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Abstract 

The main objective of this review is to show how the concepts of compartmental 

modeling can be introduced and applied in photophysics. The term “compartment” in a 

photophysical context is defined as a subsystem composed of a distinct type of species 

that acts kinetically in a unique way. Compartments can be divided into ground and 

excited-state compartments depending upon the state of the composing species. In 

photophysics, a compartmental system is perturbed by a light pulse (photo-excitation) 

and its dynamics is followed via fluorescence in the time range from picoseconds to 

several hundred nanoseconds. In this review, we present the fluorescence δ-response 

functions for compartmental systems consisting of one excited-state compartment, two 

reversibly interconnected excited-state compartments, and their corresponding ground-

state compartments. In deterministic identifiability one investigates whether the 

parameters of a specific model can be uniquely defined assuming perfect time-resolved 

fluorescence data. The identifiability is presented for the model with one excited-state 

compartment and three models of reversible intermolecular two-state excited-state 

processes in isotropic environments: (1) model without external quencher, (2) model with 

added quencher, (3) model with coupled species-dependent rotational diffusion described 

by Brownian reorientation. The parameters that have to be identified are time-invariant 

rate constants and parameters related to excitation and emission. It is shown under what 

conditions the relevant parameters can be identified. For all models, the explicit 

relationships between the true and alternative model parameters are shown. 
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1. Introduction 

Compartmental modeling is frequently used in biomedicine, pharmacokinetics, analysis 

of ecosystems, engineering, and chemical reaction kinetics (see, for example, refs 1, 2, 

3). Considering this extensive interest, it may seem rather surprising that compartmental 

modeling of excited-state processes in photophysics has started relatively late.4, , , , 5 6 7 8 

Indeed, as the relaxation of excited-state processes can in many instances be described by 

a set of coupled first-order differential equations, excited-state systems are formally 

equivalent with compartmental systems. It will be shown in this review that modeling of 

excited-state processes in photophysics can conveniently be done within the framework 

of compartmental analysis. 

Let us start by defining what the term “compartment” stands for in a photophysical 

context. A compartment is a subsystem composed of a distinct type of species that acts 

kinetically in a unique way. The concentration of the constituting species can change 

when the compartments exchange material through intramolecular or intermolecular 

processes. In the perspective of compartmental modeling of excited-state processes, 

compartments can be divided into ground-state and excited-state compartments 

depending upon the state of the composing species. The compartmental system then 

consists of one or more excited-state compartments and their corresponding ground-state 

compartments. There may be inputs from ground-state compartments into one or more of 

the excited-state compartments by photo-excitation. There is always output from the 

excited-state compartments to the ground-state compartments through emission and/or 

nonradiative deactivation.  If the concentrations of the species in the ground state do not 

significantly change upon photo-excitation, it suffices to consider the excited-state 
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compartments only. In that case, the ground-state compartments can be lumped together 

as the outside environment. Compartments are usually depicted as boxes (rectangles, see 

Schemes), circles or ovals enclosing the composing species. Single-headed arrows 

pointing away from a compartment represent outflow from that compartment, whereas 

single-headed arrows pointing toward a compartment depict inflow into that 

compartment. In contrast to “classical” compartmental analysis, the terms “size” or 

“volume” are not relevant for compartments in photophysics. 

In kinetics, one is concerned with finding the response of a compartmental system to an 

external perturbation, given the structure of the system (i.e., the links between the 

compartments) and the rate constants describing the rates of the intercompartmental 

transitions. Deriving the kinetic expressions is often referred to as the direct problem of 

compartmental analysis. In photophysics, the response of the excited-state compartments 

after photo-excitation (called “the external perturbation” in compartmental jargon) is 

commonly measured as time-resolved fluorescence. Since fluorescence decay traces can 

be monitored under a diversity of experimental conditions – the excitation wavelength 

, the emission wavelength , the concentration of coreactant [X]ex
iλ em

jλ k, the concentration 

of external quencher [Q]l, the temperature, the added buffer, orientation of excitation and 

emission polarizers, ... can all be varied independently – compartmental systems in 

photophysics have more experimental axes to study a given problem than in the 

“classical” areas of application of compartmental modeling. Moreover, a very large 

number (several thousands) of data points of high quality can be collected from time-

resolved fluorescence measurements. This is usually not possible for the “common” 
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compartmental systems. Additionally, the prior knowledge available in fluorescence 

studies might also be different from that in “classical” compartmental systems.  

An essential first stage of any identifiability analysis deals with finding solutions for the 

model parameters when ideal (noise-free) data are available. This identifiability with 

perfect observations is called deterministic identifiability.  

In the deterministic identification (or identifiability) problem, one investigates as to 

whether or not the parameters of a specific model are uniquely defined under error-free 

observations, given that the model is completely specified including input into, output 

from, and exchange between the compartments.1-3 The deterministic identification 

problem reduces to the question of whether a system of nonlinear algebraic equations has 

a unique solution. There are three possible outcomes to the identifiability analysis. 

(1) The parameters of an assumed model can be estimated uniquely and the model is said 

to be uniquely (globally) identifiable from the idealized experiment. 

(2) Any of a finite number of alternative estimates for some or all of the model 

parameters fits the data and the model is locally identifiable.  

(3) An infinite number of model parameter estimates fits the data and the model is 

unidentifiable from the experiment.  

For the linear, time-invariant models with a limited number of excited-state 

compartments that are generally encountered in photophysics, the parameters that have to 

be identified are the time-invariant rate constants and parameters related to excitation and 

emission. 

Deterministic identification is thus concerned only with perfect observations and can 

point the way to improved experimental design. Imperfect data resulting from noisy 
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observations sampled over a limited time range affect the accuracy and precision with 

which model parameters can be estimated. This numerical parameter estimation of the 

model parameters and the statistical properties of the estimates are the subject of the 

second stage of any identifiability analysis and is called numerical identifiability. This 

topic, however, is beyond the scope of this review. 

Since the first deterministic identification of an intermolecular two-state excited-state 

process, identifiability studies of a broad range of compartmental models of excited-state 

processes have been reported (see ref 9 for literature data). In the current review, we 

consider the compartmental analysis and the deterministic identifiability of a limited 

number of photophysical models. We start with the simplest model (with one excited-

state compartment). Next, models for reversible intermolecular two-state excited-state 

processes in the absence9, 10 and presence11 of quencher as monitored by the total (or 

“magic angle”-selected) fluorescence are discussed. Finally, the model of a reversible 

intermolecular two-state excited-state process coupled with species-dependent rotational 

diffusion described by Brownian reorientation is considered.12, 13

The paper is organized as follows. Section 2 starts with some general concepts and 

definitions of the analysis of compartmental models and their identifiability. Two 

identification (or identifiability) approaches will be discussed in some detail. In Section 

3, the fluorescence kinetics and identifiability analysis of the system with one excited-

state compartment will be considered to illustrate some aspects of compartmental analysis 

in photophysics. In Section 4, the fluorescence dynamics and the identifiability analyses 

of three models of a reversible intermolecular two-state excited-state process without 

transient effects (i.e., with kinetics governed by time-invariant rate constants) are 
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presented. We will discuss what the effect is of the addition of quencher and of analyzing 

the time-resolved fluorescence anisotropy. When the reversible intermolecular two-state 

excited-state process is coupled with species-dependent rotational diffusion – described 

by Brownian reorientation – both spherically and cylindrically symmetric rotors, with no 

change in the principal axes of rotation in the latter, will be considered. The paper 

concludes with a discussion of the results of the identifiability studies and their relevance 

for designing experimental fluorescence decay measurements. Finally, we will refer to 

some applications of compartmental analysis in photophysics. 

For anyone new to the field, this limited review can serve as a low threshold entry point 

to compartmental modeling in photophysics. To make this introduction to this field as 

accessible as possible, we have restricted the discussion to simple models. Furthermore, 

we have avoided unnecessary mathematical derivations that may cloud the essentials. A 

full mathematical treatment can be found in the literature.9–13 Those already familiar with 

compartmental models and their application (in the areas of biomedicine, 

pharmacokinetics, ecology, engineering) will, we hope, find that compartmental 

modeling in photophysics is an exciting rather recent development with many potential 

applications. 

2. Fluorescence kinetics and identifiability analysis: general concepts 

Given a certain photophysical model, the fluorescence δ-response function f(t) (i.e., after 

an excitation pulse of infinitely short duration described by the Dirac delta function) is a 

prerequisite for tackling the important problem of identifiability – that is, whether the 

unknown model parameters can be recovered from the fluorescence δ-response function 

f(t).  
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If a causal, linear, time-invariant compartmental system consisting of N ground-state 

compartments is excited with a δ-pulse of low intensity at time zero, so that the ground-

state species population is not appreciably depleted, the time course of the excited-state 

species x*(t) can be described by the following differential matrix equation: 

( ) ( )t
t
t *

*

xAx
=

d
d ,     t ≥ 0              (1) 

with x* a N×1 vector whose elements are the concentrations of the excited-state species: 

[ ] [ ] [ ]( )T*** ...21 N=*x               (2) 

A is a N×N matrix (called “compartmental matrix” in compartmental parlance and 

“system matrix” in systems theory) containing the kinetic information (“transfer 

coefficients”) of all processes:  
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A        (3) 

kmn stands for the rate constant of transfer to compartment m* from compartment n*; the 

subscript 0 denotes a ground-state compartment. In photophysics there is always 

deactivation [through fluorescence (F) emission and/or nonradiative (NR) processes] 

from the excited-state compartments to the associated ground-state compartments (k0n  > 
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0, n = 1, 2, ..., N with k0n = kFn + kNRn). Therefore, all excited-state compartments are said 

to be open. Furthermore, all rate constants kmn (m ≠ n) and  are nonnegative: k*
nx mn ≥ 0, m 

≠ n;  ≥ 0, n = 1, 2, ..., N.  *
nx

From Eq. (1) we see that the dynamics of compartmental models are simply defined by a 

set of coupled first-order differential equations. 

Photo-excitation with light of wavelength  thus produces N associated excited-state 

compartments, for which the fluorescence δ-response function f(t) at emission 

wavelength can be expressed in matrix form as

ex
iλ

em
jλ 10

( ) bUUcbcxc A 1*)( -tt eettf Γ===              (4) 

In this equation, we assume that the matrix A has N linearly independent eigenvectors U1, 

U2, …, UN associated with the eigenvalues γ1, γ2, …, γN, respectively, i.e., A = UΓU-1 

with U = [U1, U2, …, UN] and U-1 the inverse of the matrix of the eigenvectors, Γ is the 

diagonal matrix of N eigenvalues, Γmm = γm and Γmn = 0 for m ≠ n (m, n = 1, 2, …, N), and 

etΓ = diag [exp(γ1t), exp(γ2t), …, exp(γNt)]. A, U, and etΓ are functions of the rate 

constants and for the intermolecular models considered in this paper also of the 

concentration of coreactant X. The matrix etA is called the “transition matrix” in 

compartmental terminology and is nonnegative for all t,14

( ) ( ) ...
!3!2

32

++++=
AAAIA tttet              (5) 

with I the N×N identity matrix. Hence, the fluorescence response of such a 

compartmental system after perturbation with a light pulse of infinitely short duration 

consists of a sum of (maximally) N exponentials. 
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(∑
=

γα=
N

n
nn ttf

1
exp)( )                (6) 

where αn is the pre-exponential factor associated with the nth eigenvalue γn of A. b is a 

column vector of dimension N whose (constant nonnegative) elements are the initial (i.e., 

at time zero) concentrations of each excited-state compartment: 

( )T
21 ... Nbbb=b                (7a) 

( )0*xb =                (7b) 

The elements bn of b are generally dependent on the excitation wavelength  and for 

the intermolecular models considered in this paper also on the concentration of co-

reactant X. 

ex
iλ

c is a 1×N vector related to the contribution of each compartment to the emission at :em
jλ

( )Njjj ccc ...21=c                  (8) 

The emission weighting factor cmj of species m* at emission wavelength  is given byem
jλ

( )∫
Δλ

λλρ=
em

emem
F d

j

jjmmmj kc               (9) 

In Eq. (9), kFm stands for the fluorescence rate constant of m*;  is the emission 

wavelength interval around  where the fluorescence signal is monitored; 

em
jλΔ

em
jλ ( )em

jm λρ  is 

the emission density of m* at  defined byem
jλ

( ) ( ) ( )∫ λλλ=λρ
bandemissionfull

jjmjmjm FF emememem d           (10) 
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where the integration extends over the whole steady-state fluorescence spectrum ( )em
jmF λ  

of species m*. The system (A, b, c) that has f(t) as its impulse response function is called 

a realization of f(t).

Given the realization (A, b, c), the fluorescence δ-response function f(t) is uniquely 

determined. However, given f(t), it is usually possible to find several realizations (A, b, c) 

that generate the function f(t). A general way of formulating the identification problem is 

as follows: is it possible to find different realizations of f(t), say (A, b, c) and (A+, b+, c+), 

so that Eq. (11) holds 

f(t, A, b, c) = f(t, A+, b+, c+)            (11) 

In other words, the fluorescence δ-response function f(t) should be the same for the true 

(A, b, c) and the alternative (A+, b+, c+) model parameter set.2, 3 Global (unique) 

identifiability is attained when A+ = A, b+ = b, and c+ = c (i.e., a unique set of model 

parameters is obtained). The model is locally identifiable when there is a limited set of 

alternative A+, b+, and c+. An unidentifiable model is found when there are an infinite 

number of alternative A+, b+, and c+. The formulation as given by Eq. (11) is suitable for 

most systems found in biomedicine, pharmacokinetics, ecosystem modeling and 

engineering, but is inappropriate for photophysical systems where absolute values for b 

and c cannot be obtained. Therefore, in a photophysical context, it is more appropriate to 

use normalized vectors b~ and c~ 9, 10 (see Section 4). 

There are several methods available for the analysis of the deterministic identifiability 

(i.e., identification with perfect, errorless data) of linear, time-invariant models. 

In some cases, Eq. (11) can be used directly to determine the relationship between the 

true and alternative model parameters [see Eq. (20) in Section 3].  
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The approach which, in our investigations of the deterministic identifiability of time-

invariant models for time-resolved fluorescence, has predominantly been used 

previously10–12 involves Markov parameters mm of the realization (A, b, c) and 

elementary symmetric functions σn in γ1, γ2, …, γN. The set of eigenvalues γn of A allows 

the construction of functions σn (n = 1, 2, ..., N) 

∑ γ≡σ
n

n1 , , ..., ∑
<

γγ≡σ
nm

nm2 NN γγγ≡σ ...21           (12) 

This set of nonlinear equations σn relates the eigenvalues γn or, equivalently, the 

relaxation times  to the elements of matrix A. 1−γ−=τ nn

The vectors b and c appear only in the Markov parameters mm (m = 0, 1, …, N – 1). The 

Markov parameters mm are defined as the mth time derivatives of f(t) at time zero: 

( )
m

m

m t
fm

∂
∂

≡
0 ,     m = 0, 1, …, N−1         (13a) 

∑
=

γα=
N

n

m
nnmm

1

,     m = 0, 1, …, N−1         (13b) 

where  denotes the mth power of the eigenvalue γm
nγ n and αn is the associated pre-

exponential factor (see Section 4). In terms of the realization (A, b, c) of f(t), the Markov 

parameters are expressed by: 

bAc m
mm = ,      m = 0, 1, …, N–1           (14) 

where Am represents the mth power of matrix A. For an N-compartmental system, only N 

independent Markov parameters can be constructed for each set of experimental 

conditions. The identifiability analysis deals with the determination of the unknown 

elements of matrix A and vectors b and c from σn and mm.  
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An excellent method of finding a different (alternative) realization (A+, b+, c+) of f(t) is 

via similarity transformation,2, , , 3 15 16 yielding 

T A+ = A T              (15) 

where T is a constant invertible (or nonsingular) matrix (i.e., det T ≠ 0) having the same 

dimension as A. 

The alternative b+ and c+ are given by 

b+ = T-1 b              (16) 

c+ = c T               (17) 

The major advantage of the similarity transformation approach is that it not only offers a 

direct way of determining if a model is uniquely or locally identifiable or unidentifiable, 

but it also gives the explicit relationships between the true and alternative model 

parameters.  

Equations (15–17) should be satisfied for each experimental condition. For the models 

considered, the possible experimental variables are excitation wavelength , emission 

wavelength , coreactant concentration [X]

ex
iλ

em
jλ k, and quencher concentration [Q]l. This 

implies that matrix T should be independent of , , [X]ex
iλ em

jλ k, and [Q]l.

3. Fluorescence kinetics and identifiability analysis of the compartmental 

system with one excited-state compartment 

The two objectives of this section are (1) to introduce as smoothly as possible the general 

concepts of compartmental analysis into the field of photophysics and (2) to demonstrate 

that even for the simplest model there are restrictions on the amount of information that 

can be recovered from perfect time-resolved fluorescence data. 
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In this section, a linear, time-invariant compartmental system consisting of one ground-

state species (symbolized by 1) as shown in Scheme 1 is considered. Photo-excitation 

produces the excited-state species 1* which can return to its ground state 1 with rate 

constant k01 = kF1 + kNR1. This rate constant is required to be positive (k01 > 0). Scheme 1 

is a graphical illustration of a photophysical system comprising one ground-state and one 

excited-state compartment. The system with one excited-state compartment is the scalar 

case of the compartmental model.  

Insert Scheme 1 + caption 

The differential equation describing the time-course of the quantity [ ]**
1 1=x  in the 

excited-state compartment after δ-pulse photo-excitation at  is ex
iλ

( ) ( )txk
t
tx *

101

*
1

d
d

−=              (18) 

The fluorescence δ-response function fij(t) is 

                (19) ( ) ( )tkcbtfij 0111 exp −=

The subscripts i and j on fij(t) indicate its dependence on  and , respectively. In 

photophysics, one observes the change of concentration of excited species 1

ex
iλ em

jλ

* via the 

measurement of the time-resolved fluorescence signal. This signal is dependent on the 

experimental observables { , , t} and the model parameters {kex
iλ em

jλ 01, b1, c1}.  

The question one would like to answer first in identifiability analysis, is whether it is 

possible to obtain an alternative realization { } of f+++
1101 ,, cbk ij(t) different from the true 

model parameter set {k01, b1, c1}, so that fij(t) is the same for the true and alternative 

realization: 
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( ) ( )+++= 11011101 ,,,,,, cbktfcbktf ijij            (20) 

Equation (20) is the specific form of Eq. (11) for a system with one excited-state 

compartment. Rewriting Eq. (20) specifically for the considered model, one has 

( ) ( )tkcbtkcb +++ −=− 01110111 expexp            (21) 

Evaluating Eq. (21) at time zero gives 

1111 cbcb =++             (22a) 

and hence 

0101 kk =+              (22b) 

This demonstrates that the rate constant k01 is uniquely identified, as is the product b1c1. 

However, the individual b1 and c1 cannot be identified. Indeed, from Eq. (16) with T = 

(t1) we have 111 tbb =+  and from Eq. (17) we obtain , implying that there are an 

infinite number of alternative  and . Although the composite rate constant k

111 tcc =+

+
1b +

1c 01 is 

uniquely identified, the composing rate constants kF1 and kNR1 are not identifiable without 

extra (prior) information. This additional knowledge is available if the fluorescence 

quantum yield φf is known:  

011Ff kk=φ               (23) 

The unique values of kF1 and kNR1 are then calculated according to 

01f1F kk φ=             (24a) 

( f011NR 1 φ−= kk )            (24b) 

This simple model shows that only the rate constant k01 is uniquely identified. If one 

wants to know the contributions to k01 of fluorescence (kF1) and nonradiative decay 

(kNR1), prior knowledge is needed.  
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4. Fluorescence kinetics and identifiability analysis of models of reversible 

intermolecular two-state excited-state process 

4A. Model without external quencher 

Insert Scheme 2 + caption 

In this section, we will start with the fluorescence kinetics of an intermolecular system 

consisting of two distinct interchanging ground-state species (1 and 2) and two 

corresponding excited-state species (1* and 2*) as depicted in Scheme 2 (i.e., two ground-

state compartments and two associated excited-state compartments). Ground-state species 

1 can reversibly react with coreactant X to form ground-sate species 2. Photo-excitation 

creates the excited-state species 1* and 2*, which decay by rate constants k01 and k02 to 

their respective ground states. The rate constant describing the intermolecular 

transformation of 1* into 2* is represented by k21, while the reverse process is described 

by k12. These rate constants are required to be positive as we deal with a reversible 

excited-state process. 

The fluorescence impulse response function fijk(t) [Eq. (4)] for the photophysical system 

shown in Scheme 2 is explicitly given by

( ) ( ) ikkjijk ttf bAc exp=              (25) 

The subscripts i, j, and k in Eq. (25) refer to the excitation wavelength , the emission 

wavelength , and the coreactant concentration [X]

ex
iλ

em
jλ k, respectively  

Matrix Ak is given by  

[ ]( )
[ ] ( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

+−
=

120221

122101

X
X

kkk
kkk

k

k
kA )            (26) 

The 2×1 vector bik contains the initial concentrations of excited species 1* and 2*:  
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( T
21 ikikik bb=b )              (27) 

with bnik = [n*]0 at  and [X]ex
iλ k.  

cj is the 1×2 vector of the emission weighting factors cmj (m = 1, 2) at emission 

wavelength  defined by Eq. (9).  em
jλ

( )jjj cc 21=c               (28) 

Equation (25) can be written in the common bi-exponential format: 

( ) ( ) ( )tttfijk 2211 expexp γα+γα=      t ≥ 0          (29) 

The eigenvalues γ1,2 of the 2×2 matrix A ≡ (amn) are 

( ) ⎥⎦
⎤

⎢⎣
⎡ +−±+=γ 2112

2
221122112,1 4

2
1 aaaaaa               (30) 

For the considered model, the elements amn of A are shown in Eq. (26). Since the part 

under the square root in Eq. (30) cannot be negative, the eigenvalues γ1,2 must be real. For 

a reversible two-state excited-state process, the eigenvalues γ1,2 are distinct. Repeated 

eigenvalues are obtained if the part under the square root in Eq. (30) is zero. For this, a11 

and a22 must be equal and a12a21 must be zero; the latter implies that either a12 or a21 must 

be zero. In that case the excited-state process would not be reversible anymore. If a12 and 

a21 were both zero, the compartments would not be connected.  

The pre-exponentials α1,2 corresponding to γ1,2 are  

2121111 β+β=α cc             (31a) 

2221212 β+β=α cc             (31b) 

12

1221121
11

)(
γ−γ
−−γ

=β
abab           (32a) 
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12

1221111
12

)(
γ−γ
−−γ

−=β
abab           (32b) 

12

2112222
21

)(
γ−γ

−−γ
=β

abab           (32c) 

12

2112212
22

)(
γ−γ

−−γ
−=β

abab           (32d) 

To keep Eqs. (30–32) transparent, we did not use the subscripts i, j, and k on b, c, α, β, 

and γ to indicate their dependence on , , and [X]ex
iλ em

jλ k. For the considered model the 

eigenvalues γ1,2 [Eq. (30)] depend on the rate constants and [X]k, while the pre-

exponentials α1,2 [Eq. (31)] depend additionally on  (through bex
iλ ik) and  (through 

c

em
jλ

j). 

Now let us investigate the identifiability via similarity transformation. For the considered 

system with two excited-state compartments, the 2×2 matrix T is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

43

21

tt
tt

T               (33) 

Four rate constants (k01, k21, k02, k12) have to be identified. The matrix multiplication in 

Eq. (15) with A given by Eq. (26) leads to two sets of rate constant values. 

Set I is the original set: , , ,  with T = t0101 kk =+
1212 kk =+

2121 kk =+
0202 kk =+

1I, with I the 

2×2 identity matrix and where  represents the alternative value of k+
mnk mn. 

Set II is the alternative set: , , ,  with T 

given by Eq. (34) with 

120201 kkk +=+
020112 kkk −=+

2121 kk =+
0202 kk =+

( ) 1212020113 kkkktt −−= : 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
313

1 0
ttt

t
T              (34) 
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Since  must be positive, because a reversible excited-state process is considered, set II 

is possible only if k

+
12k

01 > k02. If k01 < k02, the true set I of rate constants is recovered. 

The above results are in perfect agreement with the results obtained via the deterministic 

identification analysis based on elementary functions σn [n = 1, 2, Eqs. (35, 36)]:  

22,11211 aa kkkk +=γ+γ≡σ           (35a) 

[ ]( 120221011 X kkkk kk )+++−=σ          (35b) 

kkkkk aaaa ,211222,11212 −=γγ≡σ          (36a) 

( ) [ ]kk kkkkk X21021202012 ++=σ          (36b) 

The matrix multiplication in Eqs. (16) and (17) for T = t1I (set I) indicates that the 

alternative  and  are only known up to the scaling factor t+
ikb +

jc 1. This means that the 

photophysical system expressed in terms of A, bik, and cj is unidentifiable. Since the 

vectors bik and cj are experimentally not accessible from time-resolved fluorescence 

experiments, it is more appropriate to use normalized vectors ikb~  and jc~ . The elements 

nikb~  of ikb~  and jc~  of jc~  are defined as 

( )ikikniknik bbbb 21
~

+≡        n = 1, 2                   (37) 

( )jjmjmj cccc 21
~ +≡          m = 1, 2                     (38) 

Use of normalized +
ikb1

~  and ikb1
~  in Eq. (16), and +

jc1
~  and jc1

~  in Eq. (17) leads to ikik bb 11
~~

=+  

and jj cc 11
~~ =+ .  
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Using normalized spectral parameters ikb1
~  ( 1~0 1 ≤≤ ikb ) and jc1

~  ( 1~0 1 ≤≤ jc ) in global 

compartmental analysis of related fluorescence decay traces allows one to link ikb1
~  at the 

same  and [X]ex
iλ k, whereas can be linked at the same .  jc1

~ em
jλ

Now we consider the identifiability of ikb1
~  and jc1

~  associated with set II of the rate 

constants, where matrix T is given by Eq. (34). As was the case for set I, t1 cannot be 

determined for set II and consequently the model expressed in terms of A, bik, and cj is 

unidentifiable. Use of normalized +
nikb~  and +

nc~  and the fact that they should be restricted 

to the range [0, 1] allows one to define ranges of physically acceptable +
nikb~  and +

mjc~  

values.

Although the similarity transformation approach expresses the explicit relationships 

between the true and alternative model parameters, it does not allow one to determine 

how many concentrations [X] and emission wavelenghts λem are necessary for 

identifiability in terms of the rate constants and the normalized ikb~  and . In the 

following we will use Markov parameters m

jc~

m (m = 0, 1) to answer this question. m0,ijk is 

given by Eq. (39), while m1,ijk is expressed as a function of the matrix elements of Ak in 

Eq. (40) and as a function of the rate constants and [X]k in Eq. (41):  

ikjikjikjijk bcbcm 2211,0 +== bc             (39) 

( ) ( )2221212,212,1111,1 acacbacacbm jjikkjkjikikkjijk +++== bAc         (40) 

[ ]( ) [ ] ( )12022212122121210111,1 XX kkcbkcbkcbkkcbm jikjikkjikkjikijk +−+++−=       (41) 

Use of normalized ikb~  and jc~  allows one to rewrite the above equations with κijk as a 

scaling constant. 
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( )ikjikjijkikjijkijk bcbcm 2211,0
~~~~~~ +κ=κ= bc            (42) 

( ) ( )[ ]2221212,212,1111,1
~~~~~~~~ acacbacacbm jjikkjkjikijkikkjijkijk +++κ=κ= bAc        (43) 

[ ]( ) [ ] ( )[ ]12022212122121210111,1
~~~~X~~X~~ kkcbkcbkcbkkcbm jikjikkjikkjikijkijk +−+++−κ=     (44) 

It has been shown via the symbolic mathematics program MAPLE V (Waterloo Maple 

Inc.) that six decay traces – measured at two coreactant concentrations [X] and three 

emission wavelengths λem (corresponding to different 1
~c ) – are required for the model to 

be locally identifiable in terms of the rate constants,  and 1
~b 1

~c . Two sets of rate constants 

and concomitant spectral parameters ikb1
~  and jc1

~  may be found. For set I, we have 

ikik bb 11
~~

=+  and jj cc 11
~~ =+ . For set II, the admissible +

ikb1
~  and +

jc1
~  can be expressed as a 

function of ikb1
~ , , and the rate constants.  jc1

~

4B. Model with added quencher 

Insert Scheme 3 + caption 

Consider the molecular system (Scheme 3) with an equilibrium between two different 

species 1 and 2 in the ground state which form upon photo-excitation the excited-state 

species 1* and 2*, respectively. The rate constants k01, k02, k21, and k12 have the same 

meaning as in Scheme 2. By addition of an external quencher, Q, with concentration [Q]l, 

the depletion of the excited states is enhanced by kq1 [Q]l for 1* and kq2 [Q]l for 2*. It is 

assumed that the quencher Q has only an effect on the excited species and does not affect 

the ground-state equilibrium. The fluorescence δ-response function fijkl(t) can be 

expressed in matrix notation:

( ) ( ) ikkljijkl ttf bAc exp=             (45) 
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The subscripts i, j, k and l in Eq. (45) refer to , , [X]ex
iλ em

jλ k, and [Q]l, respectively.  

Matrix Akl is given by

[ ] [ ]( )
[ ] [ ]( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−

++−
=

lk

lk
kl kkkk

kkkk
QX

QX

q2120221

12q12101A         (46) 

bik and cj are given by Eqs. (27) and (28), respectively. As it is assumed that Q does not 

affect the ground-state equilibrium, bik is independent of [Q]l. 

fijkl(t) can be expressed in the common bi-exponential format [Eq. (29)], with the 

eigenvalues γ1,2 [Eq. (30)] dependent on the rate constants, [X]k, and [Q]l. The pre-

exponentials α1,2 [Eq. (31)] are dependent additionally on  and  .  ex
iλ em

jλ

First, we investigate the identifiability via similarity transformation. Six rate constants 

(k01, k21, k02, k12, kq1, kq2) have to be determined. Matrix T has the same dimension as A 

and is given by Eq. (33). If the rate constants of quenching are different (kq1 ≠ kq2), the 

matrix multiplication in Eq. (15) leads to the unique set of original rate constants (i.e., set 

I  of Section 4A): , , , , and , with T 

= t

0101 kk =+
1212 kk =+

2121 kk =+
0202 kk =+

1q1q kk =+
2q2q kk =+

1 I. If the quenching rate constants are identical (kq1 = kq2) and additionally if k01 > k02, 

the alternative set of rate constants is given by set II of Section 4A: , 

, , ) and . 

120201 kkk +=+

020112 kkk −=+
2121 kk =+

0202 kk =+
q2q1q2q1 kkkk === ++

Use of normalized ikb1
~  and  for T = tjc1

~
1 I leads to the unique spectral parameters: 

ikik bb 11
~~

=+  and jj cc 11
~~ =+ . 

To conclude, if the quenching rate constants of a quencher added to a reversible 

intermolecular two-state excited-state process are different (kq1 ≠ kq2),  this model is 

uniquely identifiable in terms of rate constants and normalized ikb1
~  and jc1

~  
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Second, the identifiability of the six rate constants can be done using σ1kl and σ2kl [Eq. 

(47)]: 

( ) [ ] ( )[ ]lkkl kkkkkk QX 2q1q211202011 +−−++−=σ        (47a) 

( ) [ ] [ ]( ) ( ){ }[ ]
[ ]2

2q1q

1q12022q210121021202012

Q

QXX

kk

kkkkkkkkkkk lkkkl +++++++=σ
    (47b) 

For each combination ([X]k, [Q]l), one has one set of the above equations. It has been  

shown that four decay traces – measured at two coreactant concentrations [X] and two 

quencher concentrations [Q], namely {([X]1, [Q]1), ([X]1, [Q]2), ([X]2, [Q]1), ([X]2, [Q]2)} 

– lead to the identification of all six rate constants, provided that kq1 ≠ kq2: , 

, , , , . For more details, we refer to the 

original paper.  

0101 kk =+

1212 kk =+
2121 kk =+

0202 kk =+
1q1q kk =+

2q2q kk =+

4C. Model with species-dependent rotational diffusion 

Insert Figure 1 + caption 

The photophysical system consisting of two different interchanging species 1 and 2, each 

with distinct rotational characteristics – as depicted in Figure 1 – is considered. All the 

rate constants are assumed independent of the instantaneous orientation of the species. 

The rotational relaxation of each excited-state species is governed by its principal 

rotational diffusion constants, here D⊥ and D|| for rotation, respectively, of and about the 

symmetry axis of each of the cylindrically symmetric rotors depicted in Figure 1. The 

fluorescence impulse response function ( )tI ijk||  for the plane-polarized component of 

emission of the two excited states 1* and 2*, having its electric vector polarized parallel to 

the electric vector of the plane-polarized excitation light, and the fluorescence δ-response 
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function  for the perpendicularly polarized component can be expressed, in the 

case of pure transitions and isotropic solutions, as:

( )tI ijk⊥

17

( ) ( )[ ] ( ) ( )tDtStrtStI ikjikjikjikjikj 3
2

3
121

3
1)(|| +=+=        (48a) 

( ) ( )[ ] ( ) ( )tDtStrtStI ikjikjikjikjikj 3
1

3
11

3
1)( −=−=⊥        (48b) 

where rijk(t) denotes the fluorescence emission anisotropy and with

( ) ( ) 00,00,00 exp3 ikkj,ijk ttS bAc=            (49) 

( ) ( ) MikDkMjijk ttD 2,2, exp3 bAc=            (50) 

As before, the subscripts i, j, and k in ( )tI ijk||  and ( )tI ijk⊥  [Eq. (48)], in  [Eq. (49)] 

and in  [Eq. (50)] refer to , , and [X]

( )tSijk

( )tDijk
ex
iλ em

jλ k, respectively. Sijk(t) corresponds to the 

total time-resolved emission of the photophysical system, is independent of rotational 

diffusion, and does not contain any information about the orientations of the transition 

moments. Information about rotational diffusion is contained exclusively in Dijk(t). 

Matrix Ak,00 in Eq. (49) is identical with Ak defined by Eq. (26). ADk in Eq. (50) is 

defined as: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
−

−

22,

21,

20,

12,

22,

0000
0000
0000
0000
0000

Dk

Dk

Dk

Dk

Dk

Dk

A
A

A
A

A

A          (51) 

with blocks ADk,2M given by:  

[ ]( )
[ ] ( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−

++−
=

Mk

Mk
MDk Dkkk

kDkk

2,2120221

122,12101
2, X

X
A         (52) 
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with M = −2, −1, 0, 1, 2. Dn,2M (n denotes either 1 or 2) is given by 

( )nnnMn DDMDD ⊥⊥ −+= ||
2

2, 6            (53) 

D⊥n and D||n (see Figure 1) are the components of the rotational diffusion tensor of the 

cylindrically symmetric species n in its molecular reference frame (x, y, z), chosen such 

that the rotational diffusion tensor is diagonal,12 reducing to the unique component Dn (= 

D⊥n = D||n) in the case of the spherically symmetric rotor n.  

For a spherically symmetric rotor (Dn = D⊥n = D||n), the matrices ADk,2M [Eq. (52)] are all 

identical and independent of M. In this case matrix block ADk,2M can be written as: 

[ ]( )
[ ] ( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−

++−
=

2122021

1212101
2, 6X

6X
Dkkk

kDkk

k

k
MDkA         (54) 

The elements of vector bik,LM {with L = M = 0 [Eq. (49)], or L = 2 and M = ±2, ±1, 0 [Eq. 

(50)]} are the excitation coefficients bnik,LM. In bnik,LM n stands for either species 1 or 2; i 

and k refer to  and [X]ex
iλ k, respectively; L and M refer to the orientation of the 

absorption transitions. The elements bnik,LM can be expressed as the product of the initial 

concentration of n*, bnik = [n*]0, the appropriate spherical harmonic ( )n
M

LY â 18 for the 

orientation of the absorption transition moment ân in the molecular frame of species n, 

and a scaling factor BBL:  

( )n
M

LnikLLMnik YbBb â, =              (55) 

with 30
1

12
1

π
=B  and 32

5
30
1

π
=B . 

For L = M = 0, we have ( )
π

=
4
1ˆ0

0 nY a  and 200, 24π
= nik

nik
bb . 

The 2×1 vector bik,00 in Eq. (49) is explicitly given by: 
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( )T
00,200,100, ikikik bb=b              (56) 

whereas the 10×1 vector bik,2M in Eq. (50) is expressed as: 

( )T
22,222,121,2B21,120,220,1A12,212,122,222,12, ikikikikikikikikikikMik bbbbbbbbbb −−−−=b  

                (57) 

The elements of vector cj,LM {with L = M = 0 [Eq. (49)], or L = 2 and M = ±2, ±1, 0 [Eq. 

(50)]} are the corresponding emission coefficients cmj,LM (m represents either species 1* or 

2*). The emission coefficients cmj,LM are given by:

( m
M

LmjLLMmj YcCc ê*
, = )              (58) 

where 5
0 3

16
π=C , 

515
16 5

2
π

=C , and ( )m
M

LY ê*  is the complex conjugate of the 

appropriate spherical harmonic for the orientation of the emission transition moment êm  

in the molecular frame. 

For L = M = 0, we have 
3

8 2

00,
mj

mj

c
c

π
= .  

The coefficient cmj is defined by Eq. (9). Vector cj,00 in Eq. (49) is explicitly given by: 

( )00,200,100, jjj cc=c              (59) 

while vector cj,2M in Eq. (50) is expressed as: 

( )22,222,121,221,120,220,112,212,122,222,12, jjjjjjjjjjMj cccccccccc −−−−=c       (60) 

Since both ( ) ( ) ( )tItItS ijkijkijk ⊥+= 2||  [Eq. (49)] and ( ) ( ) tItItD ijkijkijk ⊥−= || ( )  [Eq. (50)] 

can be expressed in matrix form, the identification analysis via similarity transformation 

is carried out using the Sijk(t) and Dijk(t) functions.  
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1. Kinetic parameters 

We start first with the identification via similarity transformation involving Sijk(t). For f(t, 

A, b, c) = Sijk(t, Ak,00, bik,00, cj,00), Ak,00 in Eq. (49) is identical with Ak defined by Eq. (26), 

bik,00 and cj,00 are given by Eqs. (56) and (59), respectively, and T is defined by Eq. (33). 

As Sijk(t) reflects the time dependence of the total fluorescence and contains information 

only on the excited states, the identifiability analysis will be the same as that derived for a 

reversible intermolecular two-state excited-state process without external quencher9, 10 

(Section 4A). As shown previously, two sets of rate constants are obtained: set I contains 

the original rate constants: , , ,  with T = t0101 kk =+
1212 kk =+

2121 kk =+
0202 kk =+

1I; set II is 

the alternative set: , , ,   with T given by 

Eq. (34), provided that k

120201 kkk +=+
020112 kkk −=+

2121 kk =+
0202 kk =+

01 > k02.  

Now we consider the identification involving f(t, A, b, c) = Dijk(t, ADk, bik,2M, cj,2M) in 

which we will use the results of the identifiability analysis involving Sijk(t). We assume 

that the similarity transformations for Sijk(t) and Dijk(t) are independent. 

Kinetic parameters of the cylindrically symmetric rotor 

Now ADk is defined by Eq. (51) with blocks ADk,2M given by Eq. (52). bik,2M is given by 

Eq. (57) with bnik,2M defined by Eq. (55), cj,2M  is given by Eq. (60) with cmj,2M defined by 

Eq. (58). Also the transformations of the various blocks ADk,2M in ADk [Eq. (51)] are 

independent of each other. Matrix T is a block-diagonal matrix: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

0

1

2

0000
0000
0000
0000
0000

T
T

T
T

T

T
-

-

            (61) 
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with the matrices TM (M = −2, −1, 0, 1, 2) expressed as 

⎥
⎦

⎤
⎢
⎣

⎡
=

4,3,

2,1,

MM

MM
M tt

tt
T              (62) 

Because T and ADk are both block-diagonal matrices, the matrix multiplication of Eq. 

(15) is split into five separate matrix multiplications (two of those are identical; M = −2 

and M = +2; M = −1 and M = +1). It is straightforward to show that the matrix 

multiplication [Eq. (15)] involving  and  [for M = ±2, ±1, 0] leads to two 

sets of  parameters: set III ( , , , 

) corresponding to T

+
MDk 2,A MDk 2,A

MM DkDk 2,1012,101 +=+ ++
1212 kk =+

2121 kk =+

MM DkDk 2,2022,202 +=+ ++
M = tM,1 I, and set IV 

( , , , 

) corresponding to T

MM DkkDk 2,212022,101 ++=+ ++
MM DDkkk 2,22,1020112 −+−=+

2121 kk =+

MM DkDk 2,2022,202 +=+ ++
M given by Eq. (63) with 

( ) 121202011,3, kkkktt MM −−= : 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
3,1,3,

1, 0

MMM

M
M ttt

t
T             (63) 

To solve for the individual , , , , , , , and , one should 

combine the equations describing sets I and II with the equations describing sets III and 

IV. This produces two possible solutions. (1) The original set I of rate constants is 

combined with the original set of rotational diffusion coefficients: , , 

, . (2) If the rotational diffusion coefficients of both species are equal 

(  and ), an alternative set of rate constants (i.e., set II of Section 4A) 

+
01k +

12k +
21k +

02k +
⊥1D +

1||D +
⊥2D +

||2D

11 ⊥
+
⊥ = DD 1||1|| DD =+

22 ⊥
+
⊥ = DD ||2||2 DD =+

21 ⊥⊥ = DD ||21|| DD =
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and the true rotational diffusion coefficients (  and 

) may be obtained. 

2121 ⊥⊥
+
⊥

+
⊥ === DDDD

2||1||||21|| DDDD === ++

The same result can be obtained by considering the elementary functions σn [Eq. (12)] for 

the matrix blocks ADk,2M, i.e. σD1k,2M and σD2k,2M
.. The six eigenvalues of ADk can be 

arranged into three pairs, each pair corresponding to a different value of M, and each pair 

can be assigned to the proper M.12 Therefore, the functions σD1k,2M and σD2k,2M can be 

obtained unambiguously.  

It can be shown that  

MMkMkD DD 2,22,112,1 −−=σ−σ      (64a) 

MlklMlDkMkD Dk 2,22122,222,2 )]X[]X([)()( −=σ−σ−σ−σ      (64b) 

from which  and are immediately recovered.  and  considered for 

two values of M then provide the required rotational diffusion coefficients , , , 

and . 

MD 2,1 MD 2,2 MD 2,1 MD 2,2

1⊥D 1||D 2⊥D

2||D

To summarize, the identifiability analysis involving both Sijk(t) and Dijk(t) shows that the 

model for reversible intermolecular two-state excited-state processes with coupled 

rotational diffusion for a cylindrically symmetric ellipsoid is uniquely identifiable in 

terms of rate constants and rotational diffusion coefficients when the rotational diffusion 

of the two species is different. If the rotational characteristics of the two species are 

identical, a second set of rate constants (set II) is possible. 

Kinetic parameters of the spherically symmetric rotor 

An identification analysis based on similarity transformation for a spherically symmetric 

rotor similar to that for the cylindrically symmetric ellipsoid also gives two solutions. (1) 
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If the rotational diffusion coefficients of both species are different (D1 ≠ D2), the unique 

set of true rate constants (i.e., set I of Section 4A) and true rotational diffusion 

coefficients ( , ) are obtained. (2) When the rotational diffusion 

coefficients of both species are identical (D

11 DD =+
22 DD =+

1 = D2), an alternative set of rate constants 

(i.e., set II of Section 4A) may be obtained together with the true rotational diffusion 

coefficients ( ). The same conclusions can be arrived at by 

considering the elementary functions σ

2121 DDDD === ++

n [Eq. (12)] for matrix ADk,2M [Eq. (54)], 

( 2111 6 DD  kkD +−σ=σ )          (65a) 

( ) ( ) 21112022210122 366]X[6 DDDk+k+Dkk+ = kkkD ++σσ       (65b) 

and by evaluating these expressions at two concentrations of coreactant X.  

2. Parameters related to excitation and emission 

For Sijk(t), use of normalized 00,1
~

ikb  ( 00,100,2
~1~

ikik bb −=  ) and   (jc1
~

jj cc 12
~1~ −= ) for T = t1 I 

leads to unique normalized parameters: ikik bb 100,1
~~

=+  and jj cc 100,1
~~ =+ . ikb1

~  and jc1
~  are 

defined by Eqs. (37) and (38), respectively. 

For Dijk(t) and TM = tM,1 I (corresponding to set I and the true rotational diffusion 

coefficients), one has  

MmjMnikMmjMnik cbcb 2,2,2,2, =++             (66) 

with m, n  = 1, 2 and M = ±2, ±1, 0.  

The products of the spherical harmonics implicitly contained in Eq. (66) can be summed 

via the addition theorem, yielding the second-order Legendre polynomial P2(ân . êm) of 

the cosine of the angle between transition moments ân  and êm, 
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( )mnmjnik
M

MmjMnik PcbCBcb ea ˆˆ
4
5

222

2

2
2,2, ⋅=∑

−= π
          (67) 

This theorem in combination with  yields mjlikmjlik cbcb =++

( ) ( mnmn PP eaea ˆˆˆˆ 22 ⋅=⋅ ++ )              (68) 

with n, m  = 1, 2 and where  and  denote alternative transition moments. This 

implies that all P

+
nâ +

mê

2(ân . êm) can be uniquely determined. 

Use of normalized Mikb 2,1
~  ( MikMik bb 2,12,2

~1~
−=  ) and  Mjc 2,1

~  ( MjMj cc 2,12,2
~1~ −= ) for TM = 

tM,1 I leads to unique normalized parameters: 

MikMik bb 2,12,1
~~

=+                  (69) 

MjMj cc 2,12,1
~~ =+               (70) 

Substitution of Eq. (55) in Eq. (69) gives 

( )
( )

( )
( )22

12

22

12

ˆ
ˆ

ˆ
ˆ

a
a

a
a

M

M

M

M

Y
Y

Y
Y

=+

+

             (71) 

so that the ratio of the spherical harmonics for the orientation of the absorption transition 

moments â1 and â2 is uniquely identified. 

Similarly, substitution of Eq. (58) in Eq. (70) yields 

( )
( )

( )
( )2

*
2

1
*

2

2
*

2

1
*

2

ˆ
ˆ

ˆ
ˆ

e
e

e
e

M

M

M

M

Y
Y

Y
Y

=+

+

             (72) 

implying that the ratio of the spherical harmonics for the orientation of the emission 

transition moments ê1 and ê2 is uniquely determined. 

Information about the relative orientation of the transition moments can also obtained 

from the Markov parameters mDn,ikj. On introducing the scaling factor κijk, one has that
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∑∑
==

Δ
π

=
2

1,
2,2,

2

0
,

~~][κ
25
8

ml
Mlmmjliklm

n
MDk

M
ikjikjDn cbm A        (73) 

where Δlm,2M are geometrical factors given, for M = 0, by 

( ) ( )lmlm YY ae ˆˆ 202020,
∗=Δ              (74) 

and, for M = 1, 2: 

( ) ( ) ( ) ( )lMmMlMmMMlm YYYY aeae ˆˆˆˆ 222
*

22,
∗

−− +=Δ           (75) 

Since the mDn,ikj are all linear in Δlm,2M, and since likb~ , mjc~ , the rate constants, , and 

 are already determined, Δ

lD⊥

lD|| lm,2M can readily be found from the set mDn,ikj, where n = 0, 

1, ..., 5, considered for two excitation wavelengths  in the same absorption band or for 

two values of the coreactant concentration [X]. Since, according to the addition theorem,

ex
iλ

( ) ∑
=

Δ=⋅
2

0
2,2 5

4ˆˆ
M

MlmmlP πea             (76) 

the angles between all pairs âl and êm can be determined. 

In conclusion, if the rotational diffusion coefficients of the two rotors are different, 

rotational diffusion coupled to a reversible intermolecular two-state excited-state process 

makes this model uniquely identifiable in terms of rate constants, rotational diffusion 

constants and normalized Mikb 2,1
~  and . Mjc 2,2

~

5. Discussion and conclusions 

In this review we have shown that the compartmental analysis approach is excellently 

suited to describe the kinetics and identifiability of models frequently encountered in 

photophysics. The term “compartment” in a photophysical context is defined as a 

subsystem composed of a distinct type of species that acts kinetically in a unique way. 
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The compartmental systems considered here consist of one excited-state compartment, 

two reversibly interconnected excited-state compartments, and their corresponding 

ground-state compartments. Three models of reversible intermolecular two-state excited-

state processes in isotropic environments are discussed: (1) model without external 

quencher, (2) model with added quencher, (3) model with coupled species-dependent 

rotational diffusion described by Brownian reorientation. In a first step, we applied the 

similarity transformation approach to provide us with the explicit relationships between 

the true and alternative model parameters. The other identifiability approach based on 

Markov parameters and elementary functions σ1,2 of the eigenvalues γ1,2 was 

subsequently used to find the experimental conditions under which the model parameters 

can be recovered. Global compartmental analysis with linked model parameters can be 

used to estimate these parameters.  

Since the deterministic identification analysis assumes by its very own nature that the 

decay data are error-free (the analysis is based on algebraic equations), the analysis gives 

the necessary and sufficient requirements to extract the model parameters. However, in 

real experiments, where the decays do have systematic errors and different parameter sets 

can sometimes produce fits of similar quality, it is advantageous to collect and analyze 

more fluorescence decay curves than is required according to the deterministic 

identification.  

Finally, numerical identifiability via global compartmental analysis19 has been used to 

estimate rate constants and parameters related to excitation and emission for a number of 

reversible intermolecular two-state excited-state processes using fluorescence decay 

surfaces measured at various excitation and emission wavelengths and coreactant 
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concentrations. Global compartmental analysis has the advantage that the parameters of 

interest are determined directly from the complete decay data surface in a single step. 

Applications of global compartmental analysis of reversible intermolecular two-state 

excited-state processes comprise excimer formation of pyrene,20 exciplex formation 

between 1-methylpyrene and trietheylamine,21 photophysics of 2-naphthol,22 

photophysics of the binding of Ca2+ by Fura-2,23 Quin-2,24 APTRA-BTC,25  and Thio-

H,26 photophysics of the fluorescent K+ indicator PBFI,27 the fluorescent probe SBFO28 

for Na+ and Mag-fura-229 for Mg2+. 
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Scheme 1. Scheme representing a one-state excited-state process described by the 

deactivation rate constant k01. 
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Scheme 2. Scheme representing a reversible intermolecular two-state excited-state 

process. The excited-state processes are described by the deactivation rate constants k01 

and k02, and the excited-state exchange rate constants k21 and k12. The transformation of 

species 1 and 1∗ into, respectively, 2 and 2∗ is mediated by coreactant X. 
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Scheme 3. Scheme representing a reversible intermolecular two-state excited-state 

process with external quencher. It is assumed that the quencher Q has only an effect on 

the excited species and does not affect the ground-state equilibrium. The excited-state 

processes are described by the deactivation rate constants k01 and k02, and the excited-

state exchange rate constants k21 and k12 as in Scheme 2. The transformation of species 1 

and 1∗ into, respectively, 2 and 2∗ is mediated by coreactant X. The additional 

deactivation of 1* and 2* due to the external quencher Q is described by the rate constants 

kq1 and kq2, respectively. 
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Figure 1. Graphic representation of a reversible intermolecular two-state excited-state 

process, including rotation. Species 1* and 2* are pictured as being initially excited from 

their ground states 1 and 2 by a short linearly polarized light pulse at wavelength  in a 

unique absorption band. The excited-state processes are described by the deactivation rate 

constants k

ex
iλ

01 and k02, and the excited-state exchange rate constants k21 and k12 as in 

Scheme 2. The transformation of species 1 and 1∗ into, respectively, 2 and 2∗ is mediated 

by co-reactant X.. Simultaneously the species rotate with rate constants determined by the 

corresponding rotational diffusion tensors which may differ between the species. The 

polarized emission of each species depends on the relative orientation of its emission 
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transition moment (with unit vector ê1 or ê2) at the instance of emission with respect to 

the absorption moment (with unit vector â1 or â2) in the species initially excited.  
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