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Abstract

The main objective of this review is to show how the concepts of compartmental
modeling can be introduced and applied in photophysics. The term “compartment” in a
photophysical context is defined as a subsystem composed of a distinct type of species
that acts kinetically in a unique way. Compartments can be divided into ground and
excited-state compartments depending upon the state of the composing species. In
photophysics, a compartmental system is perturbed by a light pulse (photo-excitation)
and its dynamics is followed via fluorescence in the time range from picoseconds to
several hundred nanoseconds. In this review, we present the fluorescence o-response
functions for compartmental systems consisting of one excited-state compartment, two
reversibly interconnected excited-state compartments, and their corresponding ground-
state compartments. In deterministic identifiability one investigates whether the
parameters of a specific model can be uniquely defined assuming perfect time-resolved
fluorescence data. The identifiability is presented for the model with one excited-state
compartment and three models of reversible intermolecular two-state excited-state
processes in isotropic environments: (1) model without external quencher, (2) model with
added quencher, (3) model with coupled species-dependent rotational diffusion described
by Brownian reorientation. The parameters that have to be identified are time-invariant
rate constants and parameters related to excitation and emission. It is shown under what
conditions the relevant parameters can be identified. For all models, the explicit

relationships between the true and alternative model parameters are shown.



1. Introduction

Compartmental modeling is frequently used in biomedicine, pharmacokinetics, analysis
of ecosystems, engineering, and chemical reaction kinetics (see, for example, refs 1, 2,
3). Considering this extensive interest, it may seem rather surprising that compartmental
modeling of excited-state processes in photophysics has started relatively late.* > ¢ 7+ 8
Indeed, as the relaxation of excited-state processes can in many instances be described by
a set of coupled first-order differential equations, excited-state systems are formally
equivalent with compartmental systems. It will be shown in this review that modeling of
excited-state processes in photophysics can conveniently be done within the framework
of compartmental analysis.

Let us start by defining what the term “compartment” stands for in a photophysical
context. A compartment is a subsystem composed of a distinct type of species that acts
kinetically in a unique way. The concentration of the constituting species can change
when the compartments exchange material through intramolecular or intermolecular
processes. In the perspective of compartmental modeling of excited-state processes,
compartments can be divided into ground-state and excited-state compartments
depending upon the state of the composing species. The compartmental system then
consists of one or more excited-state compartments and their corresponding ground-state
compartments. There may be inputs from ground-state compartments into one or more of
the excited-state compartments by photo-excitation. There is always output from the
excited-state compartments to the ground-state compartments through emission and/or
nonradiative deactivation. If the concentrations of the species in the ground state do not

significantly change upon photo-excitation, it suffices to consider the excited-state



compartments only. In that case, the ground-state compartments can be lumped together
as the outside environment. Compartments are usually depicted as boxes (rectangles, see
Schemes), circles or ovals enclosing the composing species. Single-headed arrows
pointing away from a compartment represent outflow from that compartment, whereas
single-headed arrows pointing toward a compartment depict inflow into that
compartment. In contrast to “classical” compartmental analysis, the terms ‘“size” or
“volume” are not relevant for compartments in photophysics.

In kinetics, one is concerned with finding the response of a compartmental system to an
external perturbation, given the structure of the system (i.e., the links between the
compartments) and the rate constants describing the rates of the intercompartmental
transitions. Deriving the kinetic expressions is often referred to as the direct problem of
compartmental analysis. In photophysics, the response of the excited-state compartments
after photo-excitation (called “the external perturbation” in compartmental jargon) is
commonly measured as time-resolved fluorescence. Since fluorescence decay traces can

be monitored under a diversity of experimental conditions — the excitation wavelength

A;", the emission wavelength A", the concentration of coreactant [X]i, the concentration

of external quencher [Q];, the temperature, the added buffer, orientation of excitation and
emission polarizers, ... can all be varied independently — compartmental systems in
photophysics have more experimental axes to study a given problem than in the
“classical” areas of application of compartmental modeling. Moreover, a very large
number (several thousands) of data points of high quality can be collected from time-

resolved fluorescence measurements. This is usually not possible for the “common”



compartmental systems. Additionally, the prior knowledge available in fluorescence
studies might also be different from that in “classical” compartmental systems.

An essential first stage of any identifiability analysis deals with finding solutions for the
model parameters when ideal (noise-free) data are available. This identifiability with
perfect observations is called deterministic identifiability.

In the deterministic identification (or identifiability) problem, one investigates as to
whether or not the parameters of a specific model are uniquely defined under error-free
observations, given that the model is completely specified including input into, output

5 The deterministic identification

from, and exchange between the compartments.
problem reduces to the question of whether a system of nonlinear algebraic equations has
a unique solution. There are three possible outcomes to the identifiability analysis.

(1) The parameters of an assumed model can be estimated uniquely and the model is said
to be uniquely (globally) identifiable from the idealized experiment.

(2) Any of a finite number of alternative estimates for some or all of the model
parameters fits the data and the model is locally identifiable.

(3) An infinite number of model parameter estimates fits the data and the model is
unidentifiable from the experiment.

For the linear, time-invariant models with a limited number of excited-state
compartments that are generally encountered in photophysics, the parameters that have to
be identified are the time-invariant rate constants and parameters related to excitation and
emission.

Deterministic identification is thus concerned only with perfect observations and can

point the way to improved experimental design. Imperfect data resulting from noisy



observations sampled over a limited time range affect the accuracy and precision with
which model parameters can be estimated. This numerical parameter estimation of the
model parameters and the statistical properties of the estimates are the subject of the
second stage of any identifiability analysis and is called numerical identifiability. This
topic, however, is beyond the scope of this review.

Since the first deterministic identification of an intermolecular two-state excited-state
process, identifiability studies of a broad range of compartmental models of excited-state
processes have been reported (see ref 9 for literature data). In the current review, we
consider the compartmental analysis and the deterministic identifiability of a limited
number of photophysical models. We start with the simplest model (with one excited-
state compartment). Next, models for reversible intermolecular two-state excited-state

' and presence'' of quencher as monitored by the total (or

processes in the absence”
“magic angle”-selected) fluorescence are discussed. Finally, the model of a reversible
intermolecular two-state excited-state process coupled with species-dependent rotational
diffusion described by Brownian reorientation is considered.'* ?

The paper is organized as follows. Section 2 starts with some general concepts and
definitions of the analysis of compartmental models and their identifiability. Two
identification (or identifiability) approaches will be discussed in some detail. In Section
3, the fluorescence kinetics and identifiability analysis of the system with one excited-
state compartment will be considered to illustrate some aspects of compartmental analysis
in photophysics. In Section 4, the fluorescence dynamics and the identifiability analyses

of three models of a reversible intermolecular two-state excited-state process without

transient effects (i.e., with kinetics governed by time-invariant rate constants) are



presented. We will discuss what the effect is of the addition of quencher and of analyzing
the time-resolved fluorescence anisotropy. When the reversible intermolecular two-state
excited-state process is coupled with species-dependent rotational diffusion — described
by Brownian reorientation — both spherically and cylindrically symmetric rotors, with no
change in the principal axes of rotation in the latter, will be considered. The paper
concludes with a discussion of the results of the identifiability studies and their relevance
for designing experimental fluorescence decay measurements. Finally, we will refer to
some applications of compartmental analysis in photophysics.

For anyone new to the field, this limited review can serve as a low threshold entry point
to compartmental modeling in photophysics. To make this introduction to this field as
accessible as possible, we have restricted the discussion to simple models. Furthermore,
we have avoided unnecessary mathematical derivations that may cloud the essentials. A
full mathematical treatment can be found in the literature.” "> Those already familiar with
compartmental models and their application (in the areas of biomedicine,
pharmacokinetics, ecology, engineering) will, we hope, find that compartmental
modeling in photophysics is an exciting rather recent development with many potential

applications.
2. Fluorescence kinetics and identifiability analysis: general concepts

Given a certain photophysical model, the fluorescence d-response function f(t) (i.e., after
an excitation pulse of infinitely short duration described by the Dirac delta function) is a
prerequisite for tackling the important problem of identifiability — that is, whether the

unknown model parameters can be recovered from the fluorescence d-response function

f(t).



If a causal, linear, time-invariant compartmental system consisting of N ground-state
compartments is excited with a d-pulse of low intensity at time zero, so that the ground-
state species population is not appreciably depleted, the time course of the excited-state

species X*(t) can be described by the following differential matrix equation:

—dX;t(t):Ax*(t), £>0 ()

with X" a Nx1 vector whose elements are the concentrations of the excited-state species:

* * * = \T
=] ] .. N) @)
A is a NxN matrix (called “compartmental matrix” in compartmental parlance and

“system matrix” in systems theory) containing the kinetic information (“transfer

coefficients™) of all processes:

N
- k01 + Z knl k12 k13 klN
i
N
k21 - koz + z knz k23 k2N
ne
A = " (3)
k31 k32 - ko3 + 2 kn3 k3N
n=l
N
kNl sz kN3 e T kON + zan
n=1
n=N

Kmn stands for the rate constant of transfer to compartment m’ from compartment n*; the
subscript 0 denotes a ground-state compartment. In photophysics there is always
deactivation [through fluorescence (F) emission and/or nonradiative (NR) processes]

from the excited-state compartments to the associated ground-state compartments (Kon >



0,n=1,2, ..., N with Kon = Kgn + Knrn). Therefore, all excited-state compartments are said
to be open. Furthermore, all rate constants Kyn (M # N) and X are nonnegative: Kyn >0, m
#n; X >0,n=1,2,..,N.

From Eq. (1) we see that the dynamics of compartmental models are simply defined by a
set of coupled first-order differential equations.

Photo-excitation with light of wavelength A;* thus produces N associated excited-state

compartments, for which the fluorescence o-response function f(t) at emission

. . 1
wavelength A" can be expressed in matrix form as 0

f()=cx'(t)=ce” b=cUe"U"' b 4)
In this equation, we assume that the matrix A has N linearly independent eigenvectors U,
U,, ..., Uy associated with the eigenvalues vi, 72, ..., YN, respectively, i.e., A = uru’!
with U = [U;, Uy, ..., Uy] and U the inverse of the matrix of the eigenvectors, I" is the
diagonal matrix of N eigenvalues, ['mm=ymand 'mp=0form#n(m,n=1,2, ..., N), and
et = diag [exp(yit), exp(yat), ..., exp(ynt)]. A, U, and e are functions of the rate
constants and for the intermolecular models considered in this paper also of the
concentration of coreactant X. The matrix e” is called the “transition matrix” in

compartmental terminology and is nonnegative for all t,'*

2 3
em:I+tA+(tA) +(tA) + ... (5)
2! 3!

with | the NxN identity matrix. Hence, the fluorescence response of such a
compartmental system after perturbation with a light pulse of infinitely short duration

consists of a sum of (maximally) N exponentials.



f(t)=Z:ocn exp(yn t) (6)

where o, is the pre-exponential factor associated with the nth eigenvalue y, of A. b is a
column vector of dimension N whose (constant nonnegative) elements are the initial (i.e.,

at time zero) concentrations of each excited-state compartment:
b=(@® b, .. by) (7a)
b=x"(0) (7b)
The elements b, of b are generally dependent on the excitation wavelength A;* and for

the intermolecular models considered in this paper also on the concentration of co-

reactant X.

cis a 1xN vector related to the contribution of each compartment to the emission at A" :
c=(c;, ¢; - cy) ®)

The emission weighting factor Cpj of species m’ at emission wavelength A" is given by

ij = ka Ipm(}\‘ejm)d}\‘?m (9)

AR
In Eq. (9), kem stands for the fluorescence rate constant of m*; Akejm 1s the emission
wavelength interval around A" where the fluorescence signal is monitored; pm(k‘}m) is

the emission density of m at A5" defined by

pnltm)=F, (xj.m)/ [ R () anem (10)

full emission band
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where the integration extends over the whole steady-state fluorescence spectrum F (k‘jm)

of species m". The system (A, b, ¢) that has f(t) as its impulse response function is called
a realization of f(t).
Given the realization (A, b, c), the fluorescence d-response function f(t) is uniquely
determined. However, given f(t), it is usually possible to find several realizations (A, b, )
that generate the function f(t). A general way of formulating the identification problem is
as follows: is it possible to find different realizations of f(t), say (A, b, ¢) and (A", b", ¢"),
so that Eq. (11) holds

f(t, A, b,c) =f(t, A", b", ¢ (11)
In other words, the fluorescence d-response function f(t) should be the same for the true
(A, b, ¢) and the alternative (A", b", ¢") model parameter set.” * Global (unique)
identifiability is attained when A" = A, b" = b, and ¢ = ¢ (i.e., a unique set of model
parameters is obtained). The model is locally identifiable when there is a limited set of
alternative A", b", and ¢". An unidentifiable model is found when there are an infinite
number of alternative A", b", and ¢”. The formulation as given by Eq. (11) is suitable for
most systems found in biomedicine, pharmacokinetics, ecosystem modeling and
engineering, but is inappropriate for photophysical systems where absolute values for b
and ¢ cannot be obtained. Therefore, in a photophysical context, it is more appropriate to
use normalized vectors b and € *'° (see Section 4).
There are several methods available for the analysis of the deterministic identifiability
(i.e., identification with perfect, errorless data) of linear, time-invariant models.
In some cases, Eq. (11) can be used directly to determine the relationship between the

true and alternative model parameters [see Eq. (20) in Section 3].

11



The approach which, in our investigations of the deterministic identifiability of time-
invariant models for time-resolved fluorescence, has predominantly been used

1712 involves  Markov parameters My, of the realization (A, b, ¢) and

previously
elementary symmetric functions G, in vy, Y2, ..., Yn. The set of eigenvalues y, of A allows

the construction of functions o, (n=1, 2, ..., N)

6, = zyﬂ » 02 = Zymyn > ON =V1Y2- TN (12)

m<n

This set of nonlinear equations o, relates the eigenvalues y, or, equivalently, the
relaxation times T, = —v,' to the elements of matrix A.

The vectors b and ¢ appear only in the Markov parameters mp, (m=0, 1, ..., N—1). The

Markov parameters My, are defined as the mth time derivatives of f(t) at time zero:

mmza fm(o), m=0,1,...,N-1 (13a)
ot
N

m,=> ayn, m=0,1,...,N-1 (13b)
n=l1

where y; denotes the mth power of the eigenvalue y, and oy is the associated pre-
exponential factor (see Section 4). In terms of the realization (A, b, ¢) of f(t), the Markov
parameters are expressed by:

m,=cA"b, m=0,1,...,N-1 (14)
where A" represents the mth power of matrix A. For an N-compartmental system, only N
independent Markov parameters can be constructed for each set of experimental
conditions. The identifiability analysis deals with the determination of the unknown

elements of matrix A and vectors b and ¢ from o, and mp,.

12



An excellent method of finding a different (alternative) realization (A", b", ¢") of f(t) is

RSN 2,315, 16
via similarity transformation,” ™ >

yielding

TA =AT (15)
where T is a constant invertible (or nonsingular) matrix (i.e., det T # 0) having the same
dimension as A.
The alternative b and ¢" are given by

b"=T"'b (16)

c=cT (17)
The major advantage of the similarity transformation approach is that it not only offers a
direct way of determining if a model is uniquely or locally identifiable or unidentifiable,
but it also gives the explicit relationships between the true and alternative model

parameters.

Equations (15-17) should be satisfied for each experimental condition. For the models

ex

, emission

considered, the possible experimental variables are excitation wavelength A

wavelength A"

|, coreactant concentration [X]k, and quencher concentration [Q]i. This

implies that matrix T should be independent of A{*, 15", [X]k, and [Q]:.
3. Fluorescence kinetics and identifiability analysis of the compartmental
system with one excited-state compartment

The two objectives of this section are (1) to introduce as smoothly as possible the general
concepts of compartmental analysis into the field of photophysics and (2) to demonstrate
that even for the simplest model there are restrictions on the amount of information that

can be recovered from perfect time-resolved fluorescence data.
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In this section, a linear, time-invariant compartmental system consisting of one ground-
state species (symbolized by 1) as shown in Scheme 1 is considered. Photo-excitation
produces the excited-state species 1° which can return to its ground state 1 with rate
constant Ko; = Kg; + knri. This rate constant is required to be positive (Ko; > 0). Scheme 1
is a graphical illustration of a photophysical system comprising one ground-state and one
excited-state compartment. The system with one excited-state compartment is the scalar
case of the compartmental model.

Insert Scheme 1 + caption

The differential equation describing the time-course of the quantity X, = [l*] in the

excited-state compartment after d-pulse photo-excitation at A;™ is

dt =k X, (t) (18)

The fluorescence d-response function fij(t) is
fij (t) =D, ¢, exp (_ Koy t) (19)
The subscripts i and j on fi(t) indicate its dependence on A" and A", respectively. In

photophysics, one observes the change of concentration of excited species 1~ via the
measurement of the time-resolved fluorescence signal. This signal is dependent on the
experimental observables { A" ,A{", t} and the model parameters {Ko1, b1, c1}.

The question one would like to answer first in identifiability analysis, is whether it is
possible to obtain an alternative realization {k; ,b,,c } of fij(t) different from the true

model parameter set {Koi, b1, Ci}, so that fjj(t) is the same for the true and alternative

realization:

14



fij (t, kOl’bl’Cl)z fij (tako+1’b1+ac1+) (20)
Equation (20) is the specific form of Eq. (11) for a system with one excited-state

compartment. Rewriting Eq. (20) specifically for the considered model, one has
b, ¢, exp(=k,, t)=b’ ¢’ exp(— Ko, t) (21)

Evaluating Eq. (21) at time zero gives

b ¢ =D c (22a)
and hence
k0+1 = k01 (22b)

This demonstrates that the rate constant Ko, is uniquely identified, as is the product b;c;.

However, the individual b; and c; cannot be identified. Indeed, from Eq. (16) with T =
(t)) we have b =b, /t, and from Eq. (17) we obtain ¢, =, t,, implying that there are an
infinite number of alternative b and c,. Although the composite rate constant K, is
uniquely identified, the composing rate constants Kg; and kngr; are not identifiable without
extra (prior) information. This additional knowledge is available if the fluorescence
quantum yield ¢¢ is known:

¢ =Ke /Koy (23)
The unique values of kg and kng; are then calculated according to

Key = 0K, (24a)

kNRl = I(01 (1 - (I)f) (24b)

This simple model shows that only the rate constant Ko, is uniquely identified. If one
wants to know the contributions to ko; of fluorescence (kr;) and nonradiative decay

(knr1), prior knowledge is needed.

15



4. Fluorescence kinetics and identifiability analysis of models of reversible

intermolecular two-state excited-state process

4A. Model without external quencher

Insert Scheme 2 + caption

In this section, we will start with the fluorescence kinetics of an intermolecular system
consisting of two distinct interchanging ground-state species (1 and 2) and two
corresponding excited-state species (1° and 2°) as depicted in Scheme 2 (i.e., two ground-
state compartments and two associated excited-state compartments). Ground-state species
1 can reversibly react with coreactant X to form ground-sate species 2. Photo-excitation
creates the excited-state species 1" and 2*, which decay by rate constants ky; and K to
their respective ground states. The rate constant describing the intermolecular
transformation of 1" into 2 is represented by k,;, while the reverse process is described
by k. These rate constants are required to be positive as we deal with a reversible
excited-state process.

The fluorescence impulse response function fij(t) [Eq. (4)] for the photophysical system
shown in Scheme 2 is explicitly given by

i (t) =C; exp(t % )bik (25)
The subscripts i, j, and K in Eq. (25) refer to the excitation wavelength A;*, the emission

wavelength A", and the coreactant concentration [X]i, respectively

Matrix Ay is given by
Ak _ [_ (k01 + k21 [X]k) k12 j (26)
k21 [X]k - (koz + klz)

The 2x1 vector bj contains the initial concentrations of excited species 1"and 2"

16



by, :(blik bzik)T (27)
with bnik=[n"Jo at 1™ and [X]x.
Cj is the 1x2 vector of the emission weighting factors Cmnj (M = 1, 2) at emission

wavelength A" defined by Eq. (9).

c,=(c; o) (28)
Equation (25) can be written in the common bi-exponential format:
fijk (t) =, eXp(Vl t)+ a, eXp(Vz t) t>0 (29)

The eigenvalues vy, > of the 2x2 matrix A = (amy) are

Yi2 = |:a11 +a, —\/ aQ, — ' +4 a, aZI} (30)

For the considered model, the elements an, of A are shown in Eq. (26). Since the part
under the square root in Eq. (30) cannot be negative, the eigenvalues y; » must be real. For
a reversible two-state excited-state process, the eigenvalues y;, are distinct. Repeated
eigenvalues are obtained if the part under the square root in Eq. (30) is zero. For this, a;;
and a,; must be equal and a;,a,; must be zero; the latter implies that either a;, or a;; must
be zero. In that case the excited-state process would not be reversible anymore. If a;, and
ay; were both zero, the compartments would not be connected.

The pre-exponentials o » corresponding to y; > are

a, =C B, +¢, B, (31a)
a, =C B, +C, By, (31b)
B, = b(y, —a,)—h,a, (32a)

Y2 =7

17



_ b(y,-a,)-ba,
B, =

— (32b)

2~

B, = b, (v, ;aizi_ b,a,, (32¢)
2~

B, =— b, (v, —ay,) —ba, (32d)

Y2 —T1
To keep Egs. (30-32) transparent, we did not use the subscripts i, j, and k on b, ¢, a, 3,

and y to indicate their dependence on A", A{", and [X]k. For the considered model the
eigenvalues vi» [Eq. (30)] depend on the rate constants and [X]x, while the pre-
exponentials o> [Eq. (31)] depend additionally on A™ (through by) and A" (through

Cj).
Now let us investigate the identifiability via similarity transformation. For the considered

system with two excited-state compartments, the 2x2 matrix T is

T= hob 33
“lt, 1, (33)

Four rate constants (Ko1, K21, Koz, Ki2) have to be identified. The matrix multiplication in

Eq. (15) with A given by Eq. (26) leads to two sets of rate constant values.

Set I is the original set: k;, =k,,, k, =k, K;; =k,,, Ky, =k, with T = t;1, with | the
2x2 identity matrix and where K represents the alternative value of Kpp.

Set II is the alternative set: K, =K, +K,, K, =Ky, —Kps Ky, =K,y 5 Ky =K, with T

given by Eq. (34) with t, /t, = (K, — Ko, — Ky, )/Ky,

t 0
T-|" (34)
t, t+1

18



Since k;, must be positive, because a reversible excited-state process is considered, set 11
is possible only if Ko; > Ky. If ko1 < Koy, the true set I of rate constants is recovered.
The above results are in perfect agreement with the results obtained via the deterministic

identification analysis based on elementary functions o, [n =1, 2, Egs. (35, 36)]:

Ou =V T Yok =8y T2y, (35a)
oy = —(Koy + Ky [X] + Ky +K,p) (35b)
Ok =V i¥ak = A 8 — @), Ay (36a)
6, = Koy (Koy + Ky )+ Kook [X ], (36b)

The matrix multiplication in Eqs. (16) and (17) for T = t;1 (set 1) indicates that the

alternative by and c] are only known up to the scaling factor t;. This means that the

photophysical system expressed in terms of A, bi, and Cj is unidentifiable. Since the

vectors Dix and cj are experimentally not accessible from time-resolved fluorescence

experiments, it is more appropriate to use normalized vectors Bik and C;. The elements
b, of b, and C, of C, are defined as
6nik = by /(0 +by) n=1,2 (37)
Gy =Cu/lc,+c;;) m=1,2 (38)
Use of normalized b} and b, in Eq. (16), and C;; and C;; in Eq. (17) leads to b = by,

and C; =C;.

19



Using normalized spectral parameters Hlik (0< Hlik <1)and C; (0<C;;<1) in global
compartmental analysis of related fluorescence decay traces allows one to link Eik at the

same A;" and [X], whereas C,; can be linked at the same Af".

Now we consider the identifiability of an and C,; associated with set II of the rate

constants, where matrix T is given by Eq. (34). As was the case for set I, t; cannot be

determined for set II and consequently the model expressed in terms of A, by, and ¢j is

~

unidentifiable. Use of normalized b and €, and the fact that they should be restricted

to the range [0, 1] allows one to define ranges of physically acceptable ank and C

values.
Although the similarity transformation approach expresses the explicit relationships
between the true and alternative model parameters, it does not allow one to determine

how many concentrations [X] and emission wavelenghts A" are necessary for
identifiability in terms of the rate constants and the normalized b, and C;. In the

following we will use Markov parameters mp, (M = 0, 1) to answer this question. M jjx s
given by Eq. (39), while m jj is expressed as a function of the matrix elements of Ay in
Eq. (40) and as a function of the rate constants and [X]x in Eq. (41):
My ik = €Dy = by +Cy ;05 (39)
M =C;ADy = b“k(clja“,k +Cy 8,4 )+ bZik(clja12 + czjazz) (40)
My = =01 €y Koy + Koy [XJe )+ 01 €y Kot [X L + 03y K = Do G (koy +k,) (4D

Use of normalized b, and C; allows one to rewrite the above equations with i as a

scaling constant.

20



My i = Kijk Cjbik = Kijk (Cljblik +C2jb2ik) (42)

~

My = K CAD =15 lblik (Eljall,k +C,;8,, )+ B, (Eljalz +C,;ay, )J (43)
M, ik = Kijk l_ biCi; (km + kZI[X]k )+ blikEszkZI[X]k +b,;, C K, —by G (koz +k, )J (44)
It has been shown via the symbolic mathematics program MAPLE V (Waterloo Maple

Inc.) that six decay traces — measured at two coreactant concentrations [X] and three

emission wavelengths A" (corresponding to different C,) — are required for the model to

be locally identifiable in terms of the rate constants, 51 and C,. Two sets of rate constants

~

and concomitant spectral parameters by and C; may be found. For set I, we have

by =by and T =C;. For set II, the admissible b, and C;; can be expressed as a

~

function of Slik , C;, and the rate constants.

4B. Model with added quencher

Insert Scheme 3 + caption

Consider the molecular system (Scheme 3) with an equilibrium between two different
species 1 and 2 in the ground state which form upon photo-excitation the excited-state
species 1" and 2*, respectively. The rate constants Ky, Koz, K21, and ki, have the same
meaning as in Scheme 2. By addition of an external quencher, Q, with concentration [Q],
the depletion of the excited states is enhanced by kq1 [Q]i for 1" and Ky [Q]i for 2" Itis
assumed that the quencher Q has only an effect on the excited species and does not affect
the ground-state equilibrium. The fluorescence &-response function fijy(t) can be
expressed in matrix notation:

fijkl (t) =C; exp('[ Ay )bik (45)
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The subscripts 1, J, k and | in Eq. (45) refer to A", A", [X]k, and [Q],, respectively.

Matrix Ay is given by

A, - [— (o, + ks, [X] + Kk, [Q]) K, )J

- k21 [X]k B (koz + k12 + qu [Q]I (46)

bik and c;j are given by Eqs. (27) and (28), respectively. As it is assumed that Q does not
affect the ground-state equilibrium, b is independent of [Q];.
fija(t) can be expressed in the common bi-exponential format [Eq. (29)], with the

eigenvalues yi» [Eq. (30)] dependent on the rate constants, [X]k, and [Q];. The pre-

exponentials a1 » [Eq. (31)] are dependent additionally on A" and A<".

First, we investigate the identifiability via similarity transformation. Six rate constants
(Ko, K21, Koz, Ki2, Kq1, Kq2) have to be determined. Matrix T has the same dimension as A
and is given by Eq. (33). If the rate constants of quenching are different (Kq1 # Kq2), the
matrix multiplication in Eq. (15) leads to the unique set of original rate constants (i.e., set

I of Section 4A): Ky, =K, , ki, =k,, k3, =k;,, Kj, =Ky, and kj; =k, kKo, =k, with T

ql?

= t; I. If the quenching rate constants are identical (Kq1 = Ky2) and additionally if Ko; > Koo,

the alternative set of rate constants is given by set II of Section 4A: k;, =k, +k,,
ki, =Ko — Ky » K3, =Ky, Ky, =Ky, ) and kq+l = k:.rz = kql = qu .

Use of normalized Slik and C,; for T =t; I leads to the unique spectral parameters:

~ ~

b, = by, and Elj =C;.
To conclude, if the quenching rate constants of a quencher added to a reversible

intermolecular two-state excited-state process are different (k1 # Kg2), this model is

uniquely identifiable in terms of rate constants and normalized Elik and C;
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Second, the identifiability of the six rate constants can be done using o1 and o [Eq.
@nl:
O = _(km + koz + k12 )_ k21 [X]k - (kql + qu)[Q]l (473)

G = k01 (koz + k12 )"‘ k02k21 [X]k + {(km + k21 [X]k )qu + (koz + k12 )kql }[Q]I +

) (47b)
kqlqu [Q]

For each combination ([X]x, [Q]i), one has one set of the above equations. It has been
shown that four decay traces — measured at two coreactant concentrations [X] and two
quencher concentrations [Q], namely {([X]1, [Q])), ([X]1, [Ql2), ([X]2, [Q11), (X2, [Q]2)}

— lead to the identification of all six rate constants, provided that Ky # kg Ky, =Ky,

ki =Ky, K=Ky, Ky =Kg, ki =K, ki, =K,,. For more details, we refer to the

original paper.

4C. Model with species-dependent rotational diffusion

Insert Figure 1 + caption

The photophysical system consisting of two different interchanging species 1 and 2, each
with distinct rotational characteristics — as depicted in Figure 1 — is considered. All the
rate constants are assumed independent of the instantaneous orientation of the species.
The rotational relaxation of each excited-state species is governed by its principal
rotational diffusion constants, here D, and D) for rotation, respectively, of and about the
symmetry axis of each of the cylindrically symmetric rotors depicted in Figure 1. The

fluorescence impulse response function | (t) for the plane-polarized component of

emission of the two excited states 1~ and 2, having its electric vector polarized parallel to

the electric vector of the plane-polarized excitation light, and the fluorescence d-response
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function I ;, (t) for the perpendicularly polarized component can be expressed, in the

case of pure transitions and isotropic solutions, as:'’
(O = .k, [1 +20, (t)] : = Sig (t)+ 2 Dig (t) (48a)
i 3 3

1

Likj (t) ij [1 ij ] 1 Sikj (t)_ N

3 Su(1)-3 Dy t) (48b)

where rij(t) denotes the fluorescence emission anisotropy and with
S () =3¢,00 explAy o0 t) Dy 00 (49)
Dy (t) =3¢, exp(Ap t) by o (50)
As before, the subscripts i, j, and k in 15, (t) and IJ_ijk(t) [Eq. (48)], in Sijk(t) [Eq. (49)]
and in Dy, (t) [Eq. (50)] refer to A;", A", and [X]k, respectively. Sij(t) corresponds to the

total time-resolved emission of the photophysical system, is independent of rotational
diffusion, and does not contain any information about the orientations of the transition
moments. Information about rotational diffusion is contained exclusively in Dijk(t).

Matrix Axgo in Eq. (49) is identical with Ay defined by Eq. (26). Apk in Eq. (50) is

defined as:
Ao 0 0 0 0
0 Apiaa 0 0 0
Ap = 0 0 Aok 20 0 0 (51)
0 0 0 Ao 0
0 0 0 0 ADk,22
with blocks Apkam given by:
- (k01 + kzl[X]k + D1,2M ) k12
Apiom = (52)
k21[X]k - (koz + k12 + Dz,zM )
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with M =-2,—-1, 0, 1, 2. Dyom (n denotes either 1 or 2) is given by

Dyoy =6D,, +M3(D,, -D,,) (53)
D.n and Dy (see Figure 1) are the components of the rotational diffusion tensor of the
cylindrically symmetric species n in its molecular reference frame (X, Y, z), chosen such
that the rotational diffusion tensor is diagonal,'* reducing to the unique component D, (=
D.n = Djn) in the case of the spherically symmetric rotor n.
For a spherically symmetric rotor (Dn = D, = Dj), the matrices Apkom [Eq. (52)] are all

identical and independent of M. In this case matrix block Apk2m can be written as:

A _ - (k01 + kzl[X]k + 6D1) k12
ol kZl [X]k - (koz + k12 + 6D2)

(54)
The elements of vector bj w {withL=M =0 [Eq. (49)], or L=2 and M =+£2, £1, 0 [Eq.
(50)]} are the excitation coefficients byjxm. In bk m N stands for either species 1 or 2; i
and k refer to A" and [X], respectively; L and M refer to the orientation of the
absorption transitions. The elements bk m can be expressed as the product of the initial

concentration of n’, by = [n']o, the appropriate spherical harmonic yM (én)lg for the

orientation of the absorption transition moment &, in the molecular frame of species n,

and a scaling factor B:

bnik,LM = BL bnik YLM (é'n) (55)
. 1 1 1 5
with B, =—.[— and B, =—_.[—.
12\ A > 30\ A

For L=M =0, we have Y,(a,)= 1 and Bic 00 = Oni_

Jan 247’

The 2x1 vector bix oo in Eq. (49) is explicitly given by:

25



bik,OO = (blik,OO bzik,oo )T (56)
whereas the 10x1 vector bjom in Eq. (50) is expressed as:

Buow =bios Brss Biss Boias Biawao Doz Buear Dogicor Bucos Do)

(57)
The elements of vector Cjm {with L =M =0 [Eq. (49)], or L =2 and M = +2, +1, 0 [Eq.
(50)]} are the corresponding emission coefficients CyjLm (M represents either species 1" or

2*). The emission coefficients Cnjm are given by:

Cojm = CL Crj YLM*(ém) (58)

J

1 : N .
where C, :?\/ns , C, =£ %, and YM'(8,) is the complex conjugate of the

appropriate spherical harmonic for the orientation of the emission transition moment &y,

in the molecular frame.

8712ij
ForL=M =0, we have C, ,, = —

The coefticient Cyj is defined by Eq. (9). Vector Cj o in Eq. (49) is explicitly given by:
Cro0 = (G C2i00) (59)

while vector Cjom in Eq. (50) is expressed as:

Cj,zl\/l = (Clj,2—2 C2j,272 Clj’zf1 C2j,2—1 Clj,20 Czj,zo Clj’21 C2j,21 Clj,22 Czj,zz) (60)

Since both Sy (t)= I, (t)+21 . (t) [Eq. (49)] and Dy, (t)= 1, (t)— 1 (t) [Eq. (50)]

can be expressed in matrix form, the identification analysis via similarity transformation

is carried out using the Sijx(t) and Dijk(t) functions.
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1. Kinetic parameters

We start first with the identification via similarity transformation involving Sjj(t). For f(t,
A, b, ¢) = Siji(t, Ax00, Dik0o, Cj,00), Axoo in Eq. (49) is identical with Ay defined by Eq. (26),
bik 00 and Cj o are given by Eqs. (56) and (59), respectively, and T is defined by Eq. (33).
As Sij(t) reflects the time dependence of the total fluorescence and contains information
only on the excited states, the identifiability analysis will be the same as that derived for a
9, 10

reversible intermolecular two-state excited-state process without external quencher

(Section 4A). As shown previously, two sets of rate constants are obtained: set I contains
the original rate constants: Ky, =k,,, K, =K, K5, =k,,, Ky, =K, with T = t;1; set II is
the alternative set: K;, =K, +K,, K5 =K, =Ky, K5, =Ky, Ky, =K, with T given by
Eq. (34), provided that Ko; > Ko,.

Now we consider the identification involving f(t, A, b, ¢) = Diu(t, Aok, Dikom, Cjom) in
which we will use the results of the identifiability analysis involving Sijk(t). We assume

that the similarity transformations for Sij(t) and Djj(t) are independent.

Kinetic parameters of the cylindrically symmetric rotor

Now Apy is defined by Eq. (51) with blocks Apkam given by Eq. (52). bikam is given by
Eq. (57) with byikom defined by Eq. (55), Cjom is given by Eq. (60) with Cpjom defined by
Eq. (58). Also the transformations of the various blocks Apkom in Apk [Eq. (51)] are

independent of each other. Matrix T is a block-diagonal matrix:

T, 0.0 0 0
0 T, 0 0 0

T={0 0 T, 0 0 (61)
0 0 0 T 0
0 0 0 0 T,
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with the matrices Ty (M =-2, -1, 0, 1, 2) expressed as
t t
. { } -
tM,3 tM,4
Because T and Apk are both block-diagonal matrices, the matrix multiplication of Eq.
(15) is split into five separate matrix multiplications (two of those are identical; M = -2

and M = +2; M = -1 and M = +1). It is straightforward to show that the matrix

multiplication [Eq. (15)] involving Ay, ,,, and A, ,,, [for M ==£2, £1, 0] leads to two

sets  of parameters: set Il (kg + D,y =K, + D5y, K =k,, ki =k,
K + Doy =Kp, + D,y ) corresponding to Ty = ty; I, and set IV
(ko + D:zM =Ky, + ki, + D ou s Ky =Koy =Ky + Diov = Daoms Ky =Ky

Ko + D3y =Kp, + D,y )  corresponding to Ty given by Eq. (63) with

tys /tM,l = (k01 —ky, =k, )/klz :

)
Ty =|. " (63)

1:M,3 tM,l +tM,3

To solve for the individual K;,, ki

+ + + + + +
> K3, K, Diy, Dy, Dj,, and D, one should

combine the equations describing sets I and II with the equations describing sets III and

IV. This produces two possible solutions. (1) The original set I of rate constants is

combined with the original set of rotational diffusion coefficients: D}, =D ,, D; =D,

DY, =D,,, D, =D,,. (2) If the rotational diffusion coefficients of both species are equal

(D, =D,, and D, =D,), an alternative set of rate constants (i.e., set Il of Section 4A)
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and the true rotational diffusion coefficients (D, =D/,=D,=D,, and
D; =Dy, = D, = D,,) may be obtained.

The same result can be obtained by considering the elementary functions o, [Eq. (12)] for
the matrix blocks Apkam, 1.€. opikam and opxaom. The six eigenvalues of Apk can be
arranged into three pairs, each pair corresponding to a different value of M, and each pair
can be assigned to the proper M.'? Therefore, the functions obixom and obokam can be

obtained unambiguously.

It can be shown that

Opiaom — O = —Diow —Diow (64a)

(oo am ~O2) = (Opaiam = 0a1) = Koy ([X] ~[X]) D o0 (64b)
from which D, ,, and D, ,, are immediately recovered. D, ,,, and D,,,, considered for
two values of M then provide the required rotational diffusion coefficients D,,,D,,D,,,
and D,,.

To summarize, the identifiability analysis involving both Sij(t) and Djj(t) shows that the
model for reversible intermolecular two-state excited-state processes with coupled
rotational diffusion for a cylindrically symmetric ellipsoid is uniquely identifiable in
terms of rate constants and rotational diffusion coefficients when the rotational diffusion
of the two species is different. If the rotational characteristics of the two species are
identical, a second set of rate constants (set II) is possible.

Kinetic parameters of the spherically symmetric rotor

An identification analysis based on similarity transformation for a spherically symmetric

rotor similar to that for the cylindrically symmetric ellipsoid also gives two solutions. (1)
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If the rotational diffusion coefficients of both species are different (D; # D,), the unique

set of true rate constants (i.e., set I of Section 4A) and true rotational diffusion
coefficients (D, =D,,D, =D,) are obtained. (2) When the rotational diffusion

coefficients of both species are identical (D; = D,), an alternative set of rate constants

(i.e., set II of Section 4A) may be obtained together with the true rotational diffusion
coefficients (D, =D, =D, =D,). The same conclusions can be arrived at by
considering the elementary functions o, [Eq. (12)] for matrix Apkom [Eq. (54)],
G = 0, —6(D, +D,) (65a)
G = oy + 6(kyy + Ky, [X], ) D, +6( kot ki, )D, +36D, D, (65b)
and by evaluating these expressions at two concentrations of coreactant X.
2. Parameters related to excitation and emission

For Sjj(t), use of normalized l:N)“k’OO (52“(’00 =1- l:N)“k’OO yand C; (C,; =1-C;)forT=t 1

. . . ~+ _ ~ N+ _ ~ ~ ~
leads to unique normalized parameters: blik,oo =b, and C 00 =Cjj- b, and C j are

defined by Egs. (37) and (38), respectively.
For Diy(t) and Tm = tm; | (corresponding to set I and the true rotational diffusion
coefficients), one has

brTik,ZM Cr;j,zM =bnik,2M Crj2m (66)
withm,n =1,2and M =+2, +1, 0.
The products of the spherical harmonics implicitly contained in Eq. (66) can be summed
via the addition theorem, yielding the second-order Legendre polynomial Py(&, . éy) of

the cosine of the angle between transition moments &, and &,
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2
5 A A

anik,ZM Crjom = 4 BZCanikaj Pz(an 'em) (67)

M=-2 T

This theorem in combination with bﬁkcr;j = b“kcmj yields

P,(a; &, )=P.(a, -&,) (68)
with n, m =1, 2 and where &, and &, denote alternative transition moments. This
implies that all P,(&, . éy) can be uniquely determined.
Use of normalized Slik,ZM (l:N)zikﬂZM =1 —ElikaM )and G,y (Cyjom =1-C)j,y) for Ty =
tm.1 | leads to unique normalized parameters:

by o =D (69)

E1+j,2M = E1j,2M (70)
Substitution of Eq. (55) in Eq. (69) gives

v (E) v @)
wras) ) 7

so that the ratio of the spherical harmonics for the orientation of the absorption transition
moments &; and &, is uniquely identified.
Similarly, substitution of Eq. (58) in Eq. (70) yields

vler) V(@)
") e,

(72)

implying that the ratio of the spherical harmonics for the orientation of the emission
transition moments &, and &, is uniquely determined.
Information about the relative orientation of the transition moments can also obtained

from the Markov parameters Mpy ikj. On introducing the scaling factor «ijx, one has that
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Mpnig = |ka Z[ADk 2M ]Im I|k mj Im 2M (73)

M=0 I,m=1
where Ajmom are geometrical factors given, for M = 0, by
Ao =Ya0(En oo (&) (74)
and, forM =1, 2:

A|m,2M = YZ*—M (ém )YZ—M (é'l )+ YZ*M (ém )YZM (é'l ) (75)

Since the Mppij are all linear in Ajm2m, and since by, , the rate constants, D ,, and

mJ!

D, are already determined, Aim2m can readily be found from the set mpp,ixj, where n = 0,

1, ..., 5, considered for two excitation wavelengths A;* in the same absorption band or for

two values of the coreactant concentration [X]. Since, according to the addition theorem,

2

7Z'
Pz : Im,2M (76)
5 0o

the angles between all pairs & and éy, can be determined.
In conclusion, if the rotational diffusion coefficients of the two rotors are different,
rotational diffusion coupled to a reversible intermolecular two-state excited-state process

makes this model uniquely identifiable in terms of rate constants, rotational diffusion

constants and normalized by ,y and T, .

5. Discussion and conclusions

In this review we have shown that the compartmental analysis approach is excellently
suited to describe the kinetics and identifiability of models frequently encountered in
photophysics. The term “compartment” in a photophysical context is defined as a

subsystem composed of a distinct type of species that acts kinetically in a unique way.
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The compartmental systems considered here consist of one excited-state compartment,
two reversibly interconnected excited-state compartments, and their corresponding
ground-state compartments. Three models of reversible intermolecular two-state excited-
state processes in isotropic environments are discussed: (1) model without external
quencher, (2) model with added quencher, (3) model with coupled species-dependent
rotational diffusion described by Brownian reorientation. In a first step, we applied the
similarity transformation approach to provide us with the explicit relationships between
the true and alternative model parameters. The other identifiability approach based on
Markov parameters and elementary functions o, of the eigenvalues y;, was
subsequently used to find the experimental conditions under which the model parameters
can be recovered. Global compartmental analysis with linked model parameters can be
used to estimate these parameters.

Since the deterministic identification analysis assumes by its very own nature that the
decay data are error-free (the analysis is based on algebraic equations), the analysis gives
the necessary and sufficient requirements to extract the model parameters. However, in
real experiments, where the decays do have systematic errors and different parameter sets
can sometimes produce fits of similar quality, it is advantageous to collect and analyze
more fluorescence decay curves than is required according to the deterministic
identification.

Finally, numerical identifiability via global compartmental analysis'® has been used to
estimate rate constants and parameters related to excitation and emission for a number of
reversible intermolecular two-state excited-state processes using fluorescence decay

surfaces measured at various excitation and emission wavelengths and coreactant
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concentrations. Global compartmental analysis has the advantage that the parameters of
interest are determined directly from the complete decay data surface in a single step.
Applications of global compartmental analysis of reversible intermolecular two-state
excited-state processes comprise excimer formation of pyrene,” exciplex formation
between I-methylpyrene and trietheylamine,”’ photophysics of 2-naphthol,
photophysics of the binding of Ca** by Fura-2,” Quin-2,* APTRA-BTC,” and Thio-
H,% photophysics of the fluorescent K* indicator PBFI,?’ the fluorescent probe SBFO**

for Na” and Mag-fura-2* for Mg*".
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Scheme 1. Scheme representing a one-state excited-state process described by the

deactivation rate constant Ko;.
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Scheme 2. Scheme representing a reversible intermolecular two-state excited-state
process. The excited-state processes are described by the deactivation rate constants Ko,
and Ko,, and the excited-state exchange rate constants K,; and K. The transformation of

species 1 and 17 into, respectively, 2 and 2" is mediated by coreactant X.
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Scheme 3. Scheme representing a reversible intermolecular two-state excited-state
process with external quencher. It is assumed that the quencher Q has only an effect on
the excited species and does not affect the ground-state equilibrium. The excited-state
processes are described by the deactivation rate constants ko; and Ky, and the excited-
state exchange rate constants ky; and k;; as in Scheme 2. The transformation of species 1
and 17 into, respectively, 2 and 2" is mediated by coreactant X. The additional
deactivation of 1" and 2" due to the external quencher Q is described by the rate constants

Kq1 and Kgp, respectively.
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hy Ko Ko Koz Koz hv

X + 1 2

Figure 1. Graphic representation of a reversible intermolecular two-state excited-state
process, including rotation. Species 1” and 2" are pictured as being initially excited from
their ground states 1 and 2 by a short linearly polarized light pulse at wavelength ;" in a
unique absorption band. The excited-state processes are described by the deactivation rate
constants Ko; and K¢y, and the excited-state exchange rate constants k;; and ki, as in
Scheme 2. The transformation of species 1 and 1" into, respectively, 2 and 2” is mediated
by co-reactant X.. Simultaneously the species rotate with rate constants determined by the
corresponding rotational diffusion tensors which may differ between the species. The

polarized emission of each species depends on the relative orientation of its emission
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transition moment (with unit vector é; or &) at the instance of emission with respect to

the absorption moment (with unit vector &; or &) in the species initially excited.
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