concretely, let f be a union-free expression in N (Γ, di). We shall associate
a line pattern L(f) with f . This line pattern is a chain-like directed graph in
which each edge is labeled with either “R” or “di” and each node is labeled by a
(possibly empty) set of conditionals. In addition, each line pattern has one source

node, labeled s, and one target node, labeled t, which may coincide. The precise,
inductive, definition is given in Figure 1.

From a straightforward inductive argument, we can derive the following result.

Proposition 7 Let Γ = {c1, . . . , cp} be a finite set of conditionals and let f be a

union-free expression in N (Γ, di), and let G be a graph. There exist nodes v and w in

G such that (v, w) ∈ f(G) if and only if there exists a homomorphism h from L(f) to

G such that h(s) = v and h(t) = w.

Line patterns are special cases of graph patterns. A graph pattern is a directed
graph in which each edge is labeled with either “R” or “di” and each node is
labeled by a (possibly empty) set of conditionals. At least one node is marked as
source, and at least one node is marked as target.

Let P be a graph pattern, and let G be a directed graph. A mapping h from
the nodes of P to the nodes of G is called a homomorphism from P to G if

1. for each node v of P, all the conditionals by which v is labeled are satisfied by
h(v) in G;

2. for each edge (v,w) of P labeled by “R”, (h(v), h(w)) is an edge of G; and

Boolean expressiveness of transitive closure on unlabeled graphs 15

L(f2)

L(id) =

L(R) =

L(di) =

if L(f1) =

and L(f2) =

then L(f1 ◦ f2) =

L(ci) =

t

ts

t

C2

C1 ∪ C2

s, t

{ci}

R

s t

di

s, t

s

s

s

t

∅

C1L(f1)

L(f2)

L(f1)

Fig. 1 Definition of the line pattern L(f) of a union-free expression in N (Γ, di).

3. for each edge (v,w) of P labeled by “di”, h(v) 6= h(w).

An example of graph pattern that is not a line pattern can be seen in Figure 2.
Notice that we use boldface characters for the nodes of line and graph patterns

to distinguish them clearly from the nodes of the input graph.
General graph patterns will be put to use in Section 11 to construct, given an

expression e in N (Γ, di , +), a natural number m, an EDAG G of depth at most m,
and a node v of G, a sequence of subgraphs of G. The number of nodes of these
subgraphs can be bounded by natural numbers depending only on m and e. One
of these subgraphs will turn out to be the subgraph Gv mentioned at the end of
Section 7, for appropriate choices of the conditionals and their semantics, and for
m = 2|e|.

10 Normalizing trace expressions

In Section 9, we associated line patterns with union-free expression in N (Γ, di),
with Γ = {c1, . . . , cp} a set of conditionals. These contain the trace expressions of
expressions in N (Γ, di , +).

Not all trace expressions will be useful for our purposes, and, in addition, trace
expressions may contain a lot of redundany. redundancy. Therefore, we define the
following notions.

Definition 5 Let Γ = {c1, . . . , cp} be a set of conditionals, and let n ≥ 0. An
expression g in N (Γ) is n-normal if (1) g is union-free, (2) |g| ≤ n, and (3) a
subexpression of g consisting only of “id” conditionals, and composition is either
“id” or does not contain “id” and contains at most one occurrence of every con-
ditional.

16 George H. L. Fletcher et al.

Observe that, for all n, “id” is always n-normal. We denote the n-normal
expressions of N (Γ) by Nnorm

n (Γ).

Definition 6 Let Γ = {c1, . . . , cp} be a set of conditionals, and let n ≥ 0. An
expression f in N (Γ, di) is n-normal if it is of the form g1◦di◦g2◦di◦· · ·◦gk−1◦di◦gk,
with g1, . . . , gk ∈ Nnorm

n (Γ).

In particular, all n-normal expressions of N (Γ) are also n-normal expressions
of N (Γ, di). We denote the n-normal expressions of N (Γ, di) by Nnorm

n (Γ, di).
We now define the set T norm

n (e) of n-normal trace expressions as the set of all
expressions in Nnorm

n (Γ, di) for which there exists an equivalent expression in T (e)
at the level of path queries. The following results links expressions in N (Γ, di , +)
to normalized trace expressions in N (di , Γ) in the context of an EDAG of bounded
depth.

Proposition 8 Let e be an expression in N (di , Γ, +), let m ≥ 0, and let G be an

EDAG of depth at most m. Then, there exists a number M only dependent on e and

m such that, for all nodes v and w of G, (v, w) ∈ e(G) if and only if there exists an

M-normal trace expression f in T norm
M (e) for which (v, w) ∈ f(G).

Proof By Proposition 1, (v, w) ∈ e(G) if and only if there exists a trace expression
f in T (e) for which (v, w) ∈ f(G). In particular, this settles the “if”. For the “only
if”, assume that f is a trace expression of minimal length for which (v, w) ∈ f(G).
It remains to show that we can “normalize” f .

By Proposition 7, there exists a homomorphism h from L(f) to G with h(s) = v

and h(t) = w. Now consider a “di”-free subexpression g of f of maximal length.
Consider the path in G defined by h(L(g)). Notice that the length of this path,
measured in the DAG underlying G, is at most m. Hence, if this path does not
contain a node with a self-loop, then there are also at most m occurrences of the
symbol “R” in g. Thus assume that on this path there is a node with a self loop,
and hence precisely one (cf. Definition 4), say, z.

Now, assume there is a subexpression f1 of f that is a trace of k subsequent
iterations of e1, with e+

1 a transitive-closure subexpression of e, such that the
following conditions are satisfied:

1. the first “R” symbol in g mapped by h to the self-loop in z corresponds in e to
an “R” symbol in the first of the k iterations under consideration of e1;

2. the last “R” symbol in g mapped by h to the self-loop in z corresponds in e to
an “R” symbol in the last of the k iterations under consideration of e1.

Consequently, f1 need not be a maximal subexpression of f that is a trace of
consecutive iterations of e1 in e.

Suppose, for the sake of contradiction, that k > 2. Let g1 be the subexpression
of g corresponding to the k iterations under consideration of e1 in e, except for
the first and the last one.5 Obviously, h maps all nodes of the subpattern L(g1) of
L(f) to z. Hence, we can omit g1 from f and still retain a trace expression f̂ for
which h is a homomorphism mapping L(f̂) to G such that h(s) = v and h(t) = w,
contradicting our assumption that f has minimal length. Hence, k ≤ 2.

Now, let ê be the expression in N (di , π) obtained from e by recursively substi-
tuting each subexpression of the form e+

1 in e by e1 ∪ e2
1. By the above argument,

5 In other words, g1 is a trace of k − 2 iterations of e1.

Boolean expressiveness of transitive closure on unlabeled graphs 17

it follows that the minimal subexpression of f containing all “R” symbols of g

mapped to the self-loop in z by h is also a subexpression of a trace of ê. Hence, the
number of these “R” symbols is bounded by |ê|, the length of ê. Notice that this
number solely depends on e. The number of “R” symbols of g not mapped to the
self-loop in z is bounded by m, by the same argument as before. We may therefore
conclude that, in all cases, the total number of “R” symbols in g is bounded by
M := m + |ê|.

Finally, we can rewrite f as f ′ = g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gn−1 ◦ di ◦ gn, with
g1, . . . , gn ∈ N (Γ), by inserting “id” primitives where needed. By our previous
argument, the number of “R” symbols in gi, 1 ≤ i ≤ n, is bounded by M . Without
loss of generality, we may also assume that subexpressions of f ′ consisting solely
of “id”, conditionals, and composition are either “id” or do not contain “id”, and
contain each conditional occurs at most once, by removing superfluous occurrences
of “id” and repetitions of conditionals. Clearly, f ′ ∈ T norm

Me
(e), and (v, w) ∈ f ′(G).

Proposition 8 becomes interesting in conjunction with Proposition 9, below.

Proposition 9 Let Γ = {c1, . . . , cp} be a set of conditionals, and let n be a nonzero

natural number. Then,

1. the number of atomic subexpressions of an expression of Nnorm
n (Γ) can be bounded

by a number depending only on n and p; and

2. the number of expressions in Nnorm
n (Γ) is finite, and can be bounded by a number

depending only on n and p.

Proof First, consider item (1). Let g be an expression of Nnorm
m (Γ). We know that

g contains “R” at most n times. Unless g is “id”, we know that before the first
“R”, in between subsequent “R”s, and after the last “R”, we can have a sequence
of conditionals, in which each of these occurs at most once. Hence, the number of
atomic subexpression in g is at most max(1, n+(n+1)p). Item (2) now immediately
follows.

11 Canonical subgraphs

Given a set of conditionals Γ = {c1, . . . , cp}, a natural number n, a directed graph
G, and a node v of G, we shall now define a sequence of so-called n-canonical
subgraphs Gv

0, Gv
1, Gv

2, . . . of order 0, 1, 2, (In the notation, we shall leave Γ and
n implicit.)

In doing so, we have two opposite concerns:

1. For some n ≥ 0 and some order i ≥ 0, Gv
i , the n-canonical subgraph of order i

of G, will be the subgraph Gv of G mentioned at the end of Section 7 satisfying
e(Gv) 6= ∅ if and only if e(G) 6= ∅. In order to work towards that goal, we
must define Gv

0, Gv
1, Gv

2, . . . sufficiently large to ensure that we can simulate the
behavior of e on G on these subgraphs of G.

2. For our proof strategy to work, it is at same important that there is a bound
on the number of nodes of Gv that only depends on e, and not on G or v.
Therefore, we may define Gv

0, Gv
1, Gv

2, . . . not too large either. In particular, we
shall ensure that the number of nodes of each of these n-canonical subgraphs
depends only on its order and on p and n.

18 George H. L. Fletcher et al.

Balancing these two concerns is the motivatation behind the definitions that will
follow.

We start by defining Gv
0.

Thereto, let g be an expression in Nnorm
n (Γ). We define P(g) to be the set of

graph patterns that can be obtained from L(g) in the following way:

1. Start with one, two, three, or four pairwise disjoint copies of L(g).
2. Optionally, merge some of the source nodes of these copies.
3. Optionally, merge some of the target nodes of these copies.
4. Optionally, connect some of the remaining source nodes by “di” edges.
5. Optionally, connect some of the remaining target nodes by “di” edges.

Observe that the line pattern L(g) itself is always in P(g).

Figure 2 shows a more representative example of a graph pattern that belongs
to P(g).

di

L(g) t3

di
L(g)

s3 t4

s2

di

L(g)

s1

L(g)

t1

t2
di

Fig. 2 Example of a graph pattern in P(g).

Now, let P be a graph pattern in P(g), and let v be a node of G. With P, we
associate a minimal (in number of elements) set Hv(P) of homomorphisms from
P to G satisfying the following conditions:

1. if there exists a homomorphism from P to G, then Hv(P) 6= ∅;
2. if, for an arbitrary node v of P, there exist two homomorphisms from P to G

mapping v to different nodes of G, then Hv(P) contains two homomorphisms
from P to G mapping v to different nodes of G;

3. if P has a single source node s and there exists a homomorphism from P to G

mapping s to v, then Hv(P) contains such a homomorphism;
4. if P has a single target node t and there exists a homomorphism from P to G

mapping t to v, then Hv(P) contains such a homomorphism;

For a good understanding, we first observe the following.

Boolean expressiveness of transitive closure on unlabeled graphs 19

– Given P, G, and v, we choose a minimal set of homomorphisms Hv(P) satisfying
the above conditions. In other words, it is to be expected that, in general,
several minimal sets of homomorphisms satisfy the above conditions. From
these, we pick one arbitrarily, and denote it by Hv(P).

– The definition of Hv(P) refers explicitly to v only if P has either a single source
node, or a single target node, or both. In all other cases, we may therefore
choose Hv(P) independent of v.

We are now ready to define Gv
0, the n-canonical subgraph of order 0:

Gv
0 =

[
g∈Nnorm

n (Γ)

[
P∈P(g)

[
h∈Hv(P)

h(P).

In the above formula, h(P) must be understood as the subgraph of G the set
of nodes of which is {h(v) | v is a node of P} and the set of edges of which is
{(h(v), h(w)) | (v,w) is an R-labeled edge of P}. The n-canonical subgraph of or-
der 0 is then defined as a union of some of these subgraphs, where this union must
be interpreted componentwise, i.e., the set of nodes and the set of edges of this
union are the union of the sets of nodes and the union of the sets of edges of the
subgraphs involved.

We point out at this stage that if a node v of G satisfies a conditional c, and G′

is a subgraph of G containing v, then a priori v does not have to satisfy c in G′. We
shall therefore avoid evaluating expressions over subgraphs of G (in particular, the
canonical ones), until we reinterpret conditionals as the projection subexpressions
for which they actually stand, in Section 13.

At this point, several aspects of the definition of the n-canonical subgraph of
order 0 have been left unexplained, in particular,

– the definition of the set of graph patterns P(g) for g ∈ Nnorm
n (Γ), and, more

specifically, why up to four copies of the line pattern L(g) are allowed in such
a graph pattern; and

– the definition of the set of homomorphisms Hv(P) for P ∈ P(g).

The only answer we can give at this point is that these definitions are tailored to
make some of the key results in Section 12 work (in particular, Lemma ??), as is
explained in that section. The essence is that, given an n-normal trace expression
f in T norm

n (e) and a homomorphism h from L(f) to G, we wish to show via an
inductive process that there also exists such a homomorphism of which the image
is fully contained in one of the n-canonical subgraphs of order 0. As argued before,
we must ensure on the one hand that the n-canonical subgraphs of order 0 are
sufficiently large for this process to work, but, on the other hand, we must also
ensure that their size can be bounded by a bound not depending on the size of
G (see Proposition 11, below). Obtaining this delicate balance is what led to the
definition above.

However, the results in Section 12 are only a first albeit important step in
proving the collapse of N (π, di , +) to N (π, di). Indeed, the conditionals represent
projection conditions, and the operands of these projections may in turn contain
projection conditions.

20 George H. L. Fletcher et al.

To accommodate this, we next define Gv
1, Gv

2, . . ., the n-canonical subgraphs
of G of order 1, 2, . . ., with the following inductive rule. For i > 0,

Gv
i = Gv

0 ∪

0@ [
w node of Gv

0

Gw
i−1

1A .

We note the following properties of n-canonical subgraphs.

Proposition 10 Let Γ = {c1, . . . , cp} be a set of conditionals, let n ≥ 0, and let G be

a directed graph. For every node v of G, and for i = 0, 1, 2, . . ., we have that (1) Gv
i is

a subgraph of G, and (2) Gv
i is a subgraph of Gv

i+1.

Proof By construction, Gv
0 is a subgraph of G for every node v of G. This is the

basis for a straightforward induction argument to show that, for i = 1, 2, . . ., Gv
i is

also a subgraph of G. Gx
i . This settles the first statement.

The second statement can also be shown by induction. The base case, that Gv
0

is a subgraph of Gv
1, follows immediately from the definition of Gv

1. As induction
hypothesis, assume that, for some i > 0, we have already established, for all nodes
v of G, that Gv

i−1 is a subgraph of Gv
i . As induction step, we now show that Gv

i is
a subgraph of Gv

i+1. We have that

Gv
i = Gv

0 ∪

0@ [
w node of Gv

0

Gw
i−1

1A .

By the induction hypothesis, we know that, for each node w of Gv
0, Gw

i−1 is a
subgraph of Gw

i . Hence, Gv
i is a subgraph of

Gv
0 ∪

0@ [
w node of Gv

0

Gw
i

1A ,

which by definition is Gv
i+1.

The n-canonical subgraphs of G of higher order are put to use in Section 13,
more in particular in Proposition 14.

For the remainder of the exposition, it is important that we can also provide
bounds on the sizes of the n-canonical subgraphs of G.

Proposition 11 Let Γ = {c1, . . . , cp} be a set of conditionals, let n ≥ 0, and let G be

a directed graph. For every node v of G, and for i = 0, 1, 2, . . ., the number of nodes in

Gv
i can be bounded by a number depending only on p, n, and i.

Proof Let us first focus on Gv
0. From Proposition 9, it can easily be inferred that

both the number of graph patterns involved in the construction of Gv
0 as the

number of nodes they contain are bounded by numbers depending only on p and
n. Let us call these numbers P and N , respectively. Given a graph pattern P, the
number of homomorphisms from P to G in Hv(P) is bounded by 2N . To see this,
select a set of homomorphisms from P to G, as follows. Consider an arbitrary node
v of P.

Boolean expressiveness of transitive closure on unlabeled graphs 21

1. If all homomorphisms from P to G map v to the same node of G, then select
one such homomorphism arbitrarily. Regardless of whether or not v may be the
unique source or target node of P, we see that conditions 2–4 of the definition
of Hv(P) are satisfied for that particular node.

2. Otherwise, not all homomorphisms from P to G map v to the same node of G.
If, in addition, no homomorphism from P to G maps v to v, then select two
such homomorphisms arbitrarily provided they map v to different nodes of G.
Regardless of whether or not v may be the unique source or target node of
P, we see that conditions 2–4 of the definition of Hv(P) are satisfied for that
particular node.

3. Otherwise, there is a homomorphism from P to G mapping v to v and there
is a homomorphism from P to G not mapping v to v. Then select arbitrarily
one homomorphism from the first category and one homomorphism from the
second category. Regardless of whether or not v may be the unique source or
target node of P, we see that conditions 2–4 of the definition of Hx(P) are
satisfied for that particular node.

By construction, the set of homomorphisms from P to G selected above contains
at most 2N members. It clearly satisfied condition 1 as well as conditions 2–4 for
all nodes of P. Since Hx(P) is such as set of minimal size, we may finally conclude
that Hx(P) contains at most 2N homomorphisms.

Consequently, the number of nodes of Gv
0 is bounded by 2NNP , which again

depends only on p and n. Let us denote this last number as B. Then, a straight-
forward induction reveals that, for all i ≥ 0, the number of nodes of Gx

i is bounded
by B(Bi + Bi−1 + · · ·+ B + 1).

12 The key result

Let Γ = {c1, . . . , cp} be a set of conditionals. The key results on which the second
step in our proof strategy for the collapse of N (Γ, di , +) to N (Γ, di) at the boolean
level (cf. item 2 on p. 8 and the concluding paragraphs of Section ??) rely, are the
following.

Proposition 12 Let m be a nonzero natural number, and let e be an expression in

N (Γ, di , +). Then, there exists a nonzero natural number n depending only on m and

e such that, for every EDAG G of depth at most m, and for every node v of G, if

there exists a node w in G such that (v, w) ∈ e(G), then there exists an n-normal trace

expression f in T norm
n (e) and a homomorphism h from L(f) to G such that h(s) = v

and h(L(f)) is contained in Gv
0, with s the source node of the line pattern L(f) and

Gv
0 the basic n-canonical subgraph of G.

Proposition 13 Let m be a nonzero natural number, and let e be an expression in

N (Γ, di , +). Then, there exists a nonzero natural number n depending only on m and

e such that, for every EDAG G of depth at most m, and for every node w of G, if

there exists a node v in G such that (v, w) ∈ e(G), then there exists an n-normal trace

expression f in T norm
n (e) and a homomorphism h from L(f) to G such that h(t) = w

and h(L(f)) is contained in Gw
0 , with t the target node of the line pattern L(f) and

Gw
0 the basic n-canonical subgraph of G.

22 George H. L. Fletcher et al.

It is important to notice here that the homomorphism h in Propositions 12
and 13 need not be a homomorphism from L(f) to Gv

0, respectively Gw
0 . If this were

the case, then, by Proposition 7, (v, w) ∈ e(Gv
0), respectively (v, w) ∈ e(Gw

0), and we
would have found the subgraphs Gv of G we set out to find at the end of Section ??

to achieve the second step of our proof strategy. However, this is in general not the
case, the reason being that conditionals are in general not preserved under taking
subgraphs. Indeed, if z is a node of G such that (z, z) ∈ ci(G), 1 ≤ i ≤ p, then it
does not follow that, necessarily, (z, z) ∈ ci(G

v
0). As mentioned, the case that we

are interested in is the case where the conditionals are in fact projection conditions.
These have the property of being monotone. To guarantee the above implication,
we will therefore have to extend the subgraph Gv

0, and that is where the normal
subgraphs of higher order come in play, at a later stage of our development, in
Section 13.

Because of the strong analogy between both Propositions, we shall focus here
on the proof of Proposition 12. It can be easily seen that Proposition 12 follows
from Propositions ?? and 7, provided we can prove the following lemma.

Lemma 7 Let G be a directed graph, let n be a nonzero natural number, and let f

be an n-normal expression in Nnorm
n (Γ, di). Let v be a node of G. If there exists a

homomorphism h from L(f) to G such that h(s) = v, with s the source node of L(f),
then there exists a homomorphism h′ from L(f) to G such that h′(s) = v and h′(L(f))
is contained in Gv

0, with Gv
0 the basic n-canonical subgraph of G.

If we write f = g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gn−1 ◦ di ◦ gn, with g1, . . . , gn ∈ Nnorm
m (Γ),

a sensible way to prove Lemma 7 is to consider the expressions fi = g1 ◦ di ◦ g2 ◦
di ◦ · · · ◦ gi−1 ◦ di ◦ gi, for i = 1, . . . , n, and to prove the Lemma by induction on i.
The basis of the induction, i = 1, is straightforward from the construction of the
subgraph Gv

0. Thus suppose that, for 1 < i ≤ n, we have established the existence of
a homomorphism h′i−1 from L(fi−1) to G such that h′i−1(s) = v (s being the source
node of L(fi−1)) and h′i−1(L(fi−1)) is contained in Gv

0. We would like to extend
h′i−1 to a homomorphism h′i from L(fi) to G such that h′i(L(fi)) is contained in
Gv

0. Thus, consider L(gi), which is a subpattern of L(fi). The restriction of h to the
nodes of L(gi) is a homomorphism from L(gi) to G. Hence, Hv(L(gi)) contains a
homomorphism hL(gi) from L(gi) to G, and, by construction of Gv

0, hL(gi)(L(gi)) is
contained in Gv

0. Now, let ti−1 be the target node of L(fi−1) and si the source node
of L(gi). If h′i−1(ti−1) 6= hL(gi)(si), the extension is straightforward. However, we
cannot exclude that h′i−1(ti−1) = hL(gi)(si). If this is the case, it may even be so
that hL(gi) is the only homomorphism mapping L(gi) to G. Then, we cannot even
consider an alternative homomorphism from L(gi) to G to make our extension
strategy work.

However, we can avoid this pitfall by proving a slightly stronger statement.

Lemma 8 Let G be a directed graph, let n be a nonzero natural number, and let f be

an n-normal expression in Nnorm
n (Γ, di). Let v be a node of G, and let Gv

0 be the basic

n-canonical subgraph of G. Then,

1. if there exist homomorphisms h1 and h2 from L(f) to G such that h1(s) = h2(s) =
v and h1(t) 6= h2(t), with s and t the source and target nodes of L(f), then there

exist homomorphisms h′1 and h′2 from L(f) to G such that h′1(s) = h′2(s) = v,

h′1(t) 6= h′2(t), and h′1(L(f)) and h′2(L(f)) are both contained in Gv
0;

Boolean expressiveness of transitive closure on unlabeled graphs 23

2. otherwise, if there exists a homomorphism h from L(f) to G such that h(s) = v,

with s the source node of L(f), then there exists a homomorphism h′ from L(f) to

G such that h′(s) = v and h(L(f)) is contained in Gv
0.

The proof goes along the lines of the sketch we gave of the (failed) proof for
Lemma 7. In the induction step, we may be in Case 1 or Case 2 of Lemma 7,
and to carry out the inductive argument, we may be in Case 1 or Case 2 as far
as the induction hypothesis is concerned, giving rise to four possible combinations
we need to consider. However, when we are in Case 2 as far as the induction
hypothesis is concerned, then, compared to our naive attempt to prove Lemma 7
directly, we can make use of the additional information that all homomorphisms
from the line pattern under consideration map the target node to the same node of
G, for, otherwise, we would be in Case 1. This additional information will prevent
us from getting stuck in this case.

Each time we get a conflict of the sort described in the failed direct proof
for Lemma 7, we will create a graph pattern by combining the given information
on the existence of homomorphisms from the line segment under consideration to
G with the (not directly usable) homomorphisms from this line segment to G of
which the image is fully contained in Gv

0. We will reflect our knowledge on the
equality or distinctness of nodes in the images of the various homomorphism by
merging the corresponding nodes in the graph pattern (in the case of equality)
or connecting these nodes by “di” edges (in the case of distinctness). This will
result in a graph pattern such as the one shown in Figure 2. As, by construction,
this graph pattern can be mapped homomorphically to G, it can also be mapped
homomorphically to G in such a way that the image is contained in Gv

0, provided
the graph pattern does not contain more than four pairwise disjoint copies of the
line segment under consideration. It turns out that, in each of the cases we must
consider, this is indeed so. The richer information we obtain from the existence of a
homomorphism mapping the graph pattern within Gv

0 as opposed to the existence
of a homomorphism just mapping the line pattern within Gv

0 turns out to be
sufficient to carry out the inductive step successfully.

13 The collapse

We are now ready to deal with expressions in N (π, di , +) and bootstrap Proposi-
tions 12 and 13 by considering that conditionals stand for projection subexpres-
sions. We recall that the homomorphism h in the statements of these propositions
is a homomorphism from L(f) to G such that h(s) = v and h(L(f)) is contained in
Gv

0, but not necessarily a homomorphism from L(f) to Gv
0, the reason being that

a node of Gv
0 satisfying a particular conditional within G does not have to satisfy

the same conditional within Gv
0. Using that the conditionals stand for projection

subexpressions, and using the monotonicity of the projection operator, we are able
to establish that Gv

0 can be extended to a higher-order canonical subgraph of G,
say Gv

i , such that h is also a homomorphism from L(f) to Gv
i . Only then will we

be able to conclude that (v, h(t)) ∈ e(Gv
i), with t the target node of L(f) and can

we complete our argument.
For this purpose, we first define the π-nesting depth depthπ(e) of an expression

e in N (π, di , +) as follows, inductively:

24 George H. L. Fletcher et al.

– if e is in N (di , +), then depthπ(e) = 0;
– depthπ(π1(e)) = depthπ(π2(e)) = depthπ(e) + 1;
– depthπ(e1 ∪ e2) = max(depthπ(e1),depthπ(e2));
– depthπ(e1 ◦ e2) = max(depthπ(e1),depthπ(e2)); and
– depthπ(e+) = depthπ(e).

With every subexpression πi(f), i = 1, 2, of e, we can associate a conditional the
semantics of which is precisely described by this subexpression πi(f). We denote
the set of all these conditionals by Π(e).

We can now show the following.

Proposition 14 Let m be a nonzero natural number, and let e be an expression in

N (π, di , +). Let ` := depthπ(e). Then, there exists a nonzero natural number n de-

pending only on m and e such that, for every EDAG G of depth at most m, and, for

every node v of G, if there exists a node w in G such that (v, w) ∈ e(G), then there

exists a node w′ in Gv
` such that (v, w′) ∈ e(Gv

`), with Gv
` the n-canonical subgraph of

G of order ` for the set of conditionals Γ := Π(e).

Proposition 14 is shown by proving that an extended version of it holds for
every subexpression of e, by induction on its π-nesting depth. Propositions 12
and 13 play a key role in this, where the former is needed to deal with the first
projection and the latter to deal with the second projection. Notice that, for the
expression e itself, Proposition 12 already yields that, for some n-normal trace
expression f in T norm

n (e), there exists a homomorphism h from the line pattern
L(f) to G such that h(s) = v and h(L(f)) is contained in Gv

0, with s the source
node of L(f) and Gv

0 the basic n-canonical subgraph of G. It now turns out that the
Gv

` , the n-canonical subgraph of G of order `, is an extension of Gv
0 for which each

node of Gv
0 satisfying some conditional of Π(e) in G also satisfies this conditional

in Gv
` , but not necessarily in Gv

0! Hence, h, while in general not a homomorphism
from L(f) to Gv

0, is a homomorphism from L(f) to Gv
` , and we can then invoke

Propositions ?? and 7 to obtain the conclusion of Proposition 14.
Now, from Proposition 11, it immediately follows that we can bound the num-

ber of nodes in Gv
` by a number s depending only on m and e. Hence, we have

all the ingredients needed to complete the second step of our proof strategy as
explained at the end of Section ??, and we may thus conclude the following.

Theorem 2 Let m be a nonzero natural number, and let e be an expression in N (π, di , +).
Then, there exists a nonzero number s depending only on m and e such that, for every

EDAG G with depth at most m, e(G) 6= ∅ if and only if e′(G) 6= ∅, where e′ is the

expression in N (π, di) obtained from e by exhaustively replacing each subexpression of

the form f+ by
Ss

i=1 f i.

Since the parameter s, the bound on the size of the graphs Gv
` in Proposition 14,

is of very high complexity in m, it may require very large graphs G before the
difference between G and its subgraphs Gv

` becomes significant.6

Combining Theorems 1 and 2, we see that N (π, di , +) collapses to N (π, di) at
the level of boolean queries. Furthermore, if F is a subset of {π, di} and e is more
specifically an expression of N (F, +), then it follows that the expression e′ defined

6 For the same reason, it was not possible to “discover” Proposition 14 and the ensuing
Theorem 2 by looking at simple examples.

Boolean expressiveness of transitive closure on unlabeled graphs 25

in Theorem 2 is more specifically in N (F). From our proof, we may therefore also
conclude the following.

Corollary 1 Let F ⊆ {π, di}. Then N (F, +) collapses to N (F) at the level of boolean

queries.

14 Conclusions and future work

We now have a complete understanding of the impact of adding transitive closure
to the relation algebra fragments considered. While it is well-known that transitive
closure adds expressive power to all fragments at the level of path queries [3],
and the same was established in previous work of the present authors [10] at the
level of boolean queries on labeled graphs (multiple input relations), we have now
established, in contrast, that, while adding transitive closure adds expressive power
to most relation algebra fragments at the level of boolean queries on unlabeled
graphs (a single input relation), it does not add expressive power to N (F), with
F a set of nonbasic features, if and only if F ⊆ {π, di}.

Towards future work, one may investigate similar problems for other logics.
An operation we did not consider, for instance, is residuation. Residuation [21] is
similar to the standard relational division operation in databases, and corresponds
to the set containment join [17].

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann (1999)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Reading,
MA (1995)

3. Aho, A.V., Ullman, J.D.: The universality of data retrieval languages. In: Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming Languages,
San Antonio, Texas, January 1979., pp. 110–120 (1979)

4. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1),
1–39 (2008)

5. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press (2003)

6. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of XPath fragments. In: ICDT,
pp. 79–95 (2003)

7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web
Inf. Syst. 5(3), 1–22 (2009)

8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
9. Fletcher, G.H.L., Gyssens, M., Leinders, D., den Bussche, J.V., Gucht, D.V., Vansum-

meren, S., Wu, Y.: The impact of transitive closure on the boolean expressiveness of
navigational query languages on graphs. In: T. Lukasiewicz, A. Sali (eds.) FoIKS, Lecture
Notes in Computer Science, vol. 7153, pp. 124–143. Springer (2012)

10. Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Van-
summeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs. In:
T. Milo (ed.) ICDT, pp. 197–207. ACM (2011)

11. Florescu, D., Levy, A., Mendelzon, A.: Database techniques for the World-Wide Web: A
survey. SIGMOD Record 27(3), 59–74 (1998)

12. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new abstraction
for information management. SIGMOD Record 34(4), 27–33 (2005)

13. Gyssens, M., Paredaens, J., Van Gucht, D., Fletcher, G.H.L.: Structural characterizations
of the semantics of XPath as navigation tool on a document. In: S. Vansummeren (ed.)
PODS, pp. 318–327. ACM (2006)

26 George H. L. Fletcher et al.

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
15. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, Synthesis

Lectures on the Semantic Web: Theory and Technology, vol. 1, 1st edn. Morgan & Claypool
Publishers (2011)

16. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)
17. Mamoulis, N.: Efficient processing of joins on set-valued attributes. In: Proceedings ACM

SIGMOD International Conference on Management of Data, pp. 157–168 (2003)
18. Marx, M.: Conditional XPath. ACM Trans. Database Syst. 30(4), 929–959 (2005)
19. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIGMOD

Record 34(2), 41–46 (2005)
20. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. Springer (1997)
21. Pratt, V.R.: Origins of the calculus of binary relations. In: Proceedings 7th Annual IEEE

Symposium on Logic in Computer Science, pp. 248–254 (1992)
22. RDF primer (2004). http://www.w3.org/TR/rdf-primer/
23. Tarski, A.: On the calculus of relations. J. of Symbolic Logic 6(3), 73–89 (1941)
24. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. American Math-

ematical Society (1987)
25. Wu, Y., Van Gucht, D., Gyssens, M., Paredaens, J.: A study of a positive fragment of

Path queries: Expressiveness, normal form and minimization. Comput. J. 54(7), 1091–
1118 (2011)

