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Abstract

Non-Gaussian outcomes are frequently modeled using members of the exponential family. In
particular, the Bernoulli model for binary data and the Poisson model for count data are well-
known. Two reasons for extending this family are (1) the occurrence of overdispersion, implying
that the variability in the data is not adequately described by the models, and (2) the incorporation
of hierarchical structure in the data. These issues are routinely addressed separately, the first one
through overdispersion models, the second one, for example, by means of random effects within
the generalized linear mixed models framework. Molenberghs et al (2007, 2010) introduced a so-
called combined model that simultaneously addresses both. In these and subsequent papers, a lot
of attention was given to binary outcomes, counts, and time-to-event responses. While common
in practice, ordinal data have not been studied from this angle. In this paper, a model for ordinal
repeated measures, subject to overdispersion, is formulated. It can be fitted without difficulty
using standard statistical software. The model is exemplified using data from an epidemiological
study in diabetic patients and using data from a clinical trial in psychiatric patients.

Some Keywords: Beta distribution; Generalized linear mixed model; Maximum likelihood;
Proportional odds model; Overdispersion.

1 Introduction

Next to continuous and binary outcomes, count data features are extensively covered in the modeling

literature and play a prominent role in applied statistical work. It is common to place such models
in a generalized linear modeling (GLM) framework (Nelder and Wedderburn 1972, McCullagh and

Nelder 1989, Agresti 2002). It allows one to specify either the first and second moments only or the
full distribution. In the latter case, the exponential family (McCullagh and Nelder 1989) has been

of particular interest, given that it provides an elegant and encompassing mathematical framework
with the normal, Bernoulli/binomial, and Poisson models as prominent members.

The elegance of the GLM framework draws from certain linearity properties of the log-likelihood

function, leading to mathematically convenient score equations and ultimately to a straightforward
use of inferential instruments, both in terms of estimation and inference. A key feature of the GLM

model and the exponential family is the mean-variance relationship, a term used to indicate that
the variance v is a deterministic function of the mean µ. For example, for Bernoulli outcomes with

success probability µ = π, the variance is v(µ) = π(1 − π), while for counts following the Poisson
model, the relationship is even simpler, i.e., v(µ) = µ. In contrast, the mean and variance are entirely
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separate parameters in case of continuous normally distributed outcomes. Finally, while i.i.d. binary

data cannot contradict the mean-variance relationship, i.i.d. counts can.

The above explains why most early work was on formulating models that explicitly allow for a
dispersion not following the base models. It is often referred to as overdispersion, but underdispersion

can occur as well. Hinde and Demétrio (1998ab) provide broad overviews of approaches for dealing
with overdispersion, considering moment-based as well as full-distribution avenues. For purely binary
data, the mean-variance link can only be violated in case of hierarchical data, e.g., in case of

longitudinal data, where an outcome is recorded repeatedly over time for a number of study subjects.
Apart from overdispersion, hierarchies in the data imply associations between measurements on

the same unit as well. Thus, a flexible parametric model ought to properly capture the mean
function, the variance function, and the association function. The so-called generalized linear mixed

model (GLMM, Engel and Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993,
Molenberghs and Verbeke 2005) has become the dominant tool for hierarchical non-Gaussian data.

Molenberghs, Verbeke, and Demétrio (2007; henceforth MVD) and Molenberghs, Verbeke, Demétrio,

and Vieira (2010; henceforth MVDV) and Molenberghs, Verbeke, Iddi, and Demétrio (2012; hence-
forth MVID) showed that accommodating either overdispersion or hierarchically-induced association

may fall short when properly modeling the data. MVD focused on counts, MVDV laid out a general
framework, whereas MVID tackles binary and binomial outcomes. The topic of the current paper is

the modeling of repeated, overdispersed ordinal data.

The paper is structured out as follows. In Section 2, two motivating case studies are introduced;
they are analyzed in Section 6. It will be shown that the first one shows strong overdispersion

and correlation, while the second study will enable to study the model’s behavior when in fact
overdispersion is absent. Section 3 briefly summarizes relevant modeling background; the proposed
model for repeated, overdispersed ordinal outcomes is presented in Section 4. Parameter estimation

is considered in Section 5.

2 Motivating Case Studies

2.1 Fluvoxamine Trial

This study is concerned with psychiatric symptoms allegedly resulting from a dysregulation of sero-
tonine in the brain. A multicentre study was undertaken, enrolling 315 patients that were treated by

fluvoxamine. The data are discussed in several places, including Molenberghs and Verbeke (2005),
Molenberghs and Lesaffre (1994), Kenward, Lesaffre, and Molenberghs (1994), Molenberghs, Ken-
ward, and Lesaffre (1997), and Michiels and Molenberghs (1997). Once recruited, patients were

assessed at four visits. The therapeutic effect and the extent of side effects were scored at each
visit on an ordinal scale. The side effect response is coded as (1) none; (2) not interfering with

functionality; (3) interfering significantly with functionality; (4) side effects surpasses the therapeutic
effect. Similarly, the effect of therapy is recorded on a four point ordinal scale: (1) no improvement

or worsening; (2) minimal improvement; (3) moderate improvement and (4) important improvement.
Thus, a side effect occurs if new symptoms occur while there is therapeutic effect if old symptoms

disappear. A total of 299 patients have at least one measurement, including 242 completers. There
is also baseline covariate information on each subject, including gender, age, presence of psychiatric

antecedents, initial severity of the disease, duration of the actual mental illness. A summary is given
in Table 1.
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Table 1: Fluvoxamine Trial. Number of observations with therapeutic effect categories for each of
the four follow-up time points.

# Observations

Ther. Effect Week 2 Week 4 Week 8 Week 12

0 19 ( 6.4%) 64 (23.8%) 110 (45.3%) 135 (59.7%)
1 95 (31.8%) 114 (42.4%) 93 (38.3%) 62 (27.4%)

2 102 (34.1%) 62 (23.0%) 30 (12.3%) 19 ( 8.4%)
3 83 (27.8%) 29 (10.8%) 10 ( 4.1%) 10 ( 4.4%)

Total 299 269 243 226

Table 2: Diabetes Data. Number of observations with the corresponding clinical targets reached at
every time-point, for both treatment groups separately.

# Observations
T0 T1

# Clin. Targets UQIP AQIP UQIP AQIP

0 116 (14.8%) 191 (14.0%) 54 ( 7.2%) 74 ( 5.6%)
1 314 (40.2%) 514 (37.8%) 238 (31.8%) 360 (27.4%)

2 259 (33.1%) 467 (34.3%) 304 (40.6%) 530 (40.4%)
3 93 (11.9%) 188 (13.8%) 152 (20.3%) 349 (26.6%)

Total 782 1360 748 1313

2.2 Diabetes Study

In Belgium, the diabetes project was conducted from January 2005 until December 2006, with

the aim to study the effect of implementing a structured model for chronic diabetes care on the
patients’ clinical outcomes. General practitioners (GP’s) were offered assistance and could redirect

patients to the diabetes care team, consisting of a nurse educator, a dietician, an ophthalmologist,
and an internal medicine doctor. For the project, two programs were implemented and GP’s were

randomized to one of two groups: UQIP: Usual Quality Improvement Program and AQIP: Advanced
Quality Improvement Program. A total of 120 GP’s took part in the study, 53 in the UQIP group

and 67 in the AQIP group, including 918 and 1577 patients, respectively.

During the project, several outcomes useful to evaluate how well diabetes is controled were measured,
at the moment the program was initiated (time T0) and one year later (T1). The most important out-

comes were HbA1c (glycosylated hemoglobin), LDL-cholesterol (low-density lipoprotein cholesterol)
and SBD (systolic blood pressure). Furthermore, experts specified cut off values defining so-called
a clinical target for each outcome: HBA1C<7 %, LDL-cholesterol < 100 mg/dl and SBD ≤ 130

mmHg. As a result, for a particular time point, every patient could reach minimum 0 - maximum 3
clinical targets. This number was reflected in the variable number of clinical targets. If at least one

measurement per patient was missing, the value for the number of clinical targets was set to missing
as well. The data are discussed in Borgermans et al (2009). A summary is given in Table 2.
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3 Background on the Exponential Family

A fundamental tool, in general and for us here, is the exponential family (Jørgensen 1987, McCullagh

and Nelder 1989). The generic density for a random variable Y is then

f(y) ≡ f(y|η, φ) = exp
{

φ−1[yη − ψ(η)] + c(y, φ)
}

, (1)

where η is the natural parameter and φ the dispersion parameter; ψ(·) is the generating function and
c(·, ·) is the normalizing function. The mean is E(Y ) = µ = ψ′(η), and the variance equals

Var(Y ) = σ2 = φψ′′(η). (2)

The model naturally leads to a so-called mean-variance relationship: σ2 = φψ′′[ψ
′
−1(µ)] = φv(µ),

with v(·) the variance function.

The mean µ, through the function η, can depend on covariates xi for outcome Yi, with i = 1, . . . , N .

Precisely, µi = h(ηi) = h(xi
′ξ), for a known function h(·), the inverse link function. The model is

termed ‘generalized linear model’ (GLM). The link function h(·) = ψ′(·) is called the natural link,

in which case ηi = xi
′ξ. Popular routes for parameter estimation include maximum likelihood and

quasi likelihood.

The mean-variance relation can be restrictive. The phenomenon where the empirical variance does

not obey the prescribed mean-variance relationship is termed overdispersion. Hinde and Demétrio
(1998ab) offer reviews as to how the GLM can be modified to accommodate overdispersion. One

route is via the overdispersion parameter φ 6= 1, so that (2) leads to Var(Y ) = φv(µ). A route
taken up further in this paper is the accommodation of overdispersion via random effects. One then

combines a model f(yi|θi) for the outcome given a random effect θi with a model for the random
effect itself, f(θi) say. The implied marginal model for Yi then follows by integration:

f(yi) =

∫

f(yi|θi)f(θi)dθi. (3)

Two natural ways to introduce random effects into the GLM framework are either by the use of

a so-called conjugate distribution (in the sense of Cox and Hinkley 1974, p. 370, and Lee, Nelder,
and Pawitan 2006, p. 178) for the parameter or by including normal random effects into the linear

predictor. Mathematically,

f(y|θ) = exp
{

φ−1[yh(θ)− g(θ)] + c(y, φ)
}

, (4)

f(θ) = exp {γ[ψh(θ)− g(θ)] + c∗(γ, ψ)} , (5)

where g(θ) and h(θ) are functions, φ, γ, and ψ are parameters, and also here normalizing functions,
c(y, φ) and c∗(γ, ψ), are used to ensure that (4)–(5) are proper densities. The ensuing marginal

model is

f(y) = exp

[

c(y, φ) + c∗(γ, ψ)− c∗
(

φ−1 + γ,
φ−1y + γψ

φ−1 + γ

)]

. (6)

When Yi would be Bernoulli, then conjugacy leads to the beta distribution for θi. By analogy, we will

also here opt for the beta distribution, although its use with ordinal data is less straightforward than
in the dichotomous case. The rationale is that ordinal outcomes with R categories are conveniently

represented by R−1 non-redundant dummies, so that the beta distribution remains to be an obvious
choice.
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For longitudinal or otherwise hierarchical data, the generalized linear mixed model (GLMM, Engel

and Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993) is popular. Let now Yij

be outcome j = 1, . . . , ni for subject i = 1, . . . , N , and let Y i be the vector consisting of the Yij .

Assume that, conditionally upon q-dimensional random effects bi ∼ N (0, D), the outcomes Yij are
independent with densities

fi(yij |bi, ξ, φ) = exp
{

φ−1[yijλij − ψ(λij)] + c(yij, φ)
}

, (7)

where

η[ψ′(λij)] = η(µij) = η[E(Yij|bi, ξ)] = x′

ijξ + z′

ijbi (8)

for a given link function η(·), with xij and zij p-dimensional and q-dimensional vectors of known
covariate values, and also with ξ a p-dimensional vector of unknown fixed regression coefficients.

Further, φ is a scale or overdispersion parameter. To complete the specification, let f(bi|D) be the
density of the N (0, D) distribution for the random effects bi. MVID indicated that D models both

correlation among repeated measures and overdispersion. Relying on a single set of parameters for
these two tasks is often too restrictive, motivating the extension of the next section.

4 A Combined Proportional Odds-Beta-Normal Model

Assume the ordinal outcome Yij can take values r = 1, . . . , R. We replace it by a set of R dummies:

Zr,ij =

{

1 if Yr,ij = r,

0 otherwise,

for r = 1, . . . , R. Evidently, there are redundant dummies, but any subset of R− 1 components is

not. Group the dummies into vectors Zij and Z i for a specific subject i and occasion j, and for a
specific subject i, respectively. We assume a multinomial distribution Zij ∼ multinomial(πij), with

πij = (π1,ij, . . . , πr,ij, . . . , πR,ij). The multinomial distribution at a given occasion is determined by
the modeling choice for the ordinal outcome. Under a proportional odds assumption, using normal

random effects bi ∼ N (0, D) in the linear predictor, and beta random effects θij ∼ Beta(αj, βj) to
capture further overdispersion, the probabilities can be written as:

πr,ij =











θijκ1,ij if r = 1,

θij(κr,ij − κr−1,ij) if 1 < r < R,
1 − θijκR−1,ij if r = R.

(9)

where

κr,ij =
exp

(

ξ0r + x′

ijξ + z′

ijbi

)

1 + exp
(

ξ0r + x′

ijξ + z′

ijbi

) . (10)

Here, ξ01 ≤ . . . ≤ ξ0,R−1 are intercepts, ξ are fixed regression coefficients, and xij (zij) is the
design vector for the fixed (random) effects at occasion j. Some choices in the above can be relaxed

and/or altered. For example, the αj and βj parameters, describing the beta distribution, need not be
dependent on j. To ensure identifiability, a constraint needs to be applied to it, e.g., αjβj = 1, but

it is mathematically convenient to retain them as two separate parameters, with the understanding
that the constraint does apply. Finally, the θij within a subject are assumed different from each other
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and independent. One could allow them to be correlated, or even constant across subjects. This will

not be considered here.

As argued in MVDV and MVID, closed-form expressions for marginal means, variances, covariances,
and even the entire marginal distribution, i.e., integrated over both sets of random effects, cannot be

derived in the binary case with logit link and normal random effects (regardless of the overdispersion
random effects). Evidently, the same will be true for the ordinal case. If necessary, numerical
integration or other Monte Carlo methods can be used to derive such marginal quantities.

5 Parameter Estimation

MVID mentioned several possible estimation strategies, then focused on maximum likelihood. Be-
cause likelihood inference is based on the marginal density of the outcomes, one needs to integrate

over the normal and beta random effects. MVID proceeded by analytically integrating over the beta
random effects, leading to a so-called partially marginalized density. In our case, this takes the form:

f(yij |bi) =
αj

αj + βj
· (κ1,ij)

z1,ij ·
R−1
∏

r=2

(κr,ij − κr−1,ij)
zr,ij ·

(

αj + βj

αj
− κR−1,ij

)zR,ij

.

Then, a generic maximum likelihood routine that allows for integration over normal random effects

can be used. We follow this route and use the SAS procedure NLMIXED to this effect. The following
choices were made for conducting integration: adaptive Gaussian quadrature, which is more accurate

than ordinary Gaussian quadrature (Molenberghs and Verbeke 2005); the number Q of quadrature
points is preferably user-defined than selected in an automated way and, once converged, a numerical

sensitivity analysis to check whether Q was chosen sufficiently large is advisable.

6 Data Analysis

6.1 Fluvoxamine Trial

The fluvoxamine trial encompasses 4 time points. The response studied here is the therapeutic effect,

rated on a four-point ordinal scale, as explained in Section 2.1. Two versions are analyzed. First, we
use the measurements from the first and the last clinical visits only (week 2 and week 12). Second,

all four measurements (weeks 2, 4, 8, and 12) are used. Juxtaposing both can be seen as an informal
sensitivity analysis, investigating numerical stability, identifiability, etc. Also, the two-time-point

case is similar to the diabetes data set, analysed in the previous section. The results are presented in
Tables 3 and 4. Covariate effects were retained by way of backward selection. Covariates considered
are psychiatric antecedents (X2i), age (X3i), duration of the illness (X4i), and initial severity (X5i).

In the analysis of all four repeated measurements, time was allowed to have a differential effect at
the various time-points.

Let Yij be the score of the therapeutic effect for patient i at time point j. We consider the same

set of four models as for the diabetes study. The combined proportional odds logistic model for the
two-time-point case equals

logit[P (Yij ≤ r|tij , X1i, . . . , X4i)] = ξ0r + bi + ξ1X1i + . . .+ ξ4X4i + ξ5tij,
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Table 3: Fluvoxamine Trial. Two time-points. Parameter estimates and standard errors from the
regression coefficients in (1) the ordinary proportional odds model, (2) the proportional odds model
with beta overdispersion effect, (3) the proportional odds model with random normal effect, together

with (4) the combined model. Estimation was done by using maximum likelihood with numerical
integration over the normal random effect, if present.

PO PO-Beta

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −0.9581 (0.6528) −0.9187 (0.6839)
Intercept 1 ξ01 0.9646 (0.6473) 1.1158 (0.6813)

Intercept 2 ξ02 2.3869 (0.6566) 2.6639 (0.7040)
Antecedents ξ1 −0.0946 (0.1789) −0.0751 (0.1869)

Age/30 ξ2 0.0647 (0.1993) 0.0339 (0.2091)
Duration/100 ξ3 −0.5771 (0.4301) −0.6730 (0.4482)

Initial severity ξ4 −0.2762 (0.1128) −0.2933 (0.1182)
Time ξ5 2.7687 (0.2123) 2.9429 (0.2358)

Std. dev. RE
√
d — —

Beta parameter δ — 3.6779 (0.6365)

−2 log-likelihood 1142.2 1138.8

PO-Normal PO-Beta-Normal

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −1.1442 (0.8317) −1.1245 (0.9092)
Intercept 1 ξ01 1.0976 (0.8270) 1.3363 (0.9098)

Intercept 2 ξ02 2.8053 (0.8481) 3.2872 (0.9551)
Antecedents ξ1 −0.1324 (0.2339) −0.1217 (0.2563)

Age/30 ξ2 0.0522 (0.2565) 0.0096 (0.2810)
Duration/100 ξ3 −0.5995 (0.5449) −0.7279 (0.5942)

Initial severity ξ4 −0.3164 (0.1452) −0.3508 (0.1597)
Time ξ5 3.2453 (0.2864) 3.6077 (0.3503)

Std. dev. RE
√
d 1.0573 (0.2337) 1.2040 (0.2598)

Beta parameter δ — 3.6525 (0.5649)

−2 log-likelihood 1133.0 1128.0

(r = 0, . . . , 3). For the four-times case the model takes the form

logit[P (Yij ≤ r|t1ij, t2ij, t3ij, X1i, . . . , X4i)]

= ξ0r + bi + ξ1X1i + . . .+ ξ4X4i + ξ51t1ij + ξ52t2ij + ξ53t3ij,

where t1ij, t2ij and t3ij are dummies corresponding to weeks 4, 8, and 12.

The results obtained here differ qualitatively from the ones reached for the diabetes study. There

clearly is an improvement in terms of the likelihood when moving to the overdispersion models,
already for the case of only 2 time-points. We will study these model comparisons more formally,
realizing that there are some subtle issues.

To compare the PO and PO-Beta models for the case of 2 time points, the likelihood ratio test can
be used. The difference in deviance is 3.4. However, care has to be taken when comparing such
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models, because of the special status of variance components. As explained in Verbeke and Molen-

berghs (2000), and further expanded upon in Verbeke and Molenberghs (2003) and Molenberghs and
Verbeke (2007), two views can be taken. In a hierarchical view, the variance components are formally

considered to describe random effects, and hence have the meaning of a variance (like d) or a variance
parameter (like δ). As a consequence, the null value lies on the boundary of the parameter space,
turning this into a non-standard situation. Based upon the work by Stram and Lee (1994, 1995),

Self and Liang (1987), Verbeke and Molenberghs (2003) and Molenberghs and Verbeke (2007), the
likelihood ratio, score, and Wald tests then do not follow the conventional asymptotic χ2 null distri-

butions, but rather take the form of mixtures of such χ2 distributions. Precisely which one to apply
depends on the geometry of the null space. For a single variance parameter, this is a 50:50 mixture

of a χ2
0 (the degenerate distribution in 0) and a χ2

1, often denoted as χ2
0:1. Comparing the PO and

PO-Beta models, we obtain p = P (χ2
0:1

≥ 3.4) = 0.5P (χ2
0
≥ 3.4) + 0.5P (χ2

1
≥ 3.4) = 0.0326. In

contrast, under a marginal view the only condition imposed on the model is that the marginal distri-
bution be valid. This is a weaker condition, as now the ranges of the variance parameters expand.

Importantly, the null value then no longer lies on the boundary of the parameter space, and the
problem is regular again. In fact, the variance parameters should now merely be viewed as variance
components. In the beta-binomial model, to which the PO-Beta model is very strongly linked, the

interpretation is that marginally, the model can produce negative intra-cluster correlation, whereas
the marginal model is restricted to non-negative association. In this case, a comparison between PO

and PO-Beta produces: p = P (χ2
1 ≥ 3.4) = 0.0652. Evidently, this p-value simply is double its

hierarchical counterpart, which follows from the nature of this specific mixture. Clearly, the choice

matters, because in this case we land at different sides of the 0.05 cutoff value. For the situation of
4 time-points, the likelihood ratio test statistic is 2.3 with p-values of 0.0647 and 0.1294, under the

hierarchical and marginal views, respectively.

Likewise, when comparing the PO-Normal and PO-Beta-Normal models, the same null distributions
apply. The likelihood ratio test statistic now takes the value 5. The hierarchical p-value, again from

a χ2
0:1, is 0.0127, with its marginal counterpart being 0.0253. The test statistic with 4 times points

is 13.5, and p < 0.0001 and p = 0.0002, respectively. Further, we can compare the PO with the PO-

Normal, which is a classical test for the need of the random-intercepts variance d. The same mixture
distribution should be used here as well. Hierarchically, we find p = 0.0012, whereas the marginal
counterpart is p = 0.0024. Comparing PO-Beta and PO-Beta-Normal produces, hierarchically,

p = 0.0005 and marginally p = 0.0010. In the four time points case, the corresponding likelihood
ratio test statistics are all very large, and all p < 0.0001.

Finally, we can compare PO and PO-Beta-Normal directly. This situation is different from all previous

ones, because we now test for two variance components at the same time. Both lie on the boundary
of the parameter space, and there is no covariance term between them. This ‘variance-component’

situation was discussed also by Verbeke and Molenberghs (2003). The likelihood ratio test statistic
in the two time points case is 14.2, with hierarchical p = 0.25P (χ2

0
≥ 14.2) + 0.5P (χ2

1
≥ 14.2) +

0.25P (χ2
2 ≥ 14.2) = 0.0003. The marginal counterpart is p = P (χ2

2 ≥ 14.2) = 0.0008. Note that,
this time, the marginal p-value is not merely twice the hierarchical version.

From this analysis, we also deduce that there is weak or no evidence for the need of a beta random ef-

fect when comparing PO and PO-Beta with two time points. However, the corresponding assessment
based on the comparison of the PO-Normal model and the PO-Beta-Normal model, much stronger

evidence for the need for such beta random effects. In other words, while there seems little evidence
for overdispersion based on the model without normal random effects, the need for overdispersion
becomes evident when the random effects in the data are accounted for. This strongly suggests
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that the incorporation of one of the sources of variability may not tell the entire story. We therefore

recommend starting model building from the most general model, the PO-Beta-Normal in this case,
and then examining whether simplification is possible.

Which model is chosen also has an impact on resulting inference. Consider the time effect based on

the model with two time points. The corresponding z-ratio takes values 13.04, 12.48, 11.33, and
10.30 for the PO, PO-Beta, PO-Normal and PO-Beta-Normal models, respectively. Even though not
spectacular, the impact is noticeable. Equally, the impact on resulting confidence intervals should

not be discarded.

6.2 Diabetes Study

We will analyze the diabetes data, introduced in Section 2.2. The rationale for this case study is
to contrast it with the previous study. Indeed, the fluvoxamine study exhibits strong correlation and

overdispersion, whereas there will be little or no overdispersion here. Because in such a case the
beta parameter is expected to grow large, the model could be relatively unstable to fit and therefore

empirical evidence needs to be built as to the model’s performance. The issue is known in particular
for the combined model in the binary case (Molenberghs et al 2012), reinforcing the fact that it

needs to be scrutinized here too.

Let Yij = 0, . . . , 3 be the number of clinical targets patient i reached at time point j. Also, let
tij = 0, 1 be the time point at which the jth measurement was taken. Consider the combined

proportional odds logistic regression model:

logit[P (Yij ≤ r|tij, Xi)] = ξ0r + bi + ξ1tij + ξ2Xi,

(r = 0, . . . , 3), where the random intercept bi is assumed N (0, d) distributed, and Xi is an indicator
for group. The beta random effect is re-parameterized such that

ν =
eδ

1 + eδ
=

α

α+ β
,

thus simultaneously avoiding identifiability and range violation issues. The parameter δ is the one
entered into the likelihood function. We consider (1) the ordinary proportional odds model, (2)

the proportional odds model with beta overdispersion effect, (3) the proportional odds model with
random normal effect, and (4) the combined model. Estimates (standard errors) are presented in

Table 5. Clearly, there is no significant improvement, neither when we switch from model (1) to
model (2), nor when we move from (3) to (4). The estimate for the beta-parameter δ is large
and has a very large standard error. This indicates that there is no overdispersion in the data, in

line also with what is observed for binary data (Molenberghs et al 2012). Fortunately, even though
the δ parameter in the PO-Beta and PO-Beta-Normal models grows large, as is expected because

under complete absence of overdispersion δ → +∞, the models nicely converge and lead to reliable
estimates and standard errors for the other model parameters. This is corroborated by comparing

the left-hand and right-hand columns in Table 5.

7 Concluding Remarks

In this paper, we have proposed a model for overdispersed, repeated ordinal data. The model
combines the proportional odds assumption to handle the ordinal nature of the outcome, with normal
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Table 4: Fluvoxamine trial. Four time-points. Parameter estimates and standard errors from
the regression coefficients in (1) the ordinary proportional odds model, (2) the proportional odds
model with beta overdispersion effect, (3) the proportional odds model with random normal effect,

together with (4) the combined model. Estimation was done by maximum likelihood using numerical
integration over the normal random effect, if present.

PO PO-Beta

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −1.1803 (0.4684) −1.1526 (0.4849)
Intercept 1 ξ01 0.6895 (0.4668) 0.7781 (0.4861)

Intercept 2 ξ02 2.1141 (0.4726) 2.3221 (0.5085)
Antecedents ξ1 −0.1485 (0.1270) −0.1354 (0.1314)

Age/30 ξ2 −0.0037 (0.1384) −0.0118 (0.1428)
Duration/100 ξ3 −0.4480 (0.3122) −0.4781 (0.3223)

Initial severity ξ4 −0.2010 (0.0810) −0.2171 (0.0844)
Time (week = 4) ξ51 1.1987 (0.1606) 1.2656 (0.1728)

Time (week = 8) ξ52 2.1746 (0.1769) 2.2679 (0.1914)
Time (week = 12) ξ53 2.7262 (0.1897) 2.8568 (0.2092)

Std. dev. RE
√
d — —

Beta parameter δ — 4.0595 (0.6990)

−2 log-likelihood 2319.9 2317.6

PO-Normal PO-Beta-Normal

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −2.2314 (1.1754) −2.3216 (1.2731)
Intercept 1 ξ01 0.9533 (1.1716) 1.1076 (1.2690)

Intercept 2 ξ02 3.3524 (1.1805) 3.8251 (1.2863)
Antecedents ξ1 −0.3219 (0.3369) −0.3451 (0.3650)

Age/30 ξ2 −0.1636 (0.3639) −0.1921 (0.3942)
Duration/100 ξ3 −0.8345 (0.7703) −0.9308 (0.8345)

Initial severity ξ4 −0.2588 (0.2065) −0.2912 (0.2236)
Time (week = 4) ξ51 2.0803 (0.1998) 2.2767 (0.2214)

Time (week = 8) ξ52 3.6200 (0.2450) 3.9196 (0.2773)
Time (week = 12) ξ53 4.4577 (0.2773) 4.9441 (0.3229)

Std. dev. RE
√
d 2.3444 (0.1794) 2.5581 (0.2025)

Beta parameter δ — 4.3612 (0.4751)

−2 log-likelihood 2039.6 2026.1

random effects in the linear predictor to deal with correlation across repeated measures, and beta

random effects to account for overdispersion. Similar models had been proposed by MVD, MVDV,
and MVID, for count data, binary and binomial data, and time-to-event outcomes. Ordinal outcomes

seem a logical extension, but the ordinal nature of the outcome is generally handled by replacing
it with a set of non-redundant indicator variables. This adds a layer of complexity to the modeling
process that had not been studied earlier.

The model is easy to formulate and can be fitted in almost a routine fashion using, for example, the
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Table 5: Diabetes Study. Parameter estimates and standard errors from the regression coefficients in
(1) the ordinary proportional odds model, (2) the proportional odds model with beta overdispersion
effect, (3) the proportional odds model with random normal effect, together with (4) the combined

model. Estimation was done by maximum likelihood using numerical integration over the normal
random effect, if present.

PO PO-Beta

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −0.7130 (0.0662) −1.7129 (0.0662)
Intercept 1 ξ01 0.2668 (0.0560) 0.2667 (0.0560)

Intercept 2 ξ02 2.0279 (0.0648) 2.0277 (0.0650)
Slope time ξ1 −0.7614 (0.0575) −0.7610 (0.0575)

Slope group ξ2 −0.2053 (0.0587) −0.2053 (0.0587)

Std. dev. RE
√
d — —

Beta parameter δ — 13.1622 (390.44)

−2 log-likelihood 10588.18 10588.18

PO-Normal PO-Beta-Normal

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept 0 ξ00 −2.3201 (0.0100) −2.3201 (0.0999)
Intercept 1 ξ01 0.3336 (0.0818) 0.3335 (0.0818)

Intercept 2 ξ02 2.7727 (0.1035) 2.7728 (0.1035)
Slope time ξ1 −1.0268 (0.0659) −1.0268 (0.0659)
Slope group ξ2 −0.2605 (0.0912) −0.2605 (0.0912)

Std. dev. RE
√
d 1.5105 (0.0729) 1.5205 (0.0729)

Beta parameter δ — 15.4925 (246.55)

−2 log-likelihood 10320.39 10320.39

SAS procedure NLMIXED. Example code is provided and briefly discussed in the Appendix.

We applied the method to two sets of data, with quite different results. In the diabetes study,
there clearly is no need for an overdispersion random effect, so that the conventional generalized

linear mixed model, the PO-Normal model in this instance, suffices. For the fluvoxamine trial the
situation is different and presents a peculiarity. First comparing the univariate PO model with the

PO-Beta model for overdispersion seems to suggest that there no overdispersion is present in the
data. However, comparing the PO model with the PO-Normal model suggests that there is a need
for normal random effects, which is not surprising given the longitudinal design. Once accounting

for the normal random effects, strong evidence is found in favor of overdispersion, when comparing
the PO-Normal to the PO-Beta-Normal model. The conclusion is that a forward selection on these

sources of variability is not the best route. Instead, a backward selection procedure is advisable,
where the more complex model, i.e., the PO-Beta-Normal model, is fitted first. The consequence

is that one better starts with the model correcting for overdispersion in addition to correcting for
correlation. In other words, a combined model such as the PO-Beta-Normal model would have to

be considered more, and more routinely, than is currently the case.
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Appendix

A SAS Implementation

By way of example code, we will illustrate the procedures for the case of 4 time points per subject.
These procedures can simply be reformulated by the user to the case of different numbers of time

points, and different numbers of categories per ordinal outcome.

We use the following instance of the NLMIXED procedure in SAS, for the proportional odds model
with normal random effect. In line with Molenberghs and Verbeke (2005, Ch. 18) the program makes

use of so-called general-likelihood feature, i.e., a user-defined likelihood that can be applied with the
‘general()’ option in the MODEL statement:

proc nlmixed data=fluvo qpoints=10;

parms int0=-2 int1=1 int2=3 beta11=1.5 beta12=3 beta13=4

beta2=-0.5 beta3=-0.1 beta4=-0.5 beta5=-0.1 sigma=1;

title "Proportional Odds with Normal Random Effect";

eta = b + beta11*t1 + beta12*t2 + beta13*t3 +

beta2*anteced + beta3*age1 + beta4*duration1 + beta5*severit0;

if theff = 0

then lik = exp(int0+eta)/(1+exp(int0+eta));

else if theff = 1

then lik = exp(int1+eta)/(1+exp(int1+eta)) - exp(int0+eta)/(1+exp(int0+eta));

else if theff = 2

then lik = exp(int2+eta)/(1+exp(int2+eta)) - exp(int1+eta)/(1+exp(int1+eta));

else if theff = 3

then lik = 1 - exp(int2+eta)/(1+exp(int2+eta));

loglik = log(lik);

model theff ~ general(loglik);

random b ~ normal(0, sigma**2) subject = patient;

run;

Similar logic in programming the model was followed by Booth et al (2003). For a given data
analysis, it is best to let the number of quadrature points (‘qpoint=’ option) be decided using a
numerical sensitivity analysis. This is easily done by progressively letting the number of quadrature

points increase, until parameter estimates and all related quantities (including standard errors, log-
likelihood at maximum, etc.) stabilize.
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The special case of the proportional odds model, without random effects, simply is obtained by

removing the RANDOM statement, and by excluding the random intercept:

proc nlmixed data=fluvo;

parms int0=-2 int1=1 int2=3 beta11=1.5 beta12=3 beta13=4

beta2=-0.5 beta3=-0.1 beta4=-0.5 beta5=-0.1;

title "Proportional Odds without Random Effects";

eta = beta11*t1 + beta12*t2 + beta13*t3 +

beta2*anteced + beta3*age1 + beta4*duration1 + beta5*severit0 ;

if theff = 0

then lik = exp(int0+eta)/(1+exp(int0+eta));

else if theff = 1

then lik = exp(int1+eta)/(1+exp(int1+eta)) - exp(int0+eta)/(1+exp(int0+eta));

else if theff = 2

then lik = exp(int2+eta)/(1+exp(int2+eta)) - exp(int1+eta)/(1+exp(int1+eta));

else if theff = 3

then lik = 1 - exp(int2+eta)/(1+exp(int2+eta));

loglik = log(lik);

model theff ~ general(loglik);

run;

The general likelihood feature is also ideally suited to implement the combined models. The following

SAS code is an example of this for a proportional combined odds model:

proc nlmixed data=fluvo qpoints=10;

parms int0=-2 int1=1 int2=3 beta11=1.5 beta12=3 beta13=4

beta2=-0.5 beta3=-0.1 beta4=-0.5 beta5=-0.1 delta=0.1 sigma=1;

title "Proportional Odds With Beta and Normal Random Effects";

eta = beta11*t1 + beta12*t2 + beta13*t3 +

beta2*anteced + beta3*age1 + beta4*duration1 + beta5*severit0 + b;

nu=exp(delta)/(1+exp(delta));

if theff = 0

then lik = nu*exp(int0+eta)/(1+exp(int0+eta));

else if theff = 1

then lik = nu*exp(int1+eta)/(1+exp(int1+eta))

- nu*exp(int0+eta)/(1+exp(int0+eta));

else if theff = 2

then lik = nu*exp(int2+eta)/(1+exp(int2+eta))

- nu*exp(int1+eta)/(1+exp(int1+eta));

else if theff = 3

then lik = 1 - nu*exp(int2+eta)/(1+exp(int2+eta));

loglik = log(lik);

model theff ~ general(loglik);

random b ~ normal(0, sigma**2) subject = patient;

run;

The combined model is relatively easy to implement and certainly of the same order of programming
complexity as the classical proportional odds model with random effect.
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