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Iddi and Molenberghs (2012) merged the attractive features of the so-called
combined model of Molenberghs et al. (2010) and the marginalized model of
Heagerty (1999) for hierarchical non-Gaussian data with overdispersion. In
this model, the fixed-effect parameters retain their marginal interpretation.
Lee et al. (2011) also developed an extension of Heagerty (1999) to handle
zero-inflation from count data, using the hurdle model. To bring together
all of these features, a marginalized, zero-inflated, overdispersed model for
correlated count data is proposed. Using two empirical sets of data, it is
shown that the proposed model leads to important improvements in model
fit.

keywords: Marginal multilevel model, Maximum likelihood estimation,
Random effects model, Negative binomial, Overdispersion, Partial Marginal-
ization, Poisson model, Zero-Inflation.

1. Introduction

Count data are gathered in a multitude of settings. For their simplest, univariate form, a
generalized linear model (GLM; Agresti, 2002; Nelder and Wedderburn, 1972) based on
the Poisson distribution is regularly assumed, a well-known member of the exponential
family. The mean response is then modeled linearly in unknown regression parame-
ters, on the log scale. This frameworks easily admits maximum likelihood estimation
techniques. In spite of this elegance, four various features have called for extension.

First, because in practice, the empirical data generally exhibit much more hetero-
geneity than that provided by the restrictive mean-variance relationship of the Poisson,
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i.e., overdispersion, a large collection of extensions have been proposed. Note that un-
derdispersion is equally well possible. Particularly, the negative binomial (NB) model
(Breslow, 1984; Lawless, 1987) has been handy in addressing this issue.

Second, the occurrence of zeros beyond what is predicted by the Poisson distribution
are encountered, for example, when the response of interest is rare. One model allowing
for such excess zeros is the zero-inflated Poisson model (ZIP; Lambert, 1992). With this
model, the process generating both the zeros and positive counts are distinguished from
each other, each with their own set of parameters. Alternatively, a zero-inflated negative
binomial model (ZINB; Ridout et al., 2001) simultaneously addresses overdispersion and
extra-Poisson zeros.

We turn to the third issue. The target of inference may be geared towards an individ-
ual subject, e.g., the prediction of an outcome based on a covariate profile in a clinical
context, on the one hand, or towards an entire (sub)population in a public-health con-
text, on the other. For univariate outcomes, with or without overdispersion and/or zero
inflation, the above models allow for both of these targets simultaneously. However,
assuming measurements are taken repeatedly over time, or are otherwise clustered in
compound units, these targets of inference generally cannot be addressed easily using
a single model, apart from important exceptions in the setting of continuous outcomes.
The additional feature present is within-unit association, which can be modeled, for
example, through the introduction of individual-specific random effects, i.e., using the
generalized linear mixed model (GLMM; Breslow, 1993; Engel, 1994; Laird and Ware,
1982). While this model is well established, further complication arises when overdis-
persion and zero inflation are also present.

Some progress has been made. For example, random effects were introduced into the
NB, ZIP, and ZINB models (Hall, 2000; Min and Agresti, 2005; Yau et al., 2001). Further,
to simultaneously address correlation and overdispersion, Molenberghs et al (2007, 2010)
introduced the so-called combined model (CM) that decomposes the Poisson mean into
two multiplicative components, each with its own random effect. The first random effect,
usually chosen of a conjugate nature addresses overdispersion, while the second random
effect, embedded into the linear predictor and often normally distributed, accounts for
hierarchies in the data. The model has also been extended to address zero-inflation
(ZICM; Kassahun et al., 2012).

Still, and this brings us to the fourth issue, by including individual-specific random
effects into the linear predictor, the fixed-effect parameters no longer have a marginal in-
terpretation. Rather, they are directly interpretable conditional upon the random effects.
In other words, the models are natural for the individual-specific target of inference, but
not for the population-averaged, or marginal, one. We therefore present a model that,
while making use of the aforementioned random effects, still admits a marginal inter-
pretation. This model was pioneered by Heagerty (1999). The marginalized multilevel
model (MMM) defines separately a marginal mean model and a conditional mean model
and the two models are held together by a so-called connector function. Iddi and Molen-
berghs (2012) extended this marginalized model to accommodate for overdispersion. Lee
et al. (2011) also proposed an extension to zero-inflated clustered count data, using the
hurdle model (Mullahy, 1986). We will show that further extension is possible to simulta-
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neously account for overdispersion, zero-inflation, and data hierarchies, while retaining
to the regression parameters their population-averaged interpretation. The proposed
model is illustrated with two empirical datasets.

The remainder of the paper is organized as follows. Section 2 is devoted to the intro-
duction of two datasets; these are analyzed in Section 5. The combined overdispersed
marginalized multilevel model (COMMM) is reviewed, and the proposed zero-inflated
version presented in Section 3. The maximum likelihood estimation strategy is the sub-
ject of Section 4.

2. Case Studies

2.1. A Clinical Trial in Epileptic Patients

A full description of the epilepsy dataset is provided in Faught et al. (1996). In summary,
the data come from a randomized, double-blinded, parallel group multi-center study
aimed at comparing placebo with a new anti-epileptic drug (AED), in combination with
one or two other AED’s. After a 12-week baseline stabilization period, during which the
number of epileptic seizures were countered, 45 patients were randomly placed on the
placebo, with a second group of 44 patients receiving the new active drug. For 16 weeks,
patients were followed and the number of seizures counted. Thereafter, they entered a
long term open-extension study during which some patients were followed for as long as
27 weeks after randomization. The key research interest was to investigate whether or
not this new treatment helps to reduce the number of epileptic seizure.

2.2. The Whitefly Study

The whitefly dataset resulted from a horticultural experiment to examine the effect
of six methods of applying the insecticide imidacloprid to poinsettia plants. These
data have previously been reported by van Iersel et al. (2001) and also analyzed in
Hall (2000) and Hall and Zhang (2004). Using a randomized complete block design,
treatment (method) was applied to 18 experimental units that consisted of a trio of
18 poinsettia plants (54 plants in total); repeated measurements were taken over 12
consecutive weeks. The experimental units were randomly assigned to the 6 treatments
in 3 complete blocks. One of the outcomes of this study, of interest here, was the number
of immature whiteflies after treatment out of a number of insects caged in one leaf per
plant, prior to measurement of the response. The study aimed at investigating the best
method to control silverleaf whiteflies on the plants.

3. Methodology

3.1. Combined Overdispersed and Marginalized Multilevel Model
(COMMM)

Let Yij denote the jth (j = 1, 2, . . . , ni) count outcome measured for cluster (subject)
i = 1, 2, . . . , N . Suppose the components in Yi = (Yi1, Yi2, . . . , Yini)

′
follow Poisson dis-

tributions with mean number of events λij . The combined overdispersed and marginal
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multilevel model [15] brings together aspects of the combined model introduced by
Molenberghs et al (2007, 2010) and the proposal of Heagerty (1999). The specific case of
Poisson data takes the form: Yij ∼ Poi(λcij), with λcij = θijκij and κij = exp(∆ij +z′ijbi)
and marginal regression log(λmij ) = x′ijβ

m, i.e., with λmij = E(Yij). The full design is

Xi = (xi1,xi2, . . . ,xip)
′
. The conditional mean also uses a log-link function and depends

on the function ∆ij and two random effects, θij ∼ Gamma(uij , vij) and bi ∼ N(0,D)
and another design matrix Zi = (zi1, zi2, . . . ,ziq)

′
of known covariates associated with

bi. The gamma and normal random effects are assumed to be independent. Here, θij
is used to handle the dispersion present in addition to what is already captured by the
model. The normal random effects capture correlation between repeated measures. By
integrating the conditional mean over the random effects, the marginal mean follows and
hence the connector function ∆ij can be obtained. Precisely, we can solve for ∆ij from
the equation:

λmij = exp(x′ijβ
m) =

∫
b

∫
θ
θijexp(∆ij + z′ijbi)dGθdFb =

∫
b
E(θij)exp(∆ij + z′ijbi)dFb, (1)

where Gθ(·) and Fb(·) are the cumulative distribution functions of θij and bi, respec-
tively. Solving this integral leads to ∆ij = −log(uijvij) + x′ijβ

m − 1
2z
′
ijDzij . Evidently,

the parameters, βm have marginal interpretation. Furthermore, the joint marginal dis-
tribution is obtained from integrating out the two random effects from the conditional
distribution.

3.2. Zero-Inflated, Overdispersed, and Marginalized Multilevel Model

When count data exhibit a high percentage of zero counts for some given covariates, the
appropriate model to handle these excess zeros is the zero-inflated Poisson model or the
extended zero-inflated negative binomial. Ideas can be transported to the context of the
combined overdispersed and marginalized multilevel model presented in Section 3.1. To
begin with, we will assume that the counts are generated from two processes. The first
process generates the excess zeros with probability πij , while the full range of counts are
generated with probability (1− πij). We write these as:

Yij ∼

{
0 with probability πij ,

Poisson(λij) with probability (1− πij).

Further, assume that the zeros are generated from two sources based on probabilities of
the two processes. This leads to the zero-inflated model with probabilities:

P (Yij = yij |θij , bi) =

{
πij + (1− πij)fi(0|θij , b1i, λij) if yij = 0,

(1− πij)fi(yij |θij , b1i, λij) if yij > 0,

where the mixing probability πij and the Poisson mean λij are modeled with covariates
and random effects. This yields the conditional zero-inflated combined overdispersed and
correlated model (Kassahun et al., 2012). We propose a marginalized version referred



Electronic Journal of Applied Statistical Analysis 153

to as zero-inflated, combined overdispersed marginalized multilevel model (ZICOMMM)
which can be spelled out as follows:

P (Yij = yij) =

{
πmij + (1− πmij )fi(0|λmij ) if yij = 0,

(1− πmij )fi(yij |λmij ) if yij > 0,

where the marginal mixing probability πmij and marginal Poisson means λmij are re-
lated to only covariates through a logit-link and log-link function respectively. That
is, logit(πmij ) = x′1ijβ

m and log(λmij ) = x′2ijα
m. Next, the conditional specification is as

follows;

P (Yij = yij |θij , bi) =

{
πcij + (1− πcij)fi(0|θij , b1i, λ

c
ij) if yij = 0,

(1− πcij)fi(yij |θij , b1i, λ
c
ij) if yij > 0,

where πcij = Φ−1(∆1ij + z′1ijb1i) and λcij = θijexp(∆2ij + z′2ijb2i). Here, Φ(·) is the
cumulative normal distribution function. Note that only non-zero count data exhibit
overdispersion and so the overdispersion random effect θij is introduced into the Poisson
model. The binomial model for the mixing conditional probability has only one random
effect, whereas two random effects are used in the positive-counts version, to address
overdispersion and correlation. The functions, ∆1ij and ∆2ij can be calculated using
iterated expectations, E(Yij) = Eb{Eθ[Ey(Yij |θij , bi)]}. For bi = (b1i, b2i)

′ ∼ N(0,D)
and based on (1) the closed-form expressions are:

∆1ij =
√

1 + z′1ijDz
′
ijΦ
−1
[
expit(x′1ijβ

m)
]
,

∆2ij = −log(uijvij) + x′2ijα
m − 1

2z
′
2ijDz

′
ij .

We have used the probit link in the conditional mixing probability model so that ana-
lytical expressions for the integral in (1) can be obtained. The marginal mean model,
however, still makes use of the logit link and thus, odds ratio interpretation can still be
obtained from the fixed marginal parameters. Of course, should it be desirable, then
this logit can be replaced by a probit as well. Assuming that it is adequate to use only
random intercepts for both conditional models, that is, z′1ijb1i = b1i and z′2ijb2i = b2i,
then the variance-covariance matrix in terms of correlation parameter ρ is given by

D =

(
σ2

1 ρσ1σ
2
2

ρσ1σ
2
2 σ2

2

)
. (2)

The correlation parameter ρ measures the correlation between the binomial and count
components. The variance parameters in the logistic part and the Poisson part could be
estimated separately, but the covariance part needs to be estimated jointly.

4. Estimation

A number of estimation strategies are possible for fitting this type of models. We will
pursue the maximum likelihood approach to obtain parameters and draw inferences.
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Maximum likelihood estimation requires optimizing the full joint marginal likelihood.
The likelihood is constructed by specifying the likelihood contribution from measure-
ments Yi conditioned on the random effects θij and bi. The presence of the two random
effects entails carrying out a double integration to find the joint marginal likelihood.
Molenberghs et al (2007, 2010) proposed a so-called partial marginalization technique
where the conjugate random effect is analytically integrated out while the normal random
effect remains untouched. However, since statistical procedures, such as the NLMIXED
procedure in SAS, allow for numerical integration of normal random effects by Gaussian
and adaptive Gaussian quadrature methods (Pinheiro and Bates, 1995; Pinheiro and
Bates, 2000), the conditional likelihood can be fed to the program to complete the full
marginalization. The other advantage is that such a procedure further carries out the
optimization and returns parameter estimates and standard errors. Molenberghs and
Verbeke (2005) reviewed several of such estimation techniques.

The observed data likelihood of the ith subject conditioned on the two random effects
is:

fi(β,α,D, φ) =

∫
b

ni∏
j=1

f(yij |bi)f(bi|D)dbi,

where

f(yij |bi) =

∫
θ
f(yij |θij , bi)f(θij)dθij ,

from which we can derive the likelihood for β,α,D, φ as

L(β,α,D, φ) =
N∏
i=1

fi(yi|β,α,D, φ).

The parameters of the Poisson model, the zero-inflated model, the components of the
variance-covariance matrix of the normal random effect and the parameters of the con-
jugate random effect are contained in the vectors β,α,D and φ respectively.

For our count case, suppose that the response distribution is Poisson with mean com-
posing of a normal and a conjugate gamma distributed random effect terms, then

f(yij |bi) =

(
uj + yij − 1

uj − 1

)(
vj

1 + κijvj

)yij ( 1

1 + κijvj

)uj
κ
yij
ij .

For the zero-inflated version of the combined model:

f(yij |bi) = I(yij = 0)πij +(1−πij)

(
uj + yij − 1

uj − 1

)(
vj

1 + κijvj

)yij ( 1

1 + κijvj

)uj
κ
yij
ij .

In fitting the marginalized multilevel models, the conditional distributions are specified
by replacing the terms x′1ijβ and x′2ijα in the zero-inflated version of the combined
model with the analytical expressions for ∆1ij and ∆2ij respectively as the mean models
relate separately, through link functions, to these terms.
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Figure 1: Epilepsy Data. Histogram and individual profiles.

Other estimation strategies may include, but are not limited to, pseudo-likelihood
(Aerts et al., 2002; Molenberghs and Verbeke, 2005), generalized estimating equations
(Zeger et al., 1988), and Bayesian methodology (Aregay et al., 2012).

To assess the fit of the models, we made use of Akaike Information Criterion (AIC;
Akaike, 1994) and the Bayesian Information Criterion (BIC; Burnham, 2004). AIC is
calculated as follows: AIC = −2Log-likelihood+2k where k is the number of parameters
in the model. The model with the minimum AIC value is usually the preferred model.
Also, the formula to calculate BIC is given by: BIC = −2Log-likelihood+klog(n), where
k number of model parameters and n is the sample size. This criterion also selects the
’best’ model based on the minimum BIC value.

5. Analysis of Case Studies

5.1. Analysis of the Epilepsy Data

We begin by some data exploration. In Figure 1, the histogram of the number of epileptic
seizures shows a higher proportion of excess zeros accounting for about 33% of the data.
Also, a simple descriptive statistics shows a very high variance of 37.70, as compared to
the empirical mean of 3.18, an indication of overdispersion. Finally, a plot of individual
profiles reveals a higher between variability than variability within subjects, indicative
of within-subject correlation. To investigate the impact of these features on inferences
a number of models are fitted to account for each or a combination of zero-inflation,
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overdispersion,and correlation. We denote the number of epileptic seizures experienced
by the ith patient at the jth occasion by Yij and the occasion on which Yij was measured
by tij . Assuming that Yij follows a Poisson distribution with mean parameter λcij , then
the marginal mean model for the Poisson process is as follows:

ln(λmij ) =

{
α00 + α01tij if placebo

α10 + α11tij if treated.

For the combined model, λcij = θijκij with θij ∼ Gamma(u, v) and the corresponding
marginal quantity:

ln(κij) =

{
α00 + α01tij + bi if placebo

α10 + α11tij + bi if treated.

The marginal model for the zero-inflated probabilities is given by

ln(πmij ) = β0 + β1tij .

The corresponding conditional models are specified by introducing a normally distributed
random intercept, b1i in the Poisson model and b2i and the binomial model with D matrix
as in (2).

Results of these models are presented in Table 1. Generally, the fixed-effect parameters
are close to each other in the classical models. Their interpretations are not just subject-
specific but can be extended to the whole population. We observe further that the
standard errors of the parameter estimates in the Poisson model are underestimated
as compared to the ZI Poisson. The same comparison can be made between the NB
and ZI-NB models. These observations are crucial and point to the need of properly
accommodating zero inflation and overdispersion. Furthermore, in terms of both AIC
and BIC values, we observe that the ZI-NB model tends to perform better than the
other models (in the top part of Table 1). It should be noted that, up to this point,
correlation has been ignored. This leads us to the marginalized multilevel models where
random intercepts are introduced to accommodate correlation. Comparing the MMM
and zero-inflated MMM (ZIMMM) to the NB and ZINB models, we see improvement
in the model fit owing to the normal random effect, but above and beyond these, still
from overdispersion and zero-inflation. The normal random effects allow for correlated
repeated measures and capture some but not all of the overdispersion. This explains
why the model fit improves further if the normal random effects are supplemented with
zero-inflation and the gamma random effects. Also here,the parameter estimates are
rather close to their counterparts from the classical models, but the same is not true
for the standard errors. In this particular dataset, the Poisson and ZI Poisson models
excepting, all models yielded a significant slope difference between the placebo and the
treated group. Finally, it is key that the more complex model results in a considerably
improvement in the model. This is essential for inferences and for prediction.
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Table 1: Epilepsy Trial. Parameter estimates (standard errors) for the conventional
marginal models (top) and the marginalized models (bottom). RE: random effect

Zero-Inflated Negative Zero-Inflated

Poisson Poisson Binomial Negative Binomial

Effect Par. Estimate(s.e) Estimate(s.e) Estimate(s.e) Estimate(s.e)

Poisson Part

Intercept placebo α00 1.2662(0.0424) 1.4205(0.0439) 1.2594(0.1119) 1.2361(0.1100)

Slope placebo α01 -0.0134(0.0043) 0.0061(0.0045) -0.0126(0.0111) -0.0072(0.0113)

Intercept treatment α10 1.4531(0.0383) 1.7608(0.0402) 1.4750(0.1093) 1.3974(0.1098)

Slope treatment α11 -0.0328(0.0038) -0.01531(0.0041) -0.0352(0.0101) -0.0219(0.0112)

Slope difference α01 − α11 -0.0195(0.0058) -0.0214(0.0061) -0.0227(0.0150) -0.0147(0.0153)

Zero-Inflated Part

Intercept β0 -1.2879(0.1203) -7.1064(1.3344)

Slope β1 0.0593(0.0109) 0.2921(0.0655)

Overdispersion v = 1
u

0.5274(0.02553) 0.5595(0.03142)

-2Log-likelihood -1492 -3321 -6755 -6763

AIC -1484 -3309 -6745 -6749

BIC -1463 -3278 -6719 -6712

Zero-Inflated Combined Zero-Inflated

MMM MMM MMM Combined MMM

Effect Par. Estimate(s.e) Estimate(s.e) Estimate(s.e) Estimate(s.e)

Poisson Part

Intercept placebo α00 1.3960(0.1887) 1.3748(0.1695) 1.4757(0.1962) 1.4282(0.1831)

Slope placebo α01 -0.0143(0.0044) -0.0041(0.0047) -0.0248(0.0077) -0.0124(0.0070)

Intercept treatment α10 1.2256(0.1901) 1.3777(0.1719) 1.2200(0.1970) 1.3373(0.1858)

Slope treatment α11 -0.0120(0.0043) -0.0072(0.0045) -0.0118(0.0075) -0.0045(0.0069)

Slope diff. α01 − α11 0.0023(0.0062) -0.0031(0.0065) 0.0130(0.0107) 0.0080(0.0096)

Variance of RE σ2
1 1.1567(0.1844) 0.9459(0.1602) 1.1290(0.1850) 1.0190(0.1742)

Zero-Inflated Part

Intercept β0 -2.2957(0.2963) -2.4278(0.3206)

Slope β1 0.0657(0.0166) 0.0662(0.0183)

Variance of RE σ2
2 1.5728(0.4823) 1.6680(0.5361)

Overdispersion v = 1
u

0.4059(0.03481) 0.1792(0.0175)

Correlation ρ -0.1382(0.1601) -0.0795(0.1669)

-2Log-likelihood -6810 -7240 -7664 -7702

AIC -6800 -7222 -7652 -7682

BIC -6787 -7200 -7637 -7658
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Figure 2: Whitefly Data. Means and standard deviations by time (panel 1) and block
(panel 2).

5.2. Analysis of the Whitefly Data

Figure 2 shows that, at every level of treatment and block, the variance is always above
the mean, reflecting overdispersion, with repetition inducing correlation. In Figure 3,
the histogram reveals higher occurrences of zero immature whiteflies, which cannot be
accounted for by the variance function of a Poisson or negative binomial distribution. It
therefore seems sensible to apply our model.

Denote the number of immature whiteflies for the ith treatment in the jth block
measured at the kth week by Yijk. Assume that Yi follows a Poisson distribution with
expected mean count λcijk = θijkκijk. The marginal mean model for the Poisson model
is given by:

ln(κijk) = µ+ blockj + treatmenti + βweekk + log(nijk)
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Figure 3: Whitefly Data. Histogram of the number of immature whiteflies.

and the probability of zeros πijk is modeled by logit(πijk) = γ0 + γ1weekk, where n
represents the number of adult insects placed on the leaf prior to measurement of the
response. Week is treated as continuous and the other terms represent factor effects.
Results of the fitted models are presented in Table 2. Only the best fitting models have
been presented here. We observed that the parameter estimates and standard errors for
the logistic part, for all the zero-inflated models seem identical. For the Poisson part, not
all the parameters are similar, unlike in the previous example. This is not unexpected
because the models are not all nested. Two versions of the ZICOMMM model have
been presented here. The first one allows for random effects in the Poisson part, while
the second enters them in the logistic part. One would expect that the random effects
will be most important in the Poisson part of the model, or perhaps in both. However,
the analysis proves otherwise. The higher counts occur in a purely Poisson way but
they may be overdispersed. The binary part is rather highly correlated even though in
general we expect the two to be present. This means that, given a nonzero count, we
get independent replicates, while they are correlated given a zero count. This scenario
seems more plausible than to expect heavy correlation among the higher values for the
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Table 2: Whitefly Data. Parameter estimates (standard errors) for the marginalized
models. RE: random effect

Zero-Inflated Zero-Inflated Zero-Inflated Zero-Inflated

MMM Negative Binomial MMM Comb. MMM(1) Comb. MMM(2)

Effect Par. Estimate(s.e) Estimate(s.e) Estimate(s.e) Estimate(s.e) Estimate(s.e)

Poisson Part

Intercept µ -0.9890(0.1678) -0.6640(0.2107) -0.0964(0.1467) -0.3913(0.2058) -0.3968(0.1588)

Block 1 -0.1337(0.1495) -0.0418(0.1147) -0.2997(0.1331) -0.2345(0.1544) -0.0709(0.0978)

Block 2 -0.1116(0.1501) -0.0534(0.1143) -0.2210(0.1345) -0.1970(0.1542) -0.0105(0.0975)

Treatment 1 -1.0592(0.2010) -1.1088(0.1622) -0.9047(0.1700) -0.9893(0.1967) -0.9896(0.1357)

Treatment 2 -1.4603(0.2075) -1.2796(0.1802) -1.0185(0.1845) -1.1186(0.2276) -0.9951(0.1495)

Treatment 3 -2.1357(0.2249) -2.0317(0.1968) -1.7949(0.2218) -2.0628(0.2389) -1.6217(0.2296)

Treatment 4 -1.7553(0.2122) -1.7034(0.1857) -1.3379(0.1938) -1.5730(0.2292) -1.3471(0.1799)

Treatment 5 1.3570(0.1905) 1.0772(0.1386) 0.9193(0.1567) 1.0241(0.1775) 0.9702(0.1044)

Week β 0.0976(0.0048) 0.0936(0.0182) 0.0459(0.0052) 0.0788(0.0140) 0.0651(0.0135)

Variance of RE σ2 0.1539(0.0428) 0.1007(0.0336) 0.0913(0.0445)

Zero-Inflated Part

Intercept γ0 1.5231(0.2919) 1.6694(0.2191) 1.5346(0.2346) 1.6213(0.2610)

Week γ1 -0.3667(0.0524) -0.2994(0.0332) -0.2942(0.0353) -0.2789(0.0308)

Variance of RE σ2 1.0871(0.3201)

Overdispersion v = 1
u

0.5442(0.0816) 0.2887(0.0349) 0.3062(0.0339)

-2Log-likelihood 4011.3 2628.8 3223.8 2675.8 2590.4

AIC 4031.3 2652.8 3247.8 2701.8 2616.4

BIC 4051.2 2706.4 3271.6 2727.6 2642.2

count. Allowing the random effect in the logistic part of the model therefore tends to
improve the model fit significantly (smallest AIC and BIC). The model failed to converge
when different random effects are used for the different parts of the model. This is not
unexpected for models that make use of higher dimension of normal random effects in
standard procedures such as in joint models. The two ZICOMMM models also fit better
compared to the MMM and ZIMMM, highlighting the importance of acknowledging
overdispersion in the model. Also, the higher AIC value for the MMM model brings
out the inadequacy resulting from overlooking the all-important inflation of zeros and
overdispersion.

6. Concluding Remarks

We have proposed a flexible model to simultaneously address issues of zero-inflation,
overdispersion, and data hierarchies, while retaining a population-averaged interpreta-
tion of fixed effect parameters like in classical Poisson models. This was achieved by
beneficially combining key aspects of recent modeling concept in statistical literature,
namely the combined multilevel modeling approach of Iddi and Molenberghs (2012) and
the model of Lee et al. (2011). Both models also combined aspects of Heagerty (1999)
and the combined model of Molenberghs et al. (2010) in the case of the former, and the
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latter introduced zero inflation in the model of Heagerty (1999). These models previ-
ously showed that disregarding zero inflation or overdispersion may hamper the fit of
the model. Through two different empirical studies, we have demonstrated that it is not
sufficient to address either two of the three phenomena, while ignoring the remaining
one. Our extension led to considerable improvement, thereby ensuring parameter inter-
pretation is for the whole population, where a population may be defined in terms of
fixed-effects profile. Marginal interpretation is often of interest to public health experts,
who seek solutions or interventions for the population at large and therefore might find
conditional models such as the GLMM or the combined model cumbersome.

This notwithstanding, these features taken together do increase model and fitting
complexity. An extensive search over starting values may be in place. This is particularly
the case when high-dimensional random effects are used, a problem that is well-known
in joint models, in non-linear mixed-effects models, etc.

The models proposed are fully specified and hence enable likelihood inference. For
example, expressions for the full probability distribution of the response are available
(Fitzmaurice and Laird, 1993; Molenberghs and Lesaffre, 1994). A further advantage is
that inferences remain valid for incomplete data, where missingness is of the missing at
random type. Reportedly, inferences are more robust under random-effect misspecifica-
tion as compared to GLMM (Heagerty and Zeger, 2000).

Of course, because likelihood inference is possible does not mean that it is the only
route available. Next to Bayesian inference, semi-parametric methods such as estimating-
equation or pseudo-likelihood based techniques are equally well possible. Exploring these
routes further falls outside of the scope of this paper.

Note that the modeling framework could find use outside of the scope of biomedical
applications. For example, in imaging, whether in nuclear medicine or other physical
applications, the methodology would allow for extra-Poisson variation in reconstructed
images, where the extra variability might stem from scatter, attenuation, etc.
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Appendix

A. SAS Code

A.1. Combined Marginal Multilevel Model for the Epilepsy Data

proc nlmixed data=test qpoints=50;

title ’Gamma-Log-Log-Normal COMMM- alpha*beta=1’;

parms int0=1.3 slope0=-0.02 int1=1 slope1=1.2 sigma=1.2 alpha=2.5;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

beta=1/alpha;

delta=-log(alpha*beta)+ eta-sigma*sigma/2;

lambda_c =exp(delta+b);

loglik=lgamma(alpha+y)-lgamma(alpha)+y*log(beta)

-(y+alpha)*log(1+beta*lambda_c)+y*log(lambda_c);

model y ~ general(loglik);

random b ~ normal(0,sigma**2) subject = id;

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’variance RIs’ sigma**2;

estimate ’beta=1/alpha’ 1/alpha;

run;

A.2. Zero-Inflated Combined Marginal Multilevel Model for the
Epilepsy Data

proc nlmixed data=test qpoints=20 tech=newrap;

title ’ZI Gamma-Log-Normal CM - alpha*beta=1’;

parms int0=1.9 slope0=-0.05 int1=1.8 slope1=1.2 a0=-3.7 a1=-0.29

sigma1=0.192 rho=-0.13 sigma2=2.2 alpha=2.5;

if (trt = 0) then eta_p = int0 + slope0*time;

else if (trt = 1) then eta_p = int1 + slope1*time;

eta_0=a0+a1*time;

pi_m=1/(1+exp(-eta_0));

beta=1/alpha;

delta1= sqrt(1+(sigma1*sigma1)) * probit(pi_m);

pi_c=probnorm(delta1+b1);

delta2=-log(alpha*beta)+ eta_p-sigma2*sigma2/2;

lambda_c =exp(delta2+b2);

if y=0 then loglik=log((pi_c)+(1-pi_c)*exp(-lambda_c));

else loglik=log(1-pi_c)+lgamma(alpha+y)-lgamma(alpha)+y*log(beta)

-(y+alpha)*log(1+beta*lambda_c)+y*log(lambda_c);

model y ~ general(loglik);
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random b1 b2 ~ normal([0, 0],[sigma1**2,rho*sigma1*sigma2,sigma2**2])

subject = id;

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’variance RI1’ sigma1**2;

estimate ’variance RI2’ sigma2**2;

estimate ’beta=1/alpha’ 1/alpha;

run;


