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Abstract

Often, when modeling longitudinal binomial data, one needs to take into consideration

both clustering and overdispersion. When the primary interest is in accommodating both

phenomena, we can use separate sets of random effects that capture the within-cluster

association and the extra variability due to overdispersion. In this paper, we propose a

series of hierarchical Bayesian generalized linear mixed models that deal simultaneously

with both phenomena. The proposed models are applied to a sample of multivariate data

on hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection prevalence

in injecting drug users in Italy from 1998 to 2007.
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1 Introduction

Clustering and overdispersion are major issues that must be addressed when modeling data

that cannot be assumed to be normally distributed, e.g., aggregated binary data and count

data.

The clustering issue refers to the hierarchical structure of data, where measurements be-

longing to the same cluster are assumed to be associated. This issue can be accommodated

using cluster-specific random effects, usually assumed to be normally distributed, which in-

duce the association between the repeated or multivariate measurements. Such models can

be easily fitted within the framework of generalized linear mixed models (GLMM, Breslow

and Clayton, 1993; Molenberghs and Verbeke, 2005).

We encounter issues of overdispersion when the data present additional variability than

the that prescribed by the mean-variance relation of the distribution. The phenomenon of

overdispersion has been widely considered in literature, most of all in relation to the bino-

mial and the Poisson distributions. Ignoring to account for overdispersion can lead to the

underestimation of the standard errors and therefore to a wrong inference for the regres-

sion parameters. Possible solutions to this issue can be of two types (Hinde and Demétrio,

1998). A first approach consists in generalizing the variance function by including addi-

tional parameters, such as the heterogeneity factor in overdispersed binomial data, and then

estimating the regression parameters using quasi-likelihood methods (Agresti, 2002). A

second approach assumes a two-stage model, where in the first stage we define for the data

a distribution depending on certain parameters, whose distribution is then specified in the

second stage. Examples are the beta-binomial model (Skellam, 1948) for binomial data and

the negative binomial model (Breslow, 1984) for count data, but also some versions of the

GLMMs. A wide review of approaches able to deal with overdispersion can be found in

Hinde and Demétrio (1998).

However, often interest may lie in simultaneously combining these two phenomena,

clustering and overdispersion. Both marginal and random-effects models can be used to

address them. If the focus is on the estimation of the fixed effects rather than on modeling

the correlation structure, marginal models can be used to adjust the variance-covariance

structure in order to accommodate for clustering and overdispersion. For instance, both the

GEE2 approach (Qaqish and Liang, 1992) and, better suited for binomial data, the alternat-
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ing logistic regression (Carey et al., 1993) can be used to model the marginal means of the

outcomes as well as the correlation between pairs of within-cluster measurements. Chen

and Ahn (1997) go further in this direction and develop a marginal model for multivari-

ate overdispersed binomial data where the mean structure depends on two multiplicative

nested random effects. On the other hand, conditional models depending on random effects

are a better choice if we are more interested in modeling the individual profiles rather than

the population mean and in estimating the correlation among the measurements. Molen-

berghs et al. (2007, 2010) proposed a class of GLMMs that accommodate for clustering

and overdispersion, making use of two separate sets of random effects, which then are es-

timated with maximum likelihood (ML) methods. These GLMMs are meant to be used for

modeling normal, binomial, Poisson and time-to-event data.

In this paper, we focus on conditional models and we thus extend the work presented in

Molenberghs et al. (2010) focusing on modeling multivariate, repeated and overdispersed

binomial data. For this purpose, we develop a series of GLMMs that account for overdis-

persion through a set of random effects, either additively or multiplicatively included in

the model, while dealing with clustering. To avoid the difficulties encountered with the

ML estimation (Molenberghs et al., 2010), we fit the GLMMs within a Bayesian frame-

work using Monte Carlo Markov Chain (MCMC) methods (Clayton, 1996). In such a way,

it is possible to specify a prior distribution for the unknown parameters, in particular for

the overdispersion random effects and for their covariance matrix, and then calculate their

posterior distribution through Gibbs sampling.

We apply the proposed methodology to a sample of prevalence data of hepatitis C virus

(HCV) and human immunodeficiency virus (HIV) infection of injecting drug users (IDUs)

in treatment from the 20 Italian regions from 1998 to 2007. The paper is organized as

follows. In Section 2 we introduce the data. In Section 3 we describe the proposed method-

ology, giving details about the GLMMs with additive and multiplicative overdispersion pa-

rameters and about model selection. Section 4 is dedicated to the presentation of the main

results, while in Section 5 we wrap up with a discussion of the proposed methodology.
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2 Data

The data analyzed in the paper were reported to the European Monitoring Centre for Drugs

and Drug Addiction (EMCDDA) and consist of diagnostic testing binomial data providing

information about the HCV and HIV infection prevalence from samples of IDUs in treat-

ment from the twenty regions of Italy between 1998 and 2007. For each IDU, a serum

specimen was taken and tested for antibodies against HCV and HIV. Further details about

data collection can be found in Del Fava et al. (2011). Note that the data analyzed in this

paper are updated to 2007.

Figure 1 (panel a) shows the observed prevalence profiles over the years for HCV and

HIV infections, with a bold line representing the national prevalence profile, obtained by

pooling together the regional results. We notice that the prevalence of HCV infection is

much higher than the prevalence of HIV infection, reflecting the fact that HCV is reported

to be about 10 times more infectious than HIV (Crofts et al., 2001). In addition, Figure 1

(panel a) reveals a pattern of large between-region and within-region variability, revealing

an issue of overdispersion within regions over the years.

3 Methodology

3.1 A Joint Model for HCV and HIV Infection

The data consist of multivariate repeated binomial measurements collected in a period of

10 years, from 1998 to 2007. Let YYY i = (YYY i1,YYY i2) be the response vector representing the

number of reported cases of HCV and HIV infection, respectively, in region i. In turn,

let YYY ik = (Yi1k, . . . ,YiJk) be the response vector containing the repeated measurements per

infection k within the ith region in year j. Del Fava et al. (2011) discussed a joint hier-

archical GLMM for HCV and HIV infection prevalence that took into account merely the

regional clustering of data. In the first stage of the hierarchical model, they assumed that

the distribution of Yi jk is binomial, with sample size equal to ni jk:

Yi jk ∼ Bin(πi jk,ni jk), i = 1, . . . ,20 j = 1, . . . ,10 k = 1,2. (3.1)
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The primary interest is in the estimation of πi j1 and πi j2, which are the prevalence of HCV

and HIV infections in the ith region in year j, respectively, and in the association between

the two infections at the population level, ρ(πi j1,πi j2).

In the second stage of the hierarchical model, for infection k, they specified a logistic

model for the prevalence πππ i j. It contains unstructured fixed effects adjusting for time, ααα

and βββ j, and region-specific random intercepts, γγγ i = (γi1,γi2):

 logit(πi j1) = α1 +β j1 + γi1,

logit(πi j2) = α2 +β j2 + γi2.
(3.2)

The random intercepts γik, which are assumed to follow a bivariate normal distribution, ac-

count for the association between the repeated measurements within region, independently

of time. Depending on the structure of their covariance matrix DDDγ , the random intercepts

might even account for the association between the two infections, ρ(πi j1,πi j2). Del Fava et

al. (2011) fitted a series of joint models with different variance structures and concluded that

the model with the best goodness-of-fit is the so-called correlated random-effects model.

For this model, the region-specific random intercepts are assumed to follow a bivariate

normal distribution with a mean vector of zeros and unstructured covariance matrix DDDγ :

DDDγ =

 σ2
γ1

ργ1γ2σγ1σγ2

ργ1γ2σγ1σγ2 σ2
γ2

 . (3.3)

The infection-specific variances of the random intercepts, σ2
γ1

and σ2
γ2

, account for the

within-region association between the repeated measurements, whereas the parameter ργ1γ2

is the correlation coefficient between the two infections at the level of the linear predictor,

being therefore a measure of the association between HCV and HIV infection, ρ(πi j1,πi j2).

The prior distributions of the unknown parameters can be found in Del Fava et al. (2011),

where this basic model is introduced.

3.2 Joint Model with Additive Overdispersion Parameters

In this section, we propose extensions to the basic joint model (3.2) to deal simultaneously

with clustering and overdispersion. This is achieved by including separate sets of random
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effects for overdispersion and for clustering. We opt for a set of random effects θi jk, which,

for convenience, are assumed to be independent of the random intercepts γik. In this sec-

tion, we focus on additive overdispersion parameters θi jk (McLachlan, 1997), which are

introduced on the same scale of the linear predictor. We consider four possible situations of

interest for the overdispersion random effects: (1) they are shared by the two infections; (2)

they are differentiated by infection and independent; (3) they are differentiated by infection

and allowed to be dependent; (4) they are differentiated by infection and by year, leading

thus to time-specific covariance matrices, DDDθ j.

3.2.1 Shared Overdispersion Parameters

The first model we consider is the shared overdispersion model, where the overdispersion

parameters are shared between the infections, i.e., θi j1 = θi j2 = θi j:

 logit(πi j1) = α1 +β j1 + γi1 +θi j,

logit(πi j2) = α2 +β j2 + γi2 +δθi j.
(3.4)

We assume that θi j has a normal prior distribution, θi j ∼ N(0,σ2
θ
), where σ2

θ
is an hy-

perparameter with a flat inverse Gamma (IG) prior distribution, that implies τθ = 1/σ2
θ
∼

Γ(0.01,0.01).

The underlying assumption behind the shared overdispersion model (3.4) is that the

correlation between the infections described by the overdispersion parameters is equal to

one. We use the parameter δ to relax the assumption of common variance between the

random slopes of HCV and HIV infections, since σ2
θHIV

= δ 2σ2
θHCV

. Note that the case with

σ2
θ
= 0 implies the absence of regional-specific evolution patterns during the years.

3.2.2 Independent Overdispersion Parameters

Another possible model is the independent overdispersion model, which, differently from

Model (3.4), includes infection-specific random effects, θi jk:

 logit(πi j1) = α1 +β j1 + γi1 +θi j1,

logit(πi j2) = α2 +β j2 + γi2 +θi j2.
(3.5)
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For θi jk we now assume a bivariate normal prior distribution, with covariance between θi j1

and θi j2 equal to zero:

 θi j1

θi j2

∼MV N


 0

0

 ,DDDθ =

 σ2
θ1

0

0 σ2
θ2


 . (3.6)

Regarding the variances of the overdispersion parameters θi jk, we assume that σ2
θ1

and

σ2
θ2

are independently distributed according to a flat IG prior distribution, which implies

τθ1 = 1/σ2
θ1
∼ Γ(0.01,0.01) and τθ2 = 1/σ2

θ2
∼ Γ(0.01,0.01).

This model assumes that, although there is overdispersion in the time evolution of

prevalence among the regions, all correlation between HCV and HIV infections at the

regional level is captured fully by the random intercepts, not by the overdispersion pa-

rameters.

3.2.3 Correlated Overdispersion Parameters

As a further extension, Model (3.5) can be expressed as a correlated overdispersion model.

The new model is similar to the independent overdispersion model (3.5), except for the

overdispersion parameters that are now correlated between the infections:

 θi j1

θi j2

∼MV N


 0

0

 ,DDDθ =

 σ2
θ1

ρθ1θ2σθ1σθ2

ρθ1θ2σθ1σθ2 σ2
θ2


 . (3.7)

For the covariance matrix DDDθ , we specify an inverse-Wishart (IW) prior distribution, cor-

responding to a Wishart distribution for its inverse, DDD−1
θ
∼W2(ΨΨΨ,2), where ΨΨΨ is a 2× 2

identity matrix.

Assuming an unstructured covariance matrix for DDDθ , it is possible to estimate an addi-

tional correlation between the infections, ρθ1θ2 . This implies that, after having accounted

for the correlation between the infections using the region-specific random intercepts γik,

there is still correlation between HCV and HIV infections in the time evolution of preva-

lence that is captured by the overdispersion parameters.
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3.2.4 Correlated Overdispersion Parameters with Time-Dependent Correla-

tion

The last additive model that we consider extends Model (3.7) relaxing the hypothesis of

a constant correlation between HCV and HIV infections captured by the overdispersion

parameters. We now let the covariance matrix DDDθ change in each year:

 θi j1

θi j2

∼MV N


 0

0

 ,DDDθ j =

 σ2
θ1| j ρθ1θ2| jσθ1| jσθ2| j

ρθ1θ2| jσθ1| jσθ2| j σ2
θ2| j


 . (3.8)

For the covariance matrix DDDθ j, we specify an inverse-Wishart (IW) prior distribution differ-

ent from each year j, DDD−1
θ j ∼W2(ΨΨΨ,2), where ΨΨΨ is a 2×2 identity matrix and j = 1, . . . ,10.

3.3 Joint GLMM with Multiplicative Overdispersion Parame-

ters

We consider a setting in which we account for overdispersion using multiplicative effects

(McLachlan, 1997; Molenberghs et al., 2010). While the random intercepts γik induce

association between the clustered measurements, the parameters θi jk account for additional

overdispersion. Hence, in this section, we assume that


Yi jk ∼ Bin(πi jk = θi jk ·κi jk,ni jk),

logit(κi j1) = α1 +β j1 + γi1,

logit(κi j2) = α2 +β j2 + γi2.

(3.9)

Note that 0≤ θi jk ≤ 1 must hold to ensure that 0≤ θi jkκi jk ≤ 1.

We specify a Beta prior distribution for θi jk. As a special case, we use a Beta distribution

with parameters equal to 1, equivalent to a Uniform distribution over the range (0,1), which

implies a noninformative prior for the overdispersion parameters:

θi j1 ∼ Be(1,1),

θi j2 ∼ Be(1,1).
(3.10)

However, in general, we can assume that the parameters of the beta prior distributions are

8



hyperparameters to be estimated:

θi j1 ∼ Be(a,b),

θi j2 ∼ Be(a,b).
(3.11)

Then, the infection-specific variance of the overdispersion random effects can be calculated

as

σ
2 =

ab
(a+b)2(a+b+1)

. (3.12)

As concerns the prior distribution of the hyperparameters a and b in (3.12), we choose

independent diffuse Uniform distributions within the range [0,100]:

a∼U(0,100),

b∼U(0,100).
(3.13)

3.4 Model Selection

A hierarchical mixed-effects model may be seen as a missing data problem, where the ran-

dom effects are regarded as the missing information. When dealing with missing data prob-

lems, Celeux et al. (2006) showed that the deviance information criterion (DIC, Spiegel-

halter et al., 2002), which is the typical selection criterion used for Bayesian models, does

not work properly with distributions outside the exponential family. Moreover, Plummer

(2008) suggested that the approximation used to compute the DIC is valid only when the

effective number of parameters (the penalty pD) is much smaller than the number of inde-

pendent observations n.

To overcome these issues, we use two different criteria to select the best model: the pe-

nalized expected deviance (PED, Plummer, 2008), and the difference in posterior deviance

(Aitkin et al., 2009; Aitkin, 2010).

The PED can be considered as a loss function when predicting the data Y using the same

data Y . The issue of using the data twice (for estimation as well as for prediction) makes

the expected deviance D(θ) too optimistic (Plummer, 2008). Thus, the PED penalizes it

with a measure for model complexity, popt :

PED = D(θ)+ popt . (3.14)
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Even though outside the exponential family it is hard to calculate the optimism parameter

popt , it can be estimated for general models using MCMC methods. According to Plummer

(2011), the software JAGS uses importance sampling to estimate the parameter popt . How-

ever, the author warns that the estimates may result numerically unstable when the effective

number of parameters is high, as it typically occurs with random-effects models. Similarly

to the DIC, the smaller the PED, the better.

The difference in posterior deviances (Aitkin et al., 2009; Aitkin, 2010) permits to com-

pare pairs of models to select the best one. This approach is based on the observation that

models with growing numbers of parameters are automatically penalized by the increasing

diffuseness of the posterior distributions in their parameters. Thus, we can base the se-

lection between two models on the difference between the whole posterior distributions of

their deviances, {
D(m)

1,2 = D(m)
1 −D(m)

2 : m = 1, . . . ,M
}
, (3.15)

where M is the length of the MCMC chain. We can derive the posterior probability that

Model 1 is better than Model 2,

P(D(m)
1,2 < 0) =

1
M

M

∑
m=1

I(D(m)
1,2 <−2log9 = 4.39), (3.16)

where the value −2log9 is calibrated in order to correspond to a likelihood ratio test favor-

ing Model 1 with a posterior probability of 0.9 (Aitkin, 2010). It is also possible to derive

95% credible intervals (CI) for the difference in deviances: a 95% CI totally negative im-

plies that we favor Model 1 over Model 2.

4 Results

The hierarchical Bayesian models presented in the previous section are fitted to data using

MCMC methods, specifically Gibbs sampling implemented through JAGS software (Plum-

mer, 2003). For each model, we used three chains of 250000 iterations each, burn-in of

125000 and thinning of 125. Convergence for all parameters was assessed with the poten-

tial scale reduction factor (Gelman and Rubin, 1992), for which approximate convergence

is diagnosed when the factor approaches one. For each model the DIC and the PED are

10



computed, based on further 20000 iterations; furthermore, we compute the difference in

posterior deviances for each pair of models. We refer to Table 1 for a summary of the

main results. For each model, we give the values of each selection criterion. We notice

that the PED and the difference in posterior deviances lead us to favor different models.

As expected, the worst model is the basic joint GLMM (Model (3.2)). Among the models

with additive overdispersion parameters, the PED indicates that the shared random-effects

model is the best model (Model (3.4)), whereas the difference in posterior deviances fa-

vors the model with correlated overdispersion parameters and time-dependent correlation

coefficients ρθ1θ2 between HCV and HIV infection (Model (3.8)). We discard the model

with correlated overdispersion parameters (Model (3.7)), implying that the assumption of

a constant correlation between HCV and HIV infection over the years on the scale of the

overdispersion parameters is not tenable. The same results given by the difference in poste-

rior deviances are obtained when the DIC is used for model selection. Indeed, from Figure 2

(panel d), showing the posterior means of the time-dependent correlation coefficients with

their respective 95% CI, we observe that the correlation is never significantly different from

zero, except for 2006, when it becomes significantly positive. For the multiplicative mod-

els, according to the difference in posterior deviances and DIC, Model (3.10) outperforms

Model (3.11), while the PED ranks the models in the other way around.

Finally, when comparing the best additive model and the best multiplicative model,

the PED favors the additive model with shared random effects, while, according to the

difference in posterior deviance we do not have enough confidence to choose between

Model (3.8) and Model (3.10). The DIC criterion favors Model (3.8). Figure 2, (panels a–

c), for each fitted model, presents the posterior means of the variance components (with

95% CI), for HCV and HIV infection, respectively, and of the correlation for the clustering

random effects γik. For the models with additive random effects only, (Models 3.2 – 3.8), we

notice that misspecifying the overdispersion random effects or even ignoring them affects

neither the estimates of the variances components for the clustering random effects, nor the

length of their credible intervals (panels a and b). This may be in relation to the fact the

γik and θik are assumed to be independent and are both introduced on the same scale of the

linear predictor, therefore the former accommodate the within-region association all over

the years, while the latter capture the unexplained additional variability. However, the same
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argument does not hold for the models with multiplicative random effects. For instance, for

Model (3.10) and, to a lesser extent, for Model (3.11), we notice that σ̂2
γ1

(but not σ̂2
γ2

) is

larger with a wider CI. This is reflected in smaller values of the correlation ργ1γ2 and longer

CI, as can be observed in Figure 2 (panel c).

We refer to Figures 1 – 4 for a graphical representation of the results. Figure 1 displays

the observed regional profiles and the fitted profiles from the basic model. We notice that

Model (3.2) in Figure 1 (panel b) shows parallel regional profiles, because only the cluster-

specific random effects are specified, thus failing to describe all the excess variability within

the data. This is instead accomplished by the best additive and multiplicative models (ac-

cording to PED and the difference in posterior deviances), plotted in Figure 3. What is most

striking from the graphical representation is that the fitted regional profiles from the pair of

additive models look very similar, as well as it happens with the pair of multiplicative mod-

els. Finally, Figure 4 displays the marginal prevalence of HCV and HIV infection with the

respective 95% CI for the basic model as well as the overdispersion models with additive

and multiplicative random effects. For comparison, we plotted also the national prevalence

per year, obtained by pooling together all the regional results. We notice that the five esti-

mated prevalence profiles are fairly close to the national observed prevalence. What really

distinguishes the marginal prevalence estimates from each other is their credible intervals,

which account for all the variability shown by the regional profiles.

5 Discussion

In this paper, we discussed a set of hierarchical models that can account simultaneously

with clustering and overdispersion for binomial data. This objective has been achieved

using two separate sets of random effects, one to induce association among the within-

region measurements and between the infections, the other to account for the extra binomial

variability in the data. For the latter set of random effects, two different settings have

been considered: (1) the overdispersion parameters are included additively into the model,

on the same scale of the linear predictor; (2) the overdispersion parameters are included

multiplicatively in the model, correcting the prevalence in order to encompass the additional

variability. All fitted combined models outperform the so-called basic joint model (Del Fava
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et al., 2011), which accommodates only the clustered nature of the data. This result was

expected since the random-intercept model (3.2) cannot capture the complete association

structure in the data.

Under the additive approach, the overdispersion parameters can be seen as random

slopes adjusting for clustering, as it happens with normal outcomes (Molenberghs et al.,

2010), where overdispersion and cluster-specific random effects coincide. Indeed, the

region-specific random intercepts γik induce association averaging out the yearly measure-

ments, while the overdispersion random slopes θi jk further adjust for the variation within

each year. Under the multiplicative approach, the random effects deal differently with the

clustering and the overdispersion. While the random intercepts γik induce the within region-

association and are responsible for shifting the regional profiles, the overdispersion random

effects θi jk act directly on the prevalence πi jk and adjust the standard mean-variance relation

of the binomial distribution by inflating the variance of the estimated prevalence according

to the time-specific variations.

Several models have been proposed for each setting according to the dependence struc-

ture among the overdispersion random effects and therefore on their covariance matrix DDDθ .

In both settings, we parameterize both the correlation between HCV and HIV infection over

time (via the joint distribution of the random intercepts γik) and within a specific time point

(via the joint distribution of the overdispersion parameters θi jk).

For model selection, the DIC (Spiegelhalter et al., 2002) cannot be considered a valid

option when the condition pD << n does not hold (Plummer, 2008), because it tends to

under-penalize more complex models. As concerns the other selection criteria here used,

i.e., the PED and the difference in posterior deviances, they may lead to different conclu-

sions, even though both methods claim that they penalize the more excessively parameter-

ized models. To our experience, however, it seems that PED tends to favors less parame-

terized models, while the difference in posterior deviances selects more complex models.

In our case, the posterior means estimated by the different best models look similar, as it

appears from the graphical representation of prevalence.

Even though in this paper we presented several extensions to the basic model of Del

Fava et al. (2011), still some enhancements are possible. A possible extension for the

model with unstructured time-dependent overdispersion parameters could be a parametric
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model for the correlation between HCV and HIV infections at the level of the overdis-

persion parameters over time. Furthermore, we could model the correlation between the

overdispersion parameters for HCV and HIV using information collected at regional level,

concerning risk factors related to injecting drug use (percentage of sharing syringes or other

paraphernalia, etc.) or results of interventions (percentage of supplies of clean drug injec-

tion equipment, opioid substitution and other forms of drug dependence treatments, antivi-

ral treatments for HIV, health promotion, etc.). An investigation of these type of models is

a subject for an ongoing research and will be published in the near future.
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(a) Observed data
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(b) Basic model

Figure 1: Observed (panel a) and estimated (basic model, panel b) individual prevalence profiles of
HCV and HIV infections for the 20 Italian regions between 1998 and 2007. The bold line in the upper
left panel stands for the overall prevalence, obtained by pooling together the regional results.

18



Models

V
ar

ia
nc

e 
ra

nd
om

 in
te

rc
ep

ts
 H

C
V

(3.2) (3.4) (3.5) (3.7) (3.8) (3.10) (3.11)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

(a) Variance γi1 per model

Models

V
ar

ia
nc

e 
ra

nd
om

 in
te

rc
ep

ts
 H

IV

(3.2) (3.4) (3.5) (3.7) (3.8) (3.10) (3.11)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

(b) Variance γi2 per model

Models

C
or

re
la

tio
n 

H
C

V
 a

nd
 H

IV
 fr

om
 ra

nd
om

 in
te

rc
ep

ts

(3.2) (3.4) (3.5) (3.7) (3.8) (3.10) (3.11)

0.
00

0.
25

0.
50

0.
75

1.
00

(c) Correlation ργ1γ2 per model

Years
O

ve
rd

is
pe

rs
io

n 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

s,
 ρ

θ 1
θ 2

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

-1
.0
0

-0
.7
5

-0
.5
0

-0
.2
5

0.
00

0.
25

0.
50

0.
75

1.
00

(d) Correlation ρθ1θ2 from Model (3.8)

Figure 2: Posterior means and respective 95% CI of the infection-specific variances (panel a and b) and correlation (panel c) of random intercepts γik per model,
and of the time-dependent correlation (panel d) on the scale of overdispersion parameters θi jk from Model (3.8).
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(a) Additive shared r.e., Model (3.4)
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(b) Additive correlated r.e., Model (3.8)
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(c) Multiplicative Be(a,b), Model (3.11)
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(d) Multiplicative Be(1,1), Model (3.10)

Figure 3: Individual fitted prevalence profiles of HCV and HIV infections for the 20 Italian regions between 1998 and 2007, resulting from the best models
according to PED (panel a and c) and according to the difference in posterior deviances (panel b and d).
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Table 1: Information criteria for model selection.
Type Model DIC PED Diff. D(θ)
Basic (3.2) 10274 10351 -

Additive

D3.4,3.2 = D3.4−D3.2
(3.4) 4998 6176 −5442(−5491,−5391)

P(D3.4,3.2 < 4.39) = 1
D3.5,3.4 = D3.5−D3.4

(3.5) 3835 7469 −1304(−1378,−1227)
P(D3.5,3.4 < 4.39) = 1
D3.7,3.5 = D3.7−D3.5

(3.7) 3835 7515 −1(−89,84)
P(D3.7,3.5 < 4.39) = 0.47

D3.8,3.5 = D3.8−D3.7
(3.8) 3775 8099 −73(−157,11)

P(D3.8,3.5 < 4.39) = 0.94

Multiplicative

D3.10,3.8 = D3.10−D3.8
(3.10) 3782 8270 −7(−86,76)

P(D3.10,3.8 < 4.39) = 0.52
D3.10,3.11 = D3.10−D3.11

(3.11) 3869 7224 −113(−200,−22)
P(D3.10,3.11 < 4.39) = 0.99
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Figure 4: Marginal prevalence π jk for HCV (panel a) and HIV (panel b) with 95% CI, obtained by
averaging out all over the regions the prevalence per year j and infection k, from the basic model (green
line), the additive correlated model with time-dependent correlation coefficients (red line), the additive
shared model (golden line), the multiplicative Be(1,1) model (blue line), and the multiplicative Be(a,b)
model (pink line). The black dots stand for the national observed prevalence, obtained pooling together
all the regional prevalences per each year.
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