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Abstract

Background: There is evidence that altered DNA methylation is an important epigenetic mechanism in prenatal
programming and that developmental periods are sensitive to environmental stressors. We hypothesized that
exposure to fine particles (PM2.5) during pregnancy could influence DNA methylation patterns of the placenta.

Methods: In the ENVIRONAGE birth cohort, levels of 5’-methyl-deoxycytidine (5-mdC) and deoxycytidine (dC) were
quantified in placental DNA from 240 newborns. Multiple regression models were used to study placental global
DNA methylation and in utero exposure to PM2.5 over various time windows during pregnancy.

Results: PM2.5 exposure during pregnancy averaged (25th-75th percentile) 17.4 (15.4-19.3) μg/m3. Placental global
DNA methylation was inversely associated with PM2.5 exposures during whole pregnancy and relatively decreased
by 2.19% (95% confidence interval [CI]: -3.65, -0.73%, p = 0.004) for each 5 μg/m3 increase in exposure to PM2.5. In a
multi-lag model in which all three trimester exposures were fitted as independent variables in the same regression
model, only exposure to PM2.5 during trimester 1 was significantly associated with lower global DNA methylation
(−2.13% per 5 μg/m3 increase, 95% CI: -3.71, -0.54%, p = 0.009). When we analyzed shorter time windows of
exposure within trimester 1, we observed a lower placental DNA methylation at birth during all implantation stages
but exposure during the implantation range (6-21d) was strongest associated (−1.08% per 5 μg/m3 increase, 95%
CI: -1.80, -0.36%, p = 0.004).

Conclusions: We observed a lower degree of placental global DNA methylation in association with exposure to
particulate air pollution in early pregnancy, including the critical stages of implantation. Future studies should
elucidate genome-wide and gene-specific methylation patterns in placental tissue that could link particulate
exposure during in utero life and early epigenetic modulations.

Keywords: Fetal development, DNA methylation, Particulate matter, Placental tissue
Background
The human placenta forms the interface between
fetal and maternal circulation and plays a critical role
in the regulation of fetal growth and development through
controlled nutrient supply. Fetal adaptations and develop-
mental plasticity arising from perturbations in utero-
placental exchange to meet fetal requirements “program”
the fetus for an increased risk of developing cardiovascular
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disease and diabetes in adult life [1,2]. Epigenetic modifi-
cations, described as heritable changes in genes function
that cannot be not be explained by changes in the under-
lying DNA sequence, are believed to play an essential
role in this process. With exception of imprinted genes,
all DNA methylation patterns are established during
embryogenesis, and play an important role in gene
regulation which could comprise a biologically plaus-
ible link between in utero exposures and disease risks
during adulthood [3].
Several studies support evidence of detrimental effects

of particulate matter (PM) on the health outcomes of
fetuses [4,5], neonates [6,7] and is later in life associated
with cardiovascular morbidity and mortality [8-10]. DNA
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Table 1 Characteristics of mother-newborn pairs (n = 240)

Characteristics Mean ± SD or range and
number (%)

Maternal

Age, y 29.1 (18–42)

Pre-gestational BMI, kg/m2 24.4 ± 4.5

Net weight gain, kg 14.6 ± 6.4

Maternal education

Low 30 (12.5%)

Middle 84 (35.0%)

High 126 (52.5%)

Smoking

Never-smoker 162 (67.6%)

Past-smoker 39 (16.2%)

Smoker 39 (16.2%)

Acetaminophen

No 136 (56.7%)

Yes 104 (43.3%)

Alcohola

No 194 (82.5%)

Yes 41 (17.5%)

Parity

1 128 (53.3%)

2 88 (36.7%)

≥ 3 24 (10.0%)

Apparent temperature, °C

Trimester 1 9.4 ± 6.0

Trimester 2 8.3 ± 6.2

Trimester 3 8.6 ± 5.9

Newborn

Newborn’s gender

Male 110 (45.8%)

Female 130 (54.2%)

Ethnicityb

European 206 (86.5%)

Non-European 32 (13.5%)

Gestational age, w 39.2 (35–42)

Seasonc

Fall 56 (23.3%)

Winter 60 (25.0%)

Spring 51 (21.3%)

Summer 73 (30.4%)

Apgar score after 5 min

7 2 (0.8%)

8 11 (4.6%)

9 74 (30.8%)

Table 1 Characteristics of mother-newborn pairs (n = 240)
(Continued)

10 153 (63.8%)

Birth weight, g 3400.8 ± 422.3

Birth length, cm 50.2 ± 1.9

Placental global DNA methylation, % 4.6 ± 0.4
aData available for 235 and b238 subjects.
cSeason determined for date of conception.
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methylation is, besides histone modification and non-
coding RNAs, a well-characterized epigenetic modifica-
tion that may provide an attractive mechanism linking
particulate air pollution in early life and health conse-
quences in adulthood [11]. Indeed, data from the Dutch
Hunger Winter (1944–45) indicate that prenatal envir-
onmental conditions can cause epigenetic changes in
humans that persist throughout life [12]. In addition
to these observational data, animal studies showed that
certain transient environmental influences during in
utero life could produce persistent changes in epigen-
etic marks that have life-long consequences [13,14].
Alterations in DNA methylation patterns are medi-

ated by several factors and have been associated with
many different health outcomes [15]. Evidence from
animal and human studies in adults indicate that
particulate air pollution may affect global and gene-
specific methylation [16-19]. A number of studies [20-22]
describe DNA methylation patterns in placental tissue
but the association between particulate air pollution
and DNA methylation in placental tissue has never
been investigated.
Within the ENVIRONAGE birth cohort, we deter-

mined whether exposure to ambient particulate matter
(PM2.5) during different periods of prenatal life is associ-
ated with differences in global DNA methylation of
placental tissue at birth.

Results
Characteristics and exposure levels of the study
population
The study included 240 mother-newborn pairs (mean ma-
ternal age, 29.1 yr; range, 18–42 yr). Demographic and pre-
natal lifestyle factors are reported in Table 1. Briefly, mean
(± SD) pre-gestational BMI of the participating mothers
was 24.4 (± 4.5) kg/m2. 39 mothers (16.2%) reported to
have smoked during pregnancy and smoked a mean num-
ber of 7.2 (± 4.2) cigarettes per day. Most women (67.6%,
n = 162) never smoked cigarettes. More than 50% of the
mothers were high educated. The newborn population,
including 130 girls (54.2%), had a mean gestational
age of 39.2 weeks (range, 35–42), 96.2% were term born
infants and included a vast majority of primiparous (53.3%,
n = 128) or secundiparous (36.7%, n = 88) newborns.



Table 3 Predictors of placental global methylation in
mother-newborn pairs (n = 240)

Variables β SE p-value

Maternal characteristics

Age, y 0.0005 0.005 0.93

Pre-gestational BMI, kg/m2 0.002 0.005 0.68

Net weight gain, kg 0.002 0.004 0.54

Maternal education

Low Ref -

Middle −0.071 0.081 0.38

High −0.076 0.077 0.33

Smoking

Never-smoker Ref -

Past-smoker −0.133 0.067 0.05

Smoker −0.102 0.068 0.13

Acetaminophen

No Ref -

Yes 0.129 0.049 0.009

Alcohola

No Ref -

Yes −0.036 0.065 0.58

Parity

1 Ref -

2 0.054 0.053 0.31

≥ 3 0.074 0.085 0.38

Newborn characteristics

Newborn’s gender

Male Ref -

Female −0.108 0.049 0.03

Ethnicityb

European Ref -

Non-European −0.020 0.074 0.78

Gestational age, w 0.028 0.019 0.15

Birth weight, g 0.0001 0.00006 0.06

Birth length, cm 0.026 0.013 0.05
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Table 2 presents the mean outdoor exposure to PM2.5

averaged for the implantation windows and for each of
the three trimesters of pregnancy. Average (25th-75th per-
centile) trimester-specific PM2.5 exposure was 16.7 (12.3-
20.0) μg/m3 for the first trimester, 17.4 (12.0-22.1) μg/m3

for the second trimester, 18.2 (12.8-22.9) μg/m3 for the
third trimester and 17.4 (15.4-19.3) μg/m3 for the whole
pregnancy. Nitrogen dioxide (NO2) and maximum 8-hour
average ozone (O3) for the specific exposure windows are
presented in Additional file 1: Table S1.

Predictors and correlates of placental global DNA
methylation
Mean (± SD) global DNA methylation levels of placental
tissue was 4.6% (± 0.4). First, we identified potential pre-
dictors of global DNA methylation levels in placental tis-
sue and/or factors that may confound the association
between methylation levels and PM2.5 exposure (Table 3).
Placental global DNA methylation was lower in girls
as compared with boys (β = −0.108 ± 0.049, p = 0.03)
and was lower in past-smokers [n = 39] (β = −0.133 ±
0.067, p = 0.05) and smokers [n = 39] (β = −0.102 ±
0.068, p = 0.13) as compared with never-smokers [n = 162]
(Reference). Placental methylation levels correlated posi-
tively with intake of acetaminophen during pregnancy
(β = 0.129 ± 0.049, p = 0.009). Placental methylation levels
correlated with season at conception; the levels were
highest in spring (β = 0.351 ± 0.070, p < 0.0001) and lowest
in fall (Reference). In addition, placental methylation levels
correlated with apparent temperature averaged over
the first trimester (β = 0.019 ± 0.004, p < 0.0001), second
trimester (β = 0.006 ± 0.004, p = 0.15) and third trimester
(β = −0.021 ± 0.004, p < 0.0001).

Placental DNA methylation at birth in association with
PM2.5 exposure
Although maternal age, maternal education, gestational
age and parity were not significantly associated with global
DNA methylation, we forced these variables into the mul-
tiple regression models, together with newborn’s gender,
Time related characteristics

Seasonc

Fall Ref -

Winter 0.096 0.067 0.15

Spring 0.351 0.070 < 0.0001

Summer 0.097 0.065 0.14

Apparent temperature, °C

Trimester 1 0.019 0.004 < 0.0001

Trimester 2 0.006 0.004 0.15

Trimester 3 −0.021 0.004 < 0.0001

β-estimate is an absolute change in percentage of global DNA methylation.
aData available for 235 and b238 subjects.
cSeason determined for date of conception.

Table 2 Exposure characteristics (n = 240)

PM2.5, μg/m
3 Mean SD 25th

percentile
75th

percentile

Pre-implantation (1-5d) 16.9 11.0 10.4 19.3

Implantation (6-12d) 16.9 9.8 10.1 20.1

Implantation range (6-21d) 16.7 8.1 11.3 20.4

Post-implantation (22-28d) 17.3 10.4 10.1 20.4

Trimester 1 (1-13w) 16.7 5.9 12.3 20.0

Trimester 2 (14-26w) 17.4 6.2 12.0 22.1

Trimester 3 (27w-delivery) 18.2 6.3 12.8 22.9

Whole pregnancy 17.4 3.6 15.4 19.3
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smoking status, prenatal acetaminophen use, season at
conception and trimester-specific apparent temperature.
Both before (Figure 1A-C) and after adjustment (Figure 2)
for the aforementioned variables, placental global DNA
methylation was inversely associated with PM2.5 exposures
during the whole pregnancy, which was mainly driven
by the exposures during the first trimester. Because
the inter-quartile range of the PM2.5 exposure of the
different exposure windows differed only slightly, the
reported effect estimates over the different periods
were not explained by differences in the window spe-
cific distribution of PM2.5. Overall, placental methyla-
tion relatively decreased by 2.19% (95% confidence
interval [CI]: -3.65, -0.73%, p = 0.004) for each 5 μg/m3

increase in exposure to PM2.5. Looking into different
exposure windows during pregnancy showed signifi-
cantly and inverse associations between global DNA
methylation at birth with exposures during first trimester
(−2.41% per 5 μg/m3 increase, 95% CI: -3.62, -1.20%,
p = 0.0001) and second trimester (−1.51% per 5 μg/m3 in-
crease, 95% CI: -2.66, -0.36%, p = 0.01), while no significant
association was observed with PM2.5 exposure of the third
trimester (−0.45% per 5 μg/m3 increase, 95% CI: -1.72,
0.82%, p = 0.49). Further, we ran an additional model in
which time-specific exposure windows for PM2.5 were
combined with time-specific maximum 8-hour average O3

and NO2 (Figure 2). This did not alter our previous
reported findings on PM2.5 (effect-size for global methy-
lation relatively decreased by 2.52%, 95% CI: -4.27, -0.76,
p = 0.005 for each 5 μg/m3 increase in PM2.5 of tri-
mester 1). Next, we built a multi-lag model in which
all the three trimester exposures were fitted as independent
Figure 1 Bivariate analysis of placental global DNA methylation in assoc
PM2.5 exposures (μg/m3) are presented with spearman correlation coefficients
association between average PM2.5 concentrations and placental global DNA m
periods was estimated using restricted cubic splines with 5 knots located at th
variables in the same regression model (Table 4). Only ex-
posure to PM2.5 during trimester 1 remained significantly
associated with a relative decrease of 2.13% per 5 μg/m3 in-
crease (95% CI: -3.71, -0.54%, p = 0.009) in global DNA
methylation of placental tissue.
Within trimester 1, we analyzed shorter time windows

specifically drawn to target the critical stages of DNA
methylation. We observed a decrease of placental global
DNA methylation with PM2.5 exposure during all the im-
plantation stages (Figure 2) but exposure during the im-
plantation range (6-21d) was strongest associated with
placental global DNAmethylation at birth (−1.08% per 5 μg/
m3 increase, 95% CI: -1.80, -0.36%, p = 0.004). The associ-
ation between placental global DNA methylation and PM2.5

exposure from the post-implantation window onwards
weakens compared with the implantation exposure win-
dows (−0.59% per 5 μg/m3 increase, 95% CI: -1.17, -0.005%,
p = 0.05) and appeared not significant after additional ad-
justment for the corresponding NO2 and maximum 8-hour
average O3 exposure period (−0.58% per 5 μg/m3 increase,
95% CI: -1.34, 0.18%, p = 0.14). Studying all different weeks
of trimester 1 (week 1–13), we found in addition to the im-
plantation period (Figure 2), a significant inverse association
between PM2.5 residential exposure estimates for only week
7 adjusted for NO2 and maximum 8-hour average O3 and
placental global DNA methylation (−1.03% per 5 μg/m3

increase CI: -1.68, -0.38%, p = 0.002).
Sensitivity analysis
Variation in method of delivery can affect release of
stress hormones that may influence methylation [21].
iation with prenatal exposure to fine particulate air pollution (PM2.5).
for the whole pregnancy (A) and first trimester (B). In panel C, the
ethylation is given. The effect of the average concentrations over 91 days

e 5th, 25th, 50th, 75th and 95th percentiles.



Figure 2 Relative difference in global DNA methylation of placental tissue in association with in utero exposure to particulate air
pollution (PM2.5) during various time windows (n = 240). The effect size is a relative difference (95% CI) in mean placental global DNA
methylation for each 5 μg/m3 increase of PM2.5 exposure (μg/m3). Model 1 (●) is adjusted for newborn’s gender, maternal age, gestational age,
parity, maternal education, smoking status, prenatal acetaminophen use, season at conception and trimester-specific apparent temperature.
Model 2 (■) is additionally adjusted for the corresponding NO2 and maximum 8-hour average O3 exposure.
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Restricting our analysis to only vaginal partus (excluding
9 caesarean deliveries) did not alter the observed
effects for any exposure window. Models in which we
replaced the classification of smoking (never-smokers/
past-smokers/smokers) by either never-smoker/smoker,
pack years or amount of cigarettes during pregnancy
showed comparative results. Since the weeks after con-
ception might be particularly critical for DNA methyla-
tion, we also evaluated the effect of tobacco smoke on
methylation levels of mothers who stopped smoking
upon learning of being pregnant but no difference
in methylation level was seen (n = 11, p = 0.28). Finally,
we did not observe effect-modification by newborn’s
gender (p > 0.22) and birth weight (p > 0.37) on the
association between global DNA methylation and
PM2.5 during the different exposure windows. We also
Table 4 Relative difference in global DNA methylation in
placental tissue in association with in utero exposure to
particulate air pollution (PM2.5) (n = 240)

Multi-lag model, PM2.5
a, b Relative

difference
95% CI p-value

Trimester 1 (1-13w) −2.13% −3.71 to −0.54% 0.009

Trimester 2 (14-26w) −0.43% −1.84 to 0.98% 0.55

Trimester 3 (27w-delivery) 0.74% −0.85 to 2.33% 0.36
aAll the three trimester exposures were fitted as independent variables in the
same regression model. The effect size is a relative difference (95% CI) in
mean placental global DNA methylation for each 5 μg/m3 increase of PM2.5

exposure (μg/m3).
bAdjusted for newborn’s gender, maternal age, gestational age, parity,
maternal education, smoking status, prenatal acetaminophen use, season at
conception and trimester-specific apparent temperature.
did not observe effect-modification by trimester-
specific apparent temperature on the placental DNA
methylation and PM2.5 exposure during trimester 1
(interaction term p ≥ 0.19).

Discussion
The placenta plays a pivotal role in nutrient transfer,
growth, and organ development of the embryo. Epigen-
etic modification may provide a plausible link between
particulate air pollution and alteration in gene expres-
sion that might lead to disease phenotypes related to
fetal programming. The key finding of our study is that
exposure to particulate air pollution from fertilization
up to and including embryo implantation was associated
with lower global DNA methylation levels in placental tis-
sue at birth. This observation persisted after adjustment for
newborn’s gender, maternal age, gestational age, parity,
smoking, maternal education, prenatal exposure to acet-
aminophen, season at conception, trimester-specific appar-
ent temperature or any other covariate studied.
DNA methylation patterns are established in two devel-

opmental periods (germ cells and early embryos) and are
likely needed to generate cells with a broad developmental
potential and correct initiation of embryonic gene expres-
sion [23]. In this regard, epigenetic reprogramming of
imprinted genes in germ cells and early embryos appear
to be particularly important for the regulation of embry-
onic growth and placental development [24]. It has been
hypothesized that regulation of imprinted gene expression
is less stable in the placenta than in the fetus itself which
may aid the placenta in adapting to changing physiological
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conditions [25,26]. This leads to speculation that perturba-
tions in DNA methylation patterns or sporadic loss-of-im-
printing in the early stages of development lie at the basis
of altered gene expression and contribute to abnormal
placental or fetal development [25]. Indeed, research sug-
gests that transplacental exposure to environmental toxi-
cants during critical developmental periods lead to disease
pathogenesis in later life [12,14,27,28]. Both in animal and
human cells, there is direct evidence for the role of
hypomethylation for inducing genomic and chromosomal
instability [29-31].
The sensitivity of the epigenetic system to environ-

mental factors occurs primarily during the period of de-
velopmental plasticity because this is the time when
epigenetic marks undergo critical modifications [32]. After
fertilization and prior to implantation, DNA methylation
patterns are largely erased but are reestablished by de novo
DNA methyltransferases (DNMTs) in the blastocyst stage
[33]. The placenta develops from the outer layer of the
blastocyst upon implantation into the maternal endomet-
rium [34]. Our results show that exposure to particulate air
pollution during the implantation window is associated
with the methylation profile of placental tissue. The finding
of lower methylation levels from the beginning of placental
formation is of critical interest in development considering
that disturbance of maintenance DNA methylation in pla-
cental tissue is associated with abnormal embryonic devel-
opment in the mouse model [35] and genetic inactivation
of DNMTs is lethal to developing mouse embryos [36]. Ex-
perimental evidence showed that oxidative DNA damage
could interfere with the capability of methyltransferases to
interact with DNA resulting in lower methylation of cyto-
sine residues at CpG sites [37]. Since trophoblast differ-
entiation is most important early in pregnancy when the
placenta is initially being constructed [38] and maternal
air pollution exposure may influence markers of placental
growth and function [39], it could well be that altered
global DNA methylation during early pregnancy influ-
ences placental development. Maternal tobacco smoke, a
personalized form of air pollution, has shown to alter pla-
cental methylation levels [22,40] and underlie changes to
placental function that may lead to altered fetal develop-
ment and programming [22] or pregnancy pathologies
such as impaired fetal growth [41] and preterm delivery
[42,43]. Our relative estimates of lower global DNA
methylation levels for an increase of 5 μg/m3 in the first
trimester is associated with a decrease of 2.13% (p = 0.009)
in global DNA methylation, compared with −2.17% (p =
0.13) in active smokers and −2.84% (p = 0.05) in past
smokers. Our observations in smokers are much smaller
compared with the estimates in cord blood assessed by
ELISA in the study of Guerrero-Preston and colleagues
showing a −48.5% (p < 0.01) lower global DNA methylation
among newborns with smoking mothers compared with
their nonsmoking counterparts [44]. However, differ-
ences in tissue and techniques make direct compari-
son of methylation status difficult. The mechanisms
of air pollution-induced health effects involve oxidative
stress and inflammation [45,46]. The associations we ob-
served in our current study may be part of the systemic
consequences of induced inflammatory conditions both in
mother lungs as well as in placental tissue. An alternative
hypothesis is that inhaled particles may translocate directly
from the lung into the blood stream where these fine parti-
cles induce oxidative stress in blood cells and potentially in
placental tissue [47,48].
Although this is the first study investigating the effect

of PM2.5 on DNA methylation in early life, several other
studies have examined the role of environmental factors
on DNA methylation levels in adults. Baccarelli and col-
leagues showed that blood DNA methylation in the
LINE-1 repetitive element was decreased in elderly indi-
viduals of the Normative Aging Study with recent expos-
ure to higher levels of traffic particles including PM2.5,
whereas no association was observed between methyla-
tion of the Alu repetitive element and particle levels [18].
Another study within the same elderly cohort found that
prolonged exposure to black carbon and sulfate particles
is associated with hypomethylation of Alu and LINE-1 in
leukocytes respectively [17]. Besides surrogate markers of
global DNA methylation, several studies also report asso-
ciations of gene-specific DNA methylation in leukocytes
and exposure to airborne polycyclic aromatic hydrocar-
bons and PM [19,27]. In contrast to particulate exposure,
arsenic was positively associated with DNA methylation
in LINE-1 repeated element in both maternal and fetal
leukocytes [49].
A first limitation of this study is that placental tis-

sue is composed of a complex population of cells
(syncytiotrophoblasts/cytotrophoblasts, mesenchymal cells,
Hofbauer cells, fibroblasts). Also maternal blood is a major
constituent of placental tissue which makes that this organ
shows high variability in overall DNA methylation com-
pared to other tissues [26]. However, within-placenta
variability for several genes showed generally less sample-
to-sample variation for DNA methylation than gene ex-
pression levels and different placental sites and depths
show consistent methylation patterns [21,50]. In our study,
the coefficient of variation of global methylation between
sample spots from different quadrants of the placenta was
4.5% with an intraclass correlation coefficient (ICC) of
0.25. To minimize the impact of regional differences in
methylation patterns within a mother’s placenta, we stan-
dardized our method and chose one spot. Most of the
methylation variation is not due to sample location but ra-
ther cell composition differences between samples. Hetero-
geneity in cell types in placental tissue may also contribute
to inter-individual variation [34]. Global methylation status
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measured by quantifying 5-mdC and dC using ultra-
pressure liquid chromatography in combination with tan-
dem mass spectrometry, gives a good estimate of global
methylation because it averages total methylation of all cell
types. Although most genes present in the two main cell
types of the placenta (cytotrophoblasts and fibroblasts) ex-
hibit similar promoter methylation patterns, some specific
genes show differential promoter methylation [51]. Methy-
lation status of placental villi reflects mainly the profile of
the cytotropoblast cells. We did not observe any obvious
differences in the histology or cell type composition be-
tween the fetal samples taken at four standardized sites
across the middle region of the placenta (approximately
4 cm away from the umbilical cord) nor between placen-
tas. Regardless of the limitations, the placenta can be
used as a proxy for methylation changes in the fetus as it is
derived from the outer layer of the blastocyst. The organ
has a great plasticity to a range of intrauterine conditions/
exposures and the question remains if the fetus is affected
in a direct manner or indirectly by adaptations in its func-
tion. Variables interfering with placental integrity may pre-
dispose to placenta-related gestational complications such
as preeclampsia, fetal growth restriction and abruption
[52]. Fetuses adapt their mitochondrial structure and me-
tabolism when the supply of nutrients is limited. Changes
in mitochondrial DNA content, may represent a biological
effect along the path linking air pollution to effects on the
unborn. Recently we showed that mitochondrial DNA con-
tent in placental tissue, but not cord blood, was influenced
by PM10 exposure during the last trimester of pregnancy.
The effects of these molecular changes must be further
elucidated [53]. Secondly, although our results were con-
sistent after multiple adjustments, we cannot exclude the
possibility of residual confounding by some unknown fac-
tor that is associated with both placental methylation levels
and ambient air pollution. Ambient exposure does not ac-
count for indoor exposure, but we obtained information
on environmental tobacco smoke. Season and apparent
temperature were taken into account as epigenetic adaptive
changes to season have been reported in aquatic species
[54]. We found the highest methylation levels in placental
tissue for conceptions at spring and the lowest in fall,
which corresponds with observations in blood from adults
by Baccarelli and colleagues [18]. Thirdly, the resolution of
our interpolation model (4 x 4 km) may not represent per-
fect PM2.5 exposure at the individual level, however our
exposure model has good validation statistics with an
explained variance higher than 80% [55] and also valid-
ation regarding to personal exposure by measuring car-
bon load in lung macrophages [56]. Our study was not
designed to evaluate temporal changes of DNA methyla-
tion during pregnancy and may be hampered by the fact
that assays of term placentas may not reflect in vivo
methylation patterns occurring earlier at critical points of
development. Nevertheless, our associations were robust
and strong in the context of environmental epidemiology.
Generally, two approaches can be performed to analyze

DNA methylation, either gene-specific or global analysis.
In our study, we chose to measure global DNA methyla-
tion instead of surrogate markers of global DNA methy-
lation. Gene-specific assays are crucial for integrating
information about DNA methylation patterns with gene
expression at promoter level but do not provide a global
picture of DNA methylation changes within the genome
[57]. Genome-wide methylation assays and gene expres-
sion analysis are needed to complement our findings of
lower global methylation levels. For example, investigating
DNMTs should give more insight into possible mecha-
nisms that control epigenetic programming and thus
placental development. Additional studies should also elu-
cidate gene-specific methylation patterns since there is
evidence that altered DNA methylation at the human H19/
IGF2 imprinting control region [25], genes such as TIMP3
[58] and disruption of imprinted genes in mouse models
may be associated with abnormal placental outcomes and
fetal development [59]. Our findings give mechanistic
plausibility to the hypothesis that air pollution is linked
to fetal programming. Indeed, there is an increasing
awareness that the placenta responds to and modulates
perturbations in the maternal environment, thereby playing
a key role in transmitting the programming stimuli to the
fetus [60].
The current study was performed in an European

hotspot regarding particulate air pollution [61] with 33 days
in 2011 exceeding the European legislation of 50 μg/m3.
Thanks to legislation, levels of urban air pollution have
generally decreased over the course of the latter half of the
20th century in the United States and Western Europe.
However, no such trend has taken place in many cities and
megacities of developing countries.

Conclusions
We observed a lower degree of placental global DNA
methylation in association with exposure to particulate air
pollution during early pregnancy. More specifically, expos-
ure from fertilization up to and including implantation, a
critical period for methylation reprogramming, was a
highly sensitive window for PM2.5 exposure on placental
DNA methylation at birth. There is need to further investi-
gate how environmental conditions such as particulate air
pollution affect gene-specific DNA methylation and gene
expression patterns during fetal development.

Methods
Study population and data collection
The Ethics Committee of Hasselt University and South-
East-Limburg Hospital approved the protocol of the
ENVIRONAGE birth cohort study [53]. Between Friday
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1200 hours and Monday 0700 hours from 5 February
2010 until 21 January 2012, we recruited 258 mother-
infant pairs (only singletons) in the South-East-Limburg
Hospital in Belgium. The catchment area of the hospital
includes the province Limburg in Belgium and combines
both urban and suburban to rural areas with population
densities between the municipalities ranging from 82 to
743 inhabitants/km2.
The placenta could not be collected from six new-

borns, DNA yield was insufficient for ten placentas and
two newborns had missing data for PM2.5 exposure. We
ended with a final sample size of 240 newborns. The
only inclusion criterion was that mothers had to be able
to fill out questionnaires in Dutch. Enrollment was
spread equally over all seasons of the year. The overall
participation rate of eligible mothers was 56%. Partici-
pating mothers provided written informed consent when
they arrived at the hospital for delivery, and completed
study questionnaires in the postnatal ward after delivery
to provide detailed information on age, pre-gestational
body mass index (BMI), maternal education, occupation,
smoking status, alcohol consumption, place of residence,
use of medication, parity and newborn’s ethnicity. Maternal
education was coded as low (no diploma or primary
school), middle (high school) or high (college or university
degree). Past-smokers were defined as those who had quit
before pregnancy and smokers as having smoked before
and during pregnancy.
Samples of placental tissue were collected immediately

after delivery, along with perinatal parameters such as
newborn’s gender, birth date, birth weight and length,
gestational age (range, 35–42 weeks), Apgar score, and
ultrasonographic data. All neonates were assessed for
congenital anomalies immediately after birth and were
considered healthy with an Apgar score after 5 min ran-
ging between 7 and 10. No neonate was delivered in the
Neonatal Intensive Care Unit. The ENVIRONAGE birth
cohort generally consists of mothers with normal pregnan-
cies without complications and with healthy neonates.

Sample collection
Placentas were obtained from 252 mothers and deep-
frozen within 10 minutes after delivery. Afterwards, we
thawed placentas to take tissue samples (each biopsy was
approximately 1 to 2 cm3) for DNA extraction following a
standardized protocol as described by Adibi et al. [62].
Briefly, villous tissue, protected by the chorio-amniotic
membrane, was biopsied from the fetal side of the placenta
and preserved at −80°C. We assessed within-placenta vari-
ability in a random subset of seven placentas by comparing
biopsies taken at four standardized sites across the middle
region of the placenta, approximately 4 cm away from the
umbilical cord. The first biopsy was taken to the right of
the main artery and the three other biopsies in the
remaining quadrants of the placenta. Methylation levels
within each placenta varied by a mean of 4.5% (CV) across
the quadrants (ICC = 0.25). To minimize the impact of
within-placental variability, biopsies were all taken 1–
1.5 cm below the chorio-amniotic membrane at a fixed
location by using a device to orientate the fetal side of
the placenta in relation to the umbilical cord. Care was
taken by visual examination and dissection to avoid the
chorio-amniotic membrane contamination.

Exposure estimates
We interpolated the regional background levels of PM2.5

for each mother’s residential address using a spatial tem-
poral interpolation method (Kriging) that uses land cover
data obtained from satellite images (Corine land cover data
set) in combination with monitoring stations (n = 34)
[55,56,63]. This model provides interpolated PM2.5 values
from the Belgian telemetric air quality networks in 4 × 4
km grids. Based on 34 different locations, validation statis-
tics of the interpolation tool gave a temporal explained
variance (R2) for hourly averages PM2.5 > 0.80 and a spatial
R2 for annual mean PM2.5 > 0.80 [55]. To explore poten-
tially critical exposures during pregnancy, individual mean
PM2.5 concentrations (micrograms per cubic meter)
were calculated for various periods, for which the date
of conception was estimated based on ultrasound data:
each of the three trimesters of pregnancy, with trimesters
being defined as: 1–13 weeks (trimester 1), 14–26 weeks
(trimester 2) and 27 weeks to delivery (trimester 3); and
early pregnancy stages, with windows being defined as:
1–5 days (pre-implantation), 6–12 days (implantation),
6–21 days (implantation range) and 22–28 days (post-
implantation week 4). Also, the whole pregnancy exposure
was calculated as the mean of all pregnancy days. We have
complete residential information during and before preg-
nancy. For those that moved during pregnancy (n = 14;
5.8%), we calculated exposure windows accounting for the
address changes during the period. Previously, our long-
term exposure estimates have been validated by the associ-
ation between modeled air pollution and carbon load in
lung macrophages [56]. Additionally, NO2 and maximum
8-hour average O3 exposures were interpolated using the
same methods as PM2.5 exposure.
The Royal Meteorological Institute (Brussels, Belgium)

provided mean daily temperatures and relative humidity
for the study region which were averaged using the same
exposure windows as for PM2.5. Apparent temperature was
calculated by using the following formula [64,65]: –2.653 +
(0.994 × Ta) + (0.0153 × Td2), where Ta is air temperature
and Td is dew-point temperature (in degrees Celsius).

Global DNA methylation analysis
Genomic DNA was isolated from placental tissue using the
MagMAX™ DNA Multi-Sample kit (Applied Biosystems,
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Foster City, CA, USA). Mean DNA yield was 80.0 ng/μl
with purity values of 1.9 for A260/280 ratio and 2.0 for
A260/230 ratio.
We determined global DNA methylation as previously

published [66,67]. Briefly, isolated genomic DNA sam-
ples were hydrolyzed to individual deoxyribonucleosides
in a simplified one-step procedure [68]. A digest mix was
prepared by adding 300 mU Phosphodiesterase I (Sigma
Aldrich, P3134-100MG), 200 U alkaline phosphatase
(Sigma Aldrich, P7923-2KU) and 250 U Benzonase® Nucle-
ase (Sigma Aldrich, E1014-5KU) to 5 ml Tris–HCl buffer
(pH 7.9, 20 mM) containing 100 mM NaCl and 20 mM
MgCl2. Extracted DNA (1 μg diluted in 50 μl HPLC-grade
water) was hydrolyzed by adding 50 μl digest mix and in-
cubating at 37°C for 24 h. After hydrolysis, water (HPLC-
grade) was added to the samples up to a total volume
of 1 ml. Reference standards for 5’-methyl-deoxycytidine
(5-mdC) and deoxycytidine (dC) were purchased from
Jena Bioscience (N-1044) and Sigma (D3897-1G) respect-
ively. Stock solutions of 5-mdC and dC were prepared by
dissolving the purchased solid reference standards in pure
water (HPLC-grade). Using these stock solutions, a series
of calibration solutions was prepared for 5-mdC and
dC in a range of 0.1-10 ng/mL and 1–100 ng/mL re-
spectively. The same calibration standards were used
in all of the experiments. Global DNA methylation
was obtained by quantifying 5-mdC and dC using
ultra-pressure liquid chromatography (UPLC), in com-
bination with tandem mass spectrometry (MS-MS).
LC/MS-MS analysis of the samples was conducted on a
Waters® Acquity UPLC™, coupled to a Waters® Micromass
Quattro Premier™ Mass Spectrometer, using electro spray
ionization (ESI). Injections were performed on a Waters®
UPLC column (BEH C18, 50 mm x 2.1 mm, 1.7 μm) which
was held at a temperature of 40°C during analysis.
The global DNA methylation is expressed as a percent-

age of 5-mdC versus the sum of 5-mdC and dC [5-mdC/
(5-mdC+ dC)] %. We measured samples in duplicate to
account for technical variation which resulted in a R2 of
0.8 (ICC = 0.90). The average methylation value of both
measurements was used in the statistical analysis.

Statistical analysis
We used SAS software (version 9.2; SAS Institute Inc.,
Cary, NC, USA) for database management and statistical
analysis. Categorical data are presented as frequencies
(%) and numbers, continuous data as mean and standard
deviation. Spearman correlation coefficients and linear
regression were used to assess the association of global
DNA methylation from placental tissue with PM2.5. The
unadjusted association between the average concentra-
tions over 91 days periods and global methylation was
estimated using restricted cubic splines [69] with 5 knots
located at the 5th, 25th, 50th, 75th and 95th percentiles.
We performed multiple linear regression to determine
the independent effect size of PM2.5 exposure during
pregnancy on global methylation. Covariates considered
for entry in the model (p ≤ 0.10) using single regression
procedures were newborn’s gender, maternal age (years),
pre-gestational BMI (kg/m2), net weight gain (kg), ma-
ternal education (low/middle/high), newborn’s ethnicity
(European/non-European), smoking status (never-smoker/
past-smoker/smoker), prenatal alcohol use (yes/no), pre-
natal acetaminophen (yes/no), delivery method (vaginal/
caesarean), gestational age (weeks), parity (1/2/≥ 3), season
at conception and trimester-specific apparent temperature.
Newborn’s gender, maternal age, maternal education,
smoking status, gestational age, parity, season at concep-
tion and trimester-specific apparent temperature were
forced into the model regardless of the p-value. In final
models we introduced time-specific exposure to NO2 and
maximum 8-hour average O3. Finally, we explored poten-
tial effect-modification between trimester-specific PM2.5

exposure and birth weight (continuous), newborn’s gender
and trimester-specific apparent temperature. Estimates are
given as a relative difference from the mean methylation in
the whole newborn population. We plotted the stud-
ied covariates and global methylation patterns to en-
sure that there was no threshold phenomenon and
that linear regression techniques were appropriate. Q-Q
plots of the residuals were used to test the assumptions of
all linear models.

Additional file

Additional file 1: Table S1. Exposure characteristics of NO2 and
maximum 8-hour average O3 (n = 240).
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