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Abstract

Introduction: Positive results have a greater chance of being published and outcomes that are statistically significant
have a greater chance of being fully reported. One consequence of research underreporting is that it may influence
the sample of studies that is available for a meta-analysis. Smaller studies are often characterized by larger effects in
published meta-analyses, which can be possibly explained by publication bias. We investigated the association
between the statistical significance of the results and the probability of being included in recent meta-analyses.
Methods: For meta-analyses of clinical trials, we defined the relative risk as the ratio of the probability of including
statistically significant results favoring the treatment to the probability of including other results. For meta-analyses of
other studies, we defined the relative risk as the ratio of the probability of including biologically plausible statistically
significant results to the probability of including other results. We applied a Bayesian selection model for meta-
analyses that included at least 30 studies and were published in four major general medical journals (BMJ, JAMA,
Lancet, and PLOS Medicine) between 2008 and 2012.
Results: We identified 49 meta-analyses. The estimate of the relative risk was greater than one in 42 meta-analyses,
greater than two in 16 meta-analyses, greater than three in eight meta-analyses, and greater than five in four meta-
analyses. In 10 out of 28 meta-analyses of clinical trials, there was strong evidence that statistically significant results
favoring the treatment were more likely to be included. In 4 out of 19 meta-analyses of observational studies, there
was strong evidence that plausible statistically significant outcomes had a higher probability of being included.
Conclusions: Publication bias was present in a substantial proportion of large meta-analyses that were recently
published in four major medical journals.
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Introduction

When some study outcomes are more likely to be published
than other, the literature that is available to doctors, scientists,
and policy makers provides misleading information. The
tendency to decide to publish a study based on its results has
been long acknowledged as a major threat to the validity of
conclusions from medical research[1,2]. During the past 25
years, the phenomenon of research underreporting has been
extensively investigated. It is clear that statistically significant
results supporting the hypothesis of the researcher often have
a greater chance of being published and fully reported[3–7].

Meta-analysis, a statistical approach to estimate a parameter
of interest based on multiple studies, plays an essential role in
medical research. One consequence of research
underreporting is that it influences the sample of studies that is
available for a meta-analysis[8,9]. This causes a bias, unless
the process of study selection is modeled correctly[10]. Such
modeling requires strong assumptions about the nature of the

publication bias, especially when the size of a meta-analysis is
not very large and when robust techniques cannot be
used[11–13]. As a result, when publication bias occurs, the
validity of the meta-analysis is uncertain.

It is well-known that smaller studies are often characterized
by larger effects in published meta-analyses[14–16].
Publication bias is one of the possible explanations of this
phenomenon[17]. Although a meta-analysis is typically
preceded by an investigation of the presence of publication
bias, the standard detection methods are characterized by a
low power[11,18–22]. Therefore, the sample of included
studies may be unrepresentative of the population of all
conducted studies even when publication bias has not been
detected. In this study, we investigated whether statistically
significant outcomes that showed a positive effect of the
treatment (in the case of clinical trials) and plausible statistically
significant outcomes (in the case of observational studies and
interventional studies) had a greater probability of being
included in recent meta-analyses than other outcomes. We
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considered all meta-analyses of aggregate data that included
at least 30 effect sizes from individual studies and were
published between 2008 and 2012 in four major general
medical journals: BMJ, JAMA, Lancet, and PLOS Medicine. We
applied a Bayesian approach, which allows estimation of a
parametric function that describes the selection process[23].

Methods

For meta-analyses of clinical trials, we a priori decided to
estimate the ratio of the probability of including statistically
significant results favoring the treatment to the probability of
including other results. For other meta-analyses, we a priori
decided to estimate the ratio of the probability of including
plausible statistically significant results to the probability of
including other results. The definition of plausibility was
straightforward and a priori chosen. For meta-analyses of an
association between a risk factor and an undesired outcome
(disease, mortality, etc.), results showing a positive association
were regarded as plausible. For meta-analyses of an
association between the absence of a risk factor and an
undesired outcome, results showing a negative association
were regarded as plausible. In meta-analyses of associations
between alcohol consumption and cardiovascular parameters,
we estimated the ratio of the probability of including statistically
significant results to the probability of including not statistically
significant results because both a positive and negative
association is biologically plausible[24,25]. A two-sided
significance level of 0.05 was assumed. Further in the article,
we refer to the ratio of probabilities as the relative risk (RR).

Identification of meta-analyses
We used PubMed to identify meta-analyses published

between 2008 and 2012 in four general medical journals (BMJ,
JAMA, Lancet, and PLOS Medicine). The term ‘meta-analysis’
was required to appear in the title or the abstract. Meta-
analyses that combined at least 30 estimates from individual
studies were considered. Only large meta-analyses were
included because a substantial sample size is required to
distinguish between the effects of heterogeneity and
publication bias[11,26]. We considered only meta-analyses of
aggregate data because a selection model based on p-values
seemed to be inappropriate to study the complicated process
of study selection in individual participant data meta-analyses.

Statistical model
For each identified meta-analysis, we applied a hierarchical

selection model[23,27]. In this approach, a weight function is
incorporated in a meta-analysis to model the probability that an
individual study is included. Similarly as in the case of a
standard random effects meta-analysis, the conditional
distribution of the observed study effects Yi (i=1, …, N), given
the true study effect αi and the within-study variance σi

2, is
assumed to be normal: f(yi|αi,σi

2)~N(αi,σi
2). The true study effect

comes from a normal distribution: N(µ,τ2), were µ is the mean
effect size and τ2 is the between-study variance. When a
selection process is present some studies may fail to enter the
meta-analysis sample. To model the process of study

selection, the probability that any specific study enters the
sample is assumed to be multiplied by a nonnegative weight
function. In this case, the observed study effects Xj that enter
the meta-analysis sample (j=1, …, n, n≤N) have a weighted
density: fw(xj|αj,σj

2)=w(xj)f(xj|αj,σj
2)/∫w(x)f(x|αj,σj

2)dx, where w(x)
is a weight function. We applied a step weight function that
took two values: ϒ1 for statistically significant results favoring
the treatment (in the case of clinical trials) or plausible
statistically significant results (in the case of other studies) and
ϒ2 for other results, so that the RR equaled ϒ1/ϒ2

Maximum likelihood estimation is one possible approach to
fit the model described above[27,28]. We used Bayesian
inference because it produces valid results when the sample
size is small[29], allows a straightforward interval estimation,
and examination of the sensitivity of the findings to the
distribution of the random effects. Similarly to Silliman[23], we
used diffuse uniform priors U(0,1) for the parameters of the
weight function. We declared a diffuse prior N(0,1000) for the
mean effect size and, following a recommendation of
Gelman[30], a uniform prior for the between-study standard
deviation. We used Gibbs sampling [31] to obtain samples from
the posterior distribution of ϒ1/ϒ2. We applied the algorithm
described by Silliman, who considered a general class of
hierarchical selection models[23]. In our specific case, the full
conditional distributions needed by the Gibbs sampler were:

α j x,σ,αk≠ j,μ,τ2,ϒ∝ cω,α j,σ j,ϒ−1N x j
τ2

τ2+σ j
2 +μ

σ j
2

τ2+σ j
2 , 

τ2σ j
2

τ2+σ j
2 ,  j=1,...,n

μ x,σ,α,τ2,ϒ∝N ∑ j
nα j

1000
τ2+1000n

,  1000τ2

τ2+1000n

τ2 x,σ,α,μ,ϒ∝ IG 1
2 n−1 ,  1

2∑ j=1
n α j−μ 2

ϒ1 x,σ,α,μ,τ2,ϒ2∝
ϒ1s

∏ j=1
n cω,α j,σ j,ϒ

, and

ϒ2 x,σ,α,μ,τ2,ϒ1∝
ϒ2n−s

∏ j=1
n cω,α j,σ j,ϒ

wherecω,α j,σ j,ϒ= ∫w x f x α j,σ j2 dx, x= (x1, ..., xn), σ= (σ1, ...,
σn), α= (α1, ..., αn), ϒ=(ϒ1,ϒ2), and s is the number of
statistically significant results favoring the treatment (in the
case of meta-analyses of clinical trials) or plausible statistically
significant results (in the case of meta-analysis of other
studies). A burn-in of 10000 iterations was sufficient to achieve
convergence for all meta-analyses. The estimates were based
on the subsequent 50000 iterations.

For point estimation, we used the median of the posterior
distribution of RR. For interval estimation, we used the 95%
equal-tail credible interval (CI). When the posterior probability
that the RR exceeded 1 was greater than 0.95, we concluded
that there was strong evidence that the RR was greater than 1.
An R program that was used to fit the models can be found in
Appendix S1.
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Quality of the statistical model
In order to evaluate whether the statistical model was

suitable for the objectives of the study, we performed
simulations. The settings were based on the characteristics of
the meta-analyses of clinical trials included in the study (see
Appendix S2). The posterior distribution provided reliable
information about the size of the RR (Table 1). Although the
estimate of the RR based on the median of the posterior
distribution was characterized by a substantial variability and
was biased in some scenarios, it gave a correct idea about the
existence of a publication bias. The model tended to
underestimate the RR when the mean effect size was small
and overestimate the RR when the mean effect size was large.
However, it was able to distinguish the RR from the mean
effect size well for all simulation settings, as indicated by the
quality of the interval estimates of the RR. For almost all
scenarios, the lower bound of the 95% equal-tail credible
interval was smaller than the assumed true value of the RR in
at least 95% of the simulations. Although the upper bound was
sometimes too small when the mean effect size was small, it
was greater than the true RR in more than 95% of the
simulations for most of the scenarios (Table 1). The
performance of the model did not depend on the size of the
between-study heterogeneity. The model was robust to the
presence of small study effects (i.e., larger true effects in
smaller studies, Table 1).

Additionally, we compared the ability of our model to detect a
selection process based on the statistical significance with
publication bias methods widely used in medical research: the
Egger’s test[32], correlation test of Begg and Mazumdar[33],
and the trim and fill method[34]. When statistically significant
outcomes had a higher probability of being included, the
Bayesian selection model showed much higher detection rates
compared to the standard methods (Table 2). This difference
was especially apparent when small study effects were absent.
Furthermore, in contrast to the standard methods, the Bayesian
selection model was characterized by low false positive rates,
even in the presence of small-study effects (Table 2).

Sensitivity analysis
In order to investigate the robustness of the findings, two

alternative models were considered. Because the conclusions
drawn from a hierarchical model may be sensitive to the choice
of the prior for the variance of the random effects[35], in the
first model, we replaced the uniform prior for τ with a 1/τ2 prior
for τ2 (for an R program: see Appendix S1). In the second
model, the assumption of a normal distribution of αi was
relaxed by allowing it to follow a t-distribution. A prior U(2,100)
was declared for the number of degrees of freedom. A
Winbugs program that was used to fit this model can be found
in Appendix S3.

Results

Identification of meta-analyses
Out of 406 articles that were identified in the initial search, 88

articles did not report meta-analyses of an association. We
excluded 280 articles because they did not describe a meta-

analysis including at least 30 effect sizes. Further, 14 articles
did not report any results from a meta-analysis of aggregate
data. Finally, four articles were excluded because they did not
report the effect sizes from the individual studies and the
corresponding author did not respond to a request to provide

Table 1. Model performance: quality of estimation.

RR SSE I2 µ Bias ME MSE LB UB Total
1 No 0.36 0.0 -0.07 0.36 0.24 0.999 1.000 0.999
1 No 0.36 0.2 -0.03 0.33 0.21 0.995 0.995 0.990
1 No 0.36 0.8 0.09 0.32 0.22 0.981 0.989 0.970
1 No 0.36 1.4 0.21 0.38 0.38 0.965 0.994 0.959
1 No 0.67 0.0 -0.02 0.35 0.27 0.996 0.996 0.992
1 No 0.67 0.2 0.01 0.33 0.22 0.994 0.994 0.988
1 No 0.67 0.8 0.10 0.32 0.24 0.984 0.993 0.977
1 No 0.67 1.4 0.25 0.42 0.45 0.966 0.994 0.960
4 No 0.36 0.0 -1.45 1.98 5.21 0.997 0.853 0.850
4 No 0.36 0.2 -1.07 1.71 3.96 0.993 0.855 0.848
4 No 0.36 0.8 0.26 1.86 8.32 0.982 0.952 0.934
4 No 0.36 1.4 0.93 2.74 28.9 0.978 0.967 0.945
4 No 0.67 0.0 -1.06 1.93 5.56 0.996 0.876 0.872
4 No 0.67 0.2 -0.89 1.71 4.13 0.997 0.903 0.900
4 No 0.67 0.8 0.65 2.15 13.4 0.971 0.968 0.939
4 No 0.67 1.4 1.41 2.97 37.9 0.978 0.977 0.955
10 No 0.36 0.0 -3.38 4.51 26.5 0.996 0.831 0.827
10 No 0.36 0.2 -2.52 4.14 24.5 0.995 0.871 0.866
10 No 0.36 0.8 2.63 6.99 209 0.979 0.954 0.933
10 No 0.36 1.4 0.52 6.33 75.0 1.000 0.962 0.962
10 No 0.67 0.0 -2.90 4.52 28.6 0.997 0.866 0.863
10 No 0.67 0.2 -1.79 4.42 30.5 0.994 0.902 0.896
10 No 0.67 0.8 4.52 8.35 269 0.973 0.970 0.943
10 No 0.67 1.4 2.72 7.64 153 0.995 0.968 0.963
1 Yes 0.36 0.0 -0.03 0.42 0.38 0.998 0.998 0.996
1 Yes 0.36 0.2 0.07 0.40 0.41 0.987 0.992 0.979
1 Yes 0.36 0.8 0.30 0.42 0.41 0.950 0.995 0.945
1 Yes 0.36 1.4 0.46 0.53 0.64 0.931 0.998 0.929
1 Yes 0.67 0.0 0.05 0.41 0.37 0.996 0.997 0.993
1 Yes 0.67 0.2 0.06 0.38 0.32 0.992 0.992 0.984
1 Yes 0.67 0.8 0.25 0.40 0.39 0.965 0.999 0.964
1 Yes 0.67 1.4 0.46 0.54 0.74 0.942 0.997 0.939
4 Yes 0.36 0.0 -1.17 2.10 6.15 0.997 0.878 0.875
4 Yes 0.36 0.2 -0.41 1.83 5.79 0.989 0.922 0.911
4 Yes 0.36 0.8 1.59 2.50 19.3 0.947 0.982 0.929
4 Yes 0.36 1.4 2.39 3.34 41.1 0.968 0.991 0.959
4 Yes 0.67 0.0 -0.79 2.00 6.28 0.995 0.909 0.904
4 Yes 0.67 0.2 -0.51 1.74 5.06 0.992 0.935 0.927
4 Yes 0.67 0.8 1.65 2.64 20.4 0.957 0.981 0.938
4 Yes 0.67 1.4 2.57 3.57 45.9 0.956 0.987 0.943
10 Yes 0.36 0.0 -2.00 4.72 37.3 0.992 0.888 0.880
10 Yes 0.36 0.2 -0.69 4.22 30.9 0.986 0.905 0.891
10 Yes 0.36 0.8 6.56 9.00 350 0.959 0.991 0.950
10 Yes 0.36 1.4 3.46 7.23 119 1.000 0.987 0.987
10 Yes 0.67 0.0 -1.17 4.35 30.0 0.996 0.918 0.914
10 Yes 0.67 0.2 -0.41 4.39 35.3 0.988 0.937 0.925
10 Yes 0.67 0.8 6.44 9.35 379 0.956 0.983 0.939
10 Yes 0.67 1.4 5.66 9.38 214 0.995 0.989 0.984
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them. Twenty reports including 49 meta-analyses were used in
this study (Figure 1 and Figure 2, references: Appendix S4, raw
data available at www.plosone.org).

RR in meta-analyses of clinical trials
We estimated the ratio of the probability of including

statistically significant results favoring the treatment to the
probability of including other results in 28 large meta-analyses
of clinical trials that were described in nine articles published in
BMJ, JAMA, Lancet, or PLOS Medicine from 2008 to 2012
(Figure 1). In 25 out of the 28 meta-analyses, the estimate of
the RR was greater than 1. In 10 meta-analyses, there was
strong evidence that statistically significant results favoring the
treatment had a higher probability of being included than other
outcomes (Figure 1). Trials that demonstrated the efficacy of
adding lidocaine on prevention of pain on injection of propofol
were estimated to be between 2.45 and 141 times more likely
to be included in the meta-analysis than other trials (Figure
3A). Studies favoring pretreatment with lidocaine were
estimated to have a between 2.21 and 61.5-fold higher
probability of being included in the meta-analysis than other
studies (Figure 3B). Changing the prior distribution for the
between-study variance and the distribution of the true study
effects had little effect on the estimates (Appendix S5).

RR in other meta-analyses
We identified 10 articles describing 19 meta-analyses of

observational studies and one article describing two meta-
analyses of interventional studies that were published in BMJ,
JAMA, Lancet, or PLOS Medicine between 2008 and 2012. In
four meta-analyses, there was strong evidence that plausible
statistically significant results had a higher probability of being
included than other outcomes (Figure 2). Studies that showed
a statistically significant positive association between the C
−reactive protein level and cardiovascular events were
estimated to have a between 6.97 and 30.7-fold higher
probability of being included in the meta-analysis than studies
showing other outcomes (Figure 4A). Statistically significant
results showing a positive association were estimated to be
between 1.92 and 18.1 times more likely to be included in the
meta-analysis on the association between child physical abuse
and depressive disorders (Figure 4B). The results were robust

Table 1 (continued).

RR: relative risk, the ratio of the probability of including statistically significant
outcomes favoring the treatment to the probability of including other outcomes (for
RR=1, all results had the same probability of being included), SSE: small study
effect, I2: proportion of the total variability due to heterogeneity, µ: mean effect
size, Bias: average difference between the median of the posterior distribution of
the RR and the true RR, ME: mean error, MSE: mean squared error, LB:
proportion of the lower bounds of the 95% equal-tail credible intervals lower than
the true RR, UB: proportion of the upper bounds of the 95% equal-tail credible
intervals greater than the true RR, Total: proportion of the 95% equal-tail credible
intervals including the true RR.
doi: 10.1371/journal.pone.0081823.t001

to the choice of the prior distribution for the between-study
variance and the assumption about the distribution of the true
study effects (Appendix S6).

Table 2. Model performance: type 1 error and power.

RR SSE I2 µ Current model Egger Rank correlation Trim and Fill
1 No 0.36 0.0 0.008 0.048 0.019 0.027
1 No 0.36 0.2 0.012 0.059 0.027 0.032
1 No 0.36 0.8 0.039 0.078 0.032 0.066
1 No 0.36 1.4 0.058 0.084 0.044 0.041
1 No 0.67 0.0 0.009 0.047 0.019 0.012
1 No 0.67 0.2 0.009 0.054 0.023 0.031
1 No 0.67 0.8 0.030 0.085 0.026 0.045
1 No 0.67 1.4 0.056 0.093 0.038 0.046
4 No 0.36 0.0 0.308 0.049 0.017 0.043
4 No 0.36 0.2 0.560 0.068 0.024 0.055
4 No 0.36 0.8 0.829 0.573 0.446 0.231
4 No 0.36 1.4 0.711 0.396 0.423 0.277
4 No 0.67 0.0 0.415 0.030 0.004 0.016
4 No 0.67 0.2 0.567 0.051 0.006 0.028
4 No 0.67 0.8 0.794 0.471 0.273 0.170
4 No 0.67 1.4 0.730 0.370 0.288 0.225
10 No 0.36 0.0 0.922 0.084 0.029 0.073
10 No 0.36 0.2 0.979 0.391 0.274 0.111
10 No 0.36 0.8 0.989 0.816 0.783 0.470
10 No 0.36 1.4 0.953 0.588 0.608 0.527
10 No 0.67 0.0 0.939 0.061 0.020 0.029
10 No 0.67 0.2 0.971 0.309 0.177 0.061
10 No 0.67 0.8 0.986 0.733 0.637 0.354
10 No 0.67 1.4 0.958 0.492 0.512 0.401
1 Yes 0.36 0.0 0.007 0.190 0.089 0.094
1 Yes 0.36 0.2 0.020 0.233 0.093 0.098
1 Yes 0.36 0.8 0.098 0.241 0.131 0.154
1 Yes 0.36 1.4 0.131 0.240 0.126 0.140
1 Yes 0.67 0.0 0.009 0.142 0.045 0.070
1 Yes 0.67 0.2 0.020 0.170 0.053 0.069
1 Yes 0.67 0.8 0.060 0.193 0.067 0.112
1 Yes 0.67 1.4 0.105 0.216 0.078 0.108
4 Yes 0.36 0.0 0.304 0.241 0.115 0.165
4 Yes 0.36 0.2 0.592 0.271 0.085 0.152
4 Yes 0.36 0.8 0.926 0.840 0.636 0.432
4 Yes 0.36 1.4 0.894 0.680 0.615 0.467
4 Yes 0.67 0.0 0.424 0.092 0.028 0.071
4 Yes 0.67 0.2 0.603 0.141 0.018 0.087
4 Yes 0.67 0.8 0.890 0.680 0.439 0.261
4 Yes 0.67 1.4 0.846 0.550 0.424 0.345
10 Yes 0.36 0.0 0.885 0.382 0.163 0.252
10 Yes 0.36 0.2 0.986 0.580 0.321 0.247
10 Yes 0.36 0.8 0.999 0.950 0.923 0.641
10 Yes 0.36 1.4 0.988 0.807 0.784 0.689
10 Yes 0.67 0.0 0.956 0.159 0.045 0.088
10 Yes 0.67 0.2 0.988 0.400 0.227 0.134
10 Yes 0.67 0.8 0.994 0.868 0.791 0.492
10 Yes 0.67 1.4 0.983 0.715 0.636 0.538
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Discussion

Clinical trials showing statistically significant results favoring
the treatment and observational studies showing plausible
statistically significant outcomes often had a higher probability
of being included in the recent meta-analyses than studies
showing other results. The magnitude of the publication bias
differed greatly between the meta-analyses and was very large
in some cases. For example, for a meta-analysis of the
association between the C−reactive protein level and
cardiovascular events, statistically significant outcomes
showing a positive association were estimated to be between
6.97 and 30.7 times more likely to be included in the analyzed
sample than other results.

The effect of the higher probability of including for statistically
significant outcomes on the combined estimates is unknown
due to a lack of information about the exact nature of the bias.
However, it is clear that the fundamental assumption of a lack
of systematic bias in the process of study selection was
strongly violated. Consequently, the validity of a substantial
proportion of the recent meta-analyses published in major
general medical journals is uncertain due to the presence of a
publication bias. Only in 3 [36–38] out of the 14 meta-analyses,
in which we found evidence that statistically significant
outcomes had a higher probability to be included, the presence
of a publication bias was acknowledged in the article.

The study demonstrates an application of an attractive
alternative to the standard publication bias detection methods
for studying a selection process based on the statistical
significance in large meta-analyses. Widely used publication
bias methods such as the trim and fill method[34,39], Egger’s
test[32], rank correlation test[33], and their modifications
[18,19,40–42] are based on funnel plot asymmetry. These
approaches have two major disadvantages. First, funnel plot
asymmetry may be caused by processes other than publication
bias, such as between-study variability or small study effects
(i.e., larger true effects in smaller studies)[17,32]. As a result,
these methods may incorrectly suggest that a publication bias
is present[13,22,43,44]. Second, some selection processes
introduce little asymmetry to the funnel plot. As a result, widely
used publication bias tests often have a low power[18,20,22].
In contrast to these methods, selection models do not rely on

Table 2 (continued).

RR: relative risk, the ratio of the probability of including statistically significant
outcomes favoring the treatment to the probability of including other outcomes (for
RR=1, all results had the same probability of being included), SSE: small study
effect, I2: proportion of the total variability due to heterogeneity, µ: mean effect
size. Proportion of meta-analyses, in which publication bias was identified, is
presented. For the Bayesian selection model, publication bias was indicated when
the posterior probability that the RR was larger than 1 exceeded 95%. For the
Egger’s test and the rank correlation test, one-sided procedures were used with a
0.05 significance level. For the trim and fill method, publication bias was indicated
when the number of missing studies estimated by the R estimator in the first step
of the algorithm was greater than 3[34].
doi: 10.1371/journal.pone.0081823.t002

the funnel plot but incorporate a model for publication bias in
the random effects meta-analysis. While standard approaches
investigate the association between effect sizes and some
measure of precision to draw conclusions about publication
bias, selection models allow to directly estimate parameters
that describe the selection process.

Several alternatives to the methods based on the funnel plot
have been suggested. Iyengar and Greenhouse introduced
selection models in meta-analysis[45]. Hedges proposed a
class of selection models that incorporated between-study
variance[27]. The advantage of these two frequentist methods
compared to the class of Bayesian hierarchical selection
models described by Silliman [23] is their computational
simplicity. We chose the Bayesian approach because it
produces valid conclusions when the sample size is small[29],
allows a straightforward interval estimation and examination of
the sensitivity of the findings to the distribution of the random
effects. When a selection process based on the p-values is a
point of interest but the weight function is difficult to specify a
priori, non-parametric selection models can be used[46,47]. In
this study, a parametric model was applied because the aim
was to estimate a specific parametric function. Ioannidis and
Trikalinos introduced a method based on a comparison of the
number of expected and observed statistically significant
results in a meta-analysis[48]. A major advantage of this
approach is that it does not require a large sample size. An
advantage of selection models compared to the method of
Ioannidis and Trikalinos is that they allow to take between-
study variance into account.

Different selection mechanisms have been considered. Dear
and Begg developed a selection model based on the
assumption that the probability of publishing can be described
with a step function with discontinuities at alternate observed p-
values[46]. Rufibach described a method that imposed a
monotonicity constrained on this function[47]. The trim and fill
method handles publication bias defined as the absence of
studies with most extreme negative estimates[34,39]. The
model of Copas and Shi assumes that the selection probability,
given the size of the study, is an increasing function of the
observed study effect[49]. Ioannidis and Trikalinos developed a
test to investigate an excess of statistically significant
findings[48]. We investigated whether statistically significant
results favoring the treatment had a higher probability of being
included in the meta-analyses of clinical trials. We focused on
this selection process because its existence in the medical
literature is well-documented by empirical studies following
research from inception or submission to a regulatory
authority[4,6]. In the case of other meta-analyses, we
estimated the ratio of the probability of including biologically
plausible statistically significant results to the probability of
including other results. As demonstrated by the simulation
study, our model performed well in detecting a selection
process based on the statistical significance and direction of
the effect. However, the power of the model to detect
publication bias may be lower when a selection mechanism of
a different nature occurs.

The main limitation of the study is that we focused on the
largest meta-analyses. Possibly, the size of the association
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between the statistical significance of the results and the
probability of including is different for small and medium meta-
analyses than for the largest meta-analyses that we
considered.

When publication bias is detected, an analyst can attempt to
account for it[23,28,39,47,49–51]. Although the methods to
conduct meta-analysis in the presence of a publication bias
provide a powerful sensitivity analysis tool, their validity

Figure 1.  Publication bias in meta-analyses of clinical trials.  The RR is the ratio of the probability of including statistically
significant results favoring the treatment to the probability of including other results. The median of the posterior distribution was
used for point estimation. The interval estimate is the 95% equal-tail credible interval. P(RR>1) is the posterior probability that
statistically significant results favoring the treatment had a higher chance of being included in the meta-analysis than other results.
doi: 10.1371/journal.pone.0081823.g001
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depends on the correctness of strong and unverifiable
assumptions[12]. In light of the studies on publication bias in
medicine, including the one presented here, it is clear that the
quality of evidence from medical research greatly benefits from
policies that aim to reduce underreporting. Several measures
that regulate clinical trials have been recently taken. Since
2005, the International Committee of Medical Journal Editors
requires a prospective public registration of clinical trials as a
condition for publication. Since 2007, the U.S. Food and Drug

Administration has also required the registration of trial results.
Similar initiatives are needed for observational studies in order
to make a clear distinction between a predefined hypothesis
testing and exploratory analysis[52]. A prospective registration
of all study protocols including a detailed description of the data
analysis, a requirement of consistency between the protocol
and the study report, and an obligatory disclosure of the results
are recommended to further improve the quality of medical
literature.

Figure 2.  Publication bias in meta-analyses of studies other than clinical trials.  The RR is the ratio of the probability of
including plausible statistically significant results to the probability of including other results. The median of the posterior distribution
was used for point estimation. The interval estimate is the 95% equal-tail credible interval. P(RR>1) is the posterior probability that
plausible statistically significant results had a higher chance of being included in the meta-analysis than other results.
doi: 10.1371/journal.pone.0081823.g002
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Figure 3.  The posterior distribution of the RR in the meta-analyses of the associations between A) adding lidocaine and
the risk of pain on injection of propofol, and B) pretreatment with lidocaine and the risk of pain on injection of
propofol.  The posterior distributions describe the knowledge about the RR. The higher the value of the density function, the more
likely a given value of RR is in light of the prior knowledge (no prior knowledge was assumed) and the data from the meta-analysis.
For both meta-analyses, there was much certainty that the RR was greater than 1, indicating that statistically significant results
favoring the treatment had a greater probability of being included in the meta-analysis than other results.
doi: 10.1371/journal.pone.0081823.g003

Figure 4.  The posterior distribution of the RR in the meta-analyses of the associations between A) c−reactive protein level
and cardiovascular events and B) child physical abuse and depressive disorders.  The posterior distributions describe the
knowledge about the RR. The higher the value of the density function, the more likely a given value of RR is in light of the prior
knowledge (no prior knowledge was assumed) and the data from the meta-analysis. For both meta-analyses, there was much
certainty that the RR was greater than 1, indicating that plausible statistically significant results had a greater probability of being
included in the meta-analysis than other results.
doi: 10.1371/journal.pone.0081823.g004
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