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Abstract

Many applications in public health, medical and biomedical or other studies demand modeling
of two or more longitudinal outcomes jointly to get better insight in their joint evolution. In this
regard, a joint model for a longitudinal continuous and a count sequence, the latter possibly
overdispersed and zero-inflated, will be specified that assembles aspects coming from each one of
them into one single model. Further, a subject-specific random effect is included to account for
the correlation in the continuous outcome. For the count outcome, clustering and overdispersion
are accommodated through two distinct sets of random effects in a generalized linear model
as proposed by Molenberghs et al (2010); one is normally distributed, the other conjugate to
the outcome distribution. The association among the two sequences is captured by correlating
the normal random effects describing the continuous and count outcome sequences, respectively.
An excessive number of zero counts is often accounted for by using a so-called zero-inflated or
hurdle model. Zero-inflated models combine either a Poisson or negative-binomial model with an
atom at zero as a mixture, while the hurdle model separately handles the zero observations and
the positive counts. This paper proposes a general joint modeling framework in which all these
features can appear together. We illustrate the proposed method with a case study and examine
it further with simulations.

Some Keywords: Clustering; Conjugate random effect; Hurdle model; Joint model; Normal
random effect; Overdispersion; Zero-inflation.

1 Introduction

Many longitudinal studies involve collecting data on more than one outcome from a given subject

repeatedly over time. These outcomes include, but are not limited to, continuous, count, and binary

data. For example, in HIV studies, sero-positive patients are monitored until they develop AIDS or

die, and their immune system is regularly measured using markers such as the CD4 lymphocyte count,

the estimated viral load, or whether viral load is below detectable limits. In the case of the Jimma
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Infant Growth study, described in the next section, a continuous outcome, such as body weight, is

measured repeatedly from each infant. At the same time, the health condition of a child was also

assessed to see if the child has experienced a specific disease, like diarrhea, whereby the number of

days of illness, as a count outcome, were recorded so as to measure the magnitude of the disease

burden.

Extensive literature is available on the analysis of single longitudinal outcomes. For a Gaussian

longitudinal response, the linear mixed model is very popular (Laird and Ware 1982, Verbeke and

Molenberghs 2000). Subject-level random effects, that are of a Gaussian type, are introduced in such

a model to capture the within-subject correlation.

In the literature, several models are available to jointly model various longitudinal and possibly

also time-to-event outcomes (Tsiatis and Davidian 2004). Horrocks and van den Heuvel (2009)

consider the problem of predicting the achievement of successful pregnancy, in a population of

women undergoing treatment for infertility, based on longitudinal measurements of adhesiveness.

For this purpose, they used a joint model, consisting of a linear mixed-effects submodel for the

longitudinal adhesion outcome and a generalized linear submodel for the primary binary endpoint.

Molenberghs and Verbeke (2005) discuss a number of techniques that jointly model continuous and

discrete outcomes. The correlation between the sequences is then captured by allowing the normal

random effects to be correlated.

Molenberghs et al (2010) proposed a unified modeling framework for the analysis of overdispersed

and hierarchical non-Gaussian data by bringing together normal random effects, to capture correlation

over time, and conjugate random effects, to capture overdispersion, all within the generalized linear

model framework. The resulting model is referred to as the combined model. For a count outcome,

overdispersion is accommodated by using observation-specific Gamma random-effects, leading to the

negative-binomial model. Booth et al (2003) extended the negative binomial log-linear model to the

case of dependent counts, where dependence among the counts is handled by including also normal

random effects. This particular instance of the combined model can be termed the Poisson-gamma-

normal (PGN) model.

Zero-inflated (ZI) count models provide a way of modeling the excess zeros in addition to allowing for

overdispersion by using two simultaneously operating data generation processes; one generates only

zeros and the other is either a Poisson or negative-binomial data generating process. Overdispersion
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and excess zeros for count data in a univariate setup are studied by, for example, Lambert (1992)

and Greene (1994). Multi-level zero-inflated Poisson regression is considered by Lee et al (2006).

The hurdle model, which is a two-part model, is also available to model excess zeros (Mullahy 1986).

One part is a binary model for whether the response outcome is zero or positive. Conditional on a

positive outcome, the second part uses a truncated Poisson or negative-binomial that modifies an

ordinary distribution by conditioning on a positive outcome. The two models do not constrain each

other in any way. For zero-inflated correlated data, the hurdle model has been studied by Min and

Agresti (2005).

Our joint modeling approach for longitudinal continuous and count sequences, the latter possibly

overdispersed and zero-inflated, requires to assemble aspects coming from each one of them in one

single model. These include the correlation from the continuous, as well as the correlation, overdis-

persion, and zero-inflation features from the count sequence. In spite of this apparent complexity,

the model can be implemented in standard software, such as the SAS procedure NLMIXED.

The rest of the paper is organized as follows. In Section 2, a motivating case is described, with

analysis reported in Section 5. In Section 3, a review is given on the single longitudinal continuous

model, and the so-called combined model and its extensions to account for an excess of zeros,

followed by formulation of a joint modeling framework to also deal with correlation, overdispersion,

and zero-inflation. Avenues for parameter estimation and ensuing inferences are explored in Section 4.

Section 6 deals with a simulation study to investigate the importance of accounting for an excess of

zeros and overdispersion. Some concluding statements are given in Section 7.

2 The Jimma Infant Growth Study

The study was conducted in Ethiopia in the administrative zones of Jimma, Keffa, and the Illubabor,

and described in detail by Asefa and Tessema (2002). Children were examined for their first-year

growth characteristics. At baseline, there were a total of 7969 infants who were visited every two

months starting from birth until the age of one year. Risk factors, including socio-economic, maternal,

and infant-rearing factors, were recorded in order to be able to study their relationship with the child’s

early survival.

For our purposes, two outcome variables will be considered, namely (1) body weight (kg), measured

longitudinally from each infant and (2) number of days of diarrheal illness recorded at each visit to
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Table 1: Jimma Infant Growth Study. Mean and standard deviation of weight and days of illness at

each of the seven follow-up times.

Age (months) Mean weight (s.d.) Mean days of illness (s.d.)

0 3.11(0.52) 0.01(0.19)

2 4.88(0.78) 0.91(4.24)

4 5.97(0.99) 1.28(4.62)

6 6.67(1.12) 1.56(4.87)

8 7.13(1.21) 2.14(5.93)

10 7.50(1.26) 2.63(6.66)

12 7.84(1.28) 2.67(6.95)

assess the diarrheal disease burden (Table 1). For the latter, of the nearly 49,000 total observations,

only about 8,000 observations are non-zero (i.e., roughly 85%), indicating that there is a dominance

of zero counts. It is then useful to assess the connection between both, by studying their association

which can be addressed in a joint modeling context.

3 Methodology

In this section, existing models will be reviewed, extended, and combined. To describe these without

ambiguity and to ensure that the links between them are clearly seen, we will make a few terminology

conventions. Indeed, we have different data types (continuous and count), different types of random

effects (normal and conjugate) that may or may not be combined into a single model, the possibility

to accommodate zero inflation, and the possibility to analyze two or more outcomes jointly. All

of these options create a large number of model variations. We can effectively describe them by

introducing a symbol of the form (XYZ) for each outcome model, with X the outcome type, Y

the presence of absence of normal random effects, and Z the presence or absence of a conjugate

random effect. For example, (NN-) stands for the linear mixed model, as the first ‘N’ is for the

normal outcome and the second one for the normal random effect. In this case, there is no need for

a conjugate random effect. For counts, we may see such models as (PNG) for the Poisson model

with normal and gamma random effects. The generalized linear mixed model corresponding to it

would be (PN-), whereas the negative binomial model is denoted as (P-G). When two outcomes are
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jointly analyzed, we will write (NN-)(PNG). Should there be correction for zero inflation, then we

might write ZI(NN-)(PNG) or H(NN-)(PNG) when hurdle model ideas are used. We observe that

the notation obviates the need to use the terms ‘joint’ or ‘combined,’ given that these aspects are

now unambiguously clear from notation.

3.1 A Model for Longitudinal Continuous Data

For a longitudinal Gaussian outcome, the linear mixed model (NN-) provides a general and flexible

modeling framework based on a random-effects approach (Verbeke and Molenberghs 2000). Suppose

that Yij are the jth continuous outcome measured for subject i = 1, . . . , N , j = 1, . . . , ni. A

linear mixed-effects model can be represented as Yij = x′
ijβ + z′

ijbi + εij . The xij and zij are

p-dimensional and q-dimensional vectors of known covariate values, β is a p-dimensional vector of

unknown fixed regression coefficients, bi is a q-dimensional vector of the random effects, and εi an ni-

dimensional vector of residual variation. The subject-specific random effect bi and the residual error

εi are independent and assumed to follow normal distributions bi ∼ N (0, D) and εi ∼ N (0,Σi),

respectively.

3.2 A Combined Model for Count Data

Molenberghs et al (2010) proposed a unified modeling framework for the analysis of overdispersed

and hierarchical non-Gaussian data by bringing together normal random effects and overdispersion

random effects within the generalized linear model framework.

Let Yij be the jth outcome measured for subject i = 1, . . . , N , j = 1, . . . , ni. In general, the

combined family is given by

fi(yij|bi, ξ, θij, φ) = exp
{

φ−1[yijηij − ψ(ηij)] + c(yij, φ)
}

,

with η and φ the natural and dispersion parameter, respectively, and ψ(·) and c(·) known functions

specifying a particular distribution of the exponential family distribution.

For count data, we assume that Yij ∼ Poi(λij = θijκij), with the conditional mean λij modeled as

θijκij with

κij = exp
(

x′
ijξ + z′

ijbi

)

, (1)

bi ∼ N (0, D), θij ∼ Gamma(α, β), and ξ a p-dimensional vector of unknown fixed regression

coefficients. Further, α and β are shape and scale parameters, respectively. These can be generalized
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as well, for example, when the gamma process parameters would be measurement occasion specific.

The measurement-specific gamma random-effect θij is used to accommodate residual overdispersion,

while the subject-specific normal random effect bi is used to model the correlation coming from the

hierarchy in the data as well as some overdispersion. Using the notational conventions from the

beginning of this section, this model is denoted as (PNG).

3.3 Zero-Inflated Combined Model

Count data exhibiting an excess number of zeros beyond what can be allowed for by a standard

probability distribution are very common. Such data are often modeled by using so-called zero-inflated

models, which assume two independent data generation processes as sources of zeros. Assume that

for observation i, one can account for the excess of zeros by introducing the probability πi for the

point mass (process 1) and the probability 1 − πi for the count component (process 2; Hinde and

Demétrio 1998ab). Process 1 generates only zeros, whereas process 2, fi(yij |bi, ξ, θij), generates

counts from, say, a (PNG) model. In its most general form, the ZI(PNG) is then given as the

following mixture:

Yij ∼















0 with probability πij

fi(yij|bi, ξ, θij) with probability 1 − πij,

(2)

leading to the probabilities p(Yij = yij|bi, ξ, θij, πij) given by

p(Yij = yij |bi, ξ, θij, πij) =















πij + (1− πij)fi(0|bi, ξ, θij) if yij = 0,

(1 − πij)fi(yij|bi, ξ, θij) if yij > 0.

(3)

The Bernoulli model is used to model the zero-inflation component πij = π(x′
2ijγ) by using com-

monly used links such as the logit or probit. The model may contain known regressors x2ij, a vector

of zero-inflation coefficients γ to be estimated. Note that the xij in Section 3.2 are now replaced by

x1ij for the non-zero count part. The regressors in the count and zero-inflation component can either

be overlapping, a subset of the regressors can be used for the zero-inflation, or different regressors

for the two parts can be used.

The conditional mean and variance of the ZI(PNG) are:

E(Yij|bi, ξ, θij) = θijκij(1 − πij), (4)

Var(Yij|bi, ξ, θij) = θijκij(1 − πij)[1 + θijκij(πij + 1/α)]. (5)
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It can be seen that the conditional variance is inflated as a result of the overdispersion in the data

(parameter α) and as a result of zero-inflation (parameter π).

3.4 Hurdle Combined Model

The hurdle model, as an alternative approach to account for an excess of zeros, is a two-part model

with a truncated count distribution for the positive counts, and a hurdle component for the zero

counts (Mullahy 1986). Suppose that occurrence of zeros is governed by a probability πi, and non-

zero counts follow a truncated-at-zero probability mass function, such as a truncated (PNG). The

H(PNG) leads to a probability mass function of the form:

p(Yij = yij |bi, ξ, θij, πij) =















πij if yij = 0,

(1 − πij)
fi(yij |bi,ξ,θij)

1−fi(0|bi,ξ,θij)
if yij > 0.

(6)

where the πij are parameterized similarly to what was presented in Section 3.3.

3.5 A Joint Combined Model for Continuous and Zero-inflated Count Data

Let Yij denote a longitudinal continuous outcome, and Zik an overdispersed count outcome, po-

tentially with excess zeros and overdispersion, with densities f1i(yij) and f2i(zik), respectively

(i = 1, . . . , N , j = 1, . . . , n1i, and k = 1, . . . , n2i). Note that the number of measurements

per sequence can but does not have to be the same.

Formulation of a joint model will be based on a random-effects approach. Precisely, each sequence will

incorporate normal random effects, which are potentially correlated between them. This means that

the correlation between both sequences for the same subject is induced by the shared or correlated

normal random effects. At the same time, the normal random effects induce correlation within the

sequences as well. We still allow for additional overdispersion by potentially integrating gamma

random effects into the count sequence. This leads to the base model (NN-)(PNG).

The normal random effects, b1i and b2i, are incorporated into the continuous and count sequences,

respectively. They follow the joint distribution

bi = (b1i, b2i)
′ ∼ N

















0

0









,









D11 D12

D′
12 D22

















.
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In this general formulation, the two sets of random effects are different but correlated. The sequences

would be independent only if D12 = 0. It is possible to let some components be shared between

b1i and b2i. If all are common, this is a pure shared random-effects model. The modeler can assess

and then choose whether a shared random effects or a correlated random effects approach is more

plausible, or even a hybrid of both.

Further allowing for zero inflation, the resulting model becomes ZI(NN-)(PNG) or H(NN-)(PNG),

with joint distribution:

fi(yij, zik|b1i, b2i,β, ξ, θik, πik) = f1i(yij |b1i,β) × f2i(zik|b2i, ξ, θik, πik). (7)

For the continuous outcome, f1i(yij |b1i,β) is the linear mixed model (NN-), as discussed in Sec-

tion 3.1, and for the count sequence, f2i(zik|b2i, ξ, θik, πik) is the ZI(PNG), as presented in Sec-

tion 3.3. Similarly, for the hurdle version, we bring together the (NN-) and the H(PNG) into the

H(NN-)(PNG), where f2i(zik|b2i, ξ, θik, πik) is now defined as in Section 3.4.

4 Estimation

Let us consider the count component. We will make use of the partial marginalization for parameter

estimation, as presented in Molenberghs et al (2010). By this we refer to integrating the like-

lihood over the gamma random effects only, leaving the normal random effects untouched. The

corresponding conditional probability for the (PNG) is:

f(yij|bi, ξ, θij) =

∫

f(yij|bi, ξ, θij)f(θij|αj, βj)dθij

=









αj + yij − 1

αj − 1









·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

where κij is as in (1). For the ZI(PNG) case:

f(yij |bi, ξ, θij, πij) = I(yij = 0)πij

+(1 − πij)









αj + yij − 1

αj − 1









·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

with πij = π(x′
2ijγ). Note that, with this approach, we assume that the gamma random effects

are independent within a subject. This is fine, given that the correlation is induced by the normal

random effects.
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Applying the above principle to the ZI(NN-)(PNG) leads to:

fi(yij , zik|b1i, b2i,β, ξ, θik, πik) =
1

(2π)
ni
2 |Σi|

1

2

e−
1

2
(y

i
−Xiβ−Zib1i)

′Σi
−1(y

i
−Xiβ−Zib1i)

×
∏

k

f(zik|b2i, ξ, θik, πik).

Similarly, the H(PNG), say f∗(yij), as discussed in Section 3.4, can be spelled out as:

f∗(yij|bi, ξ, θij, πij)

= I(yij = 0)πij + (1 − πij)









αj + yij − 1

αj − 1









·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij

× 1

1 −
(

1
1+κijβj

)αj
.

Consequently, the partially marginalized form for the H(NN-)(PNG) is:

fi(yij , zik|b1i, b2i,β, ξ, θik, πik) =
1

(2π)
ni
2 |Σi|

1

2

e−
1

2
(y

i
−Xiβ−Zib1i)′Σi

−1(y
i
−Xiβ−Zib1i)

×
∏

k

f∗(zik|b2i, ξ, θik, πik).

For all of these, it is straightforward to obtain the fully marginalized probability and to optimize the

resulting likelihood, by numerically integrating over the normal random effects. This can be done

using a tool, such as the SAS procedure NLMIXED, that allows for normal random effects in arbitrary,

user-specified models. While the SAS procedure NLMIXED is equipped with default starting values,

it is advisable to provide user-defined starting values instead. These can be obtained, for example,

from models without random effects, with some trial and error. It is equally wise to ensure that

both the outcomes values as well as the covariates have magnitudes that are neither very large nor

extremely small, because this may jeopardize stability of the iterative process. Also, it is useful, for

example, to first fit the individual models and use the output as starting values for the joint model.

Against this background, our data analysis proceeded without difficulty. Example NLMIXED code is

provided in Appendix A, for both the data analysis and the simulation study.

5 Analysis of the Jimma Infant Growth Study

We analyze the Jimma Infant data as introduced in Section 2, where body weight as well as number

of days of diarrheal illnesses were measured repeatedly for each infant. The two outcomes will be
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modeled jointly to capture association between them. Denote by Yij and Zik weight and number of

days of illness measurements for the ith infant at the jth and kth visit. We formulate a ZI(NN-)(PNG)

or a H(NN-)(PNG) model for these data. The means are µij and κik, respectively. We model these

as µij = β0 + b1i + β1Aij + β2Aij
2, and κik as ln(κik) = ξ0 + b2i + ξ1Aik. The quadratic effect

of age, β2, is included to improve the model’s fit. A graphical inspection of age versus average

weight revealed a non-linear trend and hinted on a quadratic one. To account for excess zeros, the

zero-inflation probability πik is written as logit(πik) = γ0 + γ1Aik. Here, Aij is the age of the ith

infant at the jth visit. Further, b1i and b2i represent subject-specific intercepts, assumed normally

distributed and possibly correlated with mean and variance-covariance matrix given by

(b1i, b2i)
′ ∼ N

















0

0









,









d1 ρ
√
d1

√
d2)

ρ
√
d1

√
d2 d2

















.

We examine the zero-inflation as well as the overdispersion aspect. The first issue can be addressed

using a special type of the hurdle model, also known as the zero-altered model (Min and Agresti

2005). These authors consider the testing problem for zero-inflation. This model requires the same

covariates as well as the same distributional forms in the two parts. Explicitly, we assume,

ln[−ln(1 − πik)] = a1 + a2(ξ0 + ξ1Aik) + b2i,

ln(κik) = ξ0 + ξ1Aik + b2i.

By setting, a2 = 1, and testing whether a1 = 0, one can test for zero-inflation. If a1 < 0, then the

data are zero-inflated; If a1 > 0, the data are zero-deflated. Fitting the zero-altered combined model

showed strong evidence of zero-inflation (a1 = −2.0689, likelihood ratio test statistic = 3343, on

one degree of freedom).

We also fitted the H(NN-)(PN-) and compared it with the H(NN-)(PNG). The difference in deviance

is 94, 181−86, 379, which evidently is extremely significant (p < 0.0001). This strongly underscores

the presence of the overdispersion parameter α.

Parameter estimates for the (NN-), (PNG), and (NN-)(PNG) models are presented in Table 2.

Technically, the separate models were fitted for the two outcomes together anyway, but assuming

that ρ = 0, which is entirely equivalent to fitting the models separately. Clearly, body weight and

number of days of diarrheal illness show a strong inverse relationship as evidenced by the correlation

of the random effects in the (NN-)(PNG). In addition, likelihood comparison shows a convincing
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improvement in model fit, when random effects are allowed to correlate. Comparing the separate

and joint models, while parameter estimates for the continuous outcome remain the same, small

changes are observed in the count part. All parameters are statistically significant in all models

considered.

Table 3 gives the hurdle counterparts to the models in Table 2, i.e., (NN-), H(PNG), and

H(NN-)(PNG). Evidently, the linear mixed model (NN-) is left unaltered because the hurdle aspect

applies to the count process only. Similarly, Table 4 shows the ZI counterparts, (NN-), ZI(PNG),

and ZI(NN-)(PNG). We deduce that the fit is improved quite a bit further, implying that the excess

zeros need to be accommodated in the model. The aforementioned inverse relationship remains.

While accounting for the excess zeros does not bring changes in the parameters for the continuous

process, this is not the case for the counts, where the estimates change with their corresponding

standard errors getting relatively smaller. When the excess zeros are accounted for, the negative bi-

nomial parameter α gets much smaller in Tables 3 and 4, as compared to the corresponding value in

Table 2. This underscores, once again, the connection between the zero-inflation and overdispersion

phenomena. Indeed, when ZI is unaccounted for, the overdispersion aspect of the models captures

a certain amount of this effect.

Turning to Tables 2–4 with an eye on the overdispersion parameter α, we see that it drops drastically

when comparing Table 2 with Tables 3 and 4. Because in our parameterization larger values for α

imply more pronounced overdispersion effects, it is clear that accounting for excess zeros explains a

good amount of apparent overdispersion. The amount explained is relatively invariant to whether

the two processes are estimated jointly or rather separately. The reduction also holds regardless of

whether either a ZI or a hurdle correction is made. Finally, even after correction for excess zeros,

there convincingly remains an amount of overdispersion. This underscores that both overdispersion

as well as excess zeros need to be accounted for.

From Tables 3 and 4, we further observe that the H(NN-)(PNG) and the ZI(NN-)(PNG) are very

similar, not only in terms of parameter estimates but also as far as resulting inferences go. In count

data modeling, the choice among zero-inflated and hurdle models should be based not only on model

fit but also on assumptions about the underlying data generation process (Neelon et al 2010). If

zeros are expected to come from both the point mass and the count component, then zero-inflated

models may be preferable. In addition, in the presence of strong evidence of zero-inflation, zero-

inflation models may provide better fit. On the other hand, Min and Agresti (2005) discuss why the
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Table 2: Jimma Infant Growth Study. H(NN-), (PNG), and (NN-)(PNG) models.

Effect Parameter (NN-) & (PNG) (NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2768(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√

d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 −1.1567(0.0557) −1.2094(0.0551)

Age ξ1 0.2246(0.0072) 0.2279(0.0072)

Std. dev random effect
√

d2 0.3654(0.0507) 0.4611(0.0435)

Negative-binomial parameter α 17.9605(0.2914) 17.6345(0.2858)

Common parameter

Corr. random effect ρ — −0.6282(0.0565)

−2log-likelihood 172,241 172,054

hurdle model is, in general, preferred to the zero-inflated model: it allows to test for zero-inflation,

it works also in the zero-deflation setting, and its two parts are separate.

6 Simulation Study

A simulation study is conducted to assess the impact of not appropriately accounting for the ex-

cess zero counts as well as misspecification of the overdispersion in joint modeling of hierarchical

continuous and count outcome. We choose to conduct this study following three different settings.

6.1 Simulation Settings

Data are generated in the spirit of the design and outcomes of the data in Section 2, which consist of

body weight and counts of the number of days of diarrheal disease illnesses among infants measured

repeatedly over time. Age in months is considered as the time variable.
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Table 3: Jimma Infant Growth Study. (NN-), H(PNG), and H(NN-)(PNG) models. .

Effect Parameter (NN-) & (PNG) H(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√

d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.0437(0.0251) 2.0225(0.0251)

Age ξ1 0.0185(0.0028) 0.0199(0.0028)

Std. dev random effect
√

d2 0.4374(0.0118) 0.4392(0.0118)

Negative-binomial parameter α 0.3271(0.0104) 0.3259(0.0103)

Inflation intercept γ0 2.8383(0.0290) 2.8383(0.0290)

Inflation Age γ1 −0.1687(0.0035) −0.1687(0.0035)

Common parameter

Corr. random effect ρ — −0.2255(0.0246)

−2log-likelihood 165,475 165,395

A random sample of 250 data sets are generated under three scenarios. S1: from a ZI(NN-)(PNG);

S2 from a ZI(NN-)(PN-); S3 from a (NN-)(PNG). Model fitting is based on these three models, sup-

plemented with others: ZI(NN-)(PNG), H(NN-)(PNG), or (NN-)(PNG); also, the versions without

overdispersion are considered: ZI(NN-)(PN-), H(NN-)(PN-), or (NN-)(PN-).

We consider 200 subjects with 10 measurements per subject. The continuous response Yij is modeled

as Yij = β0 +β1Aij + β2Aij
2 + b1i + εij . The subject-specific random intercept b1i and the residual

error εi are assumed independent, and generated from normal distribution with mean 0 and standard

deviations 2 and 0.6, respectively. The count outcome Zik is modeled using predictor function

κik = exp {ξ0 + b2i + ξ1Aik}. Whenever we want to place overdispersion into the model simulated

from, the outcome is generated directly from a negative-binomial process with Zik ∼ NB(ψik, θ),

where θ = 1 and ψik = (1+κik/θ)
−1. As before, Aij represents the age at which the jth measurement

13



Table 4: Jimma Infant Growth Study. (NN-), ZI(PNG), and ZI(NN-)(PNG) models.

Effect Parameter (NN-) & ZI(PNG) ZI(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev. random effect
√

d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.0270(0.0259) 2.0020(0.0260)

Age ξ1 0.0190(0.0029) 0.0205(0.0029)

Std. dev. random effect
√

d2 0.4464(0.0123) 0.4500(0.0123)

Negative-binomial parameter α 0.3259(0.0104) 0.3261(0.0104)

Inflation intercept γ0 2.8071(0.0292) 2.8051(0.0292)

Inflation Age γ1 −0.1686(0.0035) −0.1685(0.0035)

Common parameter

Corr. random effect ρ — −0.2409(0.0245)

−2log-likelihood 165,461 165,369

is taken for the ith subject. Practically, age is generated from the empirical distribution observed in

the Jimma Infact Growth Study. The random intercept b2i follows a mean-zero normal with variance

1.5. When zero-inflation is present, this is added by defining the final response vector Z∗
i with

components Zik
∗ = (1− uik)Zik, where the uik are Bernoulli random variables with parameters πik

and logit(πik) = γ0 + γ1Aik. To correlate the two processes, the random intercepts b1i and b2i are

allowed to correlate with one another, with ρ = −0.5. When generating data, the true parameter

values were β = (3.3, 0.77,−0.03)T, ξ = (2, 0.02)T , and γ = (2,−0.2)T .

6.2 Simulation Results

The results under S1 are summarized in Tables 5 and 6. Clearly, the ZI(NN-)(PNG) and the

H(NN-)(PNG) result in estimates very close to the true values. However, as can be seen from
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the (NN-)(PNG), omitting zero-inflation highly affects the estimates in the count component, with a

non-negligible amount of bias loaded on the correlation parameter. Further, when both zero-inflation

and overdispersion are misspecified, by fiting the (NN-)(PN-), as shown in Table 6, a similar phe-

nomenon is evident, where now the random-effects variance tries to recover from mis-specifying the

overdispersion.

Under scenario S2, the results of which are presented in Table 7, the impact of omitting the extra

zeros is still evident, though the overdispersion parameter α in the (NN-)(PNG) seems to help

recover from misspecification. Further, we also note that correlation is overestimated as a result

of the misspecification. These results, once more, underscore the necessity of models appropriately

accounting for the excessive zeros.

Scenario 1 leads to about 75% of zeros, with a similar fraction (72%) in Scenario 2. Scenario 3 is

qualitatively different, with roughly 18% of zeros. Comparing mean and standard deviation shows

that all three are overdispersed. Under Scenarios 1 and 2, this stems to a large part from extra zeros,

whereas in Scenario 3 this is “pure” overdispersion. When data are overdispersed, but not subject

to considerable zero-inflation as in S3, fitting models allowing for extra zeros is less important. As

shown in Table 8, the (NN-)(PNG), which is the true model, performs well. In addition, we observe

that the (NN-)(PN-) model is also doing well, but this probably may not be the case when data are

subject to much higher levels of overdispersion than those considered here.

In addition, across our simulation study, we learned that the zero-inflated models are relatively harder

to fit when compared to the hurdle models, where convergence of models is never an issue, with

convergence guaranteed for the latter. Further, in scenarios S1 and S2, though data are generated

from the ZI(NN-)(PNG), the H(NN-)(PNG) is also performing very well.

7 Concluding Remarks

In this paper, we have described a joint modeling strategy for a hierarchical continuous and count

outcome, where the latter is subject to zero-inflation as well as overdispersion. Our work builds upon

that of Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al (2010), who combined

normal and gamma random effects in the generalized linear model family to induce association and

adjust for overdispersion. We show that these ideas can be extended to a joint modeling framework

for a continuous and count sequence simultaneously. This allows for an improvement in model fit, and
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Table 5: Simulation study under scenario S1. Mean and Relative bias (RB) of the parameter

estimates in the ZI(NN-)(PNG), H(NN-)(PNG), and (NN-)(PNG).

Effect Parameter True ZI(NN-)(PNG) H(NN-)(PNG) (NN-)(PNG)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.2967(-0.0010) 3.2965(-0.0011) 3.2965(-0.0011)

Age β1 0.77 0.7716(0.0021) 0.7716(0.0021) 0.7716(0.0021)

Age×Age β2 −0.03 −0.0301(0.0033) −0.0301(0.0033) −0.0301(0.0033)

Std. dev. error σ 0.6 0.5995(-0.0008) 0.5995(-0.0008) 0.5995(-0.0008)

Std. dev. random effect
√

d1 2 1.9875(-0.0063) 1.9873(-0.0063) 1.9875(-0.0063)

Count process

Intercept ξ0 2 1.9771(-0.0115) 2.1452(0.0726) −0.1694(-1.0847)

Age ξ1 0.02 0.0229(0.1450) 0.0220(0.1000) 0.2177(9.8850)

Std. dev. random effect
√

d2 1.5 1.4779(-0.0147) 1.3409(-0.1061) 1.3107(-0.1262)

Negative-binomial parameter α 1 0.9922(-0.0078) 1.0509(0.0509) 11.8950(10.8950)

Inflation intercept γ0 2 1.9956(-0.0022) 2.2092(0.1046) —

Inflation Age γ1 −0.2 −0.1982(-0.0090) −0.1876(-0.0620) —

Common parameter

Corr. random effect ρ −0.5 −0.5028(0.0056) −0.5005(0.0010) −0.5629(0.1258)

Frequency of convergence 250 250 250

for enhanced statistical inferences. However, any failure to appropriately account for such features

may result in a substantial impact on the parameter and precision estimates. When zero-inflation is

omitted from the model, the overdispersion component will try to recover from this misspecification,

though both are eventually needed.

Fitting a ZI(NN-)(PNG) model, even when correctly specified, is relatively more complex than a

H(NN-)(PNG). The latter has several additional advantages, in particular the possibility to test

for zero inflation. In the real data analysis, there were no model convergence issues, which is

reassuring. Of course, as we learned from analyzing these data, both overdispersion as well as

additional zero inflation were convincingly present. Furthermore, the set of data was very large.

These are comfortable conditions to reach convergence. In the simulation study, the hurdle model

was at an advantage when it came to model fit. Practically, readers may consider both approaches,
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Table 6: Simulation study under scenario S1. Mean and Relative bias (RB) of the parameter

estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PN-).

Effect Parameter True ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PN-)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.2843(-0.0048) 3.2920(-0.0024) 3.2959(-0.0012)

Age β1 0.77 0.7716(0.0021) 0.7717(0.0022) 0.7716(0.0021)

Age×Age β2 −0.03 −0.0302(0.0067) −0.0301(0.0033) −0.0301(0.0033)

Std. dev. error σ 0.6 0.5994(-0.0010) 0.5995(-0.0008) 0.5995(-0.0008)

Std. dev. random effect
√

d1 2 1.9882(-0.0059) 1.9877(-0.0062) 1.9875(-0.0063)

Count process

Intercept ξ0 2 1.1335(-0.4333) 2.0159(0.0080) −0.4531(-1.2266)

Age ξ1 0.02 0.0254(0.2700) 0.0258(0.2900) 0.1617(7.0850)

Std. dev. random effect
√

d2 1.5 1.5664(0.0443) 1.4261(-0.0493) 1.7943(0.1962)

Negative-binomial parameter α 1 — — —

Inflation intercept γ0 2 1.9724(-0.0138) 2.2087(0.1044) —

Inflation Age γ1 −0.2 −0.1946(-0.0270) −0.1876(-0.0620) —

Common parameter

Corr. random effect ρ −0.5 −0.4461(0.1078) −0.4361(0.1278) −0.4058(-0.1884)

Frequency of convergence 233 250 250

hurdle and ZI, and perhaps use the relevant parameters from the hurdle model as starting values for

the ZI fit.

In terms of estimation, we have focused on maximum likelihood estimation. This can be done

by integrating over the random effects, using a combination of analytical and numerical techniques.

Precisely, the likelihood was integrated analytically over the conjugate (gamma) random effect, using

techniques outlined in Molenberghs et al (2010). The so-resulting likelihood, still conditional on the

normal random effect, is integrated numerically over the said random effect using the SAS procedure

NLMIXED.

In conclusion, we note that our approach corrects for overdispersion and/or allows for joint modeling.

In our example, both phenomena were present, although overdispersion results in a larger deviance

reduction than joint modeling. One lesson to be drawn from this is that the user should carefully assess
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Table 7: Simulation study under scenario S2. Mean and Relative bias (RB) of the parameter

estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PNG).

Effect Parameter True ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PNG)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.3254(0.0077) 3.2939(-0.0019) 3.2958(-0.0013)

Age β1 0.77 0.7697(-0.0004) 0.7711(0.0014) 0.7710(0.0013)

Age×Age β2 −0.03 −0.0300(0.0000) −0.0301(0.0033) −0.0301(0.0033)

Std. dev. error σ 0.6 0.5994(-0.0010) 0.5996(-0.0007) 0.5996(-0.0007)

Std. dev. random effect
√

d1 2 1.9850(-0.0075) 1.9856(-0.0072) 1.9855(-0.0073)

Count process

Intercept ξ0 2 1.2304(-0.3848) 2.0508(0.0254) 0.0834(-0.9583)

Age ξ1 0.02 0.0204(0.0200) 0.0203(0.0150) 0.1948(8.7400)

Std. dev. random effect
√

d2 1.5 1.5021(0.0014) 1.4244(-0.0504) 1.2189(-0.1874)

Negative-binomial parameter α 0 — — 9.9406

Inflation intercept γ0 2 1.8843(-0.0579) 2.0889(0.0445) —

Inflation Age γ1 −0.2 −0.2038(-0.0190) −0.1955(-0.0225) —

Common parameter

Corr. random effect ρ −0.5 −0.4954(-0.0092) −0.4890(0.0220) −0.6126(-0.2252)

Frequency of convergence 241 250 250

whether one or the other correction, both of them, or perhaps none of the two is necessary. Note

also that joint modeling may be of interest in its own right. For example, one may be interested in

measuring the strength of the association between both processes (estimating one or more correlation

parameters) or in assessing its significance. Also, it is possible to derive prediction equations for an

outcome or set of outcomes in one sequence, based on the outcomes in the other sequence and/or

earlier measurements of the same sequence.
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Table 8: Simulation study under scenario S3. Mean and Relative bias (RB) of the parameter

estimates in the H(NN-)(PNG), (NN-)(PNG), and (NN-)(PN-).

Effect Parameter True H(NN-)(PNG) (NN-)(PNG) (NN-)(PN-)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.2938(-0.0019) 3.2946(-0.0016) 3.2948(-0.0016)

Age β1 0.77 0.7721(0.0027) 0.7721(0.0027) 0.7721(0.0027)

Age×Age β2 −0.03 −0.0302(0.0067) −0.0302(0.0067) −0.0302(0.0067)

Std. dev. error σ 0.6 0.5993(-0.0012) 0.5993(-0.0012) 0.5992(-0.0013)

Std. dev. random effect
√

d1 2 1.9872(-0.0064) 1.9878(-0.0061) 1.9875(-0.0063)

Count process

Intercept ξ0 2 2.0627(0.0314) 1.9954(-0.0023) 1.9537(-0.0232)

Age ξ1 0.02 0.0189(-0.0550) 0.0194(-0.0300) 0.0175(-0.1250)

Std. dev. random effect
√

d2 1.5 1.4143(-0.0571) 1.4852(-0.0099) 1.5223(0.0149)

Negative-binomial parameter α 1 1.0082(0.0082) 1.0012(0.0012) —

Inflation intercept γ0 0 −1.4481 — —

Inflation Age γ1 0 −0.0157 — —

Common parameter

Corr. random effect ρ −0.5 −0.4963(-0.0074) −0.4986(-0.0028) −0.4864(-0.0272)

Frequency of convergence 250 250 249
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Appendix

A SAS Code

A.1 SAS Code for Analysis of the Jimma Infant Growth Study

The following SAS code can be used to fit the models to the Jimma Infant Growth Study, as described

in Section 5.

/*

resp is the response variable

name=1 is an indicator for the count sequence and name=2

is for the continuous sequence

*/

/* (NN-) & (PNG) */

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202

beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 alpha=17;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+b2;

expeta=exp(eta);

m = 1/alpha;

p = 1/(1+alpha*expeta);

ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1/p);
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end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2, 0,tau2**2]) subject=id;

run;

/* (NN-)(PNG) */

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202

beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 rho=-0.1 alpha=17;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age+b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+b2;

expeta=exp(eta);

m = 1/alpha;

p = 1/(1+alpha*expeta);

ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;

run;

/*(NN-) & H(PNG) */

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
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beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);

end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,0,tau2**2]) subject=id;

run;

/*H(NN-)(PNG)*/

proc nlmixed data=joint qpoints=20;
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parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);

end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;

run;
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/*(NN-) & ZI(PNG)*/

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age+ b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+ b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = log(p_0 + (1-p_0)*(p**m));end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,0,tau2**2]) subject=id;

run;
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/*ZI(NN-)(PNG)*/

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = log(p_0 + (1-p_0)*(p**m));

end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;

run;
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/*Test for zero-inflation (zero-altered model):

comparing H(NN-)(PNG) with a1 versus H(NN-)(PNG) without a1*/

/*H(NN-)(PNG) without a1*/

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

rho=-0.1 alpha=0.333;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=beta21+beta22*age+b2;

expeta_prob=exp(eta_prob);

p_0=exp(-exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));end;

end;

model resp ~ general(ll);
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random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;

run;

/*H(NN-)(PNG) with a1*/

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48

rho=-0.1 alpha=0.333 a1=0;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a1+beta21+beta22*age+b2;

expeta_prob=exp(eta_prob);

p_0=1-exp(-exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);
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random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;

run;

A.2 SAS Code for the Simulation Study

/* Scenario one: generate data from ZI(NN-)(PNG)model */

data jointsim1;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; /*mean for b1*/

mean2=0; /*mean for b2*/

sig1=2; /*SD for b1*/

sig2=1.5; /*SD for b2*/

rho=-0.5; /*Correlation between b1 and b2*/

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);

b1 = mean1 + sig1*r1;/*random effect for continuous part*/

b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

/*random effect for count part*/

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(’normal’,0,0.6);

id=kk;

age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e; /* continuous part*/

kappa = exp(2 + 0.02*age+b2); /* count part*/

theta = 1;

parm1 = 1/(1+kappa/theta);

yneg = rand(’NEGB’,parm1,theta);

p1=2-0.2*age; /* zero-inflation part*/
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p2=exp(p1);

p=p2/(1+p2);

inf=rand(’bern’,p);

if inf=1 then do;

ynegzim=0;

end;

else do;

ynegzim=yneg;

end;

numdays=ynegzim;

output ;

end;

end ;

end;

data jointsim1;

set jointsim1;

run;

/* Scenario two:generate data from ZI(NN-)(PN-)model*/

data jointsim2;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; *mean for b1;

mean2=0; *mean for b2;

sig1=2; *SD for b1;

sig2=1.5; *SD for b2;

rho=-0.5; *Correlation between b1 and b2;

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);
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b1 = mean1 + sig1*r1;

b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(’normal’,0,0.6);

id=kk;

age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e;

kappa = exp(2 + 0.02*age+b2);

ypois = rand(’POISSON’,kappa);

p1=2-0.2*age;

p2=exp(p1);

p=p2/(1+p2);

inf=rand(’bern’,p);

if inf=1 then do;

ypoiszim=0;

end;

else do;

ypoiszim=ypois;

end;

numdays=ypoiszim;

output ;

end;

end ;

end;

data jointsim2;

set jointsim2;

run;
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/* Scenario three: generate data from (NN-)(PNG)model*/

data jointsim3;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; *mean for b1;

mean2=0; *mean for b2;

sig1=2; *SD for b1;

sig2=1.5; *SD for b2;

rho=-0.5; *Correlation between b1 and b2;

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);

b1 = mean1 + sig1*r1;

b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(’normal’,0,0.6);

id=kk;

age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e;

kappa = exp(2 + 0.02*age+b2);

theta = 1;

parm1 = 1/(1+kappa/theta);

yneg = rand(’NEGB’,parm1,theta);

numdays=yneg;

output ;

end;

end ;

end;

data jointsim3;
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set jointsim3;

run;

/* Calculation of overall mean, std.dev. and percentage of zeros */

/* Scenario one */

proc means data=jointsim1;

var numdays; run;

proc freq data=jointsim1;

tables numdays;

run;

/*Scenario two*/

proc means data=jointsim2;

var numdays; run;

proc freq data=jointsim2;

tables numdays;

run;

/*Scenario three*/

proc means data=jointsim3;

var numdays; run;

proc freq data=jointsim3;

tables numdays;

run;
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