A joint model for hierarchical continuous and zero-inflated overdispersed count data

Peer-reviewed author version

KASSAHUN, Wondwosen; NEYENS, Thomas; MOLENBERGHS, Geert; FAES, Christel \& VERBEKE, Geert (2015) A joint model for hierarchical continuous and zero-inflated overdispersed count data. In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 85(3), p. 552-571.

DOI: 10.1080/00949655.2013.829058
Handle: http://hdl.handle.net/1942/16621

A Joint Model for Hierarchical Continuous and Zero-inflated Overdispersed Count Data

Wondwosen Kassahun ${ }^{1}$ Thomas Neyens ${ }^{2}$ Geert Molenberghs ${ }^{2,3}$
Christel Faes ${ }^{2} \quad$ Geert Verbeke ${ }^{3,2}$
${ }^{1}$ Department of Epidemiology and Biostatistics, Jimma University, Ethiopia
${ }^{2}$ I-BioStat, CenStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium
${ }^{3}$ I-BioStat, L-BioStat, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

Abstract

Many applications in public health, medical and biomedical or other studies demand modeling of two or more longitudinal outcomes jointly to get better insight in their joint evolution. In this regard, a joint model for a longitudinal continuous and a count sequence, the latter possibly overdispersed and zero-inflated, will be specified that assembles aspects coming from each one of them into one single model. Further, a subject-specific random effect is included to account for the correlation in the continuous outcome. For the count outcome, clustering and overdispersion are accommodated through two distinct sets of random effects in a generalized linear model as proposed by Molenberghs et al (2010); one is normally distributed, the other conjugate to the outcome distribution. The association among the two sequences is captured by correlating the normal random effects describing the continuous and count outcome sequences, respectively. An excessive number of zero counts is often accounted for by using a so-called zero-inflated or hurdle model. Zero-inflated models combine either a Poisson or negative-binomial model with an atom at zero as a mixture, while the hurdle model separately handles the zero observations and the positive counts. This paper proposes a general joint modeling framework in which all these features can appear together. We illustrate the proposed method with a case study and examine it further with simulations.

Some Keywords: Clustering; Conjugate random effect; Hurdle model; Joint model; Normal random effect; Overdispersion; Zero-inflation.

1 Introduction

Many longitudinal studies involve collecting data on more than one outcome from a given subject repeatedly over time. These outcomes include, but are not limited to, continuous, count, and binary data. For example, in HIV studies, sero-positive patients are monitored until they develop AIDS or die, and their immune system is regularly measured using markers such as the CD4 lymphocyte count, the estimated viral load, or whether viral load is below detectable limits. In the case of the Jimma

Infant Growth study, described in the next section, a continuous outcome, such as body weight, is measured repeatedly from each infant. At the same time, the health condition of a child was also assessed to see if the child has experienced a specific disease, like diarrhea, whereby the number of days of illness, as a count outcome, were recorded so as to measure the magnitude of the disease burden.

Extensive literature is available on the analysis of single longitudinal outcomes. For a Gaussian longitudinal response, the linear mixed model is very popular (Laird and Ware 1982, Verbeke and Molenberghs 2000). Subject-level random effects, that are of a Gaussian type, are introduced in such a model to capture the within-subject correlation.

In the literature, several models are available to jointly model various longitudinal and possibly also time-to-event outcomes (Tsiatis and Davidian 2004). Horrocks and van den Heuvel (2009) consider the problem of predicting the achievement of successful pregnancy, in a population of women undergoing treatment for infertility, based on longitudinal measurements of adhesiveness. For this purpose, they used a joint model, consisting of a linear mixed-effects submodel for the longitudinal adhesion outcome and a generalized linear submodel for the primary binary endpoint. Molenberghs and Verbeke (2005) discuss a number of techniques that jointly model continuous and discrete outcomes. The correlation between the sequences is then captured by allowing the normal random effects to be correlated.

Molenberghs et al (2010) proposed a unified modeling framework for the analysis of overdispersed and hierarchical non-Gaussian data by bringing together normal random effects, to capture correlation over time, and conjugate random effects, to capture overdispersion, all within the generalized linear model framework. The resulting model is referred to as the combined model. For a count outcome, overdispersion is accommodated by using observation-specific Gamma random-effects, leading to the negative-binomial model. Booth et al (2003) extended the negative binomial log-linear model to the case of dependent counts, where dependence among the counts is handled by including also normal random effects. This particular instance of the combined model can be termed the Poisson-gammanormal (PGN) model.

Zero-inflated (ZI) count models provide a way of modeling the excess zeros in addition to allowing for overdispersion by using two simultaneously operating data generation processes; one generates only zeros and the other is either a Poisson or negative-binomial data generating process. Overdispersion
and excess zeros for count data in a univariate setup are studied by, for example, Lambert (1992) and Greene (1994). Multi-level zero-inflated Poisson regression is considered by Lee et al (2006). The hurdle model, which is a two-part model, is also available to model excess zeros (Mullahy 1986). One part is a binary model for whether the response outcome is zero or positive. Conditional on a positive outcome, the second part uses a truncated Poisson or negative-binomial that modifies an ordinary distribution by conditioning on a positive outcome. The two models do not constrain each other in any way. For zero-inflated correlated data, the hurdle model has been studied by Min and Agresti (2005).

Our joint modeling approach for longitudinal continuous and count sequences, the latter possibly overdispersed and zero-inflated, requires to assemble aspects coming from each one of them in one single model. These include the correlation from the continuous, as well as the correlation, overdispersion, and zero-inflation features from the count sequence. In spite of this apparent complexity, the model can be implemented in standard software, such as the SAS procedure NLMIXED.

The rest of the paper is organized as follows. In Section 2, a motivating case is described, with analysis reported in Section 5. In Section 3, a review is given on the single longitudinal continuous model, and the so-called combined model and its extensions to account for an excess of zeros, followed by formulation of a joint modeling framework to also deal with correlation, overdispersion, and zero-inflation. Avenues for parameter estimation and ensuing inferences are explored in Section 4. Section 6 deals with a simulation study to investigate the importance of accounting for an excess of zeros and overdispersion. Some concluding statements are given in Section 7.

2 The Jimma Infant Growth Study

The study was conducted in Ethiopia in the administrative zones of Jimma, Keffa, and the Illubabor, and described in detail by Asefa and Tessema (2002). Children were examined for their first-year growth characteristics. At baseline, there were a total of 7969 infants who were visited every two months starting from birth until the age of one year. Risk factors, including socio-economic, maternal, and infant-rearing factors, were recorded in order to be able to study their relationship with the child's early survival.

For our purposes, two outcome variables will be considered, namely (1) body weight (kg), measured longitudinally from each infant and (2) number of days of diarrheal illness recorded at each visit to

Table 1: Jimma Infant Growth Study. Mean and standard deviation of weight and days of illness at each of the seven follow-up times.

Age (months)	Mean weight (s.d.)	Mean days of illness (s.d.)
0	$3.11(0.52)$	$0.01(0.19)$
2	$4.88(0.78)$	$0.91(4.24)$
4	$5.97(0.99)$	$1.28(4.62)$
6	$6.67(1.12)$	$1.56(4.87)$
8	$7.13(1.21)$	$2.14(5.93)$
10	$7.50(1.26)$	$2.63(6.66)$
12	$7.84(1.28)$	$2.67(6.95)$

assess the diarrheal disease burden (Table 1). For the latter, of the nearly 49,000 total observations, only about 8,000 observations are non-zero (i.e., roughly 85%), indicating that there is a dominance of zero counts. It is then useful to assess the connection between both, by studying their association which can be addressed in a joint modeling context.

3 Methodology

In this section, existing models will be reviewed, extended, and combined. To describe these without ambiguity and to ensure that the links between them are clearly seen, we will make a few terminology conventions. Indeed, we have different data types (continuous and count), different types of random effects (normal and conjugate) that may or may not be combined into a single model, the possibility to accommodate zero inflation, and the possibility to analyze two or more outcomes jointly. All of these options create a large number of model variations. We can effectively describe them by introducing a symbol of the form (XYZ) for each outcome model, with X the outcome type, Y the presence of absence of normal random effects, and Z the presence or absence of a conjugate random effect. For example, (NN -) stands for the linear mixed model, as the first ' N ' is for the normal outcome and the second one for the normal random effect. In this case, there is no need for a conjugate random effect. For counts, we may see such models as (PNG) for the Poisson model with normal and gamma random effects. The generalized linear mixed model corresponding to it would be (PN-), whereas the negative binomial model is denoted as (P-G). When two outcomes are
jointly analyzed, we will write (NN-)(PNG). Should there be correction for zero inflation, then we might write $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ or $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ when hurdle model ideas are used. We observe that the notation obviates the need to use the terms 'joint' or 'combined,' given that these aspects are now unambiguously clear from notation.

3.1 A Model for Longitudinal Continuous Data

For a longitudinal Gaussian outcome, the linear mixed model (NN-) provides a general and flexible modeling framework based on a random-effects approach (Verbeke and Molenberghs 2000). Suppose that $Y_{i j}$ are the j th continuous outcome measured for subject $i=1, \ldots, N, j=1, \ldots, n_{i}$. A linear mixed-effects model can be represented as $Y_{i j}=\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{b}_{i}+\varepsilon_{i j}$. The $\boldsymbol{x}_{i j}$ and $\boldsymbol{z}_{i j}$ are p-dimensional and q-dimensional vectors of known covariate values, $\boldsymbol{\beta}$ is a p-dimensional vector of unknown fixed regression coefficients, \boldsymbol{b}_{i} is a q-dimensional vector of the random effects, and ε_{i} an $n_{i^{-}}$ dimensional vector of residual variation. The subject-specific random effect \boldsymbol{b}_{i} and the residual error ε_{i} are independent and assumed to follow normal distributions $\boldsymbol{b}_{i} \sim N(\mathbf{0}, D)$ and $\varepsilon_{i} \sim N\left(\mathbf{0}, \Sigma_{i}\right)$, respectively.

3.2 A Combined Model for Count Data

Molenberghs et al (2010) proposed a unified modeling framework for the analysis of overdispersed and hierarchical non-Gaussian data by bringing together normal random effects and overdispersion random effects within the generalized linear model framework.

Let $Y_{i j}$ be the j th outcome measured for subject $i=1, \ldots, N, j=1, \ldots, n_{i}$. In general, the combined family is given by

$$
f_{i}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \phi\right)=\exp \left\{\phi^{-1}\left[y_{i j} \eta_{i j}-\psi\left(\eta_{i j}\right)\right]+c\left(y_{i j}, \phi\right)\right\}
$$

with η and ϕ the natural and dispersion parameter, respectively, and $\psi(\cdot)$ and $c(\cdot)$ known functions specifying a particular distribution of the exponential family distribution.

For count data, we assume that $Y_{i j} \sim \operatorname{Poi}\left(\lambda_{i j}=\theta_{i j} \kappa_{i j}\right)$, with the conditional mean $\lambda_{i j}$ modeled as $\theta_{i j} \kappa_{i j}$ with

$$
\begin{equation*}
\kappa_{i j}=\exp \left(\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\xi}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{b}_{i}\right) \tag{1}
\end{equation*}
$$

$\boldsymbol{b}_{i} \sim N(\mathbf{0}, D), \theta_{i j} \sim \operatorname{Gamma}(\alpha, \beta)$, and $\boldsymbol{\xi}$ a p-dimensional vector of unknown fixed regression coefficients. Further, α and β are shape and scale parameters, respectively. These can be generalized
as well, for example, when the gamma process parameters would be measurement occasion specific. The measurement-specific gamma random-effect $\theta_{i j}$ is used to accommodate residual overdispersion, while the subject-specific normal random effect \boldsymbol{b}_{i} is used to model the correlation coming from the hierarchy in the data as well as some overdispersion. Using the notational conventions from the beginning of this section, this model is denoted as (PNG).

3.3 Zero-Inflated Combined Model

Count data exhibiting an excess number of zeros beyond what can be allowed for by a standard probability distribution are very common. Such data are often modeled by using so-called zero-inflated models, which assume two independent data generation processes as sources of zeros. Assume that for observation i, one can account for the excess of zeros by introducing the probability π_{i} for the point mass (process 1) and the probability $1-\pi_{i}$ for the count component (process 2; Hinde and Demétrio 1998 ab$)$. Process 1 generates only zeros, whereas process $2, f_{i}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right)$, generates counts from, say, a (PNG) model. In its most general form, the $\mathrm{Zl}(\mathrm{PNG})$ is then given as the following mixture:

$$
Y_{i j} \sim \begin{cases}0 & \text { with probability } \pi_{i j} \tag{2}\\ f_{i}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & \text { with probability } 1-\pi_{i j}\end{cases}
$$

leading to the probabilities $p\left(Y_{i j}=y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \pi_{i j}\right)$ given by

$$
p\left(Y_{i j}=y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \pi_{i j}\right)= \begin{cases}\pi_{i j}+\left(1-\pi_{i j}\right) f_{i}\left(0 \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & \text { if } y_{i j}=0 \tag{3}\\ \left(1-\pi_{i j}\right) f_{i}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & \text { if } y_{i j}>0\end{cases}
$$

The Bernoulli model is used to model the zero-inflation component $\pi_{i j}=\pi\left(\boldsymbol{x}_{2 i j}^{\prime} \gamma\right)$ by using commonly used links such as the logit or probit. The model may contain known regressors $\boldsymbol{x}_{2 i j}$, a vector of zero-inflation coefficients γ to be estimated. Note that the $\boldsymbol{x}_{i j}$ in Section 3.2 are now replaced by $\boldsymbol{x}_{1 i j}$ for the non-zero count part. The regressors in the count and zero-inflation component can either be overlapping, a subset of the regressors can be used for the zero-inflation, or different regressors for the two parts can be used.

The conditional mean and variance of the $\mathrm{ZI}(P N G)$ are:

$$
\begin{align*}
\mathrm{E}\left(Y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & =\theta_{i j} \kappa_{i j}\left(1-\pi_{i j}\right) \tag{4}\\
\operatorname{Var}\left(Y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & =\theta_{i j} \kappa_{i j}\left(1-\pi_{i j}\right)\left[1+\theta_{i j} \kappa_{i j}\left(\pi_{i j}+1 / \alpha\right)\right] \tag{5}
\end{align*}
$$

It can be seen that the conditional variance is inflated as a result of the overdispersion in the data (parameter α) and as a result of zero-inflation (parameter π).

3.4 Hurdle Combined Model

The hurdle model, as an alternative approach to account for an excess of zeros, is a two-part model with a truncated count distribution for the positive counts, and a hurdle component for the zero counts (Mullahy 1986). Suppose that occurrence of zeros is governed by a probability π_{i}, and nonzero counts follow a truncated-at-zero probability mass function, such as a truncated (PNG). The $\mathrm{H}(\mathrm{PNG})$ leads to a probability mass function of the form:

$$
p\left(Y_{i j}=y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \pi_{i j}\right)= \begin{cases}\pi_{i j} & \text { if } y_{i j}=0 \tag{6}\\ \left(1-\pi_{i j} \frac{f_{i}\left(y_{i j} \mid \boldsymbol{b}_{i}, \boldsymbol{\xi}, \theta_{i j}\right)}{1-f_{i}\left(0 \mid \boldsymbol{b}_{i}, \boldsymbol{\xi}, \theta_{i j}\right)}\right. & \text { if } y_{i j}>0\end{cases}
$$

where the $\pi_{i j}$ are parameterized similarly to what was presented in Section 3.3.

3.5 A Joint Combined Model for Continuous and Zero-inflated Count Data

Let $Y_{i j}$ denote a longitudinal continuous outcome, and $Z_{i k}$ an overdispersed count outcome, potentially with excess zeros and overdispersion, with densities $f_{1 i}\left(y_{i j}\right)$ and $f_{2 i}\left(z_{i k}\right)$, respectively $\left(i=1, \ldots, N, j=1, \ldots, n_{1 i}\right.$, and $\left.k=1, \ldots, n_{2 i}\right)$. Note that the number of measurements per sequence can but does not have to be the same.

Formulation of a joint model will be based on a random-effects approach. Precisely, each sequence will incorporate normal random effects, which are potentially correlated between them. This means that the correlation between both sequences for the same subject is induced by the shared or correlated normal random effects. At the same time, the normal random effects induce correlation within the sequences as well. We still allow for additional overdispersion by potentially integrating gamma random effects into the count sequence. This leads to the base model ($\mathrm{NN}-$)(PNG).

The normal random effects, $\boldsymbol{b}_{1 i}$ and $\boldsymbol{b}_{2 i}$, are incorporated into the continuous and count sequences, respectively. They follow the joint distribution

$$
\boldsymbol{b}_{i}=\left(\boldsymbol{b}_{1 i}, \boldsymbol{b}_{2 i}\right)^{\prime} \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
D_{11} & D_{12} \\
D_{12}^{\prime} & D_{22}
\end{array}\right]\right)
$$

In this general formulation, the two sets of random effects are different but correlated. The sequences would be independent only if $D_{12}=0$. It is possible to let some components be shared between $\boldsymbol{b}_{1 i}$ and $\boldsymbol{b}_{2 i}$. If all are common, this is a pure shared random-effects model. The modeler can assess and then choose whether a shared random effects or a correlated random effects approach is more plausible, or even a hybrid of both.

Further allowing for zero inflation, the resulting model becomes $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ or $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$, with joint distribution:

$$
\begin{equation*}
f_{i}\left(y_{i j}, z_{i k} \mid \boldsymbol{b}_{\mathbf{1} i}, \boldsymbol{b}_{\mathbf{2 i}}, \boldsymbol{\beta}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right)=f_{1 i}\left(y_{i j} \mid \boldsymbol{b}_{\mathbf{1 i}}, \boldsymbol{\beta}\right) \times f_{2 i}\left(z_{i k} \mid \boldsymbol{b}_{2 i}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right) . \tag{7}
\end{equation*}
$$

For the continuous outcome, $f_{1 i}\left(y_{i j} \mid \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{\beta}\right)$ is the linear mixed model (NN-), as discussed in Section 3.1, and for the count sequence, $f_{2 i}\left(z_{i k} \mid \boldsymbol{b}_{2 i}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right)$ is the $\mathrm{ZI}(\mathrm{PNG})$, as presented in Section 3.3. Similarly, for the hurdle version, we bring together the (NN-) and the H(PNG) into the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$, where $f_{2 i}\left(z_{i k} \mid \boldsymbol{b}_{2 i}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right)$ is now defined as in Section 3.4.

4 Estimation

Let us consider the count component. We will make use of the partial marginalization for parameter estimation, as presented in Molenberghs et al (2010). By this we refer to integrating the likelihood over the gamma random effects only, leaving the normal random effects untouched. The corresponding conditional probability for the (PNG) is:

$$
\begin{aligned}
f\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) & =\int f\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}\right) f\left(\theta_{i j} \mid \alpha_{j}, \beta_{j}\right) d \theta_{i j} \\
& =\binom{\alpha_{j}+y_{i j}-1}{\alpha_{j}-1} \cdot\left(\frac{\beta_{j}}{1+\kappa_{i j} \beta_{j}}\right)^{y_{i j}} \cdot\left(\frac{1}{1+\kappa_{i j} \beta_{j}}\right)^{\alpha_{j}} \kappa_{i j}^{y_{i j}},
\end{aligned}
$$

where $\kappa_{i j}$ is as in (1). For the $\mathrm{ZI}(\mathrm{PNG})$ case:

$$
\begin{aligned}
f\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \pi_{i j}\right)= & I\left(y_{i j}=0\right) \pi_{i j} \\
& +\left(1-\pi_{i j}\right)\binom{\alpha_{j}+y_{i j}-1}{\alpha_{j}-1} \cdot\left(\frac{\beta_{j}}{1+\kappa_{i j} \beta_{j}}\right)^{y_{i j}} \cdot\left(\frac{1}{1+\kappa_{i j} \beta_{j}}\right)^{\alpha_{j}} \kappa_{i j}^{y_{i j}},
\end{aligned}
$$

with $\pi_{i j}=\pi\left(x_{2 i j}^{\prime} \gamma\right)$. Note that, with this approach, we assume that the gamma random effects are independent within a subject. This is fine, given that the correlation is induced by the normal random effects.

Applying the above principle to the $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ leads to:

$$
\begin{aligned}
f_{i}\left(y_{i j}, z_{i k} \mid \boldsymbol{b}_{1 i}, \boldsymbol{b}_{2 i}, \boldsymbol{\beta}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right)= & \frac{1}{(2 \pi)^{\frac{n_{i}}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\boldsymbol{y}_{i}-X_{i} \boldsymbol{\beta}-Z_{i} \boldsymbol{b}_{1 i}\right)^{\prime} \Sigma_{i}-1}\left(\boldsymbol{y}_{i}-X_{i} \boldsymbol{\beta}-Z_{i} \boldsymbol{b}_{1 i}\right) \\
& \times \prod_{k} f\left(z_{i k} \mid \boldsymbol{b}_{2 i}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right) .
\end{aligned}
$$

Similarly, the $\mathrm{H}(\mathrm{PNG})$, say $f^{*}\left(y_{i j}\right)$, as discussed in Section 3.4, can be spelled out as:

$$
\begin{aligned}
& f^{*}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\xi}, \theta_{i j}, \pi_{i j}\right) \\
& \quad=\quad I\left(y_{i j}=0\right) \pi_{i j}+\left(1-\pi_{i j}\right)\binom{\alpha_{j}+y_{i j}-1}{\alpha_{j}-1} \cdot\left(\frac{\beta_{j}}{1+\kappa_{i j} \beta_{j}}\right)^{y_{i j}} \cdot\left(\frac{1}{1+\kappa_{i j} \beta_{j}}\right)^{\alpha_{j}} \kappa_{i j}^{y_{i j}} \\
& \quad \times \frac{1}{1-\left(\frac{1}{1+\kappa_{i j} \beta_{j}}\right)^{\alpha_{j}}} .
\end{aligned}
$$

Consequently, the partially marginalized form for the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ is:

$$
\begin{aligned}
f_{i}\left(y_{i j}, z_{i k} \mid \boldsymbol{b}_{1 i}, \boldsymbol{b}_{2 i}, \boldsymbol{\beta}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right)= & \frac{1}{(2 \pi)^{\frac{n_{i}}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\boldsymbol{y}_{i}-X_{i} \boldsymbol{\beta}-Z_{i} \boldsymbol{b}_{1 i}\right)^{\prime} \Sigma_{i}-1}\left(\boldsymbol{y}_{i}-X_{i} \boldsymbol{\beta}-Z_{i} \boldsymbol{b}_{1 i}\right) \\
& \times \prod_{k} f^{*}\left(z_{i k} \mid \boldsymbol{b}_{2 i}, \boldsymbol{\xi}, \theta_{i k}, \pi_{i k}\right) .
\end{aligned}
$$

For all of these, it is straightforward to obtain the fully marginalized probability and to optimize the resulting likelihood, by numerically integrating over the normal random effects. This can be done using a tool, such as the SAS procedure NLMIXED, that allows for normal random effects in arbitrary, user-specified models. While the SAS procedure NLMIXED is equipped with default starting values, it is advisable to provide user-defined starting values instead. These can be obtained, for example, from models without random effects, with some trial and error. It is equally wise to ensure that both the outcomes values as well as the covariates have magnitudes that are neither very large nor extremely small, because this may jeopardize stability of the iterative process. Also, it is useful, for example, to first fit the individual models and use the output as starting values for the joint model. Against this background, our data analysis proceeded without difficulty. Example NLMIXED code is provided in Appendix A, for both the data analysis and the simulation study.

5 Analysis of the Jimma Infant Growth Study

We analyze the Jimma Infant data as introduced in Section 2, where body weight as well as number of days of diarrheal illnesses were measured repeatedly for each infant. The two outcomes will be
modeled jointly to capture association between them. Denote by $Y_{i j}$ and $Z_{i k}$ weight and number of days of illness measurements for the $i^{\text {th }}$ infant at the $j^{t h}$ and $k^{t h}$ visit. We formulate a $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ or a $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ model for these data. The means are $\mu_{i j}$ and $\kappa_{i k}$, respectively. We model these as $\mu_{i j}=\beta_{0}+b_{1 i}+\beta_{1} A_{i j}+\beta_{2} A_{i j}{ }^{2}$, and $\kappa_{i k}$ as $\ln \left(\kappa_{i k}\right)=\xi_{0}+b_{2 i}+\xi_{1} A_{i k}$. The quadratic effect of age, β_{2}, is included to improve the model's fit. A graphical inspection of age versus average weight revealed a non-linear trend and hinted on a quadratic one. To account for excess zeros, the zero-inflation probability $\pi_{i k}$ is written as $\operatorname{logit}\left(\pi_{i k}\right)=\gamma_{0}+\gamma_{1} A_{i k}$. Here, $A_{i j}$ is the age of the $i^{\text {th }}$ infant at the $j^{\text {th }}$ visit. Further, $b_{1 i}$ and $b_{2 i}$ represent subject-specific intercepts, assumed normally distributed and possibly correlated with mean and variance-covariance matrix given by

$$
\left(b_{1 i}, b_{2 i}\right)^{\prime} \sim N\left[\binom{0}{0},\left(\begin{array}{cc}
d_{1} & \left.\rho \sqrt{d}_{1} \sqrt{d}_{2}\right) \\
\rho \sqrt{d}_{1} \sqrt{d}_{2} & d_{2}
\end{array}\right)\right]
$$

We examine the zero-inflation as well as the overdispersion aspect. The first issue can be addressed using a special type of the hurdle model, also known as the zero-altered model (Min and Agresti 2005). These authors consider the testing problem for zero-inflation. This model requires the same covariates as well as the same distributional forms in the two parts. Explicitly, we assume,

$$
\begin{aligned}
\ln \left[-\ln \left(1-\pi_{i k}\right)\right] & =a_{1}+a_{2}\left(\xi_{0}+\xi_{1} A_{i k}\right)+b_{2 i} \\
\ln \left(\kappa_{i k}\right) & =\xi_{0}+\xi_{1} A_{i k}+b_{2 i} .
\end{aligned}
$$

By setting, $a_{2}=1$, and testing whether $a_{1}=0$, one can test for zero-inflation. If $a_{1}<0$, then the data are zero-inflated; If $a_{1}>0$, the data are zero-deflated. Fitting the zero-altered combined model showed strong evidence of zero-inflation ($a_{1}=-2.0689$, likelihood ratio test statistic $=3343$, on one degree of freedom).

We also fitted the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PN}-)$ and compared it with the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$. The difference in deviance is $94,181-86,379$, which evidently is extremely significant ($p<0.0001$). This strongly underscores the presence of the overdispersion parameter α.

Parameter estimates for the (NN-), (PNG), and (NN-)(PNG) models are presented in Table 2. Technically, the separate models were fitted for the two outcomes together anyway, but assuming that $\rho=0$, which is entirely equivalent to fitting the models separately. Clearly, body weight and number of days of diarrheal illness show a strong inverse relationship as evidenced by the correlation of the random effects in the (NN-)(PNG). In addition, likelihood comparison shows a convincing
improvement in model fit, when random effects are allowed to correlate. Comparing the separate and joint models, while parameter estimates for the continuous outcome remain the same, small changes are observed in the count part. All parameters are statistically significant in all models considered.

Table 3 gives the hurdle counterparts to the models in Table 2, i.e., (NN-), H(PNG), and $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$. Evidently, the linear mixed model ($\mathrm{NN}-$) is left unaltered because the hurdle aspect applies to the count process only. Similarly, Table 4 shows the Zl counterparts, (NN-), $\mathrm{ZI}(\mathrm{PNG})$, and $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$. We deduce that the fit is improved quite a bit further, implying that the excess zeros need to be accommodated in the model. The aforementioned inverse relationship remains. While accounting for the excess zeros does not bring changes in the parameters for the continuous process, this is not the case for the counts, where the estimates change with their corresponding standard errors getting relatively smaller. When the excess zeros are accounted for, the negative binomial parameter α gets much smaller in Tables 3 and 4, as compared to the corresponding value in Table 2. This underscores, once again, the connection between the zero-inflation and overdispersion phenomena. Indeed, when ZI is unaccounted for, the overdispersion aspect of the models captures a certain amount of this effect.

Turning to Tables 2-4 with an eye on the overdispersion parameter α, we see that it drops drastically when comparing Table 2 with Tables 3 and 4. Because in our parameterization larger values for α imply more pronounced overdispersion effects, it is clear that accounting for excess zeros explains a good amount of apparent overdispersion. The amount explained is relatively invariant to whether the two processes are estimated jointly or rather separately. The reduction also holds regardless of whether either a ZI or a hurdle correction is made. Finally, even after correction for excess zeros, there convincingly remains an amount of overdispersion. This underscores that both overdispersion as well as excess zeros need to be accounted for.

From Tables 3 and 4, we further observe that the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ and the $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ are very similar, not only in terms of parameter estimates but also as far as resulting inferences go. In count data modeling, the choice among zero-inflated and hurdle models should be based not only on model fit but also on assumptions about the underlying data generation process (Neelon et al 2010). If zeros are expected to come from both the point mass and the count component, then zero-inflated models may be preferable. In addition, in the presence of strong evidence of zero-inflation, zeroinflation models may provide better fit. On the other hand, Min and Agresti (2005) discuss why the

Table 2: Jimma Infant Growth Study. H(NN-), (PNG), and (NN-)(PNG) models.

Effect	Parameter	($\mathrm{NN}-$) \& (PNG)	($\mathrm{NN}-$)(PNG)
		Estimate (s.e.)	Estimate (s.e.)
Continuous process (Weight)			
Intercept	β_{0}	$3.2767(0.0112)$	$3.2768(0.0112)$
Age	β_{1}	$0.7680(0.0026)$	0.7680(0.0026)
Age \times Age	β_{2}	-0.0335(0.0002)	-0.0335(0.0002)
Std. dev error	σ	$0.6298(0.0022)$	0.6298(0.0022)
Std. dev random effect	$\sqrt{d_{1}}$	0.8298(0.0072)	0.8299(0.0072)
Count process (Days of illness)			
Intercept	ξ_{0}	-1.1567(0.0557)	-1.2094(0.0551)
Age	ξ_{1}	$0.2246(0.0072)$	$0.2279(0.0072)$
Std. dev random effect	$\sqrt{d_{2}}$	$0.3654(0.0507)$	0.4611(0.0435)
Negative-binomial parameter	α	17.9605(0.2914)	17.6345(0.2858)
Common parameter			
Corr. random effect	ρ	-	-0.6282(0.0565)
-2log-likelihood		172,241	172,054

hurdle model is, in general, preferred to the zero-inflated model: it allows to test for zero-inflation, it works also in the zero-deflation setting, and its two parts are separate.

6 Simulation Study

A simulation study is conducted to assess the impact of not appropriately accounting for the excess zero counts as well as misspecification of the overdispersion in joint modeling of hierarchical continuous and count outcome. We choose to conduct this study following three different settings.

6.1 Simulation Settings

Data are generated in the spirit of the design and outcomes of the data in Section 2, which consist of body weight and counts of the number of days of diarrheal disease illnesses among infants measured repeatedly over time. Age in months is considered as the time variable.

Table 3: Jimma Infant Growth Study. (NN-), H(PNG), and H(NN-)(PNG) models.

Effect	Parameter	($\mathrm{NN}-$) \& (PNG)	$\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$
		Estimate (s.e.)	Estimate (s.e.)
Continuous process (Weight)			
Intercept	β_{0}	$3.2767(0.0112)$	$3.2767(0.0112)$
Age	β_{1}	$0.7680(0.0026)$	0.7680(0.0026)
Age \times Age	β_{2}	-0.0335(0.0002)	-0.0335(0.0002)
Std. dev error	σ	$0.6298(0.0022)$	$0.6298(0.0022)$
Std. dev random effect	$\sqrt{d_{1}}$	0.8298(0.0072)	0.8299(0.0072)
Count process (Days of illness)			
Intercept	ξ_{0}	$2.0437(0.0251)$	$2.0225(0.0251)$
Age	ξ_{1}	0.0185(0.0028)	$0.0199(0.0028)$
Std. dev random effect	$\sqrt{d_{2}}$	0.4374(0.0118)	0.4392(0.0118)
Negative-binomial parameter	α	$0.3271(0.0104)$	$0.3259(0.0103)$
Inflation intercept	γ_{0}	2.8383(0.0290)	2.8383(0.0290)
Inflation Age	γ_{1}	-0.1687(0.0035)	$-0.1687(0.0035)$
Common parameter			
Corr. random effect	ρ	-	$-0.2255(0.0246)$
-2log-likelihood		165,475	165,395

A random sample of 250 data sets are generated under three scenarios. S_{1} : from a $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$; S_{2} from a $\mathrm{Zl}(\mathrm{NN}-)(\mathrm{PN}-) ; S_{3}$ from a (NN-)(PNG). Model fitting is based on these three models, supplemented with others: $\mathrm{Zl}(\mathrm{NN}-)(\mathrm{PNG}), \mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$, or ($\mathrm{NN}-)(\mathrm{PNG})$; also, the versions without overdispersion are considered: $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PN}-), \mathrm{H}(\mathrm{NN}-)(\mathrm{PN}-)$, or $(\mathrm{NN}-)(\mathrm{PN}-)$.

We consider 200 subjects with 10 measurements per subject. The continuous response $Y_{i j}$ is modeled as $Y_{i j}=\beta_{0}+\beta_{1} A_{i j}+\beta_{2} A_{i j}^{2}+b_{1 i}+\varepsilon_{i j}$. The subject-specific random intercept $b_{1 i}$ and the residual error ε_{i} are assumed independent, and generated from normal distribution with mean 0 and standard deviations 2 and 0.6 , respectively. The count outcome $Z_{i k}$ is modeled using predictor function $\kappa_{i k}=\exp \left\{\xi_{0}+b_{2 i}+\xi_{1} A_{i k}\right\}$. Whenever we want to place overdispersion into the model simulated from, the outcome is generated directly from a negative-binomial process with $Z_{i k} \sim \mathrm{NB}\left(\psi_{i k}, \theta\right)$, where $\theta=1$ and $\psi_{i k}=\left(1+\kappa_{i k} / \theta\right)^{-1}$. As before, $A_{i j}$ represents the age at which the $j^{\text {th }}$ measurement

Table 4: Jimma Infant Growth Study. (NN-), ZI(PNG), and ZI(NN-)(PNG) models.

Effect	Parameter	(NN-) \& $\mathrm{Zl}(\mathrm{PNG}$)	ZI(NN-)(PNG)
		Estimate (s.e.)	Estimate (s.e.)
Continuous process (Weight)			
Intercept	β_{0}	$3.2767(0.0112)$	$3.2767(0.0112)$
Age	β_{1}	$0.7680(0.0026)$	0.7680(0.0026)
Age \times Age	β_{2}	-0.0335(0.0002)	-0.0335(0.0002)
Std. dev. error	σ	$0.6298(0.0022)$	$0.6298(0.0022)$
Std. dev. random effect	$\sqrt{d_{1}}$	0.8298(0.0072)	0.8299(0.0072)
Count process (Days of illness)			
Intercept	ξ_{0}	$2.0270(0.0259)$	2.0020(0.0260)
Age	ξ_{1}	0.0190(0.0029)	0.0205(0.0029)
Std. dev. random effect	$\sqrt{d_{2}}$	$0.4464(0.0123)$	$0.4500(0.0123)$
Negative-binomial parameter	α	$0.3259(0.0104)$	$0.3261(0.0104)$
Inflation intercept	γ_{0}	2.8071(0.0292)	2.8051(0.0292)
Inflation Age	γ_{1}	-0.1686(0.0035)	-0.1685(0.0035)
Common parameter			
Corr. random effect	ρ	-	-0.2409(0.0245)
-2log-likelihood		165,461	165,369

is taken for the $i^{\text {th }}$ subject. Practically, age is generated from the empirical distribution observed in the Jimma Infact Growth Study. The random intercept $b_{2 i}$ follows a mean-zero normal with variance 1.5. When zero-inflation is present, this is added by defining the final response vector Z_{i}^{*} with components $Z_{i k}{ }^{*}=\left(1-u_{i k}\right) Z_{i k}$, where the $u_{i k}$ are Bernoulli random variables with parameters $\pi_{i k}$ and $\operatorname{logit}\left(\pi_{i k}\right)=\gamma_{0}+\gamma_{1} A_{i k}$. To correlate the two processes, the random intercepts $b_{1 i}$ and $b_{2 i}$ are allowed to correlate with one another, with $\rho=-0.5$. When generating data, the true parameter values were $\boldsymbol{\beta}=(3.3,0.77,-0.03)^{T}, \boldsymbol{\xi}=(2,0.02)^{T}$, and $\boldsymbol{\gamma}=(2,-0.2)^{T}$.

6.2 Simulation Results

The results under S_{1} are summarized in Tables 5 and 6. Clearly, the $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ and the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ result in estimates very close to the true values. However, as can be seen from
the (NN-)(PNG), omitting zero-inflation highly affects the estimates in the count component, with a non-negligible amount of bias loaded on the correlation parameter. Further, when both zero-inflation and overdispersion are misspecified, by fiting the ($\mathrm{NN}-$) (PN-), as shown in Table 6, a similar phenomenon is evident, where now the random-effects variance tries to recover from mis-specifying the overdispersion.

Under scenario S_{2}, the results of which are presented in Table 7 , the impact of omitting the extra zeros is still evident, though the overdispersion parameter α in the (NN-)(PNG) seems to help recover from misspecification. Further, we also note that correlation is overestimated as a result of the misspecification. These results, once more, underscore the necessity of models appropriately accounting for the excessive zeros.

Scenario 1 leads to about 75% of zeros, with a similar fraction (72%) in Scenario 2. Scenario 3 is qualitatively different, with roughly 18% of zeros. Comparing mean and standard deviation shows that all three are overdispersed. Under Scenarios 1 and 2, this stems to a large part from extra zeros, whereas in Scenario 3 this is "pure" overdispersion. When data are overdispersed, but not subject to considerable zero-inflation as in S_{3}, fitting models allowing for extra zeros is less important. As shown in Table 8, the ($N N-$)(PNG), which is the true model, performs well. In addition, we observe that the ($\mathrm{NN}-)(\mathrm{PN}-)$ model is also doing well, but this probably may not be the case when data are subject to much higher levels of overdispersion than those considered here.

In addition, across our simulation study, we learned that the zero-inflated models are relatively harder to fit when compared to the hurdle models, where convergence of models is never an issue, with convergence guaranteed for the latter. Further, in scenarios S_{1} and S_{2}, though data are generated from the $\mathrm{Zl}(\mathrm{NN}-)(\mathrm{PNG})$, the $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$ is also performing very well.

7 Concluding Remarks

In this paper, we have described a joint modeling strategy for a hierarchical continuous and count outcome, where the latter is subject to zero-inflation as well as overdispersion. Our work builds upon that of Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al (2010), who combined normal and gamma random effects in the generalized linear model family to induce association and adjust for overdispersion. We show that these ideas can be extended to a joint modeling framework for a continuous and count sequence simultaneously. This allows for an improvement in model fit, and

Table 5: Simulation study under scenario S_{1}. Mean and Relative bias (RB) of the parameter estimates in the $\mathrm{ZI}\left(\mathrm{NN}_{-}\right)(P N G), \mathrm{H}\left(N N_{-}\right)(P N G)$, and ($N N_{-}$)(PNG).

Effect	Parameter	True	ZI(NN-)(PNG)	$\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$	(NN-)(PNG)
			Mean (RB)	Mean (RB)	Mean (RB)
	Continuous process				
Intercept	β_{0}	3.3	$3.2967(-0.0010)$	$3.2965(-0.0011)$	$3.2965(-0.0011)$
Age	β_{1}	0.77	$0.7716(0.0021)$	0.7716(0.0021)	$0.7716(0.0021)$
Age \times Age	β_{2}	-0.03	$-0.0301(0.0033)$	-0.0301(0.0033)	-0.0301(0.0033)
Std. dev. error	σ	0.6	0.5995(-0.0008)	0.5995(-0.0008)	0.5995(-0.0008)
Std. dev. random effect	$\sqrt{d_{1}}$	2	$1.9875(-0.0063)$	1.9873(-0.0063)	1.9875(-0.0063)
Count process					
Intercept	ξ_{0}	2	1.9771(-0.0115)	2.1452(0.0726)	-0.1694(-1.0847)
Age	ξ_{1}	0.02	0.0229(0.1450)	0.0220(0.1000)	$0.2177(9.8850)$
Std. dev. random effect	$\sqrt{d_{2}}$	1.5	1.4779(-0.0147)	1.3409(-0.1061)	$1.3107(-0.1262)$
Negative-binomial parameter	α	1	0.9922(-0.0078)	1.0509(0.0509)	11.8950(10.8950)
Inflation intercept	γ_{0}	2	$1.9956(-0.0022)$	2.2092(0.1046)	-
Inflation Age	γ_{1}	-0.2	-0.1982(-0.0090)	-0.1876(-0.0620)	-
Common parameter					
Corr. random effect	ρ	-0.5	-0.5028(0.0056)	$-0.5005(0.0010)$	$-0.5629(0.1258)$
Frequency of convergence			250	250	250

for enhanced statistical inferences. However, any failure to appropriately account for such features may result in a substantial impact on the parameter and precision estimates. When zero-inflation is omitted from the model, the overdispersion component will try to recover from this misspecification, though both are eventually needed.

Fitting a $\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PNG})$ model, even when correctly specified, is relatively more complex than a $\mathrm{H}(\mathrm{NN}-)(\mathrm{PNG})$. The latter has several additional advantages, in particular the possibility to test for zero inflation. In the real data analysis, there were no model convergence issues, which is reassuring. Of course, as we learned from analyzing these data, both overdispersion as well as additional zero inflation were convincingly present. Furthermore, the set of data was very large. These are comfortable conditions to reach convergence. In the simulation study, the hurdle model was at an advantage when it came to model fit. Practically, readers may consider both approaches,

Table 6: Simulation study under scenario S_{1}. Mean and Relative bias (RB) of the parameter estimates in the $\mathrm{ZI}\left(\mathrm{NN}_{-}\right)(\mathrm{PN}-), \mathrm{H}\left(\mathrm{NN}_{-}\right)(\mathrm{PN}-)$, and ($\left.\mathrm{NN}-\right)(\mathrm{PN}-)$.

Effect	Parameter	True	$\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PN}-)$	$\mathrm{H}(\mathrm{NN}-)(\mathrm{PN}-)$	($\mathrm{NN}-$)(PN-)
			Mean (RB)	Mean (RB)	Mean (RB)
	Continuous process				
Intercept	β_{0}	3.3	$3.2843(-0.0048)$	$3.2920(-0.0024)$	$3.2959(-0.0012)$
Age	β_{1}	0.77	$0.7716(0.0021)$	$0.7717(0.0022)$	$0.7716(0.0021)$
Age \times Age	β_{2}	-0.03	-0.0302(0.0067)	-0.0301(0.0033)	-0.0301(0.0033)
Std. dev. error	σ	0.6	$0.5994(-0.0010)$	0.5995(-0.0008)	$0.5995(-0.0008)$
Std. dev. random effect	$\sqrt{d_{1}}$	2	1.9882(-0.0059)	$1.9877(-0.0062)$	$1.9875(-0.0063)$
Count process					
Intercept	ξ_{0}	2	$1.1335(-0.4333)$	2.0159(0.0080)	$-0.4531(-1.2266)$
Age	ξ_{1}	0.02	$0.0254(0.2700)$	$0.0258(0.2900)$	$0.1617(7.0850)$
Std. dev. random effect	$\sqrt{d_{2}}$	1.5	1.5664(0.0443)	$1.4261(-0.0493)$	1.7943(0.1962)
Negative-binomial parameter	α	1	-	-	-
Inflation intercept	γ_{0}	2	1.9724(-0.0138)	$2.2087(0.1044)$	-
Inflation Age	γ_{1}	-0.2	-0.1946(-0.0270)	$-0.1876(-0.0620)$	-
Common parameter					
Corr. random effect	ρ	-0.5	$-0.4461(0.1078)$	$-0.4361(0.1278)$	$-0.4058(-0.1884)$
Frequency of convergence			233	250	250

hurdle and ZI , and perhaps use the relevant parameters from the hurdle model as starting values for the Zl fit.

In terms of estimation, we have focused on maximum likelihood estimation. This can be done by integrating over the random effects, using a combination of analytical and numerical techniques. Precisely, the likelihood was integrated analytically over the conjugate (gamma) random effect, using techniques outlined in Molenberghs et al (2010). The so-resulting likelihood, still conditional on the normal random effect, is integrated numerically over the said random effect using the SAS procedure NLMIXED.

In conclusion, we note that our approach corrects for overdispersion and/or allows for joint modeling. In our example, both phenomena were present, although overdispersion results in a larger deviance reduction than joint modeling. One lesson to be drawn from this is that the user should carefully assess

Table 7: Simulation study under scenario S_{2}. Mean and Relative bias (RB) of the parameter estimates in the $\mathrm{ZI}\left(\mathrm{NN}_{-}\right)\left(P N_{-}\right), \mathrm{H}\left(\mathrm{NN}_{-}\right)\left(P \mathrm{~N}_{-}\right)$, and $(\mathrm{NN}-)(P N G)$.

Effect	Parameter	True	$\mathrm{ZI}(\mathrm{NN}-)(\mathrm{PN}-)$	$\mathrm{H}(\mathrm{NN}-)(\mathrm{PN}-)$	($\mathrm{NN}-$)(PNG)
			Mean (RB)	Mean (RB)	Mean (RB)
	Continuous process				
Intercept	β_{0}	3.3	$3.3254(0.0077)$	$3.2939(-0.0019)$	$3.2958(-0.0013)$
Age	β_{1}	0.77	0.7697(-0.0004)	0.7711(0.0014)	0.7710(0.0013)
Age \times Age	β_{2}	-0.03	-0.0300(0.0000)	$-0.0301(0.0033)$	-0.0301(0.0033)
Std. dev. error	σ	0.6	0.5994(-0.0010)	0.5996(-0.0007)	0.5996(-0.0007)
Std. dev. random effect	$\sqrt{d_{1}}$	2	1.9850(-0.0075)	1.9856(-0.0072)	1.9855(-0.0073)
	Count process				
Intercept	ξ_{0}	2	1.2304(-0.3848)	2.0508(0.0254)	0.0834(-0.9583)
Age	ξ_{1}	0.02	0.0204(0.0200)	0.0203(0.0150)	0.1948(8.7400)
Std. dev. random effect	$\sqrt{d_{2}}$	1.5	1.5021(0.0014)	$1.4244(-0.0504)$	$1.2189(-0.1874)$
Negative-binomial parameter	α	0	-	-	9.9406
Inflation intercept	γ_{0}	2	1.8843(-0.0579)	$2.0889(0.0445)$	-
Inflation Age	γ_{1}	-0.2	-0.2038(-0.0190)	$-0.1955(-0.0225)$	-
		Com	on parameter		
Corr. random effect	ρ	-0.5	-0.4954(-0.0092)	$-0.4890(0.0220)$	$-0.6126(-0.2252)$
Frequency of convergence			241	250	250

whether one or the other correction, both of them, or perhaps none of the two is necessary. Note also that joint modeling may be of interest in its own right. For example, one may be interested in measuring the strength of the association between both processes (estimating one or more correlation parameters) or in assessing its significance. Also, it is possible to derive prediction equations for an outcome or set of outcomes in one sequence, based on the outcomes in the other sequence and/or earlier measurements of the same sequence.

8 Acknowledgments

The authors are grateful to M. Assefa and F. Tessema for the permission to use the data. Financial support from the Institutional University Cooperation of the Council of Flemish Universities (VLIRIUC) is gratefully acknowledged. The authors gratefully acknowledge support from IAP research

Table 8: Simulation study under scenario S_{3}. Mean and Relative bias (RB) of the parameter estimates in the $\mathrm{H}(\mathrm{NN}-)(P N G),(N N-)(P N G)$, and (NN-)(PN-).

Effect	Parameter	True	H(NN-)(PNG)	(NN-)(PNG)	($\mathrm{NN}-$)(PN-)
			Mean (RB)	Mean (RB)	Mean (RB)
	Continuous process				
Intercept	β_{0}	3.3	$3.2938(-0.0019)$	$3.2946(-0.0016)$	$3.2948(-0.0016)$
Age	β_{1}	0.77	0.7721(0.0027)	$0.7721(0.0027)$	$0.7721(0.0027)$
Age \times Age	β_{2}	-0.03	-0.0302(0.0067)	-0.0302(0.0067)	-0.0302(0.0067)
Std. dev. error	σ	0.6	0.5993(-0.0012)	$0.5993(-0.0012)$	0.5992(-0.0013)
Std. dev. random effect	$\sqrt{d_{1}}$	2	1.9872(-0.0064)	$1.9878(-0.0061)$	1.9875(-0.0063)
Count process					
Intercept	ξ_{0}	2	$2.0627(0.0314)$	1.9954(-0.0023)	1.9537(-0.0232)
Age	ξ_{1}	0.02	$0.0189(-0.0550)$	0.0194(-0.0300)	$0.0175(-0.1250)$
Std. dev. random effect	$\sqrt{d_{2}}$	1.5	$1.4143(-0.0571)$	1.4852(-0.0099)	1.5223(0.0149)
Negative-binomial parameter	α	1	1.0082(0.0082)	$1.0012(0.0012)$	-
Inflation intercept	γ_{0}	0	-1.4481	-	-
Inflation Age	γ_{1}	0	-0.0157	-	-
Common parameter					
Corr. random effect	ρ	-0.5	-0.4963(-0.0074)	$-0.4986(-0.0028)$	$-0.4864(-0.0272)$
Frequency of convergence			250	250	249

Network P7/06 of the Belgian Government (Belgian Science Policy).

References

Asefa, M. and Tessema, F. (2002) Infant survivorship and occurrence of multiple-births: A longitudinal community-based study, south west Ethiopia. Ethiopian Journal of Health Development, 16, 5-11.

Booth, J., Casella, G., Friedl, H., and Hobert, J. (2003) Negative binomial loglinear mixed models Statistical Modelling, 3, 179-191.

Greene, W. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. Working Paper EC- 94-10, Department of Economics, New York

University.

Hinde, J. and Demétrio, C.G.B. (1998a) Overdispersion: Models and estimation. Computational Statistics and Data Analysis, 27, 151-170.

Hinde, J. and Demétrio, C.G.B. (1998b) Overdispersion: Models and Estimation. São Paulo: XIII Sinape.

Horrocks, J., and van den Heuvel, M.J. (2009) Prediction of pregnancy: A joint model for longitudinal and binary data. Bayesian Analysis, 4, 523-538.

Laird, N.M. and Ware, J.H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.

Lambert D. (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1-14.

Lee, A.H., Wang, K., Scott, J., Yau, K.K.W., and McLachlan, G.J. (2006) Multi-level zero-inflated Poisson regression modelling of correlated count data with excess zeros. Statistical Methods in Medical Research, 15, 47-61.

Min, Y. and Agresti, A. (2005) Random effect models for repeated measures of zero-inflated count data. Statistical Modelling, 5, 1-19.

Molenberghs, G. and Verbeke, G. (2005) Models for Discrete Longitudinal Data. New York: Springer.

Molenberghs, G., Verbeke, G., and Demétrio, C. (2007) An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis, 13, 513-531.

Molenberghs, G., Verbeke, G., Demétrio, C., and Vieira, A. (2010) A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical Science, 25, 325-347.

Mullahy, J. (1986) Specification and testing of some modified count data models. Journal of Econometrics 33, 341-65.

Neelon, B.H., Malley, A.J., Normand S.L. (2010) A Bayesian model for repeated measures zeroinflated count data with application to outpatient psychiatric service use. Statistical Modelling, 4, 421-439.

Tsiatis, A. and Davidian, M. (2004) Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica, 14, 809-834.

Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data. New York: Springer.

Appendix

A SAS Code

A. 1 SAS Code for Analysis of the Jimma Infant Growth Study

The following SAS code can be used to fit the models to the Jimma Infant Growth Study, as described in Section 5.

```
/*
    resp is the response variable
    name=1 is an indicator for the count sequence and name=2
    is for the continuous sequence
*/
/* (NN-) & (PNG) */
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202
        beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 alpha=17;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age+b2;
expeta=exp(eta);
m = 1/alpha;
p = 1/(1+alpha*expeta);
ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1/p);
```

end;
model resp ~ general(ll);
random b1 b2 ~normal ([0,0], [tau1**2, 0,tau2**2]) subject=id;
run;

```
/* (NN-)(PNG) */
```

proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202
beta21=-1. 1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 rho=-0.1 alpha=17;
if name $=$ " 2 " then do;
mean $=$ beta11 + beta12*age +beta13*age*age+b1;
dens $=-0.5 * \log (3.14159265358)-\log (s i g m a)$
$-0.5 *($ resp-mean $) * * 2 /($ sigma $* * 2)$;
11 = dens;
end;
if name $=$ "1" then do;
eta $=$ beta21 + beta22*age+b2;
expeta=exp(eta);
m = 1/alpha;
$p=1 /(1+a l p h a * \operatorname{expeta}) ;$
$11=\operatorname{lgamma}(\mathrm{resp}+\mathrm{m})-\operatorname{lgamma}(\mathrm{resp}+1)-\operatorname{lgamma}(\mathrm{m})+$
resp*log (alpha*expeta) -(resp+m)*log(1+alpha*expeta) ;
end;
model resp ~ general(ll);
random b1 b2 ~normal ([0,0], [tau1**2, rho*tau1*tau2,tau2**2]) subject=id;
run;
$/ *($ NN- $) \& H(P N G) * /$
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

```
    beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
    alpha=0.333 a0=2.04 a1=-0.037;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);
end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
    - log(1 -( 1 + alpha*expeta)**(-m));
end;
end;
model resp ~ general(ll);
random b1 b2 ~normal([0,0],[tau1**2,0,tau2**2]) subject=id;
run;
/*H(NN-)(PNG)*/
proc nlmixed data=joint qpoints=20;
```

```
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
    beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
    rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);
end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
    - log(1 - ( 1 + alpha*expeta)**(-m));
end;
end;
model resp ~ general(ll);
random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;
```

```
/*(NN-) & ZI(PNG)*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
    beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
    alpha=0.333 a0=2.04 a1= -0.037;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age+ b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age+ b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = log(p_0 + (1-p_0)*(p**m)); end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);
end;
end;
model resp ~ general(ll);
random b1 b2 ~normal([0,0],[tau1**2,0,tau2**2]) subject=id;
run;
```

```
/*ZI(NN-)(PNG)*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
    beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
    rho=-0.1 alpha=0.333 a0=2.04 a1=-0.037;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=a0+a1*age;
expeta_prob=exp(eta_prob);
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = log(p_0 + (1-p_0)*(p**m));
end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);
end;
end;
model resp ~ general(ll);
random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=id;
run;
```

```
/*Test for zero-inflation (zero-altered model):
    comparing H(NN-)(PNG) with a1 versus H(NN-)(PNG) without a1*/
/*H(NN-)(PNG) without a1*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
    beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48
    rho=-0.1 alpha=0.333;
if name = "2" then do;
mean = beta11 + beta12*age +beta13*age*age + b1;
dens = -0.5*log(3.14159265358) - log(sigma)
    -0.5*(resp-mean)**2/(sigma**2);
ll = dens;
end;
if name = "1" then do;
eta = beta21 + beta22*age + b2;
expeta=exp(eta);
eta_prob=beta21+beta22*age+b2;
expeta_prob=exp(eta_prob);
p_0=exp(-exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*expeta);
if resp=0 then do;
ll = eta_prob-log(1+expeta_prob);end;
else do;
ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +
    resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)
    - log(1 - ( 1 + alpha*expeta)**(-m));end;
end;
model resp ~ general(ll);
```

random b1 b2 ~normal ([0,0], [tau1**2, rho*tau1*tau2,tau2**2]) subject=id; run;
/*H(NN-) (PNG) with a1*/
proc nlmixed data=joint qpoints=20;
parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76
beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 rho=-0.1 alpha=0.333 a1=0;
if name = "2" then do;
mean $=$ beta11 + beta12*age +beta13*age*age + b1;
dens $=-0.5 * \log (3.14159265358)-\log (s i g m a)$
$-0.5 *($ resp-mean $) * * 2 /($ sigma $* * 2)$;
11 = dens;
end;
if name $=$ "1" then do;
eta $=$ beta21 + beta22*age + b2;
expeta=exp (eta);
eta_prob=a1+beta21+beta22*age+b2;
expeta_prob=exp(eta_prob);
p_0=1-exp (-exp(eta_prob)) ;
$\mathrm{m}=1 / \mathrm{alpha} ;$
$p=1 /(1+a l p h a * \operatorname{expeta}) ;$
if resp=0 then do;
11 = eta_prob-log(1+expeta_prob); end;
else do;
$11=\log \left(1-p_{-} 0\right)+l \operatorname{gamma}(r e s p+m)-l \operatorname{gamma}(r e s p+1)-l \operatorname{gamma}(m)+$ resp*log (alpha*expeta) -(resp+m)*log (1+alpha*expeta)

- $\log (1-(1+$ alpha*expeta $) * *(-m))$;
end;
end;
model resp ~ general(ll);
random b1 b2 ~normal ($[0,0],[\operatorname{tau} 1 * * 2$, rho*tau1*tau2,tau2**2]) subject=id; run;

A. 2 SAS Code for the Simulation Study

/* Scenario one: generate data from ZI(NN-) (PNG)model */

```
data jointsim1;
```

call streaminit(1234);
do $s s=1$ to 250 ;
mean1=0; /*mean for b1*/
mean2=0; /*mean for $b 2 * /$
sig1=2; /*SD for $\mathrm{b} 1 * /$
$\operatorname{sig} 2=1.5 ; / * S D$ for $b 2 * /$
rho=-0.5; /*Correlation between b1 and b2*/
do kk=1 to 200;
r1 = rannor (1245);
r2 = rannor (2923) ;
b1 = mean1 + sig1*r1;/*random effect for continuous part*/
$\mathrm{b} 2=$ mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;
/*random effect for count part*/
do $\mathrm{TT}=1$ to $10 ; / * 10$ time points*/
sim=ss;
e=rand('normal', 0,0.6);
id=kk;
age=TT;
$\mathrm{mu}=3.3+0.77 *$ age $-0.03 *$ age*age $+\mathrm{b} 1+\mathrm{e} ; / *$ continuous part*/
kappa $=\exp (2+0.02 *$ age + b2 $) ; \quad / *$ count part*/
theta $=1$;
parm1 $=1 /(1+$ kappa $/$ theta $)$;
yneg $=$ rand('NEGB', parm1,theta);
p1=2-0.2*age; /* zero-inflation part*/

```
p2=exp(p1);
p=p2/(1+p2);
inf=rand('bern',p);
if inf=1 then do;
ynegzim=0;
end;
else do;
ynegzim=yneg;
end;
numdays=ynegzim;
output ;
end;
end ;
end;
data jointsim1;
set jointsim1;
run;
/* Scenario two:generate data from ZI(NN-)(PN-)model*/
data jointsim2;
call streaminit(1234);
do ss=1 to 250 ;
mean1=0; *mean for b1;
mean2=0; *mean for b2;
sig1=2; *SD for b1;
sig2=1.5; *SD for b2;
rho=-0.5; *Correlation between b1 and b2;
do kk=1 to 200;
r1 = rannor(1245);
r2 = rannor(2923);
```

```
b1 = mean1 + sig1*r1;
b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;
do TT=1 to 10; /*10 time points*/
sim=ss;
e=rand('normal',0,0.6);
id=kk;
age=TT;
mu=3.3+0.77*age-0.03*age*age+b1+e;
kappa = exp(2 + 0.02*age+b2);
ypois = rand('POISSON',kappa);
p1=2-0.2*age;
p2=exp(p1);
p=p2/(1+p2);
inf=rand('bern',p);
if inf=1 then do;
ypoiszim=0;
end;
else do;
ypoiszim=ypois;
end;
numdays=ypoiszim;
output ;
end;
end ;
end;
data jointsim2;
set jointsim2;
run;
```

```
/* Scenario three: generate data from (NN-)(PNG)model*/
data jointsim3;
call streaminit(1234);
do ss=1 to 250 ;
mean1=0; *mean for b1;
mean2=0; *mean for b2;
sig1=2; *SD for b1;
sig2=1.5; *SD for b2;
rho=-0.5; *Correlation between b1 and b2;
do kk=1 to 200;
r1 = rannor(1245);
r2 = rannor(2923);
b1 = mean1 + sig1*r1;
b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;
do TT=1 to 10; /*10 time points*/
sim=ss;
e=rand('normal',0,0.6);
id=kk;
age=TT;
mu=3.3+0.77*age-0.03*age*age+b1+e;
kappa = exp(2 + 0.02*age+b2);
theta = 1;
parm1 = 1/(1+kappa/theta);
yneg = rand('NEGB',parm1,theta);
numdays=yneg;
output ;
end;
end ;
end;
data jointsim3;
```

```
set jointsim3;
run;
/* Calculation of overall mean, std.dev. and percentage of zeros */
/* Scenario one */
proc means data=jointsim1;
var numdays; run;
proc freq data=jointsim1;
tables numdays;
run;
/*Scenario two*/
proc means data=jointsim2;
var numdays; run;
proc freq data=jointsim2;
tables numdays;
run;
/*Scenario three*/
proc means data=jointsim3;
var numdays; run;
proc freq data=jointsim3;
tables numdays;
run;
```

