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Abstract 

Deterministic identifiability analyses via similarity transformation are presented for two 

kinetic models of a reversible intermolecular two-state excited-state process in isotropic 

environments: (a) with coupled species-dependent rotational diffusion described by 

Brownian reorientation, and (b) with added quencher. For (a), both spherically and 

cylindrically symmetric rotors, with no change in the principal axes of rotation in the 

latter, are considered. The fluorescence δ -response functions I||(t) and I⊥(t), for 

fluorescence polarized respectively parallel and perpendicular to the electric vector of 

linearly polarized excitation, are used to define the sum S(t) = I||(t) + 2 I⊥(t) and the 

difference D(t) = I||(t) − I⊥(t) function. The identifiability analysis is carried out using the 

S(t) and D(t) functions. The analysis involving S(t) shows that two physically acceptable 

possible solutions for the overall rate constants of the excited-state process exist. 

Inclusion of information from polarized fluorescence measurements on the rotational 

kinetic behavior contained in D(t) results in the unique set of rate constants and rotational 

diffusion coefficients when the rotational diffusion coefficients are different. For (b), it is 

shown that addition of quencher plays formally the same role as rotational diffusion as far 

as the identification is concerned. When the quenching rate constants are different, the 

rate constants of a reversible intermolecular two-state excited-state process with added 

quencher can be uniquely determined. The explicit relationships between the true and 

alternative model parameters are obtained.  
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1. Introduction 

Compartmental modeling has been and is being used extensively in biology, physiology, 

pharmacokinetics, ecology and engineering, and a large number of applications has been 

reported (see, for example, references 1, 2, 3). In view of this general interest, it is rather 

amazing that compartmental modeling of excited-state processes in photophysics has 

started relatively late.4, , 5 6 Since the relaxation of excited-state processes can in many 

instances be described by a system of coupled linear differential equations, excited-state 

systems are formally equivalent with compartmental systems.  

In photophysics, a compartment is defined as a subsystem composed of a distinct type of 

species that acts kinetically in a unique way. The concentration of the constituting species 

can change when the compartments exchange material through intramolecular or 

intermolecular processes. In the context of compartmental modeling of excited-state 

processes, compartments can be divided into ground and excited-state compartments 

depending upon the state of the composing species. There may be inputs from ground-

state compartments into one or more of the excited-state compartments by photo-

excitation. Since there is always output from the excited-state compartments to the 

ground-state compartments through (radiative and radiationless) deactivation, a 

photophysical system involving excited-state compartments is said to be open. If the 

concentrations of the species in the ground state do not significantly change upon photo-

excitation, it suffices to consider the excited-state compartments. 

Deterministic identifiability deals with the determination of the parameters of a given 

model assuming error-free observations.1-3 There are three possible outcomes to the 

identifiability analysis. (1) The parameters of an assumed model can be estimated 
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uniquely and the model is uniquely (globally) identifiable from the idealized experiment. 

(2) There are a finite number of alternative estimates for some or all of the model 

parameters that fit the data and the model is locally identifiable. (3) An infinite number of 

model parameter estimates fit the data and the model is unidentifiable from the 

experiment. For the linear, time-invariant models with two or three excited-state 

compartments commonly encountered in photophysics, the parameters to be identified are 

the rate constants and spectral parameters related to excitation and emission. 

Since the first identifiability analysis of an intermolecular two-state excited-state process, 

identifiability studies of a large range of compartmental models of intermolecular as well 

as intramolecular two-state and three-state excited-state processes  have been reported 

(see reference 7 for literature data). The identifiability analyses of reversible 

intermolecular two-state excited-state processes in the absence7, ,8  9 and presence10 of 

quencher have been confined to consideration of the whole excited-state population, as 

monitored by total (or “magic angle”-selected) fluorescence.  

There are several methods available for the analysis of the deterministic identifiability 

(i.e., identifiability with perfect data).2, 3 The initial approach8-10 used to investigate the 

identification of reversible intermolecular two-state excited-state processes involved 

Markov parameters and elementary functions of the rate constants. The more recent work 

used similarity transformations.2, , , 3 11 12 The method of similarity transformation offers a 

direct way of determining if a model is  globally or locally identifiable or not identifiable 

at all. Moreover, similarity transformation provides the explicit relationship between the 

true and alternative model parameters.  
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This report focuses primarily on the identifiability via similarity transformation of a 

model of reversible intermolecular two-state excited-state processes, without transient 

effects (i.e., with kinetics governed by time-independent rate constants), accompanied by 

species-dependent rotational diffusion, as detected by time-resolved fluorescence 

anisotropy. Spherically and cylindrically symmetric rotors are considered, with in the 

latter case, no change in the principal axes of diffusion tensors of both excited-state 

species. The case where the principal axes of the diffusion tensors of both interconverting 

excited-state species are not the same is very complex13 and is not considered here. In the 

extensive field of time-resolved fluorescence spectroscopy, only a relatively small 

literature has been devoted to the problem of excited-state processes coupled with 

species-dependent rotational diffusion (see reference 14 and references therein). Chuang 

and Eisenthal provided the basis for the derivation of explicit expressions describing the 

time-resolved fluorescence anisotropy of two-state excited-state processes coupled with 

species-dependent rotational diffusion without transient effects. Further extensions 

relevant for the present study were presented by Cross et al.15 and by Limpouchová and 

Procházka.16 Based on the theory reported in these papers,13, , 16 15 a compartmental 

description  was derived for the fluorescence anisotropy decay of intermolecular two-

state excited-state processes together with species-dependent rotational diffusion.

A second issue addressed in this report is the identification of a model of reversible 

intermolecular two-state excited-state processes in the presence of added quencher. It will 

be shown that for the identification, quenching is formally equivalent to rotational 

diffusion. 
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The paper is organized as follows. In Section 2, the general concepts of identifiability via 

similarity transformation are presented. In Section 3A, the polarization-selected kinetics 

of a reversible intermolecular two-state excited-state process coupled with species-

dependent rotational diffusion is presented for cylindrically symmetrical ellipsoids. The 

δ -response functions, I||(t) and I⊥(t),  for fluorescence polarized respectively parallel and 

perpendicular to the electric vector of linearly polarized excitation, are used to define the 

sum S(t) = I||(t) + 2 I⊥(t) and the difference D(t) = I||(t) − I⊥(t) function. The sum, S(t), and 

difference, D(t), functions are expressed in matrix form, suitable for the identifiability 

analysis. Section 3B gives the matrix formulation of the fluorescence δ -response Q(t) of 

a model of reversible intermolecular two-state excited-state processes in the presence of 

added quencher. Section 4 deals with the deterministic identifiability analysis of these 

two kinetic models. In section 4A we show how the information from polarized 

measurements − expressed in S(t) and D(t) − is used for the determination of the rate 

constants and rotational diffusion coefficients. Section 4B describes the identification 

analysis involving Q(t) for the model with added quencher. 

2. Identifiability analysis via similarity transformation: general 

concepts 

For a linear, time-invariant compartmental system with N excited-state compartments, the 

fluorescence δ-response function f(t) can be expressed as:8

bAc )exp()( ttf =                (1) 

where b is a column vector of dimension N whose elements are the initial concentrations 

of each excited-state compartment ("input"); c is a 1×N vector related to the contribution 
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of each compartment to the emission ("output" or "observation"); A is a N × N matrix 

("compartmental matrix") containing the kinetic information ("transfer coefficients") of 

all processes. In other words, the response of a linear, time-invariant compartmental 

system to an impulsive perturbation consists of a sum of exponentials (usually with as 

many exponentials as compartments). 

The deterministic identification (or identifiability) study investigates whether it is 

possible to find different realizations of the fluorescence δ-response function f(t), say (A, 

b, c) and (A+, b+, c+), so that  

f(t, A, b, c) = f(t, A+, b+, c+)              (2) 

In other words, the fluorescence δ-response function should be the same for the true (A, 

b, c) and the alternative (A+, b+, c+) model parameter set.2, 3 Global identifiability is 

achieved when A+ = A, b+ = b, and c+ = c (i.e., a unique set of model parameters is 

obtained). The model is locally identifiable when there is a limited set of alternative A+, 

b+, and c+. An unidentifiable model is found when there are an infinite number of 

alternative A+, b+, and c+. The specific definitions of the compartmental matrix A, the 

excitation coefficients b, and the emission coefficients c are given in Section 3. This 

formulation (eq 2) is appropriate for most systems found in biomedicine, 

pharmacokinetics, ecosystem modeling, and engineering,1-3 but is not suitable for 

photophysical systems where absolute values for b and c cannot be obtained. Normalized 

"input" and "output" vectors will be used instead, as discussed in Section 4. 

An excellent method of constructing another (alternative) realization (A+, b+, c+) of f(t) is 

via similarity transformation,2, , , , 3 7 11 12 giving 

A+ = T-1 A T                (3) 
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where T is a constant invertible (or nonsingular) matrix (i.e., det T ≠ 0) having the same 

dimension as A. 

One can rewrite eq 3 in the form 

T A+ = A T                (4) 

The alternative b+ and c+ are given by: 

b+ = T-1 b              (5a) 

c+ = c T               (5b) 

Equations 3 (or 4) and 5 should be satisfied for each experimental condition. For the 

models considered, the possible experimental variables are co-reactant concentration 

[X]k, quencher concentration [Q]l, excitation wavelength , and emission wavelength 

(and in principle also the orientations of the polarizers in the excitation and emission 

paths). This implies that the matrix T should be independent of [X]

ex
iλ

em
jλ

k, [Q]l, , and . 

Indeed, since c

ex
iλ em

jλ

+ should not depend on [X]k, [Q]l, and , T should be independent of 

[X]

ex
iλ

k, [Q]l, and . Similarly, because of the independence of bex
iλ + (and A+) of , T 

should be independent of . 

em
jλ

em
jλ

3. Kinetics 

A. Reversible intermolecular two-state excited-state process with species-

dependent rotational diffusion 

Insert Figure 1 

The linear, time-invariant photophysical system consisting of two different interchanging 

species A and B, each with distinct rotational characteristics – as depicted in Figure 1 – is 

considered. The two ground-state species are assumed to be in equilibrium. Photo-
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excitation of the system produces the excited-state species A* and B* which can decay by 

fluorescence (kF) and non-radiative (kNR) processes. k0A (= kFA + kNRA) and k0B (= kFB + 

kNRB) denote the composite deactivation rate constants of A* and B*, respectively. The 

rate constant describing the intermolecular (with co-reactant X) transformation of A* into 

B* is represented by kBA. The reverse process, described by kAB, is concentration 

independent. All the rate constants are assumed independent of the instantaneous 

orientation of the species. The physical requirement restricts the rate constants to be non-

negative. The rotational relaxation of each excited-state species is governed by its 

principal rotational diffusion constants, here D⊥ and D|| for rotation, respectively, of and 

about the symmetry axis of each of the cylindrically symmetric rotors depicted in Figure 

1. When the photophysical system shown in Figure 1 is excited with a δ-pulse of low 

intensity at time zero, so that the ground-state species population is not appreciably 

depleted, the fluorescence δ-response function ( )tI ijk||  for the plane-polarized component 

of emission of the two excited states (A* and B*), having its electric vector polarized 

parallel to the electric vector of the plane-polarized excitation light, and the fluorescence 

δ-response function  for the perpendicularly polarized component  can be 

expressed, in the case of pure transitions and isotropic solutions, as:

( )tI ijk⊥

17

( ) ( )[ ] ( ) ( )tDtStrtStI ikjikjikjikjikj 3
2

3
121

3
1)(|| +=+=          (6a) 

( ) ( )[ ] ( ) ( )tDtStrtStI ikjikjikjikjikj 3
1

3
11

3
1)( −=−=⊥          (6b) 

where rijk(t) denotes the fluorescence emission anisotropy and where 

( ) ( ) 00,00,00 exp3 ikkj,ijk ttS bAc=              (7) 
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( ) ( ) MikDkMjijk ttD 2,2, exp3 bAc=              (8) 

The subscripts i, j, and k in  and ( )tI ijk|| ( )tI ijk⊥  (eq 6), in ( )tSijk  (eq 7) and in  (eq 8) 

refer to the excitation wavelength , the emission wavelength , and the co-reactant 

concentration [X]

( )tDijk

ex
iλ em

jλ

k, respectively. 

Matrix Ak,00 in eq 7 is given by eq 9:  

[ ]( )
[ ] ( )⎥⎦

⎤
⎢
⎣

⎡
+−

+−
=

AB0BBA

ABBA0A
00, X

X
kkk

kkk

k

k
kA             (9) 

ADk in eq 8 is defined as: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
−

−

22,

21,

20,

12,

22,

0000
0000
0000
0000
0000

Dk

Dk

Dk

Dk

Dk

Dk

A
A

A
A

A

A          (10) 

with blocks ADk,2M given by eq 11:  

[ ]( )
[ ] ( )⎥⎦

⎤
⎢
⎣

⎡
++−

++−
=

ABB02,BBA

ABBA0A2,A
2, X

X
kkDk

kkkD

Mk

kM
MDkA         (11) 

with M = −2, −1, 0, 1, 2. Dl,2M (l denotes either A or B) is given by 

( )lllMl DDMDD ⊥⊥ −+= ||
2

2, 6             (12) 

Note the invariance of eq 11 and eq 12 to the sign of M  

D⊥l and D||l (see Figure 1) are the components of the rotational diffusion tensor of the 

cylindrically symmetric species l in its molecular reference frame (x, y, z), chosen such 

that the rotational diffusion tensor is diagonal,14 reducing to the unique component Dl (= 

D⊥l = D||l) in the case of the spherically symmetric rotor l.  
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For a spherically symmetric rotor (Dl = D⊥l = D||l), the matrices ADk,2M (eq 11) are all 

identical and independent of M. Now each matrix block ADk,2M can be written as: 

[ ]( )
[ ] ( )⎥⎦

⎤
⎢
⎣

⎡
++−

++−
=

ABB0BBA

ABBA0AA
2, 6X

X6
kkDk

kkkD

k

k
MDkA         (13) 

Vector bik,LM [with L = M = 0 (eq 7), or L = 2 and M = ±2, ±1, 0 (eq 8)] contains the 

excitation coefficients blik,LM (l denotes either species A or B). As before, the subscripts i 

and k in bik,LM refer to the excitation wavelength  and co-reactant concentration [X]ex
iλ k, 

respectively. The subscripts L and M of the blik,LM coefficients refer to the orientation of 

the absorption transitions. The elements blik,LM can be expressed as the product of the 

initial concentration of l*, blik, the appropriate spherical harmonic 18( )l
M

LY â  for the 

orientation of the absorption transition moment  in the molecular frame of species l, 

and a scaling factor BL

lâ

B :

( )l
M

LlikLLMlik YbBb â, =              (14) 

with 30
1

12
1

π
=B  and 32

5
30
1

π
=B . 

For L = M = 0, we have ( )
π

=
4
1ˆ0

0 lY a  and 200, 24π
= lik

lik
bb . 

The 2×1 vector bik,00 in eq 7 is explicitly given by eq 15: 

[ ]T00,B00,A00, ikikik bb=b              (15) 

while the 10×1 vector bik,2M in eq 8 is expressed as: 

[ ] T
22,B22,A21,B21,A20,B20,A12,B12,A22,B22,A2, ikikikikikikikikikikMik bbbbbbbbbb −−−−=b     (16) 

Vector cj,LM [with L = M = 0 (eq 7), or L = 2 and M = ±2, ±1, 0 (eq 8)] contains the 

corresponding emission coefficients cmj,LM (m represents either species A* or B*). As 
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before, the subscript j in cj,LM refers to the emission wavelength . The emission 

coefficients c

em
jλ

mj,LM are given by:

( )m
M

LmjLLMmj YcCc ê*
, =              (17) 

where 5
0 3

16
π=C , 

515
16 5

2
π

=C , and ( )m
M

LY ê*  is the complex conjugate of the 

appropriate spherical harmonic for the orientation of the emission transition moment êm  

in the molecular frame. 

For L = M = 0, we have 
3

8 2

00,
mj

mj

c
c

π
= .  

The coefficient cmj is defined as:

( )∫ λΔ
λλρ=

em

emem
F

j

dkc jmmmj             (18) 

where kFm is the fluorescence rate constant of species m*, the subscript j refers to the 

observation wavelength range, ,  and em
jλΔ ( )em

jm λρ  is the spectral emission density of 

species m*.  

Vector cj,00 in eq 7 is explicitly given by eq 19: 

][ 00,00,00, BjAjj cc=c              (19) 

while vector cj,2M in eq 8 is expressed as: 

[ ]22,B22,A21,B21,A20,B20,A12,B12,A22,B22,A2, jjjjjjjjjjMj cccccccccc −−−−=c        (20) 

The matrix and vector formulations of A (eqs 9, 10), b (eqs 15, 16), and c (eqs 19, 20) 

will prove particularly convenient in addressing the identifiability analysis to the 

considered models. 
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The identification analysis is simpler if one uses the "sum" ( ) ( ) tItItS ijkijkijk ⊥+ ( )= 2||  and 

"difference" ( ) ( ) ( )tItItD ijkijkijk ⊥−= ||  functions of the polarized fluorescence δ-response 

functions  and . S( )tI ijk|| ( )tI ijk⊥ ijk(t) corresponds to the total time-resolved emission of the 

photophysical system, is independent of rotational diffusion, and does not contain any 

information about the orientations of the transition moments. Information about rotational 

diffusion is contained in Dijk(t). 

B. Reversible intermolecular two-state excited-state process with added 

quencher 

Insert Scheme 1 

Consider the molecular system (see Scheme 1) with an equilibrium between two different 

species A and B in the ground state which form upon photo-excitation the excited-state 

species A* and B*, respectively. The deactivation of these excited-state species via 

fluorescence and non-radiative processes is described by the combined rate constants k0A 

for A* and k0B for B*. By addition of an external quencher, Q, with concentration [Q]l to 

the photophysical system, the depletion of the excited states is enhanced by kQA [Q]l for 

A* and kQB [Q]l for B*. It is assumed that the quencher Q has only an effect on the excited 

species and does not affect the ground-state equilibrium. The transformation of A* into B* 

is labeled with the rate constant kBA, while the reverse process is described by kAB. When 

the system of Scheme 1 is excited at time zero with a δ-pulse of low intensity, which does 

not significantly deplete the ground-state species, the fluorescence δ-response function 

Qijkl(t) at co-reactant concentration [X]k and quencher concentration [Q]l, monitored at 

emission wavelength  due to excitation at can be expressed in matrix notation:em
jλ ex

iλ
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( ) ( ) ikkljijkl ttQ bAc exp=               (21) 

with Akl given by eq 22:

[ ] [ ]( )
[ ] [ ]( ⎥

⎦

⎤
⎢
⎣

⎡
++−

++−
=

AB0BQBBA

ABBA0AQA

QX
XQ

kkkk
kkkk

lk

kl
klA )

]

        (22) 

bik and cj are given by eqs 23 and 24, respectively:

[ T
BA ikikik bb=b              (23) 

][ BjAjj cc=c               (24) 

4. Identifiability analysis  

A. Reversible intermolecular two-state excited-state process with species-

dependent rotational diffusion 

Since both Sijk(t) (eq 7) and Dijk(t) (eq 8) can be expressed in matrix form, the 

identification analysis via similarity transformation is carried out using the Sijk(t) and 

Dijk(t) functions. 

Let's start with the identification involving Sijk(t). For f(t, A, b, c) = Sijk(t) (eq 7), we have 

that A = Ak,00, (eq 9), b = bik,00 (eq 15), c = cj,00  (eq 19). Matrix T is then given by eq 25: 

⎥
⎦

⎤
⎢
⎣

⎡
=

43

21

tt
tt

T               (25) 

As Sijk(t) reflects the time dependence of the total fluorescence and contains information 

only on the excited states, we can expect that the identifiability analysis will be the same 

as that reported for a reversible intermolecular two-state excited-state process. Therefore, 

we refer to reference 7 for more mathematical details. As the results of the identifiability 
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analysis involving Sijk(t) will be used in the analysis with Dijk(t), we will sketch the 

identifiability procedure. 

Performing the matrix multiplication in eq 4 with A = Ak,00 yields a set of four 

simultaneous equations. Since the elements ti (i = 1, … , 4) of T are independent of [X]k 

and since kBA ≠ 0, we have that t2 = 0 and ( ) 0BABA1 =−+ kkt . If t1 = 0, then also t3 and t4 

have to be zero and T becomes the null matrix, which is not a valid transformation 

matrix. From the alternative, , we have that tBABA kk =+
4 = t1 + t3, so that the matrix 

multiplication in eq 4 yields a set of four equations as a function of t1 and t3 (eqs 26): 

AB30A10A1 ktktkt +−=− +            (26a) 

( ) AB31AB1 kttkt +=+            (26b) 

( ) 00AAB0B3 =−+ +kkkt            (26c) 

( ) ( )AB0BAB0B31AB3 kkkkttkt −−++= +++             (26d) 

From eq 26c one concludes that either t3 = 0 or . AB0B0A kkk +=+

If t3 = 0, the original rate constants are obtained: , , , 

. This set corresponds to T = t

0A0A kk =+
ABAB kk =+

BABA kk =+

0B0B kk =+
1 I2, with I2 the 2×2 identity matrix. 

If alternatively  (tAB0B0A kkk +=+
3 ≠ 0), then from eqs 26a and 26b we have 

 and substituting eq 26b into eq 26d yields .  0B0AAB kkk −=+
0B0B kk =+

Now matrix T takes the form  

⎥
⎦

⎤
⎢
⎣

⎡
+

=
313

1 0
ttt

t
T              (27) 

with t3 ≠ 0.  
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To summarize, we obtain two sets of rate constant values: set S1 (the original or "true" 

set): 

0A0A kk =+             (28a) 

ABAB kk =+              (28b) 

BABA kk =+             (28c) 

0B0B kk =+             (28d) 

with T = t1 I2 and set S2 (the alternative set) given by eq 29: 

AB0B0A kkk +=+              (29a) 

0B0AAB kkk −=+             (29b) 

BABA kk =+             (29c) 

0B0B kk =+              (29d) 

with T given by eq 27 with t3 ≠ 0. Equation 29b requires that . For set S2 we 

have from eq 26b that 

0B0A kk >

( ) ABAB0B0A13 kkkktt −−= . 

Now we will show that the ambiguity in the rate constants (i.e., two possible sets) can be 

resolved by a mono-exponential f(t) at [X]k = 0. Indeed, the fluorescence δ-response 

function f(t) becomes mono-exponential for [X]k = 0, with decay rate constant k0A. From 

this mono-exponential f(t), we have that . Equation 26a leads then to t0A0A kk =+
3 = 0 and 

from eq 26b we have . From eq 26d we obtain , so that the original 

set is obtained (T = t

ABAB kk =+
0B0B kk =+

1 I2). To conclude, if the mono-exponential δ-response function f(t) 

at  [X]k = 0 can be recorded, the model of the reversible intermolecular two-state excited-

state process becomes uniquely identifiable in terms of rate constants.  
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Next we will demonstrate that for T = t1 I2 (set S1), the normalized ikbA
~  ( ikik bb AB

~1~
−=  ) 

and  jcA
~  ( jj cc AB

~1~ −= ) are unique. 

For Sijk(t) the alternative b+ (eq 5a) and c+ (eq 5b) for T = t1 I2  are given by 

100,00, tikik bb =+               (30) 

,00100, mjmj t cc =+               (31) 

Let's define the normalized +
00,A

~
ikb , 00,A

~
ikb , +

00,A
~

jc , and 00,A
~

jc : 

( )++++ += 00,B00,A00,A00,A
~

ikikikik bbbb           (32a) 

( )00,B00,A00,A00,A
~

ikikikik bbbb +=           (32b) 

( )++++ += 00,B00,A00,A00,A
~

jjjj cccc           (32c) 

( )00,B00,A00,A00,A
~

jjjj cccc +=           (32d) 

Use of these normalized elements in eq 30 leads to 

ikikikik bbbb B00,BA00,A
~~and~~

== ++          (33a) 

Analogously, eq 31 gives 

jjjj cccc B00,BA00,A
~~and~~ == ++           (33b) 

Equation 33 shows that the normalized ikik bb A00,A
~~

=  and jj cc A00,A
~~ =  are unique. The use 

of normalized ikbA
~  and jcA

~  in global compartmental analysis4, , 5 8 allows ikbA
~  to be linked 

at the same co-reactant concentration [X]k and excitation wavelength , whereas em
iλ jcA

~  

can be linked at the same emission wavelength .em
jλ

Now we consider the case where f(t, A, b, c) = Dijk(t) (eq 8) in which we will use the 

results of the identifiability analysis involving Sijk(t). We assume that the similarity 
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transformations for Sijk(t) and Dijk(t) are independent. Also the transformations of the 

various blocks ADk,2M in ADk are independent. For a cylindrically symmetric rotor, A = 

ADk (eq 10) with blocks ADk,2M given by eq 11, b = bik,2M (eq 16), c = cj,2M  (eq 20). 

Matrix T is a block-diagonal matrix (eq 34, see Appendix): 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

0

1

2

0000
0000
0000
0000
0000

T
T

T
T

T

T
-

-

            (34) 

with the matrices TM (M = −2, −1, 0, 1, 2) expressed as 

⎥
⎦

⎤
⎢
⎣

⎡
=

4,3,

2,1,

MM

MM
M tt

tt
T              (35) 

Because T and A = ADk are both block-diagonal matrices, the matrix multiplication of eq 

4 is split into five separate matrix multiplications (two of those are identical; M = −2 and 

M = +2; M = −1 and M = +1). It is straightforward to show that the matrix multiplication 

involving  and  [for M = ±2, ±1, 0 (eq 36)], +
MDk 2,A MDk 2,A

MMDkMDkM TAAT 2,2, =+             (36) 

also leads to two sets of alternative parameters: set D1 (corresponding to TM = tM,1 I2) 

given by eq 37 

           (37a) MM DkDk 2,A0A2,A0A +=+ ++

ABAB kk =+              (37b) 

BABA kk =+             (37c) 

MM DkDk 2,B0B2,B0B +=+ ++           (37d) 
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and set D2 (eq 38): 

          (38a) MM DkkDk 2,BAB0B2,A0A ++=+ ++

MM DDkkk 2,B2,AB00AAB −+−=+           (38b) 

BABA kk =+             (38c) 

MM DkDk 2,B0B2,B0B +=+ ++           (38d) 

For set D2 matrix TM takes the form  

⎥
⎦

⎤
⎢
⎣

⎡
+

=
3,1,3,

1, 0

MMM

M
M ttt

t
T             (39) 

with ( ) ABAB0B0A1,3, kkkktt MM −−= .  

To solve for the individual , , , , , , , and , one should 

combine the equations describing sets S1 (eq 28) and S2 (eq 29) with the equations 

describing sets D1 (eq 37 with M = ±2, ±1, 0) and D2 (eq 38 with M = ±2, ±1, 0). 

 in all four sets. The equations describing sets D1 and D2 are indeed not 

sufficient to lead to unique solutions for the unknown rate constants and diffusion 

coefficients. In principle sixteen combinations of eqs 28, 29, 37, and 38 are possible (e.g., 

S1, D1 for M = 0, ±2, D2 for M = ±1; S2, D2 for M = 0, D1 for M = ±1, ±2; etc.).  

However, of the sixteen possible combinations, only two will lead to a solution for the 

rate constants and diffusion coefficients. Indeed, S1 (eq 28) can only be combined with 

D1 (eq 37 with M = ±2, ±1, 0). The combination of set S1 (eq 28) with set D2 (eq 38) is 

not valid because eq 28b and eq 38b expressing  are incompatible, and hence no 

solution is possible. Equivalently, S2 (eq 29) can only be combined with D2 (eq 38 with 

+
0Ak +

ABk +
BAk +

0Bk +
⊥AD +

A||D +
⊥BD +

B||D

BABA kk =+

+
ABk
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M = ±2, ±1, 0), because the combination of S2 with D1 does not lead to a solution (eq 

29b and eq 37b expressing  are contradictory).  +
ABk

Combining eq 28 describing S1 with eq 37 describing D1 leads to a set of 10 

simultaneous equations in 8 unknowns , , , , , , , and . 

Solution of this overdetermined set of equations yields the original set of rotational 

diffusion coefficients: 

+
0Ak +

ABk +
BAk +

0Bk +
⊥AD +

A||D +
⊥BD +

B||D

AA ⊥
+
⊥ = DD             (40a) 

A||A|| DD =+             (40b) 

BB ⊥
+
⊥ = DD             (40c) 

B||B|| DD =+             (40d) 

Hence, by combining set S1 and D1 the original rate constants and rotational diffusion 

coefficients are obtained. 

Let's now examine the second possible combination (S2 and D2). Equations 29b and 38b 

lead to  for M = ±2, ±1, 0, yielding MM DD 2,B2,A =

BA ⊥⊥ = DD              (41a) 

B||A|| DD =              (41b) 

From eqs 29a and 38a we have  for M = ±2, ±1, 0, yielding MDD 2,BA,2M =+

BA ⊥
+
⊥ = DD             (42a) 

B||A|| DD =+             (42b) 

From eqs 29d and 38d we have  for M = ±2, ±1, 0, yielding  MDD 2,BB,2M =+

BB ⊥
+
⊥ = DD             (43a) 
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B||B|| DD =+             (43b) 

If the rotational diffusion coefficients of both species are equal (  and 

), the alternative rate constants are given by set S2 (eq 29) and the alternative 

diffusion coefficients are the original ones (  and 

). 

BA ⊥⊥ = DD

B||A|| DD =

BABA ⊥⊥
+
⊥

+
⊥ === DDDD

B||A||B||A|| DDDD === ++

To summarize, the identifiability analysis involving both Sijk(t) and Dijk(t) shows that the 

model for reversible intermolecular two-state excited-state processes with coupled 

rotational diffusion for a cylindrically symmetric ellipsoid is uniquely identifiable in 

terms of rate constants and rotational diffusion coefficients when the rotational diffusion 

of the two species is different. If the rotational characteristics of the two species are 

identical, a second set of rate constants (S2) is possible. 

Let's now consider the case where f(t, A, b, c) = Dijk(t) for a spherically symmetric rotor. 

As , the expression for  becomes independent of M and reduces to 

. 

lll DDD ⊥== || MlD 2,

lMl DD 62, =

An identification analysis similar to that for the cylindrically symmetric ellipsoid also 

gives two solutions: (i) the set of alternative rate constants is the original set (S1, eq 28) 

and the alternative rotational diffusion coefficients are the original ones; 

AA DD =+             (44a) 

BB DD =+             (44b) 

(ii) when the rotational diffusion coefficients of both species  are the same ( ), 

the set of alternative rate constants is described by eq 29 (S2) and the alternative 

rotational diffusion coefficients are the original ones ( ).   

BA DD =

BABA DDDD === ++
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For Dijk(t) the alternative b+ (eq 5a) and c+ (eq 5b) for TM = tM,1 I2  are given by 

1,2,2, MMlikMlik tbb =+            (45a) 

MmjMMmj ctc 2,1,2, =+            (45b) 

with l, m  = A, B and M = ±2, ±1, 0.  

Therefore one has that  

MmjMlikMmjMlik cbcb 2,2,2,2, =++             (46) 

The products of the spherical harmonics implicitly contained in eq 46 can simply be 

summed via the addition theorem, yielding the second-order Legendre polynomial 

 of the cosine of the angle between transition moments  and , ( mlP êâ ⋅2 ) lâ mê

( )mlmjlik
M

MmjMlik PcbCBcb ea ˆˆ
4
5

222

2

2
2,2, ⋅

π
=∑

−=

          (47) 

This theorem in combination with eq 46 and  yield mjlikmjlik cbcb =++

( ) ( mlml PP eaea ˆˆˆˆ 22 ⋅=⋅ ++ )

)

             (48) 

with l, m  = A, B and where  and  denote alternative transition moments. This 

implies that all  can be uniquely determined. 

+
lâ +

mê

( mlP êâ ⋅2

The normalized +
Mikb 2,A

~ , Mikb 2,A
~ , +

Mjc 2,A
~ , and Mjc 2,A

~  are defined as: 

( )++++ += MikMikMikMik bbbb 2,B2,A2,A2,A
~          (49a) 

( )MikMikMikMik bbbb 2,B2,A2,A2,A
~

+=          (49b) 

( )++++ += MjMjMjMj cccc 2,B2,A2,A2,A
~           (49c) 

( )MjMjMjMj cccc 2,B2,A2,A2,A
~ +=           (49d) 

Use of these normalized elements in eqs 45a and 45b leads to 
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MikMik bb 2,A2,A
~~

=+             (50a) 

MjMj cc 2,A2,A
~~ =+             (50b) 

Substitution of eq 14 in eq 50a gives 

( )
( )

( )
( )B2

A2

B2

A2

ˆ
ˆ

ˆ
ˆ

a
a

a
a

M

M

M

M

Y
Y

Y
Y

=+

+

             (51) 

so that the ratio of the spherical harmonics for the orientation of the absorption transition 

moments âA and âB is uniquely identified. 

Similarly, substitution of eq 17 in eq 50b yields 

( )
( )

( )
( )B

*
2

A
*

2

B
*

2

A
*

2

ˆ
ˆ

ˆ
ˆ

e
e

e
e

M

M

M

M

Y
Y

Y
Y

=+

+

             (52) 

implying that the ratio of the spherical harmonics for the orientation of the emission 

transition moments êA and êB is uniquely determined. 

In conclusion, if the rotational diffusion coefficients of the two species are different, 

rotational diffusion joined with an intermolecular two-state excited-state process makes 

this model uniquely identifiable in terms of rate constants k, rotational diffusion constants 

D and normalized Mikb 2,A
~  and Mjc 2,A

~ . 

B. Reversible intermolecular two-state excited-state process with added 

quencher 

The expressions for ADk,2M (eq 11 for polarized fluorescence) and Akl (eq 22 for 

quenching) are formally equivalent. Therefore, we want to investigate if the role played 

by rotational diffusion in the polarized fluorescence measurements can be taken up by 

quenching. For f(t, A, b, c) = Qijkl(t) we have that A = Akl (eq 22), b = bik (eq 23), and c = 

cj (eq 24). Matrix T is given by eq 25. 
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The matrix multiplication of eq 4 yields 

[ ] [ ]( ) [ ] [ ] [ ]( ) AB3QABA0A1BA2QABA0A1 QXXQX ktkkktktkkkt lkklk +++−=+++− ++++   (53a) 

[ ]( ) [ ] [ ]( ) AB4QABA0A2QBAB0B2AB1 QXQ ktkkktkkktkt lkl +++−=++− ++++      (53b) 

[ ] [ ]( ) [ ] [ ] [ ]( )lkklk kkktktktkkkt QXXQX QBAB0B3BA1BA4QABA0A3 ++−=+++− ++++     (53c) 

( ) [ ] ( )[ ]lkAB kktktkkkktkt QX QBQB4BA2AB0BAB0B43 −+=−−+− ++++       (53d) 

Since the elements ti (i = 1, …, 4) of T are independent of [X]k and since kBA ≠ 0, we 

have from eq 53d that t2 = 0. Furthermore, since the elements ti also are independent of 

[Q]l, we have from eq 53d that  (the alternative, tQBQB kk =+
4 = 0, would lead to the null T 

matrix). Thus, the set of eqs 53 is simplified to the following set (eqs 54): 

( ) ( )[ ] ( )[ ]lk kktkktktkkt QX QAQA1BABA1AB30A0A1 −+−=−−− +++       (54a) 

AB4AB1 ktkt =+             (54b) 

( ) ( )[ ][ ] ( )[ ]lk kktkttktkkkt QX QBQA3BA43BA1AB0B0A3 −+−+=−−− +++      (54c) 

( )AB0BAB0B4AB3 kkkktkt −−+= +++          (54d) 

Since T is independent of [X]k, we have from eq 54a that  (the alternative, tBABA kk =+
1 = 

0, would lead to the null T matrix) and from eq 54c 341 ttt −= . Moreover, since T is 

independent of [Q]l, we have from eq 54a that . From eq 54c, it is evident that 

two cases have to be considered to ensure that T is independent of  [Q]

QAQA kk =+

l: either t3 = 0 or 

. Now the set of eqs 54 is reduced to the set of eqs 26. (i) If tQBQA kk =+
3 = 0, from eq 54a 

we obtain , from eq 54b , and from eq 54d . Hence, the 

alternative set of rate constants equals the original set (S1, eq 28) with  and 

0A0A kk =+
ABAB kk =+

0B0B kk =+

QAQA kk =+
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QBQB kk =+ . This set corresponds to T = t1 I2. (ii) If alternatively t3 ≠ 0 we have . 

In combination with , this yields 

QBQA kk =+

QAQA kk =+
QBQA kk = . Equation 54c produces 

, and from eqs 54a and 54b we have  and substituting eq 

54b into eq 54d yields . To summarize, if the quenching rate constants are 

identical ( ), the alternative set of rate constants is given by set S2 (eq 29) and 

. In that case, T is given by eq 27 with 

AB0B0A kkk +=+
0B0AAB kkk −=+

0B0B kk =+

QBQA kk =

QBQAQBQA kkkk === ++

( ) ABAB0B0A13 kkkktt −−= . Since all rate constants should be positive, this set is only 

possible when .  0B0A kk >

For Sijk(t) the alternative b+ (eq 5a) and c+ (eq 5b) for T = t1 I2  are given by 

b+ = bik / t1            (55a) 

c+ = t1 cj                  (55b) 

Use of normalized elements in eqs 55 leads to unique normalized ikbA
~  and jcA

~ : 

ikik bb AA
~~

=+  and jj cc AA
~~ =+ . Hence, addition of quencher to a reversible intermolecular two-

state excited-state process makes this model uniquely identifiable in terms of rate 

constants and normalized ikbA
~  and jcA

~  if the quenching rate constants are different. 

Quenching takes up the role played by rotational diffusion in polarized measurements. 

5. Discussion and Conclusions 

We have demonstrated that the similarity transformation approach can be applied 

successfully in the identifiability study of models of reversible intermolecular two-state 

excited-state processes with (i) coupled species-dependent rotational diffusion described 

by Brownian reorientation, and with (ii) added quencher. The results obtained are in 
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perfect agreement with the deterministic identifiability studies using Markov parameters 

and elementary functions of the rate and diffusion constants.10, 14 The similarity 

transformation approach has the additional advantage of providing the explicit 

relationship between the true and alternative model parameters.  

We have shown via the method of similarity transformation that the model of reversible 

intermolecular two-state excited-state processes becomes uniquely identifiable when a 

mono-exponential fluorescence δ-response function f(t) at [X]k = 0 is used together with 

the bi-exponential S(t). A second strategy to obtain a uniquely identified model is when 

quencher is added to this photophysical system and the quenching rate constants of both 

excited-state species are different. In both cases all rate constants and the normalized 

spectral parameters are uniquely determined. A third possibility is by using the polarized 

fluorescence δ-response functions I||(t) and I⊥(t). These functions are used to define the 

sum S(t) = I||(t) + 2 I⊥(t) and the difference D(t) = I||(t) − I⊥(t) function. The sum curve S(t) 

describes the time dependence of the total fluorescence and contains information only on 

the excited states as a whole. In the difference curve D(t), the rotational kinetic behavior 

interacts closely with the overall excited-state kinetics. Because of the clear dependence 

of S(t) and D(t) on A, b, and c, the identifiability analysis is simpler if one uses the S(t) 

and D(t) functions instead of I||(t) and I⊥(t). If the rotational diffusion constants of both 

species are different, coupling the rotational diffusion with the overall excited-state 

kinetics makes the model globally identifiable in terms of the rate constants and the 

rotational diffusion constants. In that case, inclusion of polarization as an experimental 

coordinate abrogates the need for the extra experimental coordinate supplied heretofore 
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by addition of a quenching agent. The role of quenching is taken up by the diffusion 

constants [compare the matrices ADk,2M (eq 11) and Akl (eq 22)].  

The model of reversible intermolecular two-state excited-state processes with species-

dependent rotational diffusion may well be applicable to a wide range of molecular and 

biomolecular systems, where fast kinetics of reversible processes are of interest. The 

change brought about by the excited-state process involving the co-reactant leads in 

general to a  change in size and shape of the rotating unit containing the fluorophore. 

Relatively small changes of this kind (on the order of factors of two in the principal 

rotational diffusion constants) are expected for excimers and exciplexes. Another 

application is the reversible interaction between a ligand and a receptor. The fluorescent 

receptor may be (i) a fluorescent probe and of comparable size and molecular weight to 

the ligand or (ii) it can be a macromolecule, most commonly a protein. In case (i), only 

relatively small changes in the effective rotational unit, either in size or shape, may be 

expected, even for ligands of comparable size to the receptor. In case (ii), when the 

fluorescent moiety is the ligand and relatively small compared to the macromolecular 

receptor, these changes may be very large. An application in the field of biochemistry 

involves the binding of a small fluorescent molecule by intercalation into double-helical 

regions of a nucleic acid. 

In the literature some systems have been described with intramolecular rearrangements of 

the excited-state species upon interconversion.19 An identifiability analysis similar to the 

one described here can be performed for these intramolecular two-state excited-state 

processes and will be reported elsewhere. 
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Appendix 

Here we show that the transformation matrix T for matrix ADk takes the form given in eq 

34.  

The similarity transformation expressed in eq 3 essentially defines a transformation of 

basis vectors in a vector space V. An operator A defined on the vector space V can be 

represented by the matrix A assuming a set of basis vectors {ei} of the vector space V. If 

we assume another basis, say {fi}, the operator A is represented by another matrix, say 

A+. The matrices A and A+ are related by an expression of the type given by eq 3. The 

matrix T defines the transition matrix from the basis {ei} to the basis {fi}. When A is a 

block diagonal matrix, there are subspaces, say Wi, in the vector space V which are 

mapped onto itself under the action of the operator A. These subspaces Wi are said to be 

invariant under the operator A.  

For the matrix ADk there are 5 subspaces each of dimension 2. It can be shown14 that the 

eigenvalues of ADk  can be properly paired and labeled with the correct value of M.  The 

subspaces corresponding to the paired eigenvalues can then be labeled also, so that one 

obtains {WM | M = −2, −1, 0, 1, 2}. Because ADk,2M = ADk,2-M the subspaces WM and W-M 

can be swapped.  
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When also  is a block diagonal matrix, the matrix T maps basis vectors of W+
DkA M onto 

WM*. Since also the eigenvalues of  can also be properly paired and labeled, one has 

that M

+
DkA

 = |M*|. Therefore, T is a block diagonal matrix. 

Figure captions 

Figure 1. Graphic representation of a reversible intermolecular two-state excited-state 

process, including rotation. Species A* and B* are pictured as being initially excited from 

their ground states A and B by an infinitely short linearly polarized light pulse at 

wavelength  in a unique absorption band. The excited-state processes are described by 

the deactivation rate constants k

ex
iλ

0A and k0B, and the excited-state exchange rate constants 

kBA and kAB. The transformation of species A∗ into B∗ is mediated by co-reactant X with 

concentration [X]k. Simultaneously the species rotate with rate constants determined by 

the corresponding rotational diffusion tensors DA and DB, which may differ between the 

species. The polarized emission of each species depends on the relative orientation of its 

emission transition moment (with unit vector êA or êB) at the instance of emission with 

respect to the absorption moment (with unit vector âA or âB) in the species initially 

excited.  

Scheme 1. Scheme representing a reversible intermolecular two-state excited-state 

process with added quencher. It is assumed that the quencher Q has only an effect on the 

excited species and does not affect the ground-state equilibrium. The excited-state 

processes are described by the deactivation rate constants k0A and k0B, and the excited-

state exchange rate constants kBA and kAB. The additional quenching of A* and B* due to 

the external quencher Q is described by the rate constants kQA and kQB, respectively. 
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