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a b s t r a c t

Copulas and their corresponding densities are functions of a multivariate joint distribution
and the one-dimensional marginals. Bernstein estimators have been used as smooth
nonparametric estimators for copulas and copula densities. The purpose of this note is to
study the asymptotic distributional behavior of the Bernstein estimator of a copula density.
Compared to the existing results, our general theorem does not assume known marginals.
This makes our theorem applicable for real data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Copulas and copula densities are building blocks to study the dependence between components of a random vector.
For many problems it is not evident how to select a parametric family of copulas to describe the data at hand and, hence,
nonparametric estimation of the copula and the copula density is an option. The Bernstein estimator of the copula and the
copula density is one such nonparametric estimator that received attention in recent papers. The authors in [7] study the
asymptotic distributional behavior of the Bernstein estimator of the copula. Assuming themarginals to be known, the results
on the asymptotic distributional behavior of the Bernstein estimator of the copula density are given in [10,2,3]. In this note
we show that the central limit theorem for the Bernstein estimator of the copula density is valid without imposing this
assumption.

To facilitate the discussion we first collect some preliminary definitions. For simplicity we consider bivariate random
vectors. Given a random vector (X, Y ) with the joint distribution function H and marginal distribution functions F and G,
there exists a bivariate distribution function C on [0, 1]2 [12] such that

H(x, y) = C(F(x),G(y)).

C is the copula corresponding to H; see [9] for a detailed discussion on copulas. We assume throughout that F and G are
continuous, which implies that C is unique and that

C(u, v) = H{F−1(u),G−1(v)}

with F−1 and G−1 being the usual quantile functions.
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A copula C(u, v), being continuous on [0, 1]2 [9, p. 11], can be approximated by a Bernstein copula [10] in the following
way:

Bm(u, v) =

m
k=0

m
ℓ=0

C


k
m

,
ℓ

m


Pm,k(u)Pm,ℓ(v)

with for k = 0, 1, . . . ,m and 0 ≤ u ≤ 1

Pm,k(u) =


m
k


uk(1 − u)m−k

the binomial probabilities. We indeed have

lim
m→∞

Bm(u, v) = C(u, v).

The Bernstein estimator of the copula C(u, v) is obtained by replacing C
 k
m , ℓ

m


in the corresponding Bernstein copula by

Cn
 k
m , ℓ

m


with

Cn(u, v) = Hn{F−1
n (u),G−1

n (v)}

where for a random sample (X1, Y1), . . . (Xn, Yn) from H ,

Hn(x, y) =
1
n

n
i=1

I(Xi ≤ x, Yi ≤ y)

Fn(x) =
1
n

n
i=1

I(Xi ≤ x) Gn(y) =
1
n

n
i=1

I(Yi ≤ y).

This gives

Cm,n(u, v) =

m
k=0

m
ℓ=0

Cn


k
m

,
ℓ

m


Pm,k(u)Pm,l(v).

We callm the order of the estimator; the order will typically depend on n and we have m → ∞ as n → ∞.
The copula density corresponding to C is denoted as c and is given by (if it exists)

c(u, v) = ∂2C(u, v)/∂u∂v.

The corresponding Bernstein estimator of the copula density is

cm,n(u, v) =

m
k=0

m
ℓ=0

Cn


k
m

,
ℓ

m


P ′

m,k(u)P
′

m,l(v) (1)

with P ′

m,k(u) being the derivative with respect to u.
In terms of these definitions we can detail the contribution we make in this note. Our asymptotic normality result for

cm,n(u, v) extends the results in [10,3]. They assume that the marginals F and G are known. Both papers indeed replace
the pair (F−1

n (u),G−1
n (v)) by (F−1(u),G−1(v)). However, given a random sample (X1, Y1), . . . , (Xn, Yn) from H , a fully

nonparametric Bernstein estimator for the copula density should use Fn and Gn rather than F and G. We show that the
asymptotic normality result remains valid if we take this double stochastic nature of the problem into account, i.e., the
stochastics coming from Hn and the stochastics coming from Fn and Gn. This covers the real data situation. Two references
to rank-based inference procedures for copulas are [5,6].

The paper is organized as follows. In Section 2 we state and prove the asymptotic normality result. In Section 3 we use
asymptotic bias and variance expressions to derive an optimal order m. Appendix contains two interesting properties of
binomial probabilities that are used in the proof of the theorem.

2. Asymptotic normality of the Bernstein estimator of the copula density

Our main result reads as follows.

Theorem. Assume

(1) The order m > 0 depends on n such that m = o{n1/2(log n)−1(log log n)−1/2
}.

(2) The second order partial derivatives C (1,1), C (2,2) and C (1,2)
= c of C exist and are continuous on [0, 1]2.
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Then, for 0 < u, v < 1, as n → ∞, n
m

1/2
{cm,n(u, v) − bm(u, v)}

d
→ N


0; c(u, v)

1
4π

1
√
u(1 − u)v(1 − v)


where

bm(u, v) = m2
m−1
k=0

m−1
ℓ=0


C

k + 1
m

,
ℓ + 1
m


− C


k
m

,
ℓ + 1
m


− C


k + 1
m

,
ℓ

m


+ C


k
m

,
ℓ

m


Pm−1,k(u)Pm−1,ℓ(v)

= m2
m−1
k=0

m−1
ℓ=0

 (k+1)/m

k/m

 (ℓ+1)/m

ℓ/m
c(s, t)ds dt


Pm−1,k(u)Pm−1,ℓ(v). (2)

Remark 1. As shown in the proof below, the bias term bm(u, v) is equal to c(u, v)+O(m−1). Therefore the centering bm(u, v)
may be replaced by the copula density c(u, v) if n/m3

→ 0. This combined with condition (1) shows that a good choice for
m is given by m = nα with 1

3 < α < 1
2 .

Remark 2. The proof of the theorem will make use of a stochastic representation of the empirical copula process given
in [13]. Conditions (1) and (2) are needed in that context. However the theorem also holds if condition (2) is replaced by the
set of weaker conditions given in [11]. The strength of this representation is that it handles at once the double stochastic
nature of the problem.

Proof. Recall a result of [13]: if the second order partial derivatives of C exist and are continuous on [0, 1]2, then

sup
0≤u,v≤1

Cn(u, v) − C(u, v) −
1
n

n
i=1

{I(Ui ≤ u, Vi ≤ v) − C(u, v)}

+ C (1)(u, v)
1
n

n
i=1

{I(Ui ≤ u) − u} + C (2)(u, v)
1
n

n
i=1

{I(Vi ≤ v) − v}


= O{n−3/4(log n)1/2(log log n)1/4} a.s., as n → ∞.

Here (U1, V1), . . . , (Un, Vn) is a random sample from C, C (1)(u, v) =
∂
∂uC(u, v), C (2)(u, v) =

∂
∂v

C(u, v). Plugging in in (1)
gives

cm,n(u, v) =

m
k=0

m
ℓ=0

C


k
m

,
ℓ

m


P ′

m,k(u)P
′

m,ℓ(v)

+

m
k=0

m
ℓ=0

1
n

n
i=1


I

Ui ≤

k
m

, Vi ≤
ℓ

m


− C


k
m

,
ℓ

m


P ′

m,k(u)P
′

m,ℓ(v)

−

m
k=0

m
ℓ=0

C (1)


k
m

,
ℓ

m


1
n

n
i=1


I

Ui ≤

k
m


−

k
m


P ′

m,k(u)P
′

m,ℓ(v)

−

m
k=0

m
ℓ=0

C (2)


k
m

,
ℓ

m


1
n

n
i=1


I

Vi ≤

ℓ

m


−

ℓ

m


P ′

m,k(u)P
′

m,ℓ(v)

+O{mn−3/4(log n)1/2(log log n)1/4} a.s.

uniformly in (u, v) ∈ (0, 1)2.
The factorm in the order term appears because for each 0 < u < 1,

m
k=0

|P ′

m,k(u)| ∼


2
π

m1/2

√
u(1 − u)

= O(m1/2)

as m → ∞. This relation is derived in Lemma 1 of Appendix.
Denote the above decomposition as

cm,n(u, v) = bm(u, v) + (I) − (II) − (III) + (IV).
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The term bm(u, v) is a deterministic bias term. By the continuity of c we have (k+1)/m

k/m

 (ℓ+1)/m

ℓ/m
c(s, t)ds dt =

1
m2

c


k
m − 1

,
ℓ

m − 1


+ O


1
m3


(3)

uniformly in k, ℓ ≤ m − 1.
This gives

bm(u, v) = c(u, v) + O


1
m


.

The term (I) can be rewritten as

(I) = m2
m−1
k=0

m−1
ℓ=0

1
n

n
i=1


I


k
m

< Ui ≤
k + 1
m

,
ℓ

m
< Vi ≤

ℓ + 1
m



− P


k
m

< Ui ≤
k + 1
m

,
ℓ

m
< Vi ≤

ℓ + 1
m


Pm−1,k(u)Pm−1,ℓ(v)

:=

n
i=1

Zin.

We check the Liapunov condition for the array {Zin} of independent random variables. Clearly E(Z1n) = 0. Further

Var


n

i=1

Zin


= nE(Z2

1n) =
m4

n
E


m−1
k=0

m−1
ℓ=0

m−1
k′=0

m−1
ℓ′=0


I


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m



− P


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


·


I

k′

m
< U1 ≤

k′
+ 1
m

,
ℓ′

m
< V1 ≤

ℓ′
+ 1
m



− P

k′

m
< U1 ≤

k′
+ 1
m

,
ℓ′

m
< V1 ≤

ℓ′
+ 1
m


· Pm−1,k(u)Pm−1,ℓ(v)Pm−1,k′(u)Pm−1,ℓ′(v).


Note that the product of the two indicators is zero if k ≠ k′ or ℓ ≠ ℓ′. From (3) we conclude that

Var


n

i=1

Zin


=

m4

n
E


m−1
k=0

m−1
ℓ=0

I


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


P2
m−1,k(u)P

2
m−1,ℓ(v)



− 2
m4

n
E


m−1
k=0

m−1
ℓ=0

I


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


Pm−1,k(u)Pm−1,ℓ(v)

×

m−1
k′=0

m−1
ℓ′=0

P

k′

m
< U1 ≤

k′
+ 1
m

,
ℓ′

m
< V1 ≤

ℓ′
+ 1
m


Pm−1,k′(u)Pm−1,ℓ′(v)



+
m4

n


m−1
k=0

m−1
ℓ=0

P


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


Pm−1,k(u)Pm−1,ℓ(v)

2

=
m4

n

m−1
k=0

m−1
ℓ=0

P


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


P2
m−1,k(u)P

2
m−1,ℓ(v)

−
m4

n


m−1
k=0

m−1
ℓ=0

P


k
m

< U1 ≤
k + 1
m

,
ℓ

m
< V1 ≤

ℓ + 1
m


Pm−1,k(u)Pm−1,ℓ(v)

2

=
m4

n

m−1
k=0

m−1
ℓ=0

 (k+1)/m

k/m

 (ℓ+1)/m

ℓ/m
c(s, t)ds dt


P2
m−1,k(u)P

2
m−1,ℓ(v) −

1
n
b2m(u, v)

=
m2

n

m−1
k=0

m−1
ℓ=0

c


k
m − 1

,
ℓ

m − 1


P2
m−1,k(u)P

2
m−1,ℓ(v)
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+O
m
n

 m−1
k=0

m−1
ℓ=0

P2
m−1,k(u)P

2
m−1,ℓ(v) −

1
n


c(u, v) + O


1
m

2

∼
m
n
c(u, v)

1
4π

√
u(1 − u)v(1 − v)

by Lemma 3.1 in [1] or by Lemma 2 of Appendix with ℓ = 1. Repeating the same steps as above and using Lemma 2 of
Appendix for ℓ = 1, 2 and 3 we obtain that

n
i=1 E(Z4

in) = O((m/n)3). This gives that the Liapunov condition is satisfied.
Indeed,

n
i=1 E(Z4

in)/(Var(
n

i=1 Zin))
2

= O(m/n) = o(1), sincem/n → 0. Therefore, n
m

1/2
(I)

d
→ N


0; c(u, v)

1
4π

1
√
u(1 − u)v(1 − v)


.

The term (II) can be rewritten as

(II) =

m
k=0

1
n

n
i=1


I

Ui ≤

k
m


−

k
m


P ′

m,k(u) ·

m
ℓ=0

C (1)


k
m

,
ℓ

m


P ′

m,ℓ(v).

We have

m
ℓ=0

C (1)


k
m

,
ℓ

m


P ′

m,ℓ(v) = m
m−1
ℓ=0


C (1)


k
m

,
ℓ + 1
m


− C (1)


k
m

,
ℓ

m


Pm−1,ℓ(v)

= m
m−1
ℓ=0

 (ℓ+1)/m

ℓ/m
c


k
m

, t

dt Pm−1,ℓ(v)

= m
m−1
ℓ=0


1
m

c


k
m

,
ℓ

m − 1


+ O(m−2)


Pm−1,ℓ(v)

= c


k
m

, v


+ O(m−1) = c


k

m − 1
, v


+ O(m−1)

uniformly in k and ℓ. Therefore

(II) =

m
k=0

1
n

n
i=1


I

Ui ≤

k
m


−

k
m


P ′

m,k(u)

c


k
m − 1

, v


+ O(m−1)



= m
m−1
k=0


c


k
m − 1

, v


+ O(m−1)


1
n

n
i=1


I

Ui ≤

k + 1
m


−

k − 1
m



−


c


k
m − 1

, v


+ O(m−1)


1
n

n
i=1


I

Ui ≤

k
m


−

k
m


Pm−1,k(u)

=

n
i=1

Zin + O(m−1) ·

n
i=1

Z in

where

Zin =
m
n

m−1
k=0

c


k
m − 1

, v


I


k
m

< Ui ≤
k + 1
m


−

1
m


Pm−1,k(u)

and

Z in =
m
n

m−1
k=0


I


k
m

< Ui ≤
k + 1
m


−

1
m


Pm−1,k(u).

Calculations as before give that E(Zin) = 0,Var(
n

i=1
Zin) = O(m1/2/n),

n
i=1 E(Z4

in) = O(m3/2/n3) and that the Liapunov

ratio is O(m1/2/n) = o(1). Similarly for
n

i=1
Z in.

Therefore

(II) and also (III) are OP(m1/4/n1/2).
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With the normalization of (I) we have n
m

1/2
(II) = OP


1

m1/4


= oP(1)

and similar for (III).
Finally note that (n/m)1/2(IV) = oP(1) because of condition (1). This proves the theorem.

Remark 3. The restriction to the bivariate case is not essential. It is clear that the asymptotic normality result can be proved
along the same lines for the general d-dimensional case (d ≥ 2) relying on the stochastic representation of a d-dimensional
empirical copula [13,11]. The norming factor becomes (nm−d/2)1/2and the asymptotic variance is given by

c(u1, . . . , ud)(4π)−d/2 1
√
u1(1 − u1) . . . ud(1 − ud)

for 0 < u1, . . . , ud < 1.

Remark 4. The asymptotic normality result can be extended to the weak convergence of the process (n/m)1/2(cn,m(u, v) −

c(u, v)) on (0, 1)2. The key issue is the asymptotic tightness of the process (n/m)1/2
n

i=1 Zin. This can be obtained by
applying Theorem 2.7.1 in [14].

3. Asymptotic bias and optimal order

The bias term bm(u, v) in (2) can be further expanded under additional assumptions on the partial derivatives of c. For
instance, if c has second order partial derivatives that are Lipschitz on (0, 1)2, then

bm(u, v) = c(u, v) +
1
2m

b(u, v) + o


1
m


(4)

where

b(u, v) = u(1 − u)cuu(u, v) + v(1 − v)cvv(u, v) + (1 − 2u)cu(u, v) + (1 − 2v)cv(u, v) (5)

and

cu =
∂

∂u
c, cv =

∂

∂v
c, cuu =

∂2

∂u2
c, cvv =

∂2

∂v2
c.

This follows by applying various Taylor expansions and using the fact that the first and second centralmoments of a binomial
(m − 1, u) variable are 0 and (m − 1)u(1 − u).

Expression (4) together with the asymptotic variance expression in the theorem leads to a formula for the asymptotic
optimal choice of the orderm. For the asymptotic mean squared error of cm,n(u, v) we have the expression

m
n

σ 2(u, v) +
1

4m2
b2(u, v)

where

σ 2(u, v) = c(u, v)
1
4π

1
√
u(1 − u)v(1 − v)

and b(u, v) is given in (5).
Minimizing with respect tom gives

m0 = m0(u, v) =


b2(u, v)

2σ 2(u, v)

1/3

n1/3

and

AMSE(cm0,n(u, v)) = 3

b(u, v)σ 2(u, v)

4

2/3

n−2/3.

With the choice m = nα with 1
3 < α < 1

2 , as explained in Remark 1, we have that the optimal value m0 is close to be
included in this range.
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Appendix

In this appendix we prove two lemmas of independent interest that were used in the proof of the theorem.

Lemma 1. For any 0 < u < 1, as m → ∞, we have

m
k=0

| P ′

m,k(u) |∼


2
π

m1/2

√
u(1 − u)

.

Proof. By direct calculation we find

P ′

m,k(u) =
1

u(1 − u)
Pm,k(u)(k − mu).

Therefore
m

k=0

| P ′

m,k(u) | =
2

u(1 − u)

m
k=[mu]+1

(k − mu)Pm,k(u)

=
2

u(1 − u)
([mu] + 1)


m

[mu] + 1


u[mu]+1(1 − u)m−[mu]

by an identity in [8].
Now use Stirling’s approximation for factorials and some algebra to obtain the result.

Lemma 2. For any 0 < u < 1, any ℓ = 1, 2, . . . , as m → ∞, we have
2mu(1 − u)

ℓ m
k=0

Pℓ+1
m,k (u) → φℓ(0, . . . , 0),

where φℓ(x1, . . . , xℓ) is the ℓ-dimensional normal Nℓ(0, 60) density with variance–covariance matrix 60
= [σij], with σij = 1

if i = j and σij = 1/2 if i ≠ j.

Proof. Let Ai = (Ai1, Ai2, . . . , Aiℓ), for i = 1, . . . ,m, and assume that for each j = 1, . . . , ℓ, A1j, A2j, . . . , Amj are i.i.d. with
E(A1j) = 0 and E(A2

1j) = 1. Suppose that Aij is lattice with mass points b, b ± h, b ± 2h, . . . . Define for j = 1, . . . , ℓ

Smj =

m
i=1

Aij, xj =
mb + kh

√
m

,

for k = 0, ±1, ±2, . . . . Mimicking the proof of Theorem 3 of Section XV.5 of [4] we arrive at the following multivariate
extension of his one-dimensional local central limit theorem for lattice random variables:

mℓ/2

hℓ
P


Smj
√
m

= xj, j = 1, . . . , ℓ


− φℓ(x1, . . . , xℓ) → 0 (6)

uniformly in (x1, . . . , xℓ), where φℓ is the ℓ-dimensional Nℓ(0, 6) density.
Now, suppose that {Bij, i = 1, . . . ,m; j = 1, . . . , ℓ} are independent Bernoulli variables with parameter u and that the

random vectors Bi = (Bi1, . . . , Biℓ) are independent of the random vectorW = (W1, . . . ,Wm), whereW1, . . . ,Wm are also
independent Bernoulli variables with parameter u.

Furthermore, set Aij = (Bij−Wi)/
√
2u(1 − u), then E(Aij) = 0, E(A2

ij) = 1 and Cov(Aij, Aik) = 1/2 for j ≠ k; i = 1, . . . ,m.
Also the span of Aij is h = 1/

√
2u(1 − u). Conditioning on the event {

m
i=1 Wi = k} it follows that

P

Smj = 0, j = 1, . . . , ℓ


=

m
k=0

Pℓ+1
m,k (u). (7)

Hence the lemma follows from (6) and (7) with 6 = 60.
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