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We present the results of the deterministic identifiability analysis based on similarity 

transformation for models of one-state excited-state events of cylindrically symmetric 

rotors in isotropic environments undergoing rotational diffusion described by 

Brownian reorientation. Such an analysis on error-free time-resolved fluorescence 

(anisotropy) data can reveal whether the parameters of the considered model can be 

determined. The fluorescence δ-response functions I||(t) and I⊥(t), for fluorescence 

polarized respectively parallel and perpendicular to the electric vector of linearly 

polarized excitation, are used to construct, in convenient matrix form, expressions of 

the sum S(t) = I||(t) + 2 I⊥(t), the difference D(t) = I||(t) − I⊥(t), and the time-resolved 

fluorescence anisotropy r(t) = D(t)/S(t). The identifiability analysis of r(t) 

demonstrates that the rotational diffusion coefficients D|| and D⊥ for rotation 

respectively about and perpendicular to the symmetry axis can be uniquely 



determined. However, the polar and azimuthal angles defining the absorption and 

emission transition moments in the molecular reference frame are not uniquely 

determined. Nevertheless, the difference between the polar angles of these transition 

moments is uniquely determined. 

1. Introduction 

Time-resolved fluorescence depolarization is a very powerful tool for obtaining 

information about not only the overall excited-state dynamics of a fluorophore but 

also its rotational motions. Information about the shape of a molecule, as well as its 

interaction with the surrounding environment, can be obtained. For nonspherical 

molecules, the fluorescence anisotropy decay is generally highly complex, even in the 

absence of extra complicating factors such as excited-state reactions, energy transfer, 

solvent interactions, etc. In this paper we will consider the time-dependence of the 

fluorescence anisotropy of a fluorophore modeled as a cylindrically symmetric rotor 

undergoing rotational diffusion in an isotropic environment. The emphasis is on a 

compartmental approach leading to a matrix description of the time-resolved 

anisotropy and on the identifiability analysis of the considered models.  

Whenever a specific model is proposed for the description of excited-state processes, 

one should start with a study to verify whether the fundamental kinetic, spectral, 

shape, and orientation parameters defining the model can be determined from error-

free (i.e., perfect) fluorescence (anisotropy) decay data. This is the object of  

deterministic identifiability analysis.[ ], [ ], [ ], [ ]1 2 3 4  For models of one-state excited-state 

processes coupled with rotational diffusion – considered in this paper – the parameters 

to be identified are the deactivation rate constant, the rotational diffusion coefficients, 

and the orientations of the absorption and emission transition moments within the 

molecular reference frame. 
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A deterministic identifiability analysis is a prerequisite before attempting to estimate 

numerical values of the model parameters from real experimental observations. Large 

uncertainties and high correlations obtained in the parameter recovery from an 

experimental data surface might erroneously be ascribed to numerical ill-conditioning, 

because they may rather be indicative of the fact that the model parameters cannot be 

recovered at all (i.e., the model is not identifiable). Imperfect data resulting from 

noisy observations sampled over a limited time range affect the accuracy and 

precision with which model parameters can be estimated. This numerical parameter 

estimation and the statistical properties of the parameter estimates are the subject of 

the second stage of any identifiability analysis and are called numerical identifiability. 

A study of the data analysis (i.e., curve-fitting), which takes into account the noise 

level on the experimental data, the sampling, and the sensitivity of the algorithms used 

in the estimation of the parameters, is outside the scope of this paper, however.  

Since the first identifiability analysis of a model for excited-state processes,[ ], [ ], [ ] 5 6 7  

identifiability studies of a large range of photophysical models have been reported 

(see references in [4] and [8] for literature data). In the extensive field of time-

resolved fluorescence spectroscopy, only a rather small part of the literature has been 

devoted to excited-state processes coupled with species-dependent rotational diffusion 

(see [9] and references therein). Up to now, three identifiability analyses of models 

for excited-state events coupled with rotational diffusion have been reported.[ ], [ ], [ ]9 10 11  

This report focuses on the identifiability of models for one-state excited-state 

processes, accompanied by rotational diffusion described by Brownian reorientation, 

as detected by time-resolved fluorescence anisotropy. Cylindrically and spherically 

symmetric rotors are considered. Derivations of the time-resolved fluorescence 

anisotropy of a totally asymmetric rotor using the diffusion equation[ ], [ ], [ ]12 13 14  are 
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based on the rotational diffusion equation given by Favro.[ ]15  The basis for the 

derivation of the explicit expressions describing the time-resolved fluorescence 

anisotropy of cylindrically symmetric rotors has been provided by Chuang and 

Eisenthal[ ]12 , by Ehrenberg and Rigler[ ]13 , and by Belford et al.[ ]14  Razi Naqvi[ ]16  

demonstrated that the time-resolved fluorescence depolarization can be reformulated 

in terms of conventional reaction kinetics by showing the equivalence to a set of 

ordinary linear differential equations. Piston and Gratton17 have extended, in a 

compartmental formalism, the jump model between predefined orthogonal 

orientations for the general, asymmetric rotor, originally developed by Weber.18 The 

compartmental analysis approach has the merit that additional processes contributing 

to the anisotropy decay can be readily incorporated. Starting from the compartmental 

models reported in references [9]–[11], which are based on the rotational diffusion 

equation, we describe explicitly − in matrix form − the fluorescence anisotropy decay 

of one-state excited-state events accompanied by rotational diffusion of cylindrically 

symmetric species. 

The paper is organized as follows. Section 2 gives an outline – in terms of a 

compartmental model – of the derivation of the expression for the fluorescence 

anisotropy decay r(t) of one-state excited-state processes coupled with rotational 

diffusion described by Brownian reorientation for cylindrically and spherically 

symmetric ellipsoids. The anisotropy r(t) is expressed in matrix form,  suitable for the 

identifiability analysis based on similarity transformations. Section 3 deals with the 

deterministic identifiability analysis of the kinetic models considered. The similarity 

transformation used for this purpose can be applied for reactions in general. 
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2. Kinetics 

Here we give an outline of the derivation – based on the compartmental approach 

described in reference [9] − of the kinetic expression of the fluorescence anisotropy in 

matrix form, needed for the identifiability analysis.  

Consider the linear, time-invariant photophysical system consisting of ground-state 

species 1 with distinct rotational characteristics, as depicted in Figure 1. Photo-

excitation produces the excited-state species 1* which can decay by fluorescence (kF) 

and nonradiative (kNR) processes, characterized by the composite deactivation rate 

constant k01 (= kF + kNR). Physical requirements confine the rate constants kF and kNR, 

and therefore also k01, to be nonnegative. In the particular case of prolate and oblate 

ellipsoids, the rotational relaxation of the excited-state species 1* is described by the 

rotational diffusion coefficients D|| and D⊥, also physically limited to positive values, 

for rotations about the symmetry axis and the equatorial axes, respectively (Figure 1).  

< Figure 1 > 

When the photophysical system shown in Figure 1 is photo-excited at time zero with a 

δ-pulse of wavelength  of low intensity, so that the ground-state species 

population is not appreciably depleted, the fluorescence δ-response function I

ex
iλ

||ij(t) 

observed at wavelength  for the plane-polarized component of emission of 1ex
jλ *, 

having its electric vector polarized parallel to the electric vector of the plane-polarized 

excitation light, and the fluorescence δ-response function I⊥ij(t) for the 

perpendicularly polarized component  can be expressed, in the case of pure transitions 

and isotropic environments, as[ ], [ ]19 20

( ) ( )[ ] ( ) ( )[ tDtStrtStI ijijijijij
2

3
121

3
1)(|| +=+= ],     t ≥ 0    (1a) 
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( ) ( )[ ] ( ) ( )[ ]tDtStrtStI ijijijijij −=−=⊥ 3
11

3
1)( ,     t ≥ 0              (1b) 

where rij(t) denotes the time-dependent fluorescence anisotropy: 

( ) ( )
( )tS
tD

tr
ij

ij
ij = ,     t ≥ 0                    (2) 

and where Sij(t) and Dij(t) are defined by[ ], [ ]19 20

( ) ( ) ( )tItItS ijijij ⊥+= 2|| ,     t ≥ 0        (3) 

( ) ( ) ( )tItItD ijijij ⊥−= || ,     t ≥ 0        (4) 

The subscripts i and j in I||ij(t), I⊥ij(t), Sij(t), Dij(t), and rij(t) refer to the excitation 

wavelength  and the emission wavelength , respectively. ex
iλ em

jλ

The "sum" function Sij(t) corresponds to the total time-resolved emission of the 

photophysical system, is independent of the rotational diffusion and does not contain 

any information about the orientation of the absorption and emission transition 

moments. Sij(t) is expressed as 

( ) ( tkbctS ijij 01exp
3
1

−= ) ,     t ≥ 0                    (5) 

where bi stands for the zero-time concentration of 1*, which depends on the excitation 

wavelength .  ex
iλ

The coefficient cj is defined as[ ]]21   

( )∫ λΔ
λλρ=

em

emem
F

j

dkc jj                   (6) 

where kF denotes the fluorescence rate constant of species 1*. The subscript j refers to 

the observation wavelength range , and em
jλΔ ( )em

jλρ  is the spectral emission density 

of species 1*.  

The "difference" function Dij(t) contains information about rotational diffusion and is 

given by 
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( ) ( ) ( ) ( ) (aAe
rr M

D
M

ijij ttkbctD 2
*

201 expexp
75
8 YY−

π
= ) ,     t ≥ 0               (7) 

The column vector  is given by  ( )arM
2Y

( ) ( ) ( ) ( ) ( ) ( )( ) T
aa

2
2aa

1
2aa

0
2aa

1
2aa

2
22 ,,,,, φθφθφθφθφθ= −− YYYYYM arY              (8) 

where  are spherical harmonics, M = −2, −1, 0, 1, 2,  with arguments θ( aa2 ,φθMY ) a 

and φa which are, respectively, the polar and azimuthal angle of the absorption 

transition moment ar  with respect to the molecular (x, y, z) coordinate system (Figure 

2). Expressions for the spherical harmonics ( )aa2 ,φθMY  can be found in reference 

[22].  

< Figure 2 > 

The 5 × 5 diagonal matrix AD is given by 

( ) ( ) ( ) ( )( )|||||||| 42,5,6,5,42diag DDDDDDDDDD +−+−−+−+−= ⊥⊥⊥⊥⊥A             (9) 

D⊥ and D|| (see Figure 1) are the components of the rotational diffusion tensor of the 

cylindrically symmetric species in its molecular reference frame (x, y, z), chosen such 

that the rotational diffusion tensor is diagonal.[ ]9

The row vector  contains the complex conjugates of the spherical harmonics 

, M = −2, −1, 0, 1, 2:  

( )e
r*

2
MY

( ee
*

2 ,φθMY )

( ) ( ) ( ) ( ) ( ) ( )( )ee
*2

2ee
*1

2ee
0

2ee
*1

2ee
*2

2
*

2 ,,,,, φθφθφθφθφθ= −− YYYYYM erY          (10) 

with arguments depending on the polar (θe) and azimuthal angles (φe) defined by the 

orientation of the emission transition moment er  in the molecular reference frame 

(Figure 2).  

The time-dependent anisotropy rij(t) [Eq. (2)] is given by 

( ) ( ) ( ) ( )aAe rr M
D

M
ij ttr 2

*
2 exp

25
8 YYπ

= ,     t ≥ 0                 (11) 
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Hence, we arrived at a matrix formulation of the fluorescence anisotropy rij(t), ideally 

suited for the identifiability analysis approach using similarity transformations (see 

section 3). The excitation wavelength  dependence of rex
iλ ij(t) is expressed by ( )a

rM
2Y , 

and its emission wavelength  dependence by . The set em
jλ ( )e

rM
2Y

( ) ( ){ }aAe
rr M

D
M

2
*

2 ,, YY  is called a realization of rij(t). 

Equation (11) can be written in the common triple-exponential format: 

( ) [ ] ( )[ ] ( )[ ]tDDtDDtDtrij ||3||21 42exp5exp6expβ +−β++−β+−= ⊥⊥⊥ ,    t ≥ 0   (12) 

with 

( ) ( ) ( ) ( ) ( ) ( e2a2e
2

a
2

e
0

2a
0

21 coscos4.01cos31cos31.0
25
π8

θθ=−θ−θ=θθ=β PPYY )
                    (13a) 

( ) ( ) ( ) ( )[ ] ϕθθ=θθ+θθ=β −− cos2sin2sin3.0,,,
25
π8

eaee
*1

2a
1
2ee

*1
2aa

1
22 φφφ YYYY  

                   (13b) 

( ) ( ) ( ) ( )[ ] 2ϕθθ=φθφθ+φθφθ=β −− cossinsin3.0,,,,
25
π8

e
2

a
2

ee
*2

2aa
2

2ee
*2

2aa
2

23 YYYY

                    (13c) 

Equations (12)–(13) represent the classical, well-known expressions of the emission 

anisotropy rij(t) of prolate and oblate ellipsoids, to be found in textbooks of 

fluorescence spectroscopy.[ ], [ ]19 20

Note that the expressions for rij(t) of a totally asymmetric rotor derived by Chuang 

and Eisenthal,[ ]12  Ehrenberg and Rigler,[ ]13 , and Belford et al.[ ]14  reduce to Eqs. (12) 

and (13) in case of a cylindrically symmetric rotor. 

In Eq. (13a), P2(x) = ½(3x2 − 1) is the second-order Legendre polynomial. As depicted 

in Figure 2, (θa, φa) and (θe, φe) denote the orientations of respectively the absorption 

( ) and emission ( e ) transition moments, separated by an angle α. Note that Eqs. ar r
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(13) are symmetrical in θa and θe. ϕ = φe – φa is the difference angle formed by the 

projections of the two transition moments in the plane perpendicular to the axis of 

symmetry. The angles defined by the transition moments ar  and er  in the molecular 

reference frame  satisfy the trigonometric identity[ ]22

ϕθθ+θθ=α cossinsincoscoscos eaea                  (14) 

The addition theorem for spherical harmonics asserts that[ ]22   

( ) ( ) ( ) ( ) (∑∑
2

2−=

2

2−=

φθφθ
5
π

=φθφθ
π

=α
Μ

MM

Μ

MM YYYYP aa
*

2ee2aa2ee
*

22 ,,4,,
5

4cos )         (15) 

Equation (15) in combination with Eq. (11) for t = 0 gives 

( ) ( )α== ∑
=

cos4.0β0 2

3

1

Pr
j

jij                  (16) 

For a spherical symmetric rotor, Sij(t) is given by Eq. (5), just as for the cylindrically 

symmetric case. For a spherically symmetric rotor, where D = D⊥ = D||, the time-

resolved emission anisotropy rij(t) is  

( ) ( ) ( )DtPtrij 6expcos4.0 2 −α= ,     t ≥ 0                (17) 

3. Identifiability analysis  

The identification analysis is simpler if one uses Sij(t) [Eq. (5)] and either Dij(t) [Eq. 

(7)] or rij(t) [Eq. (11)] instead of the polarized fluorescence δ-response functions I||ij(t) 

[Eq. (1a)] and I⊥ij(t) [Eq. (1b)]. Since the expression for the anisotropy decay rij(t) is 

even simpler than that for Dij(t), we will carry out the identifiability study using the 

Sij(t) and rij(t) functions. 

The identification involving Sij(t) is trivial because Sij(t) is monoexponential. This 

leads immediately to unique values for k01 and the product cj bi. 

We will use the similarity transformation approach to the identifiability problem 

involving rij(t) for the following two reasons. (i) Once rij(t) is expressed in matrix 
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form – as in Eq. (11) – similarity transformation offers a straightforward way of 

determining if a model is globally or locally identifiable, or not identifiable at all. A 

model is globally (or uniquely) identifiable if the parameters of the assumed model 

can be uniquely determined from the idealized experiment. If there is a finite number 

of alternative parameter estimates for some or all of the model parameters that fit the 

data, the model is locally identifiable. An infinite number of model parameter 

estimates fitting the data makes the considered model unidentifiable. (ii) Similarity 

transformation provides the explicit relationship between the true and alternative 

model parameters.  

As mentioned before, the set ( ) ( ){ }aAe
rr M

D
M

2
*

2 ,, YY  is called a realization of the 

fluorescence anisotropy δ-response function rij(t). The deterministic identifiability 

study investigates whether it is possible to find different (alternative) realizations of 

rij(t), say ( ) ( ){ }+++ aAe
rr M

D
M

2
*

2 ,, YY , so that for all times t 

( ) ( )( ) ( ) ( )( )aAeaAe rrrr M
D

M
ij

M
D

M
ij trtr 2

*
22

*
2 ,,,,,, YYYY =+++               (18) 

Global (unique) identifiability is achieved when , , , 

, , and . The model is locally identifiable when there is a 

limited set of alternative  and . An unidentifiable model is 

found when there exists an infinite number of alternative  and 

. 

0101 kk =+
⊥

+
⊥ = DD |||| DD =+

aa θ=θ+
ee θ=θ+ ϕ=ϕ+

,,,,, ea||01
++++

⊥
+ θθDDk +ϕ

,,,,, ea||01
++++

⊥
+ θθDDk

+ϕ

Any other (alternative) realization ( ) ( ){ }+++ aAe
rr M

D
M

2
*

2 ,, YY  of rij(t) is related to the 

true set ( ) ( ){ }aAe
rr M

D
M

2
*

2 ,, YY  via similarity transformations.[ ], [ ], [ ], [ ], [ ], [ ]2 3 8 23 24 25

Two square matrices  and A+
DA D of the same size are said to be similar if there exists 

a nonsingular matrix T (i.e., det T ≠ 0) such that [ ], [ ], [ ], [ ]2 3 23 24   
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TATA D
-

D
1=+                    (19) 

where T−1 stands for the inverse of T. The alternative ( )+e
r*

2
MY  and ( )+a

rM
2Y  are given 

by the similarity transformations [ ], [ ]2 3

( ) ( )Tee
rr *

2
*

2
MM YY =+                   (20) 

( ) ( )aTa rr MM
2

1
2 YY −+ =                   (21) 

Equations (19)–(21) should be satisfied for each experimental condition.[ ], [ ]8 24  For the 

models considered, the possible experimental variables are excitation wavelength  

and emission wavelength . This implies that the matrix T should be independent 

of  and . 

ex
iλ

em
jλ

ex
iλ em

jλ

Since the matrix  [Eq. (22)] with the alternative rotational diffusion coefficients 

 and  is a diagonal matrix similar to the square matrix A

+
DA

+
⊥D +

||D D [Eq. (19)], the 

diagonal elements of  are the corresponding eigenvalues (characteristic values) of 

A

+
DA

D.[ ]23   

( ) ( ) ( ) ( )( )++
⊥

++
⊥

+
⊥

++
⊥

++
⊥

+ +−+−−+−+−= |||||||| 42,5,6,5,42diag DDDDDDDDDDA      (22) 

In other words, if AD itself is a diagonal matrix, then AD is similar to  if and only 

if  

+
DA

DD AA =+                     (23) 

Equation (23) is valid if the corresponding elements of and A+
DA D are equal,[ ]23  

yielding 

⊥
+
⊥ = DD                    (24a) 

|||| DD =+                   (24b) 
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Since AD has only three distinct eigenvalues, the transformation matrix T may not be 

diagonal, but is given by Eq. (25): 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5551

4442

33

2422

1511

000
000
0000
000

000

tt
tt

t
tt

tt

T                  (25) 

The justification for this specific structure of the matrix T is based on the following. 

Taking into account the diagonal structure of the matrices AD ≡  and  

[Eqs. (9) and (22)], Eq. (19) can be written as  

][a ij ][a++ ≡ ijDA

ijiijjij tt aa =+  (i, j = 1, …, 5)                  (26) 

Since a11 = a55, a22 = a44, a11 ≠ a22, a11 ≠ a33 and a22 ≠ a33 [Eq. (9)], and  [Eq. 

(23)], Eq. (26) yields for j = 1  

DD AA =+

021 =t                    (27a) 

031 =t                   (27b) 

041 =t                    (27c) 

Repeating this reasoning for the remaining values of j (2, …, 5), one can deduce that 

the form of the transformation matrix T is given by Eq. (25). 

The matrix multiplications of Eq. (20) (for emission) with T given by Eq. (25) yield 

( ) ( ) ( )ee
*2

251ee
*2

211ee
*2

2 ,,, φθ+φθ=φθ −++− YtYtY               (28a) 

( ) ( ) ( )ee
*1

242ee
*1

222ee
*1

2 ,,, φθ+φθ=φθ −++− YtYtY              (28b) 

( ) ( )ee
0

233ee
0

2 ,, φθ=φθ ++ YtY                  (28c) 

( ) ( ) ( )ee
*1

244ee
*1

224ee
*1

2 ,,, φθ+φθ=φθ −++ YtYtY               (28d) 
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( ) ( ) ( )ee
*2

255ee
*2

215ee
*2

2 ,,, φθ+φθ=φθ −++ YtYtY               (28e) 

Similarly, the matrix multiplications of Eq. (21) (for absorption) with T given by Eq. 

(25) yield 

( ) ( ) ( )aa
2

2aa
2

215aa
2

211 ,,, φθ=φθ+φθ −++++− YYtYt                (29a) 

( ) ( ) ( )aa
1

2aa
1
224aa

1
222 ,,, φθ=φθ+φθ −++++− YYtYt               (29b) 

( ) ( )aa
0

2aa
0

233 ,, φθ=φθ ++ YYt                  (29c) 

( ) ( ) ( )aa
1
2aa

1
244aa

1
242 ,,, φθ=φθ+φθ ++++− YYtYt               (29d) 

( ) ( ) ( )aa
2

2aa
2

255aa
2

251 ,,, φθ=φθ+φθ ++++− YYtYt                (29e) 

Multiplication of the respective lhs and rhs of Eqs. (28c) and (29c) eliminates t33 and 

yields 

( ) ( ) ( ) ( )ee
0

2aa
0

2ee
0

2aa
0

2 ,,,, φθφθ=φθφθ ++++ YYYY               (30a) 

Equation (30a) corresponds to the identifiability equation derived from Eq. (13a): 

( )( ) ( )( )1cos31cos31cos31cos3 e
2

a
2

e
2

a
2 −θ−θ=−θ−θ ++             (30b) 

From Eq. (28b), we have 

( ) ( )
( )ee

*1
2

ee
*1

222ee
*1

2
42 ,

,,
φθ

φθ−φθ
=

−++−

Y
YtYt                 (31a) 

and substitution of t42 in Eq. (29d) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )++−++−++−++− φθφθ−φθφθ=φθφθ+φθφθ− ee
*1

2aa
1

2ee
*1

2aa
1
2ee

*1
2aa

1
244ee

*1
2aa

1
222 ,,,,,,,, YYYYYYtYYt

                   (31b) 

Analogously, from Eq. (28d), we have 

( ) ( )
( )ee

*1
2

ee
*1

244ee
*1

2
24 ,

,,
φθ

φθ−φθ
= −

++

Y
YtYt                 (32a) 

and substitution of t24 in Eq. (29b) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )++++−−++−++− φθφθ−φθφθ=φθφθ−φθφθ ee
*1

2aa
1
2ee

*1
2aa

1
2ee

*1
2aa

1
244ee

*1
2aa

1
222 ,,,,,,,, YYYYYYtYYt

                   (32b) 
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From Eqs. (31b) and (32b), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ee
*1

2aa
1
2ee

*1
2aa

1
2ee

*1
2aa

1
2ee

*1
2aa

1
2 ,,,,,,,, φθφθ+φθφθ=φθφθ+φθφθ −−++++++−++− YYYYYYYY ) 

                   (33a) 

which is the same identifiability equation as from Eq. (13b): 

ϕθθ=ϕθθ +++ cos2sin2sincos2sin2sin eaea              (33b) 

Similarly, from Eqs. (28a), (28e), (29a), and (29e), we get, after some rearrangement 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ee
*2

2aa
2

2ee
*2

2aa
2

2ee
*2

2aa
2

2ee
*2

2aa
2

2 ,,,,,,,, φθφθ+φθφθ=φθφθ+φθφθ −−++++++−++− YYYYYYYY
                    (34a) 

which is the same identifiability equation as from Eq. (13c): 

2ϕθθ=2ϕθθ +++ cossinsincossinsin e
2

a
2

e
2

a
2              (34b) 

Using the symbolic mathematics program MAPLE V (Waterloo Maple Inc.), it can be 

shown that, for the polar angles in the interval [0, π/2] and for the azimuthal angles in 

the interval [0, π], there are four sets of solutions for Eqs. (30b), (33b), and (34b) in 

terms of the three unknowns , , and ϕ+θa
+θe

+: 

 (i) , ,                  (35) aa θ=θ+
ee θ=θ+ ϕ=ϕ+

 (ii) , ,                   (36) ea θ=θ+
ae θ=θ+ ϕ=ϕ+

 (iii)  ( ) ( ){ } 2
12

e
2

a
2

ea
2

eaa cossinsin4,,
2
1,,

2
11arcsin ϕθθ−ϕθθ+ϕθθ−=θ+ ff

                    (37a) 

( ) ( ){ } 2
12

e
2

a
2

ea
2

eae cossinsin4,,
2
1,,

2
11arcsin ϕθθ−ϕθθ−ϕθθ−=θ+ ff      (37b) 

( ) ( )
( )ϕθθ−ϕθθ+

−θ−θ
=ϕ+

,,cossinsin1
1sin1sin

arccos
ea

2
e

2
a

2
e

2
a

2

f
             (37c) 

where 

 ( ) 1sinsinsin3sin2sin2,, 2
e

2
a

2
e

2
a

2
ea −ϕθθ−θ+θ=ϕθθf              (38)  
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iv) ( ) ( ){ } 2
12

e
2

a
2

ea
2

eaa cossinsin4,,
2
1,,

2
11arcsin ϕθθ−ϕθθ−ϕθθ−=θ+ ff   

                    (39a) 

( ) ( ){ } 2
12

e
2

a
2

ea
2

eae cossinsin4,,
2
1,,

2
11arcsin ϕθθ−ϕθθ+ϕθθ−=θ+ ff      (39b) 

with ϕ+ given by Eq. (37c) and f(θa, θe, ϕ) given by Eq. (38). 

Since there are several sets of alternative { , , ϕ+θa
+θe

+}, the model is locally 

identifiable in terms of the angles θa, θe, and ϕ. Sets (i) and (ii) [Eqs. (35) and (36)] 

express the alternative angles θ+ as a function of θ only, and ϕ+ as a function of ϕ 

only. The alternative polar angles are interrelated by swapping the labels of the 

absorption and emission transition moments, indicating that no distinction can be 

made between the orientations of the absorption and emission transition moments. 

This is illustrated in Figure 3, where two cones (two angles θ) can be determined: one 

for the absorption transition moment and one for the emission transition moment. 

Hence, one cannot assign a particular polar angle to a specific transition moment. In 

sets (iii) and (iv) [Eqs. (37)–(39)], the alternative polar and azimuthal angles are 

function of all true angles. The alternative angles θ+ in sets (iii) and (iv) are obtained 

by swapping the labels of the absorption and emission transition moments, defining an 

additional set of two cone surfaces. It must emphasized that acceptable alternatives 

{ , , ϕ+θa
+θe

+}, calculated with Eqs. (37)–(39), can only be obtained for confined 

subspaces {θa, θe, ϕ}. The boundaries of these coupled regions can be obtained 

numerically. The expressions for sets (i)–(iv) are for the polar angles restricted to [0, 

π/2] and for the difference of the azimuthal angles to [0, π]. Since there is no head or 

tail with respect to the transition moment, the polar angle θ, –θ, π − θ, and π + θ all 

refer to the same orientation. For example, for set (i) some alternatives are given by 
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{ , , }, { , , }, { , 

, }, … The value of the "difference" angle ϕ between the projections 

of the transition moments in the (x, y) plane is such that  

cos α is uniquely determined.  

aa θ=θ+
ee θ−=θ+ ϕ−π=ϕ+

aa θ−=θ+
ee θ=θ+ ϕ−π=ϕ+

aa θ−=θ+

ee θ−=θ+ ϕ=ϕ+

< Figure 3 > 

To summarize, the identifiability analysis involving both Sij(t) and rij(t) shows that the 

model for one excited-state processes with coupled rotational diffusion for a 

cylindrically symmetric ellipsoid is uniquely identifiable in terms of the deactivation 

rate constant k01, the rotational diffusion coefficients D⊥ and D||, and the absolute 

value of the polar angle α between the absorption (ar ) and emission ( ) transition 

moments. The angle α between 

er

ar  and er  is related to the zero-time anisotropy rij(0) 

[Eq. (16)], and its absolute value is given by 

( )
3
10

3
5arccos +=α ijr                   (40) 

The polar angles θa and θe, and the difference azimuthal angle ϕ formed by the 

projections of the two transition moments in the plane perpendicular to the symmetry 

axis are locally identifiable. 

Now we will consider some limiting cases. When the absorption and emission 

transition moments are collinear (θa = θe = θ and ϕ = 0), the pre-exponential factors βi 

[i = 1−3, Eq. (13)] in the expression of rij(t) [Eq. (12)] simplify 

( )22
1 1cos31.0 −θ=β                  (41a) 

θ=β 2sin3.0 2
2                  (41b) 

θ=β 4
3 sin3.0                   (41c) 
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Using elementary properties of the trigonometric functions the identifiability 

equations corresponding to Eqs. (41a–c) can be rewritten, respectively, in the form of 

Eqs. (42a–c): 

θcos6θcos9θcos6θcos9 2424 −=− ++                (42a) 

θcosθcosθcosθcos 2424 +−=+− ++               (42b) 

θcos2θcosθcos2θcos 2424 −=− ++                (42c) 

The requirement that Eqs. (42) should form a consistent set of equations indicates that 

the polar angle θ is uniquely recovered within the interval [0, π/2]. 

For a cylindrically symmetric rotor for which the absorption or emission transition 

moment is parallel to the symmetry axis (θa = 0 or θe = θ), the anisotropy decay rij(t) 

is mono-exponential 

( ) [ tDtrij ⊥−= 6expβ1 ] ,     t ≥ 0                (43a) 

with β1 given by 

( )1cos32.0 a
2

1 −θ=β  if θe = 0               (43b) 

or 

( )1cos32.0 e
2

1 −θ=β  if θa = 0                (43c) 

Since rij(t) is mono-exponential, one immediately has  and  and 

, or  and . 

⊥
+
⊥ = DD θ=θ+

a

0=θ+
e θ=θ+

e 0=θ+
a

If β1 = 0.4, both transition moments are along the symmetry axis, which implies 

identifiability. 

When the absorption and emission transition moments lie in a plane perpendicular to 

the axis of symmetry (θa = θe = θ = π/2), the anisotropy decay rij(t) [Eq. (12)] is bi-

exponential with β1 = 0.1, β2 = 0, and β3 = 0.3 cos 2ϕ. If the angle ϕ is π/4 (45°), the 

expression of rij(t) reduces to Eq. (43a) with β1 = 0.1. It is clear that in the latter cases 
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the model is identifiable, apart from the swapping of the azimuthal angles for the 

absorption and emission transition moments 

Finally, we consider the case of a spherically symmetric rotor (D = D⊥ = D||). The 

expression for Sij(t) is identical with that for the cylindrically symmetric case [Eq. 

(5)], so that k01 and the product cj bi are uniquely identified. Since the expression of 

rij(t) is monoexponential [Eq. (17)], one immediately has D+ = D and α+ =  α, 

demonstrating that all relevant parameters are uniquely determined. 

4. Discussion and conclusions 

We have shown that the similarity transformation approach can be applied 

successfully to the deterministic identifiability analysis of kinetic models of one-state 

excited-state events in isotropic environments coupled with rotational diffusion 

described by Brownian reorientation. The similarity transformation approach has the 

extra merit of providing the explicit relationships between the true and alternative 

model parameters. We have used the “sum” S(t) = I||(t) + 2 I⊥(t) and the fluorescence 

anisotropy δ-response function r(t) = D(t)/S(t) with D(t) = I||(t) − I⊥(t) in the 

identifiability. S(t) describes the time dependence of the total fluorescence and 

contains information only about the deactivation of the excited state as a whole 

(expressed by the composite rate constant k01). The time-resolved fluorescence 

anisotropy r(t) expresses the rotational diffusion in terms of rotational diffusion 

constants and the angles defining the orientation of the absorption and emission 

transition moments. As r(t) can be written as a simple function of the vectors ( )e
r*

2
MY  

and , and the matrix A( )a
rM

2Y D, the identifiability analysis is simpler if one uses r(t) 

instead of I||(t) and I⊥(t).  
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The identifiability analysis of r(t) for the cylindrically symmetric rotor demonstrates 

that the rotational diffusion coefficients D|| and D⊥ can be determined, in addition to 

the polar angle α between the absorption and emission transition moments. It must be 

stressed that the absolute orientations of the absorption and emission transition 

moments are not uniquely known. Indeed, the polar angles θa and θe cannot be 

unambiguously be assigned to the two transition moments. Possible θa, θe ambiguity 

can be resolved by considering two different excitation wavelengths yielding 

absorption transition moments with different orientations while the emission transition 

moment remains the same.  

For the spherically symmetric rotor, the rotational diffusion constant D and the angle 

α between the absorption and emission transition moments can be determined from 

the monoexponential fluorescence anisotropy decay r(t). 
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Figure captions 

Figure 1. Graphic representation of a one-state excited-state process, including 

rotation. Species 1* is pictured as being initially excited from its ground state 1 by an 

infinitely short linearly polarized light pulse at wavelength  in a unique absorption 

band. The excited-state deactivation is described by the rate constant k

ex
iλ

01. 

Simultaneously the species rotates with rate constants determined by the rotational 
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diffusion tensor. The polarized emission depends on the relative orientation of its 

emission transition moment (with unit vector er ) at the instant of emission with 

respect to the absorption transition moment (with unit vector ar ) at the instant of 

excitation.  

Figure 2. Definition of the polar angles θa and θe, the azimuthal angles φa and φe, and 

the difference angles α and ϕ when the absorption (ar ) and emission ( ) transition 

moments are not parallel.  

er

Figure 3. The two double-sided cones defining the absorption and emission transition 

moments. It must be emphasized that the angles θ, − θ, π − θ, and π + θ all define the 

same double-sided cone. 
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