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Mast cells (MCs) are found abundantly in the central nervous systemandplay a complex role in neuroinflammatory
diseases such asmultiple sclerosis and stroke. In the present study,we show thatMC-deficientKitW-sh/W-shmice dis-
play significantly increased astrogliosis and T cell infiltration as well as significantly reduced functional recovery
after spinal cord injury compared to wildtype mice. In addition, MC-deficient mice show significantly increased
levels ofMCP-1, TNF-α, IL-10 and IL-13 protein levels in the spinal cord. Mice deficient inmousemast cell protease
4 (mMCP4), an MC-specific chymase, also showed increased MCP-1, IL-6 and IL-13 protein levels in spinal cord
samples and a decreased functional outcome after spinal cord injury. A degradation assay using supernatant from
MCs derived from eithermMCP4−/−mice or controls revealed thatmMCP4 cleavesMCP-1, IL-6, and IL-13 suggest-
ing a protective role for MC proteases in neuroinflammation. These data show for the first time that MCs may be
protective after spinal cord injury and that they may reduce CNS damage by degrading inflammation-associated
cytokines via the MC-specific chymase mMCP4.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Mast cells (MCs) are abundant at host/environment interfaces, i.e. the
skin, airways and gut, where they are known to contribute significantly
to the induction of inflammation in the context of allergic reactions and
innate immune responses to pathogens (Henz et al., 2001; Marshall,
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2004). In the mammalian central nervous system (CNS), MCs are report-
ed as beingmainly located in the leptomeninges, the duramater, the cho-
roid plexus and the parenchyma of the thalamic–hypothalamic region,
where they are generally found along the blood vessels (Zappulla et al.,
2002). MCs in the healthy brain of rats are found mostly in the thalamus
(Brenner et al., 1994), where they are thought to contribute to sensory
processing, blood vessel permeability and local hemodynamics
(Kil et al., 1999). MC-derivedhistaminehas been reported to potentiate
synaptically mediated excitotoxicity in hippocampal neurons of mice
in vitro (Skaper et al., 2001) and MC activation reportedly promotes
delayed neurodegeneration in murine mixed neuron-glia hippocampal
cultures (Skaper et al., 1996).

Substantial progress has beenmade over the last decade in elucidat-
ing the crucial role of MCs in inflammatory CNS disorders such as
multiple sclerosis (MS) and stroke [reviewed in Nelissen et al.,
2013]. In the animal model of humanMS, experimental autoimmune
encephalomyelitis (EAE), sites of inflammatory demyelination in the
CNS are characterized by MC accumulation and the percentage of
degranulated MCs in the CNS correlates with the clinical onset of dis-
ease symptoms (Brenner et al., 1994). Furthermore, it has been dem-
onstrated that MC-deficient W/Wv mice suffer from a significantly
ved.

http://dx.doi.org/10.1016/j.nbd.2013.09.012
mailto:sven.hendrix@uhasselt.be
http://dx.doi.org/10.1016/j.nbd.2013.09.012
http://www.sciencedirect.com/science/journal/09699961


261S. Nelissen et al. / Neurobiology of Disease 62 (2014) 260–272
less severe myelin-oligodendrocyte-glycoprotein-induced EAE and
restoration of the MC population with wildtype (WT) MCs results
in disease severity similar to WT mice (Brown et al., 2002; Robbie-
Ryan et al., 2003; Secor et al., 2000; Tanzola et al., 2003). In contrast
to these previous studies, other data revealed that MCs may be dispens-
able for EAE development (Bennett et al., 2009; Feyerabend et al., 2011).
Conversely, it has been shown that KitW-sh/W-sh mice develop more
severe EAE, which is characterized by earlier onset, more severe paraly-
sis, and more extensive demyelination and inflammatory infiltration (Li
et al., 2011). MCs are also critically involved in the pathophysiology of
ischemic stroke (Lindsberg et al., 2010; Strbian et al., 2009). MCs are
one of the first cells to respond to hypoxic–ischemic brain damage in
the immature brain. Inhibition of the early MC response resulted in
significant neuroprotection (Jin et al., 2009). In the adult rat, MCs are
involved in ischemic brain edema early after focal cerebral ischemia
onset (Strbian et al., 2006). In the model of intracerebral hemorrhage,
MC-deficient rats responded with significantly better neurologic scores
than WT animals (Strbian et al., 2007).

In the present study we have analyzed the effects of MC-deficiency
in a mouse model of spinal cord injury (SCI). In addition, we propose
here a potential new mechanism in which MCs and their secreted pro-
tease mMCP4 exert protective effects after CNS trauma by degrading
inflammation-associated cytokines.
Materials and methods

Animals

All experiments were performed using 9- to 11-week-old C57BL/
6 mice (Harlan, the Netherlands or The Jackson Laboratory, USA),
MC-deficient W-sash c-kit mutant knockout mice (KitW-sh/W-sh)
(Grimbaldeston et al., 2005) (Jackson Laboratory, USA) and
mMCP4-deficient (mMCP4−/−) mice (Tchougounova et al., 2003)
that were housed in a conventional animal facility at Hasselt Uni-
versity under regular conditions, i.e. in a temperature-controlled
room (20 ± 3 °C) on a 12 h light–dark schedule and with food
and water ad libitum; all experiments were approved by the local
ethical committee of Hasselt University and were performed
according to the guidelines described in Directive 2010/63/EU on
the protection of animals used for scientific purposes.
Spinal cord T-cut hemisection injury

T-cut hemisection injury was performed as described before (Loske
et al., 2012; Tuszynski and Steward, 2012). Briefly, 9- to 11-week-old
anesthetized female mice underwent a partial laminectomy at thoracic
level T8. For the spinal cord bilateral hemisection, iridectomy scissors
were used to transect left and right dorsal funiculus, the dorsal horns
and additionally the ventral funiculus (T-cut (Loske et al., 2012)). It is
important to note that this “T-cut” procedure results in a complete tran-
section of the dorsomedial and ventral corticospinal tract (CST) and
impairs several other descending and ascending tracts. The muscles
were sutured and the back skin closed with wound clips.
Locomotion tests

Starting 1 day after surgery, functional recovery in SCI mice was
measured for three weeks according to the Basso Mouse Scale (BMS)
(Basso et al., 2006). The BMS is a 10-point locomotor rating scale
(9 = normal locomotion; 0 = complete hind limb paralysis), in
whichmice are scored by two investigators blinded to the experimental
groups, and which is based on hind limb movements made in an open
field during a 4-min interval. Data shown representmean values per ex-
perimental group ± SEM.
Immunohistochemical analysis of the spinal cord

Spinal cord cryosections (10 μm) obtained from animals trans
cardially perfused 21 days after surgery with ringer solution containing
heparin, followed by 4% paraformaldehyde, were preincubatedwith 10%
normal goat serum in PBS containing 5% Triton X-100 for 30 min at
room temperature (RT). The following primary antibodies were then
incubated for 2 h at RT: rat anti-CD4 (1:500; BD biosciences, Belgium),
mouse anti-glial fibrillary acidic protein (GFAP) (1:500; Sigma-Aldrich,
Belgium), rabbit anti-myelin basic protein (MBP) (1:100; Millipore,
Belgium) and rabbit anti-ionized calcium binding adaptor molecule 1
(Iba-1) (1:350; Wako, Germany).

Following repeated washing steps with PBS, secondary antibodies
were applied for 1 h at RT. These were goat anti-rat Alexa Fluor 568,
goat anti-mouse Alexa Fluor 568 and goat anti-rabbit Alexa Fluor 488
(dilution 1:250; Invitrogen, Belgium), respectively. After removal of
unbound antibodies, DAPI counterstaining was performed for 10 min
and sectionsweremounted. Formeasurement of lesion size, astrogliosis
and inflammatory infiltrate, 5 to 6 sections per animal (8 animals per
group) containing the lesion center were analyzed, as described
(Loske et al., 2012). Lesion sizewas evaluated using anti-GFAP immuno-
fluorescence, while the demyelinated area was evaluated using anti-
MBP immunofluorescence. The T helper cell infiltration was evaluated
by double staining against CD4 and Iba-1 in order to exclude CD4+
microglial cells. Quantification of GFAP and Iba-1 expression was
performed by intensity analysis using ImageJ open source software
(NIH) within rectangular areas of 100 μm × 100 μm extending from
600 μm cranial to 600 μm caudal from the lesion epicenter. The infiltra-
tion of T helper cells was determined by quantifying all T helper cells in
the entire perilesional area, 5 mm distal and proximal from the lesion
center. For standardization, the analyses were performed on 7 spinal
cord sections (per mice) representing the perilesional area, i.e. the
lesion epicenter as well as consecutive caudal and cranial sections.

Real-time PCR

Cytokine/chemokine mRNA levels were investigated in different
phases after SCI, namely the acute phase (1 h, 6 h, 2 days), the first T
cell peak (4 days), the first peak of microglia activation (7 days), the
second peak of immune activation (14 and 21 days) and finally at the
early stage of the chronic remodeling phase (28 days) (Beck et al.,
2010). RNA was isolated from spinal cords of uninjured mice, sham-
operated animals and animals with dorsal T-cut hemisection using the
RNeasy Mini Plus Kit (Qiagen, the Netherlands), according to the
manufacturer's instructions. After reverse transcription (Promega, the
Netherlands), cDNAswere amplified bymeans of specific commercially
available primers for interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-13, tumor
necrosis factor α (TNF-α) and monocyte chemoattractant protein 1
(MCP-1) (Taqman Gene Expression Assays) on a ABI PRISM 7500
sequence detection system (Applied Biosystems, USA). Briefly, amplifi-
cation conditions consisted of an initial denaturing/activation step at
95 °C for 20 s, followed by 40 cycles of 3 s at 95 °C and 30 s at 60 °C.
A threshold cycle was calculated and relative quantificationwas obtain-
ed by comparisonwith the threshold cycle obtained by amplifying sam-
ples with the reference housekeeping genes β-actin-, hypoxanthine
guanine phosphoribosyl transferase 1 and β-glucuronidase. Only statis-
tically significant differenceswere shown in the figures. If therewere no
significant differences, findings were reported as “data not shown”.

Protein expression in spinal cord and serum samples

Cytokine/chemokine protein levels (systemic and local) were inves-
tigated in different phases after SCI (see Real time-PCR). To determine
IL-4, IL-6, IL-10, IL-13, MCP-1 and TNF-α protein levels in spinal cord
and serum samples from C57BL/6 mice, MC-deficient KitW-sh/W-sh mice
and mMCP4−/− mice (3 groups: uninjured mice, sham-operated mice
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(only laminectomy) and operated mice with dorsal hemisection), ani-
mals were sacrificed at selected time points (1 and 6 h, 2, 4, 7, 14, 21
and 28 days post injury). At these time points, mice were overdosed
with Nembutal, serum samples were taken via cardiac puncture, before
the mice were transcardially perfused with ringer solution containing
heparin. After perfusion, spinal cord tissue was collected in a precisely
standardized region (0.5 cm proximal to 0.5 cm distal of the T-cut).
Standardized tissue samples were homogenized with a disposable pes-
tle (VWR, Belgium) by adding Procarta lysis buffer, containing protease
inhibitors (Panomics, Italy). Cell lysateswere centrifuged at 10000 RPM
for 10 min and supernatants (SN) were stored at −20 °C until mea-
surement. Protein levels were quantitatively determined in serum sam-
ples and in the SN of spinal cord homogenates by flow cytometry
analysis using the Cytometric Bead Array Mouse Flex set system (BD
biosciences) according to the manufacturer's instructions. Since cyto-
kine levels in uninjured WT mice are different compared to cytokine
levels in uninjured mMCP4−/− mice, we decided to express these cyto-
kine levels as a ratio of injured to uninjured mice for WT mice
and mMCP4−/− mice. To calculate the ratio we had to avoid the math-
ematical problem to divide by zero (0), therefore, in samples with
undetectable levels of cytokines, values were arbitrarily defined as 1.
Briefly, serial dilutions (1/2 v/v) of the standard were prepared. The
sampleswere incubatedwith capture beads at RT for 1 h. After the incu-
bation, detection beads were added and samples were incubated for
another hour at RT. Finally, all samples were washed with wash buffer.
Analysis was performed using FACSArray Bioanalyzer and FCAP software
(BD biosciences). Only statistically significant differences were shown in
the figures. If therewere no significant differences, findingswere report-
ed as “data not shown”. Data represent mean values + SEM.

Bone marrow-derived cultured mast cells (BMCMCs)

Murine BMCMCs were obtained, as described (Dudeck et al., 2010),
by culturing primary bone marrow cells isolated from the femurs of
C57BL/6 mice and of mMCP4−/− mice in IMDM with L-glutamine
(Invitrogen) supplemented by 10% FCS (Biochrom AG, Germany), 1%
penicillin/streptomycin (Invitrogen), 0.002% alpha-monothioglycerol
(Sigma-Aldrich) supplemented with 10 ng/ml recombinant mouse IL-
3 (Invitrogen). BMCMC cultures were used after 4 weeks and consisted
of ±95%MCs as controlled by surface expression of Fc-epsilon receptor
I (eBioscience, USA) by flow cytometry analysis (data not shown).

Degranulation assay

To obtain SN for the degradation assay, a degranulation assay was
performed. Degranulation of BMCMCs was measured by using the β-
hexosaminidase assay. Mature BMCMCs were collected (5 × 104 cells),
washed and stimulated for 30 min at 37 °C and 5% CO2 by 1 μM
ionomycine (Sigma-Aldrich) in 100 μl Tyrode's buffer (130 mM NaCl,
5 mM KCl, 1 mM MgCl2, 1.4 mM CaCl2, 10 mM Hepes, 5.6 mM glucose
and 0.01% BSA in MilliQ). SN was then collected and used for the degra-
dation assay. Twenty-five microliters of the SN was used for the enzy-
matic reaction. The cell pellets were lysed using 1% Triton X-100 for
5 min at RT and another 25 μl SN was collected. Next, 25 μl of 4 mM
4-Nitrophenyl N-acetyl-β-D-glucosaminide (Sigma-Aldrich) (in a 0.2 M
Na2HPO4 and 0.4 M citric acid solution buffer [pH 4.5]) was added to
the SN followed by an incubation for 1 h at 37 °C. The reaction was ter-
minated by the addition of 150 μl 200 mM glycine buffer (pH 7.0) and
absorbance (OD) was measured using a plate reader at a wavelength
of 405 nm. The degranulation ratio was calculated using the following
formula: [OD SN / OD (SN cell lysate)] × 10.

Degradation assay

Murine recombinant IL-1β, IL-4, IL-6, IL-10, IL-13, TNF-α andMCP-1
(400 ng) (Tebu-bio, Belgium) were incubated for 6, 48, or 96 h at 37 °C
in 20 μl MilliQ or in 4 μl MilliQ with 16 μl supernatant from BMCMC
derived from either C57BL/6 or from mMCP4−/− mice. The samples
were mixed with Novex® Tricine SDS Sample buffer and NUPAGE®
Reducing Agent (Invitrogen) and the cleaved fragments were identi-
fied using tris-tricine SDS-PAGE on 10% Novex® Tricine Gels and a
SilverXpress®Silver Staining Kit (Invitrogen). The quantification of the
bands was performed by intensity analysis using ImageJ.

Statistical analysis

Locomotion tests aswell as histological evaluation of the astrocyte and
microglia/macrophage reactionwere analyzed using two-wayANOVA for
repeatedmeasurementswith the Bonferroni correction formultiple com-
parisons. All other differences between two groups were evaluated using
the nonparametric Mann–Whitney U-test. The analyses were performed
using Prism5.0 software (GraphPad Software, SanDiego, CA, USA). Differ-
ences were considered statistically significant when p b 0.05.

Results

MC-deficiency results in increased T cell infiltration, astrogliosis and func-
tional impairment after SCI

When we subjected MC-deficient KitW-sh/W-sh mice and their control
C57BL/6 mice (further referred to as WT mice) to a dorsal T-cut
hemisection and monitored functional recovery using the BMS, we
found that locomotor function was significantly decreased from day 7
onwards in MC-deficient KitW-sh/W-sh mice compared to WT mice
(Fig. 1A). Similar results were also obtained in KitW/KitW-v mice (data
not shown). The lesion size (Figs. 1B, C, F) and the demyelinated area
(Figs. 1D, E, G) were determined by immunofluorescence for GFAP
and MBP followed by image analysis with ImageJ. The evaluation of
the lesion size by GFAP immunofluorescence revealed a slight, non-
significant trend towards an increased lesion size in the MC-deficient
KitW-sh/W-shmice compared toWTmice, 3 weeks after SCI. Bymeasuring
the GFAP intensity just below the lesion, 600 μmcaudal and600 μmcra-
nial, in squares of 100 μm to 100 μm (Fig. 1H), astrogliosis was evaluat-
ed. GFAP expression peaked in both WT and MC-deficient KitW-sh/W-sh

mice around the lesion epicenter and decreased further caudal and cra-
nial from the lesion epicenter (Fig. 1I). At 3 weeks after SCI, GFAP ex-
pression levels were slightly but significantly higher in MC-deficient
mice compared to control mice (p b 0.001), indicating an increased as-
trocyte reaction after SCI in MC-deficient KitW-sh/W-sh mice compared to
WT mice. To investigate the inflammatory response after SCI, immuno-
fluorescence for the macrophage/microglia marker Iba-1 (Figs. 2A–C)
and the T helper cell marker CD4 (Figs. 2D–F) was performed on spinal
cord sections. No difference in the microglia/macrophage reaction be-
tweenWT andMC-deficientKitW-sh/W-shmice, 3 weeks after SCI,was ob-
served. At 3 weeks after SCI, a significant increase in the mean number
of T cells per 6 spinal cord sections in the MC-deficient KitW-sh/W-sh

mice, compared to WT mice, could be observed (Fig. 2D, p b 0.05).

Peak mRNA and protein levels of inflammation-associated cytokines in the
acute phase after SCI

To test the hypothesis that MCs may restrict inflammatory
processes and degeneration after CNS trauma, we first analyzed
cytokine/chemokine mRNA (local) and protein levels (systemic
and local) in different phases after SCI.

In line with previous findings by others (Bartholdi and Schwab,
1997; Pan et al., 2002; Pineau and Lacroix, 2007; Streit et al., 1998),
TNF-α mRNA levels significantly increased within 1 h after SCI com-
pared to mRNA levels in the uninjured and laminectomy (sham) mice
(Fig. 3C). This was also true for IL-10 mRNA levels (Fig. 3D). Peak
mRNA levels of IL-6 (Fig. 3A), IL-1β (Fig. 3E) and the chemokine MCP-
1 (Fig. 3B) were observed 6 h after SCI. In contrast to previous findings
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(Pineau and Lacroix, 2007) using in situ hybridization, no secondmRNA
peaks were observed for TNF-α and IL-1β mRNA in our analysis
(Figs. 3C and E). IL-13 results were inconsistent and levels of IL-4 were
very low and mostly undetectable (data not shown).

Analysis of both local (spinal cord lysate) as well as systemic (serum)
protein levels revealed peak IL-6 protein levels 6 h after SCI, both locally
(Fig. 4A) and systemically (Fig. 4F), followed by a decrease to basal levels
around 4 days post injury. Locally, this increase was specifically found
after T-cut hemisection SCI and not after laminectomy, while a systemic
increase in IL-6 levels is seen already after laminectomy alone (Fig. 4A).
MCP-1 protein levels were significantly increased in the spinal cord
after SCI both in the acute phase (6 h and 2 days) as well as at 4 days
and 7 days after SCI compared to protein levels in the uninjured and
laminectomy (sham) mice (Fig. 4B). Systemically, a significantly higher
level of MCP-1 was found at 2 days compared to 4 days after SCI
(Fig. 4G). IL-1β results were inconsistent in serum and tissue samples
(data not shown). Although TNF-α mRNA levels increased substantially
in the spinal cord after lesion (Fig. 3C), surprisingly the opposite was
found on the protein level: TNF-α protein levels significantly decreased
at almost all time points measured after SCI, both in spinal cord
(Fig. 4C) as well as in serum samples (Fig. 4H). In laminectomy (sham)
mice however, local and systemic TNF-α levels did not show any signif-
icant difference when compared to uninjured mice at any time point
investigated. Also, for the anti-inflammatory cytokine IL-10, the in-
creased mRNA levels observed in the acute phase after SCI (Fig. 3D) are
in sharp contrast with the protein levels of IL-10 in the spinal cord
(data not shown), which were unaffected at almost all time points
after SCI. Finally, IL-4 levels decreased locally in the acute phase to
reach again basal levels in the early stage of the chronic remodeling
phase (28 days, Fig. 4D).

Taking all these data together, it became clear that the most impor-
tant changes in the cytokine profiles occur in the acute phase (1 h, 6 h
and 2 days) after SCI. Hence, this time-windowwas the focus in the fol-
lowing experiments.

MCP-1 and IL-6 levels are increased in MC-deficient KitW-sh/W-sh mice
compared to WT controls after injury

Local MCP-1 (Fig. 5A), TNF-α (Fig. 5B), IL-10 (Fig. 5C) and IL-13
(Fig. 5D) protein levels were increased compared to uninjured mice
6 h after SCI. However, we need to emphasize that only MCP-1 was
significantly increased compared to basal levels in uninjured mice. Sys-
temically, only IL-6 protein levels were significantly increased 6 h after
SCI in MC-deficient KitW-sh/W-sh mice compared to the controls (Fig. 5E).
A slight tendency towards increasedMCP-1, TNF-α and IL-10 could also
be observed systemically and the same trend was visible in local IL-6
protein levels in MC-deficient KitW-sh/W-sh mice (data not shown). IL-
1β results were inconsistent in serum samples and local levels of IL-4
were below detection limit (data not shown).

mMCP4-deficiency results in a decreased functional recovery and increased
cytokine levels after SCI

As a next step, we addressed the question whether MCs restrict the
inflammatory process and degeneration after CNS trauma through the
release of proteases, which in turn degrade pro-inflammatory as well
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as chemotactic factors. To this end, mMCP4-(an MC-specific chymase)
knockout mice (mMCP4−/−) were subjected to SCI and BMS analysis
was performed daily. Functional recoverywas decreased fromday 7 on-
wards inmMCP4−/−mice, when compared to their corresponding con-
trols (Fig. 6A). In addition, a significant increase in lesion size (Figs. 6B, C,
F) and demyelinated area (Figs. 6D, E, G) was observed in mMCP4−/−

mice. No differences in astrogliosis and microglia/macrophage infiltra-
tion were observed between mMCP4−/− mice and their controls. The
level of GFAP expression (Fig. 6H) and Iba1 expression (Fig. 6I) was
unchanged. Analysis of CD4 expression at the lesion site revealed a sig-
nificant reduction in T cell infiltration in mMCP4−/− mice after SCI,
compared to WT mice (Fig. 6J).

Local IL-6 (Fig. 7A) andMCP-1 (Fig. 7B) protein levels of mMCP4−/−

micewere significantly increased compared to protein levels inWTmice
1 h, 6 h and 2 days after SCI. Local IL-13 protein levels of mMCP4−/−

mice were significantly increased compared to protein levels in WT
mice 1 h after SCI (Fig. 7C). Locally, levels of IL-4 were below detection
limit and levels of TNF-α and Il-10 were unaffected (data not shown).
Systemically, IL-6 (Fig. 7D) and MCP-1 (Fig. 7E) protein levels in
mMCP4−/− mice were significantly higher 1 h and 6 h after SCI com-
pared to WTmice. Increased TNF-α (Fig. 7F) and IL-13 (Fig. 7H) protein
levels 1 h, 6 h and 2 days after SCI in serum samples ofmMCP4−/−mice
compared to WT mice were observed. IL-10 (Fig. 7G) protein levels in
serum samples of mMCP4−/− mice are significantly higher 6 h and
2 days after SCI compared to levels in WT mice. IL-4 protein levels in
the serum were unaffected after SCI (data not shown).

MCP-1, IL-6 and IL-13 are substrates for mMCP4

To further clarify how mMCP4 may restrict the inflammatory pro-
cess after SCI, an in vitro degradation assay was performed. Recombi-
nant MCP-1, IL-6, TNF-α, IL-10, IL-13 as well as IL-1β protein were
incubated for 6, 48 or 96 h in the presence of MC supernatant derived
from BMCMC either obtained from C57BL/6 mice or mMCP4−/− mice
(BMCMCB6 or BMCMCmMCP4–/–). None of the above cytokines displayed
any cleavage following incubation for 6 h with either BMCMCB6 or
BMCMCmMCP4–/– supernatant (data not shown). Incubation of MCP-1,
IL-6, TNF-α, IL-10 as well as IL-13 for 48 h with BMCMCB6 supernatant
resulted in cleavage of these cytokines (Fig. 8A, upper panel arrows).
Similar resultswere obtainedwithMC supernatant derived fromperito-
neal derived culturedMCs (data not shown). However, whenMCP-1, IL-
6 and IL-13 were incubated with BMCMCmMCP4–/– supernatant, this
cleavage was decreased, indicating that mMCP4 is at least in part re-
sponsible for this cleavage. Intensity analysis of the corresponding
bands confirmed these findings (Figs. 8B–G). The cleavage of MCP-1
and IL-13 was even more pronounced after 96 h of incubation
(Fig. 8A, lower panel, Figs. 8B and F).

Discussion

The role of MCs in neuroinflammatory diseases such as stroke and
MS is complex. Depending on the animal model, MCs may exert benefi-
cial or detrimental effects or may even be dispensable (Bennett et al.,
2009; Lindsberg et al., 2010; Piconese et al., 2011). In the present
study, we found that functional recovery is significantly reduced in
MC-deficient KitW-sh/W-sh mice and KitW/KitW-v mice after SCI compared
to WT mice. Further histological analyses of the KitW-sh/W-sh mice re-
vealed significantly increased astrogliosis and an extensive T cell infil-
tration. In addition, we addressed the question by which mechanism
MCs may protect from spinal cord inflammation. A degradation assay
revealed that selected cytokines (MCP-1, IL-6 and IL-13) which are
upregulated in both MC-deficient mice and mMCP4−/− mice, are sub-
strates of the MC protease mMCP4.

In the present study we investigated the role of MCs in an in vivo
model of mechanical CNS trauma, namely SCI with a clear and measur-
able functional outcome. We decided to use a well-established model
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of a T-cut hemisection injury (Tuszynski and Steward, 2012) in order to
produce a very standardized lesion without spared fibers. Contusion in-
jurymodelsmay be considered as being closer to the in vivo situation in
patients, however, thesemodels tend to showmore variations of the le-
sion and also a considerable number of spared fibers. Functional analy-
sis of the KitW-sh/W-sh mice after SCI revealed a significantly reduced
functional recovery in the BMS, which was associated with increased T
cell infiltration and perilesional astrogliosis. Lesion size, demyelination
and macrophage/microglia presence caudal to the lesion site, showed
a slight trend towards increase in MC-deficient mice which did not
reach statistical significance. Although T cells may have beneficial
effects under certain experimental conditions, however, a dramatic



1h 6h 2d
0

5000

10000

15000

M
C

P
-1

 (
p

g
/m

l)

1h 6h 2d
0

50

100

150

T
N

F
- α

 (
pg

/m
l)

*

B

1h 6h 2d
0

20

40

60

80

IL
-1

0 
(p

g
/m

l)

*

C

1h 6h 2d
0

10

20

30

40

50
IL

-1
3 

(p
g

/m
l)

*

D

SPINAL CORD PROTEIN LEVELS

*

A

SERUM PROTEIN LEVELS

1h 6h 2d
0

50

2000

6000

8000

10000

IL
-6

 (
p

g
/m

l)

**

E

WT Kit
W-sh/W-sh

W-sh/W-sh
uninjured WT uninjuredKit

Fig. 5. Increased MCP-1, TNF-α, IL-10 and IL-13 protein levels in the supernatants of spinal cord homogenates and increased IL-6 protein levels in serum samples of KitW-sh/W-shmice, 6 h
after SCI compared toWT counterparts. In contrast to IL-6 and IL-1β (data not shown), in the supernatants of spinal cord homogenates, protein levels of MCP-1 (A), TNF-α (B), IL-10 (C)
and IL-13 (D) in KitW-sh/W-sh mice are significantly higher 6 h after SCI compared to WT mice. Systemically IL-6 (E) protein levels in KitW-sh/W-sh mice are significantly higher 6 h after SCI
compared to WT mice. *p b 0.05; **p b 0.01 compared to WT mice. n = 6–24/time point. Three independent experiments.

267S. Nelissen et al. / Neurobiology of Disease 62 (2014) 260–272
accumulation of endogenous T cells three weeks after lesion should
be considered detrimental (Hendrix and Nitsch, 2007). Similarly,
astrogliosis is important as an early repair mechanism in the early
phases after injury while it may substantially impair recovery in later
phases (Fitch and Silver, 2008). Thus, the combination of increased T
cell infiltration and increased astrogliosis three weeks after lesion in
the subacute to early chronic phase may explain – at least in part –
the reduced functional outcome in MC- and MC protease deficient
mice. In a parallel study, we demonstrated, by using an entorhinal cor-
tex lesion model, an increased exacerbated brain inflammation after
mechanical brain injury in KitW/KitW-v and KitW-sh/W-sh mice, suggesting
a protective role for MCs in brain trauma (Hendrix et al., 2013).
InmMCP4-deficientmicewe also found a significantly reduced locomo-
tor score combined with a significant increase in lesion size and
demyelinated area.

In both MC-deficient mouse lines and in two distinct models of CNS
injury, there was good evidence that MCs play a key role in functional
recovery after CNS trauma. However, it must be kept in mind that not
all effects seen in KitW/KitW-v and KitW-sh/W-sh mice may be a result of
MC-deficiency since some kit effects appear to be independent of MCs
(Feyerabend et al., 2011). KitW/KitW-v mice are sterile, neutropenic and
anemic and have impaired melanogenesis (Galli and Kitamura, 1987).
They also show impairments in lymphocyte development, gut motility
and pain sensation. In contrast, KitW-sh/W-sh mice are fertile and not ane-
mic, however, they have neutrophilia and defects in skin pigmentation,
exhibit an anxiety-like phenotype and show a time-dependent loss in
MCs (Grimbaldeston et al., 2005; Nautiyal et al., 2008). This means
that they are profoundly MC-deficient in all examined tissues except
the skin, where age-dependent reduction in MC density occurs dur-
ing the first 12 weeks of life. To control for MC-independent effects,
MCs can be reconstituted toMC-deficient mice in order to abolish the
effects induced by the absence of MCs. Extensive pilot experiments,
however, revealed that MC reconstitution lead only to a partial redis-
tribution of MCs in the meninges, but not in the CNS parenchyma (S.
Hendrix, unpublished observation). Similarly, in a study using green
fluorescent protein-expressing BMCMC for MC reconstitution in
KitW/KitW-vmice, MC populations were not restored in several organs
such as lymph nodes, heart, brain and spinal cord (Tanzola et al.,
2003). Therefore, in our opinion reconstitution experiments are not
ideal to distinguish between MC-dependent and independent
effects in the CNS.

In order to further investigate the immunological mechanism of the
decreased functional outcome, we analyzedmRNA and protein levels of
selected inflammation-associated cytokines at key time points after SCI.
The selected cytokines were chosen because they are well-known to
play a role in SCI and show significant changes of expression after SCI
(Donnelly and Popovich, 2008; Pineau and Lacroix, 2007). We found
peak mRNA levels of TNF-α, MCP-1, IL-1β, IL-6, and IL-10 in the spinal
cord tissue following the first 1 and 6 h after injury. In contrast, on the
protein level, only MCP-1 and IL-6 peaks were detectable at 6 h and
2 days after lesion. The discrepancy seen between mRNA and protein
levels of inflammatory factors is a well-known phenomenon, for exam-
ple, as seen with TNF-α and IL-10. TNF-α expression is regulated tran-
scriptionally as well as post-transcriptionally (Anderson et al., 2004;
Jacob and Tashman, 1993; Means et al., 2000). Post transcriptional con-
trol of TNF-α expression requires the AU-rich elements (ARE) in the 3′
untranslated region (UTR), which are important in controlling message
stability and translational activation (Kontoyiannis et al., 1999). Individu-
al ARE-binding proteins can promote or inhibit the expression of TNF-α.
The best characterized examples of inhibitory ARE-binding proteins for
TNF-α are tristetrapolin (TTP), an unusual zinc finger protein whose ex-
pression is induced by both LPS and TNF-α itself (Carballo and
Blackshear, 2001; Carballo et al., 1998; Lai et al., 2000), aswell as T cell in-
tracellular antigen-1 (TIA-1) (Phillips et al., 2004; Piecyk et al., 2000) and
TIA-1-related (TIAR) (Gueydan et al., 1999). Also for IL-10, it is well de-
scribed that the availability of its mRNA levels and the amount of detect-
able protein vary significantly. This post-transcriptional control also
depends on ARE-rich elements in the 3′UTR of mouse IL-10 (Powell
et al., 2000). A growing class of non-coding RNAs called microRNAs
(miRNAs), is involved in post-transcriptional regulation of genes like IL-
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10, such as has-miR-106a (Bartel, 2004; Sharma et al., 2009). Further
analyses revealed that IL-6 levels in the serum and MCP-1, TNF-α, IL-10
and IL-13 protein levels in the spinal cord of MC-deficient KitW-sh/W-sh

mice are significantly increased compared to WT controls in the acute
phase after SCI. The significant changes in cytokine levels reported here
are not subtle (around 200% increase or more), suggesting biological rel-
evance. These findings indicate a substantial change in the local immune
milieu, which on the one hand is composed of IL-10 and proves beneficial
after SCI (Brewer et al., 1999; Zhou et al., 2009) and on the other, contains
MCP-1 and TNF-αwhich are rather detrimental (Esposito and Cuzzocrea,
2011; Gao and Ji, 2010). It may appear puzzling that significant differ-
ences of cytokine levels betweenMC-deficientmice andWTmice appear
early while behavioral differences become detectable around day 7 after
SCI. However, it is important to note that functional impairment before
day 7 cannot be dramatic because the WT mice still have a very low
BMS score (nearly zero) during the first week.
Since there is some indication that MC proteases may have protec-
tive effects in other contexts (Caughey, 2011; Hendrix et al., 2013;
Pejler et al., 2010), we addressed the question whether the absence of
MC proteases may be responsible for increased cytokine levels and
CNS inflammation in MC-deficient mice. Consistently, absence of
mMCP4 during and after SCI in mMCP4-deficient mice leads to
decreased functional recovery similar to MC-deficiency in KitW-sh/W-sh

mice. These data suggest that mMCP4-deficiency may be sufficient to
reproduce the functional impairment seen in MC-deficient mice.

As a next step, we demonstrated in a degradation assay that BMCMC
supernatant cleaves recombinant MCP-1, IL-6, TNF-α, IL-10 and IL-13.
This effect was completely abolished for MCP-1, IL-6 and IL-13 when
supernatant derived from mMCP4-deficient mice was used, indicating
that these cytokines are substrates for mMCP4. This is in line with the
finding that skin MCs are able to degrade TNF-α, IL-6, and IL-13 (Zhao
et al., 2005). The partial cleavage of TNF-α and IL-10 by mMCP4-
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Fig. 8.MMCP4 cleavesMCP-1, IL-6 and IL-13. Incubation of recombinantMCP-1, IL-6 or IL-13with supernatant fromBMCMCmMCP4–/– (lane F, I, L and R) resulted in a decreased cleaving of
these cytokines compared to incubation with supernatant from BMCMCB6 (lane E, H, K and Q) both after 48 h (upper panel) and 96 h (lower panel) of incubation (A). Lane A = protein
ladder. Intensity analysiswas performedusing ImageJ. Both 48 and96 hour incubations of recombinantMCP-1 (B), IL-6 (C), IL-10 (E) or IL-13 (F)with supernatant derived fromBMCMCB6
resulted in a significantly decreased intensity, indicative for cleavage. This effect was abolished when cytokines were incubated with BMCMCmMCP4–/– (B-G). *p b 0.05. n = 3–4/condi-
tion. Three independent experiments.
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deficientMC supernatant suggests that otherMCproteases thanmMCP4
are involved. Thus, all selected factors except IL-1β are cleaved by the
MC supernatant. IL-13, IL-6 and MCP-1 show an mMCP4-dependent
cleavage, whereas IL-10 and TNF-α show an MC-dependent cleavage
which is not or not completely mMCP4-dependent. These findings cor-
relate well with the increase of all five factors (IL-10, TNF-α, IL-13, IL-
6, MCP-1) in MC-deficient mice (Fig. 5), while the specific cleavage of
IL-13, IL-6 and MCP-1 by mMCP4 correlates well with the local
increase of these three cytokines seen in mMCP4-deficient mice
(Fig. 7). Consistent with these cleavage data, the relative increase of
MCP-1, IL-6 and IL-13 protein levels is dramatically higher in spinal
cord samples from mMCP4−/− mice after SCI, compared to WT mice.
On the other hand, IL-10 and TNF-α levels show no substantial changes
after SCI in the absence of mMCP4.

In these experiments we have calculated protein ratios as the base-
line levels of these proteins are lower in the knockout mice. Thus,
when compared toWTmice, the protein ratios clearly illustrate the pro-
found increase of these factors in the spinal cord tissue of knockout
mice.We consider this substantial increase to be of much higher biolog-
ical relevance than the absolute cytokine levels. Although the inactiva-
tion of mMCP4 does not affect the storage of other MC proteases, the
number of MCs or the MC morphology (Tchougounova et al., 2003), it
cannot be excluded that mMCP4 regulates the expression/maturation
of one or many other proteases, which cleave inflammatory mediators
(Sun et al., 2009; Tchougounova et al., 2005). Because recombinant
mMCP4 is not commercially available, further experiments were not
yet possible.

Based on these data, it was tempting to hypothesize that increased
levels of IL-6 and MCP-1 in MC-deficient mice may be the basis for the
approximately 150% increase of T cell infiltration after SCI because IL-6
and MCP-1 are effective chemoattractant factors for T cells (Carr et al.,
1994; Loetscher et al., 1994; McLoughlin et al., 2005; Meares et al.,
2012; Weissenbach et al., 2004). This is not compensated for by IL-10
and IL-13, which are known to have pleiotropic effects. As discussed
above, an extensive accumulation of endogenous T cells should be con-
sidered detrimental (Hendrix and Nitsch, 2007) and may explain – at
least in part – the impaired motor performance in MC-deficient mice.
However, in striking contrast to the MC-deficient mice, the number of
infiltrating T cells was substantially reduced in mMCP4−/− mice. This
is also in contrast to the entorhinal cortex lesion model where we
found a highly significant increase of T cell infiltration in mMCP4-
deficient mice (Hendrix et al., 2013). These data strongly suggest that
T cells are not the key players responsible for impaired functional and
histological outcome in mMCP4-deficient mice after SCI. It is tempting
to speculate that direct effects of cytokines on neurons and oligodendro-
cytes (Vidal et al., 2013) may be responsible for a reduced functional
recovery following trauma to the spinal cord. MCs may also play a role
in neuropathic pain: MC mediators such as TNF-α and histamine may
sensitize nociceptors, and the MC-specific serine protease, tryptase,
has been shown to trigger inflammatory hyperalgesia and nociceptive
behavior in rats (reviewed in (Austin and Moalem-Taylor, 2010;
McMahon et al., 2005; Watkins et al., 2007)). Therefore, future studies
have to elucidate whether MCs and especially mMCP4 may influence
the development of neuropathic pain after SCI. It appears puzzling
that there is no significant difference in Iba-1+ cells between WT
and MC-deficient mice after SCI, although MCP-1 is a potent
chemoattractant for microglia/macrophages (Hinojosa et al., 2011).
However, substantially increased levels of MCP-1 mRNA and protein
levels were detected in the acute phase after injury with a peak at 6 h
and 2 days, respectively, whereas Iba-1 levels were analyzed histologi-
cally three weeks after lesion. Thus, it cannot be excluded that there
may have been an early peak of Iba-1+ cells which is not present any-
more three weeks after injury.

Another potential approach to test MC-function may be the use of
MC ‘stabilizers’ (agents that block MC degranulation following activa-
tion) (Galli and Tsai, 2008). One such drug is disodium cromoglycate.
However, the molecular targets of this drug are not restricted to MCs,
as it can also influence the function of granulocytes and B cells (Norris,
1996). MC ‘stabilizers’ cannot be used to test our hypothesis that MC
proteases dampen the inflammatory response after CNS trauma, be-
cause the secretion of proinflammatory factors from MC would also be
blocked by this compound. Local application of a chymase inhibitor
(chymostatin) did not change functional recovery after SCI (data not
shown). Further experiments to test different administration methods
and different concentrations are needed.

In summary, we show here for the first time that the absence of MCs
can result in increased pathology and morbidity after SCI. We provide
evidence that proteases secreted from MCs that degranulate after
the injury, may be responsible for this protective effect by digesting
inflammation-associated proteins. Finally, we show that the MC-
specific chymase mMCP4 may account for most of these effects and
that its absence results in impaired functional recovery after SCI. These
data suggest a novel mechanism by which MCs and their proteases
may protect the CNS from excessive pro-inflammatory cytokine levels
and consecutive tissue damage after trauma.
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