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ABSTRACT
In graph query languages, regular expressions are commonly
used to specify the labeling of paths. A natural step in in-
creasing the expressive power of these query languages is re-
placing regular expressions by context-free grammars. With
the Conjunctive Context-Free Path Queries (CCFPQ) we
introduce such a language based on the well-known Con-
junctive Regular Path Queries (CRPQ).

First, we show that query evaluation of CCFPQ has polyno-
mial time data complexity. Secondly, we look at the general-
ization of regular expressions, as used in CRPQ, to regular
relations and show how similar generalizations can be ap-
plied to context-free grammars, as used in CCFPQ. Thirdly,
we investigate the relations between the expressive power of
CRPQ, CCFPQ, and their generalizations. In several cases
we show that replacing regular expressions by context-free
grammars does increase expressive power. Finally, we look
at including context-free grammars in more powerful log-
ics than conjunctive queries. We do so by adding negation
and provide expressivity relations between the obtained lan-
guages.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Automata

General Terms
Theory

1. INTRODUCTION
Central in graph structured data are data-elements (nodes),
direct relations between data-elements (edges), and indirect
relations between data-elements (paths). Due to its intu-
itive nature, the graph structured data model has a broad
range of applications, including applications in the social sci-
ences, bio-informatics, the semantic web, geographical data,

process modeling, and in formal verification.

Usually, graph-structured data is queried based on the paths
in the data. A common way to specify these paths is by
specifying the path labeling using regular expressions over
edge labels [24]. An example of a query language using such
regular expressions is CRPQ [11, 12]. To increase the ex-
pressive power of CRPQ, the Extended Conjunctive Regular
Path Queries (ECRPQ) [5] have been proposed. In ECRPQ,
the regular expressions are generalized to regular relations.
These regular relations are regular expressions over tuples of
edge labels, and they specify the labeling of tuples of paths.
This allows ECRPQ to compare distinct paths.

Both CRPQ and ECRPQ have efficient query evaluation
with polynomial time complexity in terms of the size of the
queried graph. Furthermore, widespread usage of regular ex-
pressions in common tasks, such as editing, programming,
and system administration, reduces the learning curve for
working with regular expressions in graph query languages.
Besides the practical motivations for using regular expres-
sions, there are also theoretical motivations. Regular ex-
pressions are well-understood and have a strong foundation
in formal languages and automata theory [20].

In search of more expressive variants of CRPQ one can
also consider an alternative route, namely replacing reg-
ular expressions by more powerful formal grammars. In
string recognition, parsing, and in compiler construction
the expressive power of regular expressions is considered
to be insufficient. As such, the usage of the more expres-
sive context-free grammars is widespread [14]. Due to this
widespread usage, there are many reasonably efficient string
recognition algorithms for context-free grammars. Practi-
cal string recognizing algorithms for context-free grammars
have a cubic running time with respect to the length of the
string [10, 16, 29, 30, 35] although slightly better algorithms
are known [31].

Increasing the expressive power of path based query lan-
guages by using context-free grammars, instead of regular
expressions, is thus a logical step. Moreover, initial steps
in the usage of context-free grammars as graph query lan-
guages have already been made in the context of model
checking [18] and in bio-informatics [28]. These initial steps
provide context-free recognition algorithms for graphs with
running times ofO(|G|·n5) [18] andO(n3m2) [28], where |G|
is dependent on the size of the grammar, n is the number of



nodes in the graph, andm is the maximum path length. Fur-
thermore, Lange [18] proposes to investigate if graph query
languages using richer, mildly context-sensitive, grammar
formalisms are feasible. Examples of such grammar for-
malisms are the alternating context-free grammars [25] and
the conjunctive grammars [26].

Motivated by, on the one hand, the desire to extend the
expressive power of CRPQ, and, on the other hand, exist-
ing applications of context-free grammar-based graph query
languages, we propose the Conjunctive Context-Free Path
Queries (CCFPQ). CCFPQ is the query language obtained
by replacing the usage of regular expressions to specify the
labeling of paths in CRPQ by context-free grammars. We
illustrate the power of CCFPQ with a straightforward ex-
ample.

Example 1. Consider a family tree with parent and child
edges. The context-free grammar

N→ parent child, N→ parent N child,

which is not regular, recognizes paths with labeling of the
form parentnchildn (1 ≤ n). Now the CCFPQ query

Q(d1, d2)← N(d1, d2)

gives us pairs of n-th generation descendants of a common
ancestor. This query Q is not expressible by CRPQ.

Our main result is that CCFPQ has efficient query evalua-
tion, while at the same time having greater expressive power
than CRPQ. For query evaluation we provide a context-free
recognition algorithm for graphs. Our algorithm has a run-
ning time of O((me) + (mn)3), where m is the number of
non-terminals in the grammar, e is the number of edges in
the graph, and n is the number of nodes in the graph. This
improves on earlier graph recognition algorithms for context-
free grammars.

We show an important restriction in the usage of path vari-
ables: freely using path variables allows us to query for paths
whose traces match the intersection of two context-free lan-
guages. In this case, we prove that query evaluation is unde-
cidable, even for a fixed query. These results also negatively
answer an open question from Lange [18]: query evaluation
is undecidable for graph query languages that use alternat-
ing context-free grammars [25] or conjunctive grammars [26]
to specify the labeling of paths.

We also look at the generalization of regular expressions, as
used in CRPQ, to regular relations, resulting in ECRPQ. We
show how similar generalizations can be applied to context-
free grammars, as used in CCFPQ. We include a broad study
of the expressive power of CRPQ, CCFPQ, and the intro-
duced generalizations.

We show that, in general, CCFPQ can express more que-
ries than CRPQ. We also show that CRPQ and CCFPQ
have equivalent expressive power on unlabeled graphs. In-
terestingly, this collapse also holds for the respective gener-
alizations of CRPQ and CCFPQ with grammars over tuples
of edge labels. We also introduce context-free grammars in

more powerful logics by adding negation to CCFPQ, and we
provide a strict hierarchy in expressive power of the resulting
query languages.

Organization. The next section introduces the necessary
preliminaries. Section 3 introduces CCFPQ, together with
a query evaluation algorithm. Section 3 also discusses the
introduction of path variables, the inclusion of paths in the
query result, and the introduction of generalized grammars
over tuples of edge labels. Section 4 studies the differences
in expressive power of CRPQ, CCFPQ, and their general-
izations with grammars over tuples of edge labels. Section 5
looks at the expressive power of context-free grammars in
more powerful logics. Section 6 concludes and looks at fu-
ture work.

2. PRELIMINARIES
Let A be a finite set of edge labels. An edge-labeled di-
rected graph is a tuple D = (V, E) with V the set of nodes
and E ⊆ V × A × V a directed edge-relation. A path π =
n1e1 . . . ni−1ei−1ni in graphD is a non-empty finite sequence
of nodes connected by edges ej , for 1 ≤ j < i, which sat-
isfy ej = (nj , lj , nj+1). The length of path π is defined by
|π| = i. We write n1πni to indicate that path π starts at
node n1 and ends at node ni. The trace of path π is defined
by T (π) = l1 . . . li, we remark that traces are strings over
the edge labels A and that the trace of a node is the empty
string. The set of traces between nodes n and m is defined
by TS(n,m) = {T (π) | nπm}.

We denote the concatenation of two strings s1 and s2 by
s1 ++ s2. We denote the concatenation of two paths aπ1b
and bπ2c by π1 ++ π2. We only concatenate paths if the last
node on the first path π1 is equal to the first node on the
second path π2.

A context-free grammar is a 3-tuple G = (N ,A,P) where N
is a finite set of non-terminals, A is a finite set of symbols
which we call the alphabet, and P is a finite set of production
rules. Usually, the alphabet A is a subset of the edge-labels
A. Each production rule is of the form S→ m where m is a
finite string over N ∪A. We write S→ λ when |m| = 0.1

The production rules describe rewrites of strings over N ∪A
allowed by the grammar. If we have a string s = s1 . . . sj
with sk = N, for 1 ≤ k ≤ j, N ∈ N , and production rule
N→ m1 . . .mi, then we can rewrite s into

s1 . . . sk−1m1 . . .misk+1 . . . sj .

We write s →G q for strings s and q whenever s can be
rewritten into q by a finite number of rewrites using the pro-
duction rules in G. The language of grammar G = (N ,A,P)
with respect to start non-terminal S ∈ N is defined by
L(GS) = {s1 . . . sj a finite string over A | S→G s1 . . . sj}.

To simplify working with context-free grammars we assume
that all context-free grammars are in the following normal
form:
1We deviate from the usual definition of a context-free gram-
mar by not including a special start non-terminal. We will
specify the start non-terminal in the queries using context-
free grammars.



Definition 1. A context-free grammar is in Normal Form
if all productions are of the form A→ B C, A→ σ, or A→ λ
where A, B, C ∈ N and σ ∈ A.

By allowing arbitrary production rules of the form A → λ,
this normal form deviates from the usual Chomsky Normal
Form [20]. This is a consequence of the lack of start non-
terminals in our grammar definition. Using standard tech-
niques [20] one can show:

Property 1. For every G = (N ,A,P) there exists a
grammar G ′ = (N ′,A,P ′) with G ′ in normal form and,
for every N ∈ N , L(GN) = L(G ′N). G ′ can be constructed
from G in polynomial time and size with respect to |N | and
the sum of the lengths of all production rules.

Let L be a query language and M be a data model. The
query evaluation problem has as input a database D from M ,
query Q from L, and tuple t and decides if t is in the query
result of Q on D. In the framework introduced by Vardi [32],
the data complexity of the query evaluation problem refers to
the complexity with respect to the size of database D, given
a fixed query Q, and the combined complexity of the query
evaluation problem refers to the complexity with respect to
the size of query Q and database D.

3. CONJUNCTIVE CONTEXT-FREE PATH
QUERIES

We can apply context-free grammars on graphs in a similar
way as regular expressions are applied on graphs by CRPQ.
Given a graph D = (V, E) and grammar G = (N ,A,P), we
define context-free relations RN ⊆ V × V, for every N ∈ N ,
such that RN = {(n,m) | ∃nπm (T (π) ∈ L(GN))}. We use
the notation ∃nπmϕ for node variables n and m as a short-
hand for ∃π (nπm ∧ ϕ). Using this interpretation of non-
terminals over graphs, we define the Conjunctive Context-
Free Path Queries as follows:

Definition 2. Let G = (N ,A,P) be a grammar. A Con-
junctive Context-Free Path Query (CCFPQ) over grammar
G is an expressions of the form:

Q(~ν)← ∃~µ
∧
i∈I

Ni(ni,mi),

where Q is the name of the query, ~ν is a tuple of node vari-
ables, ~µ is a tuple of distinct node variables that do not
occur in ~ν, i ranges over a finite index set I, Ni ∈ N is a
non-terminal, and ni and mi are node variables taken from
~ν or ~µ. A CCFPQ built over a regular grammar is a Con-
junctive Regular Path Query (CRPQ).

The semantic evaluation of query Q on graph D = (V, E),
denoted by QD, is defined by the usual semantics of first-
order queries over (V;RNi , i ∈ I), whereby atoms Ni(ni,mi)
are interpreted as the relations RNi(ni,mi).

Query Q(~ν) is a boolean query whenever ~ν is the empty
tuple 〈〉. The evaluation of a boolean query over graph D is
interpreted in the usual way: QD = ∅ is interpreted as false,
and QD = {〈〉} is interpreted as true.

Example 2. Consider the grammar G = (N ,A,P) with
N = {N}, A = {↑, ↓}, and P = {N → N N, N → ↑ N ↓, N → λ}.
The grammar describes properly nested open-parentheses ↑
and close-parentheses ↓.

↑
↑ ↓ ↑

↑ ↓
↓

↓
n m

Figure 1: An example of a zigzag-graph between the
nodes indicated with n and m.

The query Qzigzag(n1, n2)← N(n1, n2) returns pairs of nodes
if they are connected by a path of properly nested ↑ and
↓ parentheses. The result of Qzigzag on the zigzag-graph in
Figure 1 will thus include the node pair (n,m), but not the
node pair (m,n).

In general, we only specify the relevant production rules as
the set of non-terminals and the alphabet are implied by
the production rules. Usually, we write regular expressions
in CRPQs instead of using non-terminal atoms from corre-
sponding regular grammars.

Example 3. Consider the regular grammar

TC→ σ, TC→ σ TC (∀σ ∈ A).

The query QTC(n,m)← TC(n,m) evaluates to the transitive
closure of a graph and the boolean query

Qcyclic()← ∃n TC(n, n)

evaluates to true if and only if the graph is cyclic.

3.1 Query evaluation
Let G = (N ,A,P) be a grammar and D = (V, E) be a
graph. We consider queries Q(~ν) build over N ∈ N . If we
have the relations RN, then we can reduce query evaluation
for CCFPQ to query evaluation of conjunctive first-order
queries. For calculating the relations RN, we present Algo-
rithm 1.

Algorithm 1 Context-free recognizer for graphs.

Input: Edge-labeled directed graph D = (V, E)
Context-free grammar G = (N ,A,P) in Normal Form

Output: {(N, n,m) | (n,m) ∈ RN}
1: r := {(N, n, n) | (n ∈ V) ∧ (N→ λ ∈ P)}∪

{(N, n,m) | ((n, l,m) ∈ E) ∧ (N→ l ∈ P)}
2: new := r
3: while new 6= ∅ do
4: pick and remove a (N, n,m) from new
5: for all (M, n′, n) ∈ r do
6: for all (N’→ M N ∈ P) ∧ ((N’, n′,m) 6∈ r) do
7: new := new ∪ {(N’, n′,m)}
8: r := r ∪ {(N’, n′,m)}
9: for all (M,m,m′) ∈ r do

10: for all (M’→ N M ∈ P) ∧ ((M’, n,m′) 6∈ r) do
11: new := new ∪ {(M’, n,m′)}
12: r := r ∪ {(M’, n,m′)}
13: return r



Algorithm 1 parses the graph D using the context-free gram-
mar G in a bottom-up way, thereby basically applying CYK-
parsing [14] on graphs.

Proposition 1. Let D = (V, E) be a graph and let G =
(N ,A,P) be a grammar. Let r be the output of Algorithm 1
on D and G. We have (N, n,m) ∈ r if and only if (n,m) ∈
RN.

Proof. We have (n,m) ∈ RN if and only if there exists a
path nπm with N→G T (π). Using induction on the number
of rewrite steps from N to T (π), we prove (N, n,m) ∈ r if
(n,m) ∈ RN.

We have one rewrite step if and only if there is a production
rule of the form N→ a with a ∈ A∪{λ}. In this case, we have
(N, n,m) ∈ r by line 1. Now assume when N’→G T (n′π′m′)
in at most 1 ≤ i rewrite steps, then (N’, n′,m′) ∈ r. Let
N →G T (nπm) in i + 1 rewrite steps. The first production
rule applied must be of the form N → A B for A, B ∈ N . Let
nπm = π1 ++ π2 with A →G T (nπ1c) and B →G T (cπ2m).
These rewrites happen in at most i rewrite steps, we thus
have (A, n, c), (B, c,m) ∈ r. Hence, by the inner loops at
lines 5 and 9, we have (N, n,m) ∈ r.

The only if direction follows trivially from the algorithm as
(N, n,m) is only added to r whenever a suiting production
rule is found, resulting in a proof for (n,m) ∈ RN.

The complexity of query evaluation of CCFPQ is deter-
mined by the complexity of Algorithm 1 and the complexity
of query evaluation of conjunctive first-order queries. We
are interested in data and combined complexity.

Theorem 1. Let D = (V, E) be a graph and let G =
(N ,A,P) be a grammar. Algorithm 1 applied to D and G
has a worst-case complexity of O(|N ||E|+ (|N ||V|)3).

By Theorem 1, we conclude that Algorithm 1 is an improve-
ment on the asymptotic polynomial running time (with re-
spect to the size of the graph) of the algorithm provided by
Lange [18].

For the conjunctive first-order queries, the query evaluation
problem has efficient solutions with polynomial time data
complexity and NP-complete combined complexity [1]. Us-
ing Theorem 1, we extend these results to CCFPQ.

Corollary 1. For CCFPQ queries, the query evaluation
problem has

1. Polynomial time data complexity,

2. NP-complete combined complexity.

Proof (sketch). Algorithm 1 reduces query evaluation
of CCFPQ to query evaluation of conjunctive queries and
does so in polynomial time (with respect to the size of the

graph and grammar). NP-hardness of combined complexity
of the query evaluation problem follows from NP-hardness
of the query evaluation problem for conjunctive queries and
CRPQ [1, 5].

3.2 Explicit path variables
Variants of CRPQ use explicit path variables [5]. In these
variants, path variables are used in the form

Q()← ∃nm ∃nπm r1(π) ∧ r2(π),

where the regular expressions r1 and r2 both place condi-
tions on the trace of a single path. The regular expressions
are closed under intersection. Hence, indirectly all represen-
tations of CRPQ support path variables [13]. For CRPQ,
path variables thus do not have an impact on the expres-
sive power, omitting path variables can however influence
the succinctness of the query language.

The context-free grammars are not closed under intersec-
tion. Hence, adding path variables, such that several non-
terminals can put restrictions on a single path, would be a
logical extension of CCFPQ.

Theorem 2. Consider CCFPQ queries using path vari-
ables of the form Q()← ∃nm ∃nπm N(π) ∧ M(π).

1. There is a fixed graph D such that the query evaluation
problem is undecidable.

2. There is a fixed query Q such that the query evaluation
problem of Q is undecidable.

Proof (sketch). For proving 1. it is well-known that
the emptiness of the intersection of two context-free lan-
guages is undecidable. We can easily construct a graph D
that accepts all possible strings. Now 〈〉 ∈ QD if and only
if the intersection of N and M is not empty. For proving 2.
we consider an instance I of Post’s correspondence problem.
We can reduce I to a graph D over a fixed alphabet and
separately construct a single query Q such that 〈〉 ∈ QD if
and only if instance I has a solution.

Theorem 2 can be strengthened: query evaluation is already
undecidable whenever the formalisms used to specify the
labeling of paths can express languages that are the inter-
section of two context-free grammars. Examples of such
grammar formalisms are the alternating context-free gram-
mars [25], the conjunctive grammars [26], and many other
mildly context-sensitive grammar formalisms.

Theorem 2 does however strongly depend on graphs having
cycles. One can easily build recognizers for two context-free
grammars and check if a finite string is accepted by each
context-free grammar (and thus by the intersection of the
context-free grammars). Hence, we have the following:

Proposition 2. Query evaluation of CCFPQ with path
variables on directed acyclic graphs is decidable.



The naive algorithm for the query evaluation problem of
Proposition 2 would try every possible path. It is unknown
if better solutions exist, as the exact complexity of query
evaluation of CCFPQ with path variables on directed acyclic
graphs remains to be determined.

3.3 Querying for paths
A second usage of path variables in CRPQ is specifying
which paths should be returned by a query. Similarly to
the situation for CRPQ [5], we show that querying for (sets
of) paths is possible in the setting of context-free grammars.

Graphs can be seen as a description of traces, this in the
form of a non-deterministic finite automaton. These au-
tomata describe regular languages. It is well-known that the
intersection of a regular language (the input graph) and a
context-free grammar is in itself representable by a context-
free grammar. This intersection property can even be used
as the basis for interesting parsing algorithms [3, 14]. We
thus can use a context-free grammar representation of all
the paths that matches the context-free relations used in a
query.

For many practical applications, the possibility to extract a
single path is much more valuable. Examples are applica-
tions for debugging queries and for analyzing graphs. Due
to practical limitations, it would be preferable if we can ex-
tract a path of minimal length. For context-free grammars,
finding the shortest string that can be produced starting
from a non-terminal is decidable [23]. With sufficient book-
keeping, the production of the shortest string s can also be
used to produce the the nodes and edges of the path π with
T (π) = s.

3.4 Context-free grammars over tuples
CCFPQ, as does CRPQ, lack mechanisms to compare paths.
In the case of CRPQ, path comparisons have been added by
generalizing regular expressions to regular relations [4, 5,
13]. Usually, these regular relations are specified by regu-
lar expressions over tuples of edge labels and are used in
combination with path variables resulting in the Extended
Conjunctive Regular Path Queries (ECRPQ) [5].

Based on extending CRPQ with regular relations, we extend
CCFPQ with i-ary context-free relations. In view of Theo-
rem 2, we choose an approach without using path variables.
We do so by specifying paths using begin and end nodes.
We remark that in the setting of ECRPQ, it can be proven
that every query can be rewritten such that every path vari-
able is used at most once [13]. Using a path variable once,
is effectively equivalent to specifying begin and end nodes.

We define i-ary context-free relations similarly to the way
i-ary rational relations are defined [4]. Let ς 6∈ A∪A be the
skip-symbol. We use the skip-symbol to pad traces of paths
to skip-traces of arbitrary lengths. The skip-traces of path
π, with T (π) = l1 . . . li, are defined as

Tς(π) = {s1 ++ l1 ++ s2 ++ . . .++ si ++ li ++ si+1 |
s1, . . . , si+1 are finite sequences of ς symbols}.

The skip-traces of an i-tuple of paths ~π = 〈π1, . . . , πi〉 are

defined by

Tς i(~π) = {〈t11, . . . , ti1〉 . . . 〈t1l , . . . , til〉 |

∀j ((1 ≤ j ≤ i) =⇒ ((tj = tj1 . . . t
j
l ) ∧ (tj ∈ Tς(πj))))}.

Example 4. Let D be the graph on the left of Figure 3.
Let path π be the path in this graph with trace T (π) = ac.
The skip-traces with length at most three of path π are ac,
ςac, aςc, and acς. The skip-traces of the tuple of paths 〈π, π〉
of length at most three include 〈a, a〉〈c, c〉, 〈ς, ς〉〈a, a〉〈c, c〉,
and 〈a, a〉〈ς, c〉〈c, ς〉.

A i-ary context-free grammar over alphabet A is a context-
free grammar of the form G = (N , (A ∪ ς)i,P). Given a
graph D = (V, E) and grammar G = (N , (A ∪ ς)i,P), we
define i-ary context-free relations RN ⊆ 〈V × V〉i, for every
N ∈ N , such that

RN = {(〈n1,m1〉, . . . , 〈ni,mi〉) | ∃n1π1m1 . . .∃niπimi

∃t ((t ∈ Tς i(〈π1, . . . , πi〉)) ∧ (t ∈ L(GN)))}.

Using this interpretation of non-terminals over graphs, we
define the Extended Conjunctive Context-Free Path Queries
as follows:

Definition 3. An Extended Conjunctive Context-Free Path
Query (ECCFPQ) is an expressions of the form:

Q(~ν)← ∃~µ
∧
i∈I

Ni(~pi),

where Q is the name of the query, ~ν is a tuple of node vari-
ables, ~µ is a tuple of distinct node variables that do not occur
in ~ν, i ranges over a finite index set I, Ni is a non-terminal
from a j-ary grammar, and ~pi is a j-ary tuple of pairs of
node variables taken from ~ν or ~µ.

The semantic evaluation of query Q on graph D = (V, E),
denoted by QD, is defined by the usual semantics of first-
order queries over (V;RNi , i ∈ I), whereby atoms Ni(~pi) are
interpreted as the relations RNi(~pi). We allow that each Ni is
taken from different context-free grammars (each grammar
having its own arity). We define boolean queries in the usual
way.

Example 5. Consider the following binary grammar:

Sub→ λ, Sub→ 〈σ, σ〉 Sub (∀σ ∈ A),
Sub→ 〈σ, ς〉 Sub (∀σ ∈ A).

The query QSub(n1,m1, n2,m2) ← Sub(〈n1,m1〉, 〈n2,m2〉)
will return node-pairs (n1,m1) and (n2,m2) such that there
are paths n1π1m1 and n2π2m2 whereby T (π2) is a subse-
quence of T (π1). A string s2 is a subsequence of s1 if s2 can
be obtained by removing symbols from s1. Figure 2 illus-
trates subsequences in a graph with two paths connecting
node pairs 〈n1,m1〉 and 〈n2,m2〉.

In the graph of Figure 2, the path n1π1m1 has trace T (π1) =
eaceca. When we remove the first occurrence of e, the first
occurrence of c, and the last of occurrence of a, then the



e a c e c a

a e c

n1

n2

m1

m2

Figure 2: Two node pairs 〈n1,m1〉 and 〈n2,m2〉 of
begin and end nodes connected by different paths.
The trace of the shorter path is a subsequence of the
trace of the longer path.

result is aec. This is equivalent to the trace T (π2) of the
path n2π2m2. Hence, we conclude that aec is a subsequence
of eaceca and that (〈n1,m1〉, 〈n2,m2〉) ∈ RSub.

3.4.1 Query evaluation
We reduce query evaluation of ECCFPQ to query evalu-
ation of CCFPQ by calculating the relations RN, for N a
non-terminal from an i-ary context-free grammar, using Al-
gorithm 1. We do so in a similar way as the reduction of
query evaluation of ECRPQ to CRPQ [5].

The i-product graph of graph D = (V, E), denoted by D×i =
(V×i, E×i), is defined by V×i = {〈n1, . . . , ni〉 | n1, . . . , ni ∈
V} and

E×i = {(ni, 〈l1, . . . , li〉,mi) |

(ni,mi ∈ V×i) ∧ ∀j ((1 ≤ j ≤ i) =⇒

((nij , lj ,m
i
j) ∈ E ∨ (nij = mi

j ∧ lj = ς)))}.

Proposition 3. Let D = (V, E) be a graph. We can
construct the i-product graph D×i = (V×i, E×i) in O((|V| +
|E|)i).

Now, by construction, every path niπmi in D×i is a path
whose trace simulates an i-skip-trace between nodes 〈ni1,mi

1〉,
. . . , 〈nii,mi

i〉. Hence, we can use Algorithm 1 and graph D×i
to calculate RN.

Example 6. Let D be the graph on the left of Figure 3.
The 2-product graph of this graph is displayed on the right
of Figure 3.

a

c

〈ς, a〉

〈a, ς〉

〈a, a〉

〈ς, ς〉
〈a, ς〉〈a, c〉

〈ς, c〉

〈ς, ς〉

〈ς, a〉
〈c, a〉〈c, ς〉

〈ς, ς〉

〈ς, c〉
〈c, ς〉
〈c, c〉〈ς, ς〉

Figure 3: A graph on the left and its 2-product graph
on the right.

The pair of traces 〈ac, acc〉 in the graph on the left of Fig-
ure 3 is represented by an infinite number of pairs of traces
in the graph on the right of Figure 3. Examples include the
traces 〈a, a〉〈ς, c〉〈c, c〉 and 〈a, ς〉〈ς, a〉〈ς, c〉〈c, ς〉〈ς, c〉. These
traces are indeed examples of skip-traces of a 2-tuple of paths
〈π1, π2〉 with T (π1) = ac and T (π2) = acc.

Corollary 2. Let D = (V, E) be a graph and let G =
(N ,A,P) be an i-ary grammar. Algorithm 1 applied to D
and G has a worst-case complexity of O(|N |(|V| + |E|)i +
(|N ||V|i)3).

As a direct consequence of Corollary 1 and Corollary 2, we
have the following:

Corollary 3. For ECCFPQ queries, the query evalua-
tion problem has

1. Polynomial time data complexity,

2. NP-complete combined complexity.

We remark that the known combined complexity of ECRPQ
is PSPACE-complete [5]. This is not in contradiction with
Corollary 3, as ECRPQ traditionally uses path variables.
Path variables allow a more succinct notation of queries in-
volving, for example, intersections of regular languages.

3.4.2 Regular and rational relations
In the setting of CRPQ, there is a distinction between reg-
ular relations and rational relations [4, 13]. The difference
being that regular relations specify skip-traces that are only
padded from the right. Hence, in regular relations the skip-
traces of path π, with T (π) = l1 . . . li, are defined as

Tς(π) = {l1 ++ . . .++ li ++ s |
s is a finite sequence of ς symbols}.

The rational relations allow arbitrary padding, as in i-ary
context-free grammars. In the presence of path variables,
the distinction between regular and rational relations is im-
portant. Similar to Theorem 2, we have the following.

Theorem 3 (Barceló, Figueira, Libkin [4]). The
query evaluation problem of CRPQ using path variables ex-
tended with rational relations is undecidable, even for a fixed
query.

Instead of considering CRPQ with rational relations in the
presence of path variables, we can consider CRPQ with ra-
tional relations using begin and end nodes to specify paths.
Effectively, such a variant on CRPQ simply restricts the
context-free grammars used in ECCFPQ to regular gram-
mars. We say that an ECCFPQ built over a regular gram-
mar is an Extended Conjunctive Regular Path Query with
skips (ECRPQς).

For completeness, we can also define the context-free gen-
eralization of regular relations, as used in ECRPQ. We do



so in the Extended Conjunctive Context-Free Path Queries
without skips (ECCFPQ⊥) by restricting skip-traces to skip-
traces that are only padded from the right.

Proposition 4. Every ECCFPQ⊥ query is expressible in
ECCFPQ, every ECRPQ query is expressible in ECRPQς .

Proof. The acceptable skip-traces of tuples of paths al-
lowed by the definition of ECCFPQ⊥ (ECRPQ) are express-
ible by a regular expression r. The intersection of a regular
expression r and a context-free grammar (regular grammar)
is itself context-free (regular). With the resulting intersec-
tions, we can express the semantics of ECCFPQ⊥ (ECRPQ)
in ECCFPQ (ECRPQς).

In the following section, we further study the differences in
the expressive power of CRPQ, CCFPQ, and these general-
izations.

4. RELATIONS WITH CRPQ AND ECRPQ
We introduced CCFPQ and ECCFPQ as the context-free
versions of respectively CRPQ and ECRPQ. We will now in-
vestigate if these extensions actually add expressive power.
We use the following notations for comparing expressive
powers of query languages.

Definition 4. Let L1 and L2 be query languages. Query
language L1 is as expressive as L2, denoted by L2 � L1,
when every query expressible in L2 is expressible in L1.
Query language L1 is strictly more expressive than L2, de-
noted by L2 ≺ L1, when L2 � L1 and L1 � L2. Query lan-
guage L1 is equal to L2, denoted by L2

∼= L1, when L1 � L2

and L2 � L1.

4.1 Relations on strings
The various graph query languages we study only differ in
their usage of formal languages to specify traces. A logical
step would thus be to define how the graph query languages
can be used to define formal languages and then to compare
the classes of formal languages definable by graph query lan-
guages. We define the language of a graph query language
in terms of string-graphs.

Definition 5. Let s = s1 . . . sj be a string over alphabet
A with • 6∈ A. The string-graph of s is defined as the chain
of edges

(n0, •, n1), (n1, s1, n2), . . . , (nj , sj , nj+1), (nj+1, •, nj+2).

In string-graphs, the symbol • is used to bridge the semantic
gap between, on the one hand, formal grammars, whose se-
mantics is applied on entire strings, and, on the other hand,
CRPQ and CCFPQ, whose existential semantics looks at
any possible substring.

Example 7. The regular expression (aa)∗ defines the lan-
guage L((aa)∗) = {(aa)n | 0 ≤ n}. This language is not
monotone: when s ∈ L((aa)∗), then s ++ a 6∈ L((aa)∗).

CRPQ and CCFPQ are, however, monotone with respect to
graphs. This apparent paradox is resolved by string-graphs.
Consider the string s = s1 . . . si, the string-graph of s con-
sists of a path π with T (π) = •s1 . . . si• and the string-graph
of s++a consists of a path π′ with T (π′) = •s1 . . . sia•. The
path π is not contained in path π′. Hence, the modification
from π to π′ is non-monotone.

In the setting of string-graphs, we define the languages ac-
cepted by boolean graph query languages.

Definition 6. Let Q be a boolean graph query. The lan-
guage of Q, denoted by L(Q), is defined by

L(Q) = {s | Ds is the string-graph of string s ∧QDs 6= ∅}.

Example 8. The language Labc = {anbncn | 0 ≤ n} is
not context-free, but is definable by CCFPQ. Consider the
following parameterized context-free grammar.

Pathγ → λ, Pathγ → γ Pathγ ,
Parenα,β → λ, Parenα,β → α Parenα,β β,

AB→ • Parena,b Pathc •, BC→ • Patha Parenb,c • .

Over this grammar we construct the query

Qanbncn()← ∃m1m2 AB(m1,m2) ∧ BC(m1,m2).

We have L(Qanbncn) = Labc. The language Lww = {w ++
◦++w | w is a string over A \ {◦}} is not context-free, but is
definable by ECRPQ. Consider the following regular gram-
mar.

Equal→ λ, Equal→ 〈σ, σ〉 Equal (∀σ ∈ A \ {◦}),
Mirror→ 〈•, ◦〉 Equal 〈◦, •〉.

Over this grammar we construct the query

Qww()← ∃n1n2m1m2 Mirror(〈n1,m1〉, 〈n2,m2〉).

We have L(Qww) = Lww.

Example 8 shows that CCFPQ and ECRPQ can already de-
fine languages that are not definable by context-free gram-
mars. This is not the case for CRPQ, Freydenberger and
Schweikardt actually showed the following:

Theorem 4 (Freydenberger, Schweikardt [13]).
Let L be a language. There is a CRPQ query Q with L(Q) =
L if and only if there is a regular expression r with L(r) = L.

Theorem 4 also follows from the results in Barceló et al. [5].
By Theorem 4, CRPQ and regular grammars can define the
same languages. Furthermore, as the regular grammars are
strictly subsumed by the context-free grammars, we have
the following:

Corollary 4. On string-graphs we have

CRPQ ≺ CCFPQ and CRPQ ≺ ECRPQ.



Example 8 showed that CCFPQ can define languages that
are not definable by context-free grammars, we strengthen
these results. By LQ, with Q ∈ {CCFPQ,ECCFPQ⊥}, we
denote the class of all languages expressible by Q queries.
By Lk we denote the class of all languages that are the in-
tersection of at most k context-free languages, and we define
L∞ =

⋃
k L

k. For all 1 ≤ k, we have Lk ⊂ Lk+1, and we
have Lww 6∈ L∞ [21, 34].

Proposition 5. For every L ∈ Lk, there is a CCFPQ
query Q with at most k relation atoms such that L(Q) = L.

Corollary 5. We have L∞ ⊆ LCCFPQ, and we have

L∞ ⊂ LECCFPQ⊥
.

4.2 Relations on unlabeled graphs
It is well-known that on strings over a unary alphabet the
context-free grammars and regular grammars have equiv-
alent expressive power. This equivalence follows directly
from Parikh’s theorem [27]. We investigate if there is a sim-
ilar equivalence for the graph query languages on unlabeled
graphs. We represent unlabeled graphs as graphs where ev-
ery edge is labeled with the edge label u.

Definition 7. We define the length of u as `(u) = 1 and
the length of ς as `(ς) = 0. The length-tuple of a tuple
of edge labels ~t = 〈t1, . . . , ti〉 is defined by the vector of
natural numbers `(~t) = 〈`(t1), . . . , `(ti)〉. The length-tuple
of string s = s1 . . . sj over the alphabet {u, ς}i is defined as
`(s) = `(s1) + · · ·+ `(sj) (using vector addition).

Let G = (N , {u, ς}i,P) be a i-ary grammar. The length-
language with respect to non-terminal N ∈ N is defined by
L`(GN) = {`(s) | s ∈ L(GN)}.

Example 9. Consider the following grammar:

N→ 〈u, u〉 〈u, ς〉 N, N→ 〈u, ς〉.

We have L(GN) = {(〈u, u〉〈u, ς〉)n 〈u, ς〉 | 0 ≤ n}. We thus
have L`(GN) = {n · (〈1, 1〉+ 〈1, 0〉) + 〈1, 0〉 | 0 ≤ n}.

Intuitively, queries over {u, ς}i accept tuples of paths based
only on the length of the individual paths. We prove this
intuition to be correct.

Proposition 6. Let GN and GM be grammars over al-
phabet {u, ς}i and let N and M be non-terminals such that
L`(GN

N) = L`(GM
M). We have (〈n1,m1〉, . . . , 〈ni,mi〉) ∈ RN

if and only if (〈n1,m1〉, . . . , 〈ni,mi〉) ∈ RM.

Proof. We only prove the if direction. The proof for the
only if direction is analogous by interchanging the role of
GN and GM. If (〈n1,m1〉, . . . , 〈ni,mi〉) ∈ RN, then, for all
1 ≤ j ≤ i, there exists paths njπjmj such that there is an
s ∈ Tς i(π1, . . . , πi) with s ∈ L(GN

N). We have L`(GN
N) =

L`(GM
M). Hence, there is an s′ ∈ L(GM

M) with `(s) = `(s′).
By the definition of Tς i, we have s′ ∈ Tς i(π1, . . . , πi) and
thus (〈n1,m1〉, . . . , 〈ni,mi〉) ∈ RM.

Using the above result we prove the following result.

Theorem 5. Let N be a non-terminal in an i-ary context-
free grammar G over {u, ς}i. There exists a non-terminal M
in a i-ary regular grammar such that RN = RM.

Proof. Arbitrary permutations of strings over {u, ς}i do
not affect the length-language of the strings. Hence, Parikh’s
theorem teaches us that the length-language of GN is defin-
able by a regular grammar. Let M be the start non-terminal
in such a i-ary regular grammar G ′ defining the same length-
language as GN. By construction we have L`(GN) = L`(G ′M),
hence we can apply Proposition 6.

Remark that Theorem 5 reduces i-ary context-free gram-
mars, as used in ECCFPQ⊥, to rational relations, as used in
ECRPQς , and not to regular relations, as used in ECRPQ.

Corollary 6. On unlabeled graphs we have

CRPQ ∼= CCFPQ and ECRPQς ∼= ECCFPQ.

It has already been proven that CRPQ ≺ ECRPQ for non-
boolean queries on unlabeled graphs [13]. Hence, we also
have the following:

Corollary 7. On unlabeled graphs we have

CCFPQ ≺ ECRPQ and CCFPQ ≺ ECCFPQ⊥.

4.3 Overview
Figure 4 provides the implication of the results on strings
and on unlabeled graphs for the general relations of the ex-
pressive power of CRPQ, CCFPQ, and their generalizations
on graphs.

≺ �

≺

≺

�

�

�

CRPQ ECRPQ ECRPQς

CCFPQ ECCFPQ⊥ ECCFPQ

Figure 4: Known relations between variants of
CRPQ and CCFPQ.

5. INHERENT LIMITS OF PATH QUERIES
BASED ON FORMAL LANGUAGES

The context-free relations are defined independent of the
conjunctive query framework of CCFPQ. We can also con-
sider using context-free grammars in other logics and query
languages. A logical extension of CCFPQ is the addition of
negation. This is in line with similar additions to CRPQ [5].
We add negation in two flavors: adding negated atoms, and
adding negation as a general boolean operator. We then in-
vestigate the differences between the expressive power of the
resulting query languages.

The differences in the expressive power of the resulting query
languages are largely independent of the class of formal lan-
guages L, with language L ∈ L, used to define i-ary relations



RL. We thus present our results for all Conjunctive L-Path
Queries (CLPQ), where L is a class of formal languages used
to define the relational atoms used in CLPQ. This in the
same way as context-free grammars and i-ary context-free
grammars are used to define relations atoms in CCFPQ and
ECCFPQ, respectively. To the query language CLPQ we
add negated atoms, resulting in CLPQ¬, and we add nega-
tion as a general boolean operator, resulting in CLPQfo.

To keep expressivity results as general as possible, we re-
strict ourselves to regular languages in examples of queries
expressible in CLPQ, CLPQ¬, and CLPQfo.

5.1 Results for CLPQ
The query language CLPQ is monotone and closed under
homomorphism. This places restrictions on the expressive
power of CLPQ that are easy to check.

Proposition 7. The boolean queries Is graph D connect-
ed, acyclic, bipartite, Hamiltonian, or Eulerian?2 and the
boolean queries Does graph D have/not have source/sink
nodes?3, and Does there exists a node with two outgoing
edges? are not expressible in CLPQ.

Proof. Only the last query is monotone. For this last
query, we use a homomorphism argument.

Let D1 be the graph on the left of Figure 5 and let D2 be the
graph on the right of Figure 5. We provide a homomorphism
h12 : V1 → V2 from D1 to D2 and a homomorphism h21 :
V2 → V1 from D2 to D1 by mapping roots to roots and leafs
to leafs.

Figure 5: Graphs that cannot be distinguished by
boolean CLPQ.

By homomorphisms h12 and h21, CLPQ cannot distinguish
the graphs in Figure 5.

5.2 CLPQ with negated atoms (CLPQ¬)
In the context of CCFPQ, we add negated atoms by not
only allowing atoms of the form N(n,m), but also allow
negated atoms of the form ¬N(n,m). Equivalently, we add
the complementsRN of context-free relationsRN to the query
language. We remark that these complement relations can

2A graph is connected if and only if there is a directed path
between every pair of nodes. A graph is acyclic if and only
if it does not contain a cycle. A graph is bipartite if and only
if the set of nodes V of the graph can be partitioned in two
sets V1 and V2 such that, for every edge (n, σ,m), we have
n ∈ V1,m ∈ V2 or n ∈ V2,m ∈ V1. A graph is Hamiltonian
if and only if there is a directed path containing every node
exactly once. A graph is Eulerian if and only if there is a
directed path containing every edge exactly once.
3In graphs, the source nodes are the nodes that do not have
incoming edges, an example of a source node is the root
node of a tree. The sink nodes are the nodes that do not
have outgoing edges, examples of sink nodes are the leafs of
a tree.

be constructed alongside the original relations using Algo-
rithm 1, this without affecting complexity.

For clarity, we remark that RL and RL are different rela-

tions, this is easily verified using Example 2: (m,n) ∈ RN

and (m,n) 6∈ RN. Straightforwardly, CLPQ¬ is not mono-
tone and not closed under homomorphism.

Example 10. The boolean query Is graph D not connected?
is not expressible in CLPQ, the query is however expressible
in CLPQ¬. This by the grammar obtained by adding the
production rule TC→ λ to the grammar of Example 3:

Qnot-connected()← ∃nm ¬TC(n,m).

Also the boolean query Does there exists a node with two
outgoing edges? is expressible by using the following gram-
mar:

Edge→ σ (∀σ ∈ A), Equal→ λ.

Using this grammar, we express Does there exists a node
with two outgoing edges? by:

Qbranch()← ∃nm1m2 Edge(n,m1) ∧ Edge(n,m2)∧
¬Equal(m1,m2).

The boolean queries Is graph D acyclic, bipartite, Hamil-
tonian, or Eulerian? and Does graph D have/not have
source/sink nodes? are inexpressible in CLPQ¬. Before we
prove these results, we prove that CLPQ¬ is closed under
subgraph-mappings.

Definition 8. Let D1 = (V1, E1) and D2 = (V2, E2) be
graphs. A mapping h : V1 → V2 is called a subgraph-mapping
from D1 to D2 if h is a homomorphism and if, for every pair
of nodes n,m ∈ V1, we have TS(n,m) = TS(h(n), h(m)).

A query language L is closed under subgraph-mappings if, for
every i-ary query Q expressible in L, for every pair of graphs
D1 = (V1, E1) and D2 = (V2, E2), and for every subgraph-
mapping h : V1 → V2 from D1 to D2, we have 〈n1, . . . , ni〉 ∈
QD1 implies 〈h(n1), . . . , h(ni)〉 ∈ QD2 .

Intuitively, subgraph-mappings map the nodes of one graph
into the nodes of another graph, while maintaining the set
of traces between pairs of mapped nodes. Homomorphisms
map nodes of one graph into the nodes of another graph,
while only maintaining a superset of the set of traces between
pairs of mapped nodes.

Theorem 6. CLPQ and CLPQ¬ are closed under sub-
graph-mappings.

We are now ready to prove the inexpressibility claims made
after Example 10.

Proposition 8. The boolean queries Is graph D acyclic,
bipartite, Hamiltonian, or Eulerian? and Does graph D
have/not have source/sink nodes? are not expressible in
CLPQ¬.



Proof. LetD1 be an acyclic graph and let Q be a CLPQ¬

query with 〈〉 ∈ QD1 . By Theorem 6, we have 〈〉 ∈ QD2 ,
where D2 is constructed from D1 by adding a separate cyclic
subgraph. For the queries Does graph D not have source/sink
nodes?, we take a similar approach.

For the queries Does graph D have source/sink nodes?, we
consider the graphs in Figure 6.

Figure 6: Graphs that cannot be distinguished by
boolean CLPQ¬.

Only the graph on the left has source/sink nodes, and there
is a subgraph mapping to the graph on the right.

In Section 5.3, we will prove that CLPQfo, a generalization
of CLPQ¬, cannot express the queries Is graph D Hamilto-
nian or Eulerian?.

5.3 CLPQ with negation (CLPQfo)
The result of adding negation to CLPQ, is the first-order
logic over (V;RLi , i ∈ I). To simplify notations, we can also
include the short-hand notations ∨ and ∀ with their usual
meaning. In the presence of path variables, the addition
of negation as a general boolean operator does affect the
complexity of query evaluation: the combined complexity of
CRPQfo is PSPACE-complete and the data and combined
complexity of ECRPQfo is non-elementary [5].

Example 11. The boolean queries Is graph D acyclic? and
Does graph D have/not have source/sink nodes? are not ex-
pressible in CLPQ¬. These queries are however expressible
in CLPQfo. We express Is graph D acyclic? using the gram-
mar of Example 3:

Qacyclic()← ¬∃n TC(n, n).

We express Does graph D have source nodes? using the
grammar of Example 10:

Qhas-source()← ∃n∀m ¬Edge(m,n).

The other three source/sink queries are expressible in a sim-
ilar manner. Also the boolean query Is graph D bipartite?
is expressible in CLPQfo. A graph D is bipartite if and only
if D does not contain an odd cycle [9]. We use the following
grammar:

Odd→ λ, Even→ Oddσ (∀σ ∈ A),
Odd→ Evenσ (∀σ ∈ A).

Using this grammar, we can express Is graph D bipartite?
by:

Qbipartite()← ∀n ¬∃m Odd(n,m) ∧ Edge(m,n).

The boolean queries Is graph D Hamiltonian or Eulerian?
remain inexpressible in CLPQfo. For first-order logic, we
have well-established and complete methods to prove inex-
pressibility results in the form of Ehrenfeucht-Fräıssé games
[19]. These methods can also be used to prove inexpressibil-
ity results for CLPQfo.

Proposition 9. Let D1 = (V1, E1) and D2 = (V2, E2)
be graphs. When the Duplicator has a winning strategy for
Ehrenfeucht-Fräıssé games on the structures (V1;RLi , i ∈ I)
and (V2;RLi , i ∈ I), then no CLPQfo query can distinguish
D1 from D2.

We provide a sufficient condition for such a winning strat-
egy based on a generalization of the strategy used to prove
that Regular Walk Logic cannot express Is graph D Hamil-
tonian? [15].

Definition 9. Let D1 = (V1, E1) and D2 = (V2, E2) be
graphs. Let a1, . . . , ar ∈ V1 and b1, . . . , br ∈ V2 be the moves
in an r-round Ehrenfeucht-Fräıssé game. These moves are
a trace-set winning position for the Duplicator if we have
TS(ai, aj) = TS(bi, bj) for all i and j with 1 ≤ i ≤ r and
1 ≤ j ≤ r.

The Duplicator has a r-round trace-set winning strategy if
the Duplicator can play in a way that guarantees a trace-set
winning position after r rounds.

Theorem 7. Let D1 = (V1, E1) and D2 = (V2, E2) be
graphs. When the Duplicator has a r-round trace-set win-
ning strategy for Ehrenfeucht-Fräıssé games on D1 and D2,
then the Duplicator also has a r-round winning strategy for
Ehrenfeucht-Fräıssé games on structures (V1;RLi , i ∈ I)
and (V2;RLi , i ∈ I).

Proof. Let L be an arbitrary language over (A ∪ ς)n.
We need to prove that a r-round trace-set winning strat-
egy implies (〈ai1 , aj1〉, . . . , 〈ain , ajn〉) ∈ RL if and only if
(〈bi1 , bj1〉, . . . , 〈bin , bjn〉) ∈ RL, for any 1 ≤ ik ≤ r, 1 ≤ jk ≤
r, and 1 ≤ k ≤ n, this follows directly from TS(aik , ajk ) =
TS(bik , bjk ).

We are now ready to prove the inexpressibility claims made
after Example 11.

Proposition 10. CLPQfo cannot express the boolean que-
ries Is graph D Hamiltonian or Eulerian?.

Proof (sketch). The proof strategies for proving inex-
pressibility of the boolean queries Is graph D Hamiltonian
or Eulerian? can be derived from similar proofs in other
work [8, 15, 17].

6. CONCLUSION
We have proposed the Conjunctive Context-Free Path Que-
ries as a natural extension of the well-known Conjunctive



Regular Path Queries. We also looked at the generalization
of regular expressions, as used in CRPQ, to regular relations
and we showed how similar generalizations can be applied
to context-free grammars, as used in CCFPQ.

In our work, we encountered an important restriction in the
usage of path variables: in CCFPQ, using path variables
leads to undecidability of query evaluation. The literature
shows similar undecidability results when CRPQ, using path
variables, is extended with rational relations [5]. We thus
propose using begin and end nodes as an alternative to path
variables. In this way, we were able to generalize CRPQ with
rational relations and CCFPQ with context-free grammars
over tuples of edge-labels.

The main results are that query evaluation of CCFPQ and
ECCFPQ maintain the polynomial time data complexity
and NP-complete combined complexity of CRPQ. At the
same time, CCFPQ is strictly more expressive than CRPQ,
even on chains, and ECCFPQ is strictly more expressive
than CCFPQ, even on unlabeled graphs.

Finally, we looked at using context-free grammars in gener-
alizations of the conjunctive queries by adding negation in
two flavors: adding negated atoms and adding negation as a
general boolean operator. The differences of the expressive
power of these languages is largely unaffected by the partic-
ular choice of grammar formalism used. Hence, we proved a
strict hierarchy between query languages without negation,
with negated atoms, and with negation as a general boolean
operator, this for any conjunctive query language that uses
formal languages to specify the labeling of paths.

Given these results, we identify a number of open prob-
lems for further research. First, we did not yet fully ex-
plore the relations in the expressive power of the query lan-
guages CRPQ, CCFPQ, and their generalizations. The open
cases involve ECRPQ, ECRPQς , ECCFPQ⊥ and ECCFPQ.
These query languages embed regular relations, rational re-
lations, and i-ary context-free grammars within a conjunc-
tive query language. Hence, existing results on the relations
between regular, rational, and context-free definable func-
tions (e.g. [6, 7]) are not directly applicable. These existing
results do however provide a starting point for future re-
search. Secondly, we did not consider CCFPQ with simple
path semantics, even though there has been some interest
in the expressive power of CRPQ with simple path seman-
tics [15], this due to the simple path semantics of property
paths in SPARQL [2, 22].

Besides these open theoretical problems, there are also a
number of practical open problems. It is yet unknown if our
context-free recognizer for graphs is optimal. The context-
free recognizer for graphs, presented in Algorithm 1, only
provides a worst-case upper bound for the complexity of
context-free recognizers for graphs. Due to the size of the
output, we also have a theoretical lower bound of Ω(|V|2).
Practically speaking, graph recognition is at least as costly
as normal context-free string recognition and as costly as
computing the transitive closure. The best known algo-
rithms for solving these problems are based on boolean ma-
trix multiplication [31], for which the currently-best algo-
rithm has a complexity of O(n2.3727) [33], with n × n the

dimensions of the matrix. Furthermore, for path querying,
whereby the result of a query is a path instead of a tuple of
nodes, we merely proven decidability. Path querying algo-
rithms and the analysis of the complexity of path querying
as a whole, remain interesting topics for further research.
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