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Introduction

The Japanese Toxicogenomics Project (TGP)1 represents a 
unique source of information for toxicology and safety studies. 
The main topic that we address in this paper is related to the 
prediction of drug-induced liver injury (DILI) in humans using 
rat in vivo data (henceforth referred to as rat data). The analy-
sis can be viewed from the perspective of translational research. 
Translation between rat and human data are an important topic,2 
due to high costs and ethical considerations of experiments that 
arise if development is moved to humans.3 Gaining strong sci-
entific knowledge in animal models would prevent most risks. 
Translational research gets attention in all medical fields (e.g., 
refs. 4 and 5) and genes are a valuable tool in revealing connec-
tions across species (e.g., refs. 6 and 7).

In our particular case, successful prediction of a compound 
being toxic during rat experiments would reduce failure of effica-
cious compounds during the expensive phase III trials. An average 
of 10% of marketed drugs is being withdrawn from the market 
or requiring black-box warnings because of adverse drug reac-
tions or toxicity. Moreover, failures in clinical phase III trial as 
well as in FDA submission have increased to approximately 50% 

in recent years.8 In this paper, our aim is to explore the connec-
tion between humans and rats in terms of translatability of gene 
expression. Particularly, our goal is to model effect of dose on 
the gene expression in human in vitro data (henceforth referred 
to as human data) using the dose effect on the gene expression 
estimated from rat in vivo data. Therefore, our method would 
identify genes that enable translation of toxicity in rats into toxic-
ity in humans.

The core part of the rat data set is gene expression level infor-
mation across multiple compounds at multiple time points and 
dose levels. We focus on genes that are orthologous for rats and 
humans. Most of these genes are already annotated by biological 
processes or diseases (e.g., refs. 9 and 10). The analysis presented 
in this paper explores common dose-response pathways between 
rat and human genome using gene expression. Identifying a sub-
set of genes that show similar dose-response gene expression pro-
files in rats and humans would support the translation of gene 
expression from rat in vivo experiments to human experiments. 
As in the case of DILI, this would enable the prediction of com-
pounds’ toxicity in humans using rats’ in vivo experiments. The 
discovery of such genes would create knowledge about underly-
ing mechanisms and connection between species which would 
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The Japanese Toxicogenomics Project (TGP) provides large amount of data for the toxicology and safety framework. 
We focus on gene expression data of rat in vivo and human in vitro. We consider two different analyses for the TGP data. 
The first analysis is based on two-way analysis of variance model and the goal is to detect genes with significant dose-
response relationship in both humans and rats. The second analysis consists of a trend analysis at each time point and the 
goal is to detect genes in the rat in order to predict gene expression in humans. The first analysis leads us to conclusions 
about the heterogeneity of the compound set and will suggest how to address this issue to improve future analyses. In 
the second part, we identify, for particular compounds, groups of genes that are translatable from rats to humans, so they 
can be used for prediction of human in vitro data based on rat in vivo data.



e29412-2	S ystems Biomedicine	 Volume 2 

significantly improve how rat toxicology is used as a model for 
human toxicology in the later stages of drug development.

Results

Analysis of variance
Figure 1 shows the number of genes with significant interac-

tion effect in both rats and humans and reveals a heterogeneous 
pattern across compounds. For example, for the compound sulin-
dac there are 201 genes with significant interaction effect in both 
rats and humans while for the compound perhexiline there is only 
1 gene in common. In total, only 54 compounds had at least 
one significant gene and only 10 compounds had more than 25 
significant genes on the list. An example of one significant gene 
is shown in Figure 2. There exists a small set of genes that are 
significant in both rat and humans data consistently across sub-
sets of compounds, even in case of strict multiplicity corrections. 
For the results presented in this paper we applied Bonferroni cor-
rection at significance level of 10%. The subset of compounds, 
identified through common significant genes, consists of DILI 
related compound only (if we convert the DILI status into binary 
variable, by pooling together “most concern” and “less concern” 
categories). Hence, the significance of the identified genes in 
rat in vivo could emphasize possible danger of DILI in humans. 
These genes are typically connected with the liver processes. 
Table 1 shows one of these genes, noted ASF1A (originally Asf1a 
in rat and ASF1A in human), that is significant for multiple 
compounds with DILI concern and not for any compound with-
out DILI concern. Other genes from the identified set, FABP1, 
MCM4, SMC2, TXNRD1, show very similar behavior.

Trend analysis
As mentioned in the previous section, the second analysis 

consists of trend analysis per time point. An example of gene 

complying with monotonicity assumption is shown in Figure 3. 
Our aim in this section is to predict the dose effect in humans 
using the dose effect in rat in vivo. All tests are based on MCT 
and P values are adjusted using Bonferroni correction using sig-
nificance level of 10%.

At the first stage of the analysis, we identify, in the rat, the 
time point with the strongest signal. Figure 4 presents the num-
ber of genes with significant dose-response relationship per time 
point. It clearly shows that there are much more significant genes 
in the last time point, both for rats and humans, than in any 
other time point. Hence, for the remainder of this section, the 
dose effects in rats at the last time point are used for prediction. 
Figure 5 reveals that the number of significant genes in rats does 
not correspond with the number of significant genes in humans. 
For several compounds, there are no genes significant both in rats 
and humans. Hence, we focus on two gene sets: 1) genes signifi-
cant in rats and, 2) genes significant both in rats and humans.

The dose effect in both rats and humans were estimated using 
isotonic regression. Only 91 compounds having high dose are 
considered for the analysis and we used the change in isotonic 
means of the rat (from the last to the first, i.e., control, dose level) 
in order to predict the change in isotonic means of the human. 
The example of resulting gene for the compound omeprazole is 
presented in Figure 6. We can see one of the genes where the 
translatability of rat data into human data is apparent. The mean 
at high dose for the rat represents differential expression of almost 
6-fold change increase, while isotonic mean for humans shows 
almost 5 log-fold change increase. Prediction of all dose effects 
on humans using high dose effect on rats, when only genes sig-
nificant in rats are used, are explored in Figure 7. As expected, 
prediction of control dose shows very low correlation, since all 
values for human control dose should be around zero. However, 
for higher doses we can see that there are genes with (nearly) 
the same value of isotonic means both for rat and human. Still, 

Figure 1. Number of genes with significant interaction in two-way ANOVA model, for both rat and human. The P values are adjusted using Bonferroni’s 
method on significance level of 10%.
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Figure 2. Example of gene with significant interaction in two-way ANOVA model, for both rat and human. Compound omeprazole and gene Acsl1 in rat, 
respectively ACSL1 in human.

there is large amount of genes centered around zero. However, 
in Figure  8, where only genes that are significant in both rat 
and human in the last time point, the subset of genes around 
zero almost disappears. The resulting gene set reveals genes that 
are both consistently significant across species and translatable 
between species with respect to fold change induced by high dose 
of a given compound (omeprazole in this case).

Discussion

According to the ANOVA results, the number of significant 
genes varied among the compounds. This finding is not surpris-
ing since the data set contains very distinct compounds, both 
with respect to their structural properties and biological effects. 
The data set contains vitamin A next to ibuprofen or nicotinic 
acid. The analyses presented in this paper suggest that searching 
for overall differentially expressed genes can fail due to heteroge-
neity in the data set. Limiting ourselves to smaller subgroups of 
similar compounds can lead to more efficient analysis and mean-
ingful results. One of such subsets was identified by our analy-
sis, by grouping together 23 compounds with significant gene 
ASF1A. The presence of subgroups of compounds questions the 
meaningfulness of the goal of identifying genes useful for classi-
fication of compounds as DILI. If within given set of compounds 
would exist latent subgroups of compounds (similar with respect 
to their overall behavior), then particular genes could be good 
predictors of DILI in one subgroup, but not necessarily in other 
subgroups. In other words, genes that can be predictors for DILI 

within one subgroup will lose its predictive ability by considering 
whole data sets with several subgroups of compounds. Besides the 
fact that the DILI response is highly unbalanced, only 8 com-
pounds out of 93 show “no DILI concern.” Therefore, we propose 
to use a more specific response variable instead and simultane-
ously focus on possible identification of subgroups among com-
pounds. These insights lead us to focus on translatability and 
means prediction in the second part of the analysis.

The second part of the analysis was mainly focused on the 
translatability of genes between humans and rats. The genes of 
interest are such that the fold change of their gene expression 
(precisely its log ratio against control) has similar values in rat 
and human data and moreover, the dose-response relationship is 
statistically significant in both species. We have shown that for 
some compounds, no relevant results were found. This is mostly 
due to very low overall difference in expressions and high vari-
ability. However, for several compounds, we were able to identify 
gene sets behaving in the desired way. The impact of the find-
ing is clear: the value of gene expression observed in rats can be 
used as biomarkers for the corresponding gene expression value 

Table 1. Relationship between DILI concern status and simultane-
ous significance of interaction for both rat and human data for 
gene ASF1A

ASF1A
DILI status

No concern Some concern

Significant interaction
No 8 62

Yes 0 23
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in humans. If we are able to connect these genes with particular 
toxicological process, the signature made by these genes can serve 
us as early warning mechanism. The reliability of such genes as 
biomarkers will need to be validated, but the fact that they are 
significant in both species may highlight a common underlying 
biological mechanism in both species after exposure to the com-
pounds. This study may provide a leeway into more extensive 
studies on rats and humans toxicogenomics connectivity in early 
drug developments.

Materials and Methods

Data sets
The data considered for the analysis presented in this paper 

consists of 93 compounds that are common in rat in vivo and 
human experiments and have DILI information available. In 
total, 4440 Affymetrix microarrays that measured gene expres-
sion profiles are available for rats (91 compounds with 48 arrays 
and 2 compound with 36 arrays) and 1116 arrays are available 

Figure 4. Number of genes with significant dose-response relationship per time point. Green compounds have maximum in last time point, red com-
pounds in any other time point. Rat data results are displayed in left panel, human data in right panel.

Figure 3. Example of gene with monotone dose-response profile for all time points in rat. Compound omeprazole and gene Mafg in rat (MAFG in human).
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for humans (12 arrays per compound). We consider only genes 
that are orthologous for rats and humans. Further, we filter the 
genes using the I/NI calls criterion.11 The preprocessed and fil-
tered data set consists of 4359 genes. Response is computed as 
log ratio of the gene expression level against mean of expression 
levels under control dose (vehicle). The gene expression values are 
based on FARMS12 summarized data.

For rat in vivo data, there are for each compound 48 arrays, 
3 biological replicates measured at 4 dose levels (including con-
trol), each at 4 different time points (except 2 compounds with 

36 arrays missing highest dose). In this study, human data set 
comprises 12 arrays per compound, 2 replicates measured at 3 
doses and 2 time points. For the analysis presented in this paper 
we use the ordinal dose levels, i.e., low, middle or high as pro-
vided in original data sets.

Exploratory analysis: Analysis of variance approach
For the exploratory analysis, a gene specific linear model 

with dose and time as covariates is used. Interaction between 
covariates is also included. Let Y

ijk
 denotes the gene expression 

level for the ith compound (i = 1,...,93), jth gene ( j = 1,...,4359) 

Figure 5. Number of genes with significant dose-response relationship in last time point. Compounds are ordered according to the number of signifi-
cant genes in rat and ordering is kept across all three panels. Rightmost panel then shows intersection of two figures on the left.

Figure 6. Example of gene translatable between rat and human for compound omeprazole: gene Cyp1a1 in rat, respectively CYP1A1 in human.
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and kth observation (k = 1,...,48 or 36) based on time-dose com-
binations. To test possible dose effect, time effect and as well 
as their interaction, a two-way analysis of variance (ANOVA) 
model is used:

Y
ijk

 = α
0ij

 + β
Dij

Dose
ijk

 + β
Tij

Time
ijk

 + γ
ij
Dose

ijk
 * Time

ijk
 + ε

ijk
.

Parameters α
0
, β

D
, β

T
, γ are gene (within compound) spe-

cific and the measurement error ε
ijk

 is considered to follow a 
Gaussian distribution . The parameter vectors 
β

Dij
, β

Tij
, γ

ij
 represent the dose, time and interaction effects. 

In practice they comprise parameters representing particu-
lar level of explanatory variables [e.g., β

Dij
 = (β

DijCONTROL
,  

β
DijDOSE 1

, β
DijDOSE 2

, β
DijDOSE 3

)]. Note that the two-way ANOVA 
model specified above is fitted as a gene specific model within 
each compound. Testing if the parameters differ from null gives 
us an indication if the gene is differentially expressed for given 
compound, or not. However, gene specific omnibus test based 
on F-distribution can also be used to test if there is any signifi-
cant effect at all.

Whatever test is used, multiplicity adjustment have to be 
applied due to extensive number of tests performed (4359 per 
compound). Correction for multiplicity was applied within each 

compound. In general, either Family Wise Error Rate (FWER)13 
or False Discovery Rate (FDR)14 can be used. Controlling FWER 
translates into level of certainty that there is no false positive 
finding among all our findings, but controlling FDR assumes 
there is at least one false positive finding while controlling for 
portion of false positive among all findings. Hence, FWER is a 
more conservative method than FDR. In our analysis, we apply 
Bonferroni method to control FWER to prevent false positives 
entering later stages of the analysis.

The whole procedure is conducted for both rat in vivo and 
human data. Only those genes that are found to be significant 
(according to test we choose) for both humans and rats are kept 
for further analysis. The resulting lists of significant genes are 
compared across compounds to identify genes that are signifi-
cantly expressed in multiple compounds. Indicators of signifi-
cance of a particular gene can be compared with DILI status of 
compounds to find out if the genes’ appearance is connected with 
potential danger for the liver. In general, any information about 
compounds can be used in this stage and can be compared with 
indicator of genes significance. For example, pathological data 
available in the study can be used, information about compound 
chemical structure or grouping of compounds based on their 
phenotypic effect.

Figure 7. Dose effect for the compound omeprazole: estimated isotonic mean in particular dose in human against estimated isotonic mean in high dose 
in rat, both for last time point. Genes with significant dose-response relationship for rat in last time point (significance in human is not considered).
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Main data analysis: Trend analysis approach
A trend analysis is a common analysis in toxicology. The aim 

of such analysis is to identify a subset of genes for which a mono-
tone relationship with an increasing dose of a compound can be 
detected.15 Such an assumption of monotonicity allows us to gain 
power and it is scientifically reasonable. For toxicological studies, 
this assumption is typically used, since toxic effect usually gets 
stronger with increasing dose. Monotone means are computed for 
each gene using isotonic regression method.16-18 Isotonic regres-
sion pools together the means that violate assumption of mono-
tonicity and makes these means equal. Figure 9 shows examples 
of the isotonic means μ = μ

0
, μ

1
, μ

2
, μ

3
) for an experiment with 

control dose and three active dose levels.
Hence, within the second modeling approach the null hypoth-

esis of no dose effect is tested against an ordered alternative in the 
following way:

 
or

 

with at least one inequality strict. We start with simple ANOVA 
model:

Y
ijkl

 = μ
0ijl

 + ∂
ijl
Dose + ε

ijkl
,

where i stays for compound, j for gene, l for specific time point 
and k for observation within each time point (within gene, 
within compound). The vector of parameters (∂

ijl
 = ∂

1ijl
, ∂

2ijl
, ∂

3ijl
) 

represents the change of the mean in particular dose (compared 
with control dose) and parameters are either non-negative or 
non-positive (according to direction of monotonicity assump-
tion). The measurement error follows a Gaussian distribution, 

. An advantage of the model is absence of any 
parametrical assumption on dose response relationship shape. 
Dose-specific means are modeled separately, connected through 
deltas values.

The analysis is done per compound and per time point (and 
separately for human and rat). A multiple contrast test with 
Marcus’ monotone contrast (MCT)19 is used to identify sig-
nificant genes. The MCT is designed to cover all the possible 
parameter space of each model while using as few tests as possible 
(and so keeping power as high as possible). It comprises of several 
single contrast tests, while different combination of contrasts can 
also be used. We follow implementation arising from Marcus’ test 
statistic20 proposed for MCT by Bretz.21 Multiplicity adjustment 
is conducted within each compound and time point combination 

Figure 8. Dose effect for the compound omeprazole: estimated isotonic mean in particular dose in human against estimated isotonic mean in high dose 
in rat, both for last time point. Genes with significant dose-response relationship for both rat and human in last time point.
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using FWER approach (with Bonferroni correction) within a 
gene and FDR adjustment across the genes.22

Finally, for each compound and time point combination, we 
create lists of genes that show significant dose-response relation-
ship. The time points with highest rate of significant genes (if 
such exist) are identified and we focus on them. Then, genes are 
listed that show significant dose-response relationship for such 
time points simultaneously in both rats and humans. For a par-
ticular gene on the resulting list, isotonic means at all doses are 
estimated and their values are compared between humans and 
rats. Hence, we can identify such genes in rats that can be used in 
order to predict the gene expression level in humans.
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