
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Migrating an MMO Back-end Infrastructure to the Cloud: a Perspective

Peer-reviewed author version

QUAX, Peter; VANMONTFORT, Wouter; MARX, Robin & LAMOTTE, Wim (2014)

Migrating an MMO Back-end Infrastructure to the Cloud: a Perspective. In:

Proceedings of International Workshop on Massively Multiuser Virtual Environments

(MMVE 2014)..

DOI: 10.1145/2577387.2577393

Handle: http://hdl.handle.net/1942/16570

Migrating an
MMO Back-end Infrastructure to the Cloud : a Perspective

Peter Quax Wouter Vanmontfort Robin Marx Wim Lamotte
iMinds - tUL - UHasselt

Wetenschapspark 2
3590 Diepenbeek, Belgium

peter.quax@uhasselt.be

ABSTRACT
Many application providers are currently moving their back-
end infrastructure to centralized data centers instead of host-
ing their own servers. Typically, the IaaS cloud model is
most suitable for this type of application, as it provides cus-
tomers with virtualized hardware that can be utilized as
desired, not hindered by platform restrictions or platform-
specific programming languages. A similar construct is not
yet very prevalent in the MMO community, although some
solutions are slowly appearing in the market. In this short
description to go along with a poster presentation, some
findings of ongoing research projects on these topics are
highlighted, including a discussion of metrics that are rel-
evant for successful MMO deployment and a preview of
benchmark results obtained on a commercially available IaaS
cloud infrastructure. Some of the most important pitfalls
associated with the cloud revolution are also identified and
discussed. More detailed information and benchmarks are
made freely available on the project website mentioned at
the end of this paper.

Categories and Subject Descriptors
[Information Systems]: [Information Systems Applica-
tions, Multimedia Information Systems]

General Terms
Design, Experimentation

Keywords
Massive Multiplayer On-Line Games, Scalability, Cloud

1. INTRODUCTION AND RELATED WORK
The so-called ‘cloud revolution’ is omni-present and nearly

all major software companies are offering products based on
remotely hosted servers. Many times, this comes in the form
of PaaS offerings, where software is specifically developed to
take the burden of scalability and redundancy of the under-
lying infrastructure away from application design. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
MMVE’14 March 19-21 2014, Singapore, Singapore
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2708-4/14/03 ...$15.00.
http://dx.doi.org/10.1145/2577387.2577393.

this type of cloud provisioning comes at a price and often
entails the development (from scratch) of software specific
to a cloud provider. Few game developers are adopting this
model for commercial offerings. Using IaaS as a model more
closely resembles the ‘traditional’ setup of a hosted data cen-
ter, where a standard OS is run on a virtualization platform.
The obvious benefit to the application developer/publisher
is that existing solutions can easily be migrated to these
platforms; however scalability needs to be taken care of in
the application design. Popular offerings include Amazon’s
Elastic Compute Cloud (EC2), Google’s Compute Engine
and Rackspace. A dynamic server infrastructure like this
seems – at first sight – specifically suitable for the deploy-
ment of MMOs that have an audience that is only active
during certain times of day (e.g. for children).

This paper considers a specific subset of MMO games:
those that rely on a number of small virtual worlds – com-
posed of a limited set of regions – that are all instances
(shards) of the same basic template. In contrast to vast
and continuously growing spaces with user generated con-
tent (cf. Second Life), these smaller worlds allows for easier
coupling of world instances to the virtualized (cloud) infras-
tructure. Also, inter-server communication is reduced to a
minimum. This model is typically applied by smaller game
developers/publishers because it requires lower investments
in game content creation and is currently also commercial-
ized (on a small scale) on cloud platforms - e.g. FarmVille
servers run on Amazon EC2. Typically, software develop-
ers that create back-end solutions require a specific cloud
provider to be utilized. This results in a loss of flexibility
on the part of the game publisher as switching providers is
no longer easily accomplished. Examples of these include
HeroCloud and PhotonCloud.

2. THE OMEGA BACK-END ARCHITEC-
TURE

A custom MMO back-end was designed with the above-
mentioned ideas in mind, referred to as the Omega back-
end. It includes multiple server types that can be logically
spread over multiple cloud server instances. As pictured
in figure ??, a master server is responsible for distributing
clients over all running (game) server processes. Each game
server is responsible for handling client updates associated
with a certain region in a specific instance of the virtual
world. For the initial design, Amazon’s EC2 service was
chosen as a reference model. Within each instance, a starter
process is responsible for keeping track of the running game
server processes within the instance. Note that the number
of these processes may vary according to the actual load and
the capacity of the cloud instance type chosen. Although the

Figure 1: The Omega back-end architecture

initial connection setup for a client entails the establishment
of a channel to a game server through the other server types,
further data is exchanged directly.

Also specific to the Omega back-end is that it provides
an abstraction layer for the APIs of the various underlying
service platforms. As such, it is possible to quickly exchange
the underlying cloud service provider based on varying con-
ditions and payment models. It also provides for easy in-
tegration of timing routines, essential for benchmarking the
solution on various setups (described in the next section).

3. BENCHMARKING

Figure 2: Benchmark
results (left: startup duration; right: client migration time

Scalability is one of the main reasons behind the migration
towards a cloud model. Therefore, a first important metric
to benchmark is the time it takes for an additional (cloud)
instance to become ready to support new users through its
server processes. Relevant questions posed here are : “is
there a drawback to launching multiple instances at the same
time (burst)?” and “is the startup delay influenced by the
time of day at which we demand more instances ?”. It turns
out from benchmarking (which took place over several days
and runs) that the first question can be answered negatively,
as the variation in startup times between tests with sequen-
tial and burst-style instance startup scheduling turned out
to be insignificant. The assumption in the second question
can be confirmed, as some afternoon tests returned shorter
startup durations versus morning conditions (figure ?? left).
However, this result should not be interpreted in absolute
terms, but is rather meant as an indication that performance
is likely to vary over time. Overall, startup times (including
provisioning and actually booting the instance until ready)
are between 3 and 4 minutes.

A second important metric to consider is the time it takes
for a client to migrate between game servers (i.e. logging
out, finding the new server to connect to and logging in
again, no explicit state transfer). This is essential for effi-
cient cloud-based hosting. Tests here included a compari-

son of migration times on EC2 versus Apache CloudStack
(a private and open source cloud solution) and an inves-
tigation into differences between data centers of the same
provider. Although the timings (including Unity3D scene
loading) were higher for EC2 when compared to CloudStack,
there turned out to be no significant difference between the
private and public solutions (figure ?? right) - taking into
account the inevitable additional network delay. Overall,
these handover times are in the order of 1-2 seconds, which
is acceptable given the type of game supported (using multi-
ple regions and instances). A game developer can easily hide
these through clever level and gameplay design (e.g. perform
handovers when the user is teleporting or moving through a
dark tunnel, as is often done in commercial MMOGs).

A third metric is associated with the instance type and
cost model of the cloud provider. To establish whether a
more expensive instance also translates into increased per-
formance, real-life benchmarks were run on some of the var-
ious EC2 instance types. It turns out that there is no 1:1
mapping of the cost of the instance type to an in/decrease in
CPU performance. A trend for more capacity with higher-
priced instance types is clear however. Regarding I/O per-
formance, there turns out to be little difference between
some instance types; however it is very likely that the per-
formance over time is more stable in the more expensive
offerings. In terms of network performance, internal net-
work capacity is increased dramatically for more expensive
offerings, but the same is not true for external connectivity,
with a significant decrease between the cheapest offerings,
but not for the more expensive propositions. External con-
nectivity metrics (delay and packet loss) remain relatively
stable over time.

4. PITFALLS
Some conclusions can be drawn on possible pitfalls of mov-

ing the infrastructure to a cloud provider. First, this type of
migration does not entail a cost reduction per se, but rather
depends on the game designer including a mechanism to
shut down instances as soon as they are no longer required.
In case instances are left running idle, they cost at least as
much as a dedicated (hosted) solution and all benefits are
lost. This also illustrates why the timings associated with
client migration are so important : without a means to effi-
ciently concentrate users on the smallest number of servers
possible, costs will easily grow out of control.

Secondly, there are some practical limitations in current
cloud provider offerings that increase the complexity. Vir-
tual machines often cannot be suspended (for later resum-
ing) without incurring penalties in terms of storage cost.
Therefore, the most economical solution is to completely
shut down (terminate) instances and reboot (create) them
when needed, cf the first metric.

While cloud providers typically consider CPU power to
be the most relevant commodity, bandwidth should not be
underestimated as a factor in the total cost. Especially if
inter-instance communication is required, it is beneficial to
consider a provider that offers this communication for free
or at a low cost. By using an the abstraction of cloud vendor
specific APIs provided by the Omega architecture, switching
between providers based on their (changing) pricing models
becomes an option.

5. ACKNOWLEDGMENTS
These results are part of the IWT PIM Omega and iMinds

MIX Wanagogo projects (http://www.omega-project.be).

