
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Improved-Bidirectional Exact Pattern Matching
Iftikhar Hussain, Syed Zaki Hassan Kazmi, Israr Ali Khan, Rashid Mehmood

Abstract—In this research, we present an improved version of Bidirectional (BD) exact pattern matching (EPM) algorithm to solve the
problem of exact pattern matching. Improved-Bidirectional (IBD) exact pattern matching algorithm introduced a new idea of scanning partial
text window (PTW) as well with the pattern to take decision of moving pattern to the right of partial text window. IBD algorithm compares
the characters of pattern to selected text window (STW) from both sides simultaneously as BD. The time complexity of preprocessing
phase of IBD algorithm is O(2m) and searching phase takes O(mn/2).

Index Terms—Algorithm, window sliding, scanning text window, string matching, exact pattern matching, Improved-Bidirectional,
Bidirectional, boyer-moore

——————————  ——————————

1 INTRODUCTION

XACT pattern matching algorithms, are a dominant class
of the string algorithms which aim to find one or all oc-
currences of string within a larger group of text string [1].

In exact pattern matching, pattern is fully compared with se-
lected text window of text string.

In this paper, we proposed an Improved-Bidirectional
(IBD) exact pattern matching algorithm based on window slid-
ing method of exact pattern matching which will be helpful in
various needs of pattern matching and searching.

Literature review of previous exact string matching algo-
rithms used to complete this research. After the publications of
Knuth-Morris-Pratt and Boyer-Moore exact pattern matching
algorithms, so for there have hundreds of papers published
related to exact pattern matching [19]. According to literature
survey, all the authors focus to reduce the number of character
comparisons as [8] and processing time as [14, 9, 10] in both
worst/average cases. In this paper we compare Improved-
Bidirectional algorithm's results with Bad Character Boyer-
Moore, BM Horspool, Quick Search, Berry Ravindran, BM
Smith, Raita and Bidirectional exact pattern matching algo-
rithms which considered efficient in terms of number of cha-
racter comparisons and attempts take to complete the
processing of selected text.

In this paper, we present a brief literature review of some
existing exact string matching algorithms. Section 2 describes
the basic concept and working of Improved-Bidirectional al-
gorithm with brief example. Then we compare the IBD algo-
rithm with some existing algorithms in terms of their compari-

son order, preprocessing space complexity, preprocessing time
complexity and searching time complexity (best, average and
worst). In Section 3, we present results and discussions that
compare the IBD algorithm with existing algorithms. Finally,
in Section 4, we draw conclusions from the experiments.

1.1 Literature Survey
Brute force (BF) [1] or Naïve algorithm is the logical place to
begin the review of exact string matching algorithms. It com-
pares a given pattern with all substrings of the given text in
any case of a complete match or a mismatch. It has no prepro-
cessing phase and did not require extra space. The time com-
plexity of the searching phase of brute force algorithm is
O(mn).

Knuth-Morris-Pratt (KMP) [2] algorithm is proposed in
1977 to speed up the procedure of exact pattern matching by
improving the lengths of the shifts. It compares the characters
from left to right of the pattern. In case of match or mismatch
it uses the previous knowledge of comparisons to compute the
next position of the pattern with the text. The time complexity
of preprocessing phase of KMP is O(m) and of searching phase
is O(nm).

Boyer-Moore (BM) [3] algorithm published in 1977 and at
that time it considered as the most efficient string matching
algorithm. It performed character comparisons in reverse or-
der from right to the left of the pattern and did not require the
whole pattern to be searched in case of a mismatch. In case of
a match or mismatch, it used two shifting rules to shift the
pattern right. The time and space complexity of preprocessing
phase is O(m+|∑|) and the worst case running time of search-
ing phase is O(nm + |∑|). The best case of Boyer-Moore algo-
rithm is O(n/m).

Boyer-Moore Horspool (BMH) [9] did not use the shifting
heuristics as Boyer-Moore algorithm used. It used only the
occurrence heuristic to maximize the length of the shifts for
text characters corresponding to right most character of the
pattern. It's preprocessing time complexity is O(m+|∑|) and
searching time complexity is O(mn).

Quick Search (QS) [10] algorithm perform comparisons
from left to right order, it's shifting criteria is by looking at one
character right to the pattern and by applying bad character
shifting rule. The worst case time complexity of QS is same as
Horspool algorithm but it can take more steps in practice.

E

————————————————

• Iftikhar Hussain, lecturer at Faculty of Administrative Sciences, Kotli
University of Azad Jammu and Kashmir, Muzaffarabad,AJK Pakistan.
Cell No.-0092-3235356089. E-mail: iftikhar.iftikhar786@gmail.com

• Syed Zaki Hassan Kazmi, lecturer at Faculty of Sciences, Muzaffarabad
University of Azad Jammu and Kashmir, Muzaffarabad,AJK Pakistan
Cell No.-0092-3465881738. E-mail: zaki.mzd@gmail.com

• Dr. Israr Ali Khan, Chairman, Department of Mathematics ,FASK, Uni-
versity of Azad Jammu and Kashmir, Muzaffarabad,AJK Pakistan
Cell No.-0092-3006091742. E-mail: israrkhan81@gmail.com

• Rashid Mehmood, lecturer at Faculty of Administrative Sciences, Kotli
University of Azad Jammu and Kashmir, Muzaffarabad,AJK Pakistan.
Cell No.-0092-3435634099. E-mail: rashid.mehmood@ajku.edu.pk

659

IJSER

http://www.ijser.org/
mailto:iftikhar.iftikhar786@gmail.com
mailto:zaki.mzd@gmail.com
mailto:israrkhan81@gmail.com
mailto:rashid.mehmood@ajku.edu.pk

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Boyer-Moore Smith (MBS) [11] noticed that by computing
the BMH shift, sometimes maximize the shifts than QS shifts.
It uses the bad character shifting rule of BMH and QS bad cha-
racter rule to shift the pattern. It's preprocessing time com-
plexity is O(m+|∑|) and searching time complexity is O(mn).

Turbo Boyer Moore (TBM) [14] is variation of the Boyer-
Moore algorithm, which remembers the substring of the text
string which matched with suffix of pattern during last com-
parisons. It does not compare the matched substring again; it
just compares the other characters of the pattern with text
string.

In Reverse Colussi (RC) [15] algorithm comparisons are
done in specific order given by the preprocessed phase. The
time complexity of preprocessing phase is O(m2) and search-
ing phase is O(n).

Two Way algorithm (TW) [17] proposed by Crochemore
and Rytter in 2002. The Two Way algorithm uses an idea re-
lated to the short maximal suffix of the pattern to calculate the
shifting lengths of pattern in text string. The Two Way algo-
rithm's time complexity with the short maximal suffix is O(n).

Berry Ravindran (BR) [18] algorithm proposed by Berry
and Ravindran in 1999, it performs shifts by using bad charac-
ter shifting rule for two consecutive characters to the right of
the partial text window of text string. The preprocessing time
complexity is O(m+(|∑|)2) and the searching time complexity
is O(mn).

2 IMPROVED-BIDIRECTIONAL EXACT PATTERN
MATCHING ALGORITHM

2.1 Basic Idea
Improved-Bidirectional exact pattern matching algorithm
compares a given pattern character wise from both sides si-
multaneously as Bidirectional algorithm. The difference be-
tween BD and IBD is that, in case of mismatch or a complete
match of the pattern, IBD scans pattern for the rightmost cha-
racter of the partial text window and scan partial text window
for the leftmost character of the pattern. If both characters
found on equal shifts then align pattern to the position where
the characters found otherwise, shift whole pattern to the right
of the partial text window of text string. A complete match
will be found when left pointer cross right pointer at middle of
the pattern. The comparison order of pattern's characters with
the characters of selected text window is shown in Figure 1.

Text String

Pattern String

Right PointerLeft Pointer

Comparison Order
1

3
5

7

2
4

6
8

Figure 1: Comparison order of pattern's character with STW.

Improved-Bidirectional algorithm has two cases to shift the
pattern to right of partial text window. Suppose T[1…n] is the
text string and P[1…m] is the pattern and we compare pattern
P[1…m] with the selected text window T[i…i+m-1] from both
sides of the pattern simultaneously. If mismatch cause by any

pointer either right or left at any position of the pattern then
scan pattern P[m-1…1] for the rightmost character of partial
text window T[i+m-1] and scan partial text window T[i+1 …
i+m-1] for the leftmost character of the pattern P[1];
Case 1: If rightmost character T[i+m-1] of partial text window
and leftmost character P[1] of pattern are found in the pattern
and selected text window respectively on equal distances then
align pattern to the position where the characters found on
equal shifts as in Figure 2.

bafadagd

z b Text Stringaadfgd

Pattern String
Right Ptr.Left Ptr.

i

1

m-1

jj′

i m-1

bafadagd Pattern String
Right Ptr.Left Ptr.

1 m

i′

z b Text Stringaadfgd

m

i+j-1

i′i+j-1

j′

Figure 2: T[i+m-1] of PTW and P[1] of pattern found at equal shifts.
Case 2: Otherwise; If rightmost character of selected text
window T[i+m-1] and leftmost character of pattern P[1] did
not find in the pattern and selected text window on equal
shifts. Or at least one character did not find in the pattern and
selected text window then shift whole pattern to the right of
the selected text window as shown in Figure 3.

bgfadcxz

g b Text Stringaxsfcd

Pattern String
Right Ptr.Left Ptr.

i

1

m-1

m

i m-1

bgfadcxzPattern String
Right Ptr.Left Ptr.

1 m

g b Text Stringaxsfcd

Figure 3: Maximum shift taken by Improved-Bidirectional algorithm.

2.2 Example of Improved-Bidirectional EPM
Here we present a short example of Improved-Bidirectional
exact pattern matching algorithm, where T=”A B C D G H D B
D H A B A B B A D B H B B B D A B H A B A B D A B B A D B
H” and P=”A B D C G H D B”.

Attempt 1:
A B C D G H D B D H A B A B B A D B H B B B … … …

A B D C G H D B
In first attempt Improved-Bidirectional EPM algorithm

takes 6 comparisons, after a mismatch, the preprocessing
phase scans for the rightmost character 'B' of partial text win-
dow in pattern and leftmost character 'A' of pattern in partial
text window at equal shift’s length. Here both characters did
not find at same shifts, so case 2 should be applied to perform
shift to the right of text window.

660

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Attempt 2:
A B C D G H D B D H A B A B B A D B H B B B … … …

A B D C G H D B
Mismatch occurred at first comparison by right pointer in

second attempt, after scanning pattern and partial text win-
dow both characters found at same shifting positions. So, here
Case 1 should be applied to perform shift by considering rele-
vant characters.

Attempt 3:
… … … A B B A D B H B B B D A B H A B A B D … … …

A B D C G H D B
Mismatch caused by right pointer at third comparison in

third attempt and after preprocessing phase both characters
did not find at same shift’s length so case 2 should be applied
to move pattern to the right of the partial text window of text
string.

Attempt 4:
… … … B B B D A B H A B A B D A B B A D B H

A B D C G H D B
Here Case 1 should be applied because both characters

were found at same shifts in preprocessing phase. In fourth
attempt, it takes two comparisons.

Attempt 5:
… … … B B B D A B H A B A B D A B B A D B H

A B D C G H D B
IBD takes four comparisons in fifth attempt.
By applying IBD algorithm, this example takes 16 compari-

sons in 5 attempts to complete the task.

2.3 Implementation of Improved-Bidirectional EPM
2.3.1 Preprocessing Phase
Preprocessing phase of Improved-Bidirectional EPM algo-
rithm finds occurrences of rightmost character of partial text
window and leftmost character of pattern, in pattern and par-
tial text window respectively. This phase helps to take deci-
sion of moving pattern to the right of the partial text window
of text string. The pseudocode of preprocessing phase in Fig-
ure 4 shows that the preprocess() function pass a pattern P[1 …
m], partial text window T[i … i+m-1] and starting index of par-
tial text window ‘i’ as input and return shifts’s length to move
pattern to the right of partial text window of text string. For
loop, of preprocessing phase scans pattern from second last
character to leftmost character of pattern by decrementing the
indexes of pattern. It also scan partial text window from
second to rightmost character of partial text window by in-
crementing index ‘i’.

Inside for loop, if both characters (rightmost of partial text
window and leftmost of pattern) found in the pattern and par-
tial text window respectively on equal shift’s length then pre-
process() returns the shift’s distance. If both characters did not
find in pattern and partial text window at same shift’s length,

then preprocess () returns the maximum shift’s length to move
the whole pattern to the right of partial text window of text
string.

Figure 4: Pseudocode of preprocessing phase of Improved-Bidirectional.

2.3.2 Searching Phase
Character wise comparison will be performed between the
pattern and the selected text window of the text string. Figure
5 shows the pseudocode of searching phase of Improved-
Bidirectional exact pattern matching algorithm in which it
takes a text string of length ‘n’ and a pattern of length ‘m’ as
input and display one or all occurences of pattern from text
string as output. The external while loop is used to shift the
pattern to the right of each partial text window whose index is
calculated by adding shift’s length returned by preprocess ()
(described in preprocessing phase) to the index of previous
partial text window of text string.

Figure 5: Pseudocode of searching phase of Improved-Bidirectional.

Two pointers (left and right) are used to compare pattern
with the selected text window within second while loop. A
complete match will be found, if left pointer cross right poin-
ter at middle of the pattern then preprocess () function will be
called to calculate the length of the shift. Else, if mismatch
caused by left or right pointer, then preprocess () function will
be executed to calculate the shift’s length to move pattern to
right of partial text window where next attempt will be per-
formed.

Input: Text string ‘T’ of length ‘n’ and Pattern ‘P’ of
length ‘m’.
Output: All occurrences of pattern in text string.
1 n ← T.length, m ← P.length;
2 i ← 0, j ← 0;
3 while i ≤ n-m do
4 left ← 0, right ← m-1;
5 while j < (m+1)/2 do
6 if P[right] = T[i+right] and P[left] = T[i+left]
7 if j = (m+1)/2 -1 then
8 "Pattern matched at:”, i;
9 i ← i + preprocess (P, T[i…i+m-1], i);
10 left ← left+1;
11 right ← right-1;
12 Else begin
13 i ← i + preprocess (P, T[i…i+m-1], i);
14 Break Inner-While;

Input: Pattern P[1…m], partial text window T[i…i+m-1]
and starting index ‘i’ of partial text window of text string.
Output: Return shift’s length.
1 k ← 1, shift ← P.length;
2 for j ← P.length-2 to 0 do
3 if P[j] = T[i+m-1] and T[i+1] = P[0] then
4 shift ← k; Break;
5 End if;
6 k ← k+1, i ← i+1;
7 End For;
8 return shift;

661

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.4 Analysis of Improved-Bidirectional EPM
2.4.1 Analysis of Preprocessing Phase
The worst case time complexity of preprocessing phase of Im-
proved-Bidirectional EPM algorithm is O(m), because only one
loop is used to scan the pattern and partial text window to
find the rightmost character of partial text window and left-
most character of pattern.
2.4.2 Analysis of Searching Phase
The inner while loop of searching phase of Improved-
Bidirectional EPM algorithm runs at most 'm/2' times so, its
worst case time-complexity is O(m/2) because two pointers are
used. The worst case time-complexity to shift pattern to right
of the text is O(n) because the external while loop runs 'n'
times at most. The total time complexity of searching phase is
O(m/2).O(n), because the inner loop runs within external while
loop. It can be written as O(mn/2).

Improved-Bidirectional EPM algorithm requires O(m) extra
memory space in worst case to execute in addition with the
text and pattern string.

Table 1 show the worst case time and space complexities of
Improved-Bidirectional EPM algorithm with some of existing
algorithms asymptotically. The comparison order is also
shown in the table. The searching phase of Improved-
Bidirectional EPM algorithm takes O(mn/2) time to execute
which is considered efficient than existing algorithms. The
comparison order of Improved-Bidirectional EPM algorithm is
from both sides of the pattern simultaneously.

3 RESULTS AND DISCUSSIONS

The efficiency of Improved-Bidirectional exact pattern match-
ing algorithm is measured and compared with existing; Bad
Character Boyer-Moore, BM Horspool, Quick Search, Berry
Ravindran, BM Smith, Raita and Bidirectional exact pattern

matching algorithms. Improved-Bidirectional algorithm is
compared with existing algorithms by using characters com-
pare-base and attempts/shifts-base comparison. A text string
of length 60,000 of four {A, C, G, T} random characters and
part of text of different lengths {6, 12, 18, 24, 30, 36, 42, 48, 54,
and 60} is used as pattern for the experiments. The experi-
ments calculate the number of characters comparison and at-
tempts/shifts each algorithm takes to perform the task; the
results are shown by using graphs in figs. 6 and 7.

3.1 Attempts Base Comparison
Total numbers of attempts taken by each algorithm using dif-
ferent pattern’s lengths are shown in graphical form in Figure
6. As results in the graph shows that Improved-Bidirectional
algorithm took minimum shifts as compare to other Naïve,
Not So Naive, Bad Character Boyer-Moore, BM Horspool,
Quick Search, Berry Ravindran, BM Smith and Raita algo-
rithms. Results showed that using short pattern’s length shifts
of Improved-Bidirectional EPM algorithm are closer to other
algorithms but when pattern’s length increased Improved-
Bidirectional exact pattern matching algorithm becomes more
and more efficient.

No. of Attempts-base, Comparison of Improved-Bidirectional
Algorithms with existing

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

Size of Pattern

N
o.

 o
f A

tt
em

pt
s

Boyer Moore BC

BM Horspool

Quick Search

Berry Ravndrn

BM Smith

Raita

Bidirectional

Improved BD

Figure 6: Shift Base Comparison of IBD with existing algorithms.

3.2 No. of Characters compare base Comparison
Total numbers of characters comparisons taken by each algo-
rithm using different pattern lengths are shown graphically in
Figure 7.

No. of Character Compare-base, Comparison of Improved-Bidirectional
Algorithms with existing

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

Size of Pattern

N
o.

 o
f C

ha
ra

ct
er

 C
om

pa
ri

so
ns

Boyer Moore BC

BM Horspool

Quick Search

Berry Ravndrn

BM Smith

Raita

Bidirectional

Improved BD

Figure 7: No. of characters compare base Comparison.

TABLE 1
COMPARISON OF IMPROVED-BIDIRECTIONAL EPM WITH EXISTING

ALGORITHMS

Algos. Preproces.
phase

Searching
phase

Extra Space Comparison
Order

BF --- O(mn) --- Left to right

KMP O(m) O(n) O(m) Left to right
BM O(m+|∑|) O(mn) O(m+|∑|) Right to left
BMH O(m+|∑|) O(mn) O(|∑|) 1st right then

left to right
QS O(m+|∑|) O(mn) O(|∑|) Left to right
BMS O(m+|∑|) O(mn) O(|∑|) Left to right
TBM O(m+|∑|) O(n) O(m+|∑|) Right to left
TW --- O(n) O(n+n) Middle-right

middle –left
BR O(m+(|∑|)2) O(mn) O(m+(|∑|)2) Left to right
RC O(m2) O(n) O(m+|∑|) Specific order
BD O(m) O(mn)/2 O(m) Both sides si-

multaneously
IBD O(m) O(mn)/2 O(m) Both sides si-

multaneously

662

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Results in the Figure shows that Improved-Bidirectional
EPM algorithm takes less number of character comparisons
than the existing algorithms when the pattern’s length short as
well as long.

According to both comparing criterion Improved-
Bidirectional EPM exact pattern matching algorithm is quite
efficient than the existing algorithms.

4 CONCLUSION
This research presents a new version of Bidirectional exact
pattern matching algorithm. The basic idea of Improved-
Bidirectional EPM algorithm is, it scans partial text window of
the text string for leftmost character of pattern and pattern for
the rightmost character of the partial text window. Improved-
Bidirectional EPM algorithm compares a given pattern charac-
ter wise with selected text window from both sides simulta-
neously as Bidirectional algorithm does. The worst case time-
complexity of Improved-Bidirectional EPM algorithm is
O(mn/2) in searching phase and O(m) in preprocessing phase.
Comparison results show that the Improved-Bidirectional
EPM algorithm is quite efficient than the existing algorithms,
when the pattern length is short as well as on long pattern’s
lengths. There is still need to improve the shift decisions of
preprocessing phase of exact pattern matching problem, to
move pattern to the right of selected text window with long
distance.

REFERENCES
[1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduction to Algorithms,

Chapter 34, MIT Press, 1990, pp 853-885.
[2] Knuth, D., Morris, J. H., Pratt, V., "Fast pattern matching in strings,"

SIAM Journal on Computing, Vol. 6, No. 2, doi: 10.1137/0206024,
1977, pp.323–350.

[3] R.S. Boyer, J.S. Moore, "A fast string searching algorithm," Communi-
cation of the ACM, Vol. 20, No. 10, 1977, pp.762–772.

[4] Rami H. Mansi, and Jehad Q. Odeh, "On Improving the Naïve String
Matching Algorithm," Asian Journal of Information Technology, Vol. 8,
No. 1, ISSN 1682-3915, 2009, pp. 14-23.

[5] Ziad A.A. Alqadi, Musbah Aqel, & Ibrahiem M. M. El Emary, "Mul-
tiple Skip Multiple Pattern Matching Algorithm," IAENG Interna-
tional Journal of Computer Science, Vol. 34, No. 2,

IJCS_34_2_03, 2007.
[6] Ababneh Mohammad, Oqeili Saleh and Rawan A. Abdeen, "Occur-

rences Algorithm for String Searching Based on Brute-force Algo-
rithm," Journal of Computer Science, Vol. 2, No. 1, ISSN 1549-3636,
2006, pp.82-85.

[7] A. Apostolic and R. Giancarlo, "The Boyer-Moore-Galil string search-
ing strategies revisited," SIAM J. Computer. Vol. 15, No. l, 1986, pp.98–
105.

[8] L. Colussi, Z. Galil, and R. Giancarlo, ‘On the exact complexity of
string matching,’ 31st Symposium an Foundations of Computer Science I,
IEEE (October 22-24 1990), pp.135–143.

[9] R. N. Horspool, "Practical fast searching in strings," Software—Practice
and Experience, Vol. 10, No. 3, 1980, 501–506.

[10] Sunday, D.M., "A very fast substring search algorithm," Communica-
tions of the ACM, Vol. 33, No. 8, 1990, pp. 132-142.

[11] Smith, P.D., "Experiments with a very fast substring search algo-
rithm," Software-Practice and Experience, Vol. 21, No. 10, pp.1065-1074.

[12] Karp, R.M., Rabin, M.O., "Efficient randomized pattern matching
algorithms," IBM Journal on Research Development, Vol. 31, No. 2, 1987,
pp. 249-260.

[13] Apostolico, A. Crochemore, M., "Optimal canonization of all sub-
strings of a string," Information and Computation, Vol. 95, No. 1, 1991,
pp.76-95.

[14] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T.,
Plandowski. W., Rytter, W., "Speeding up two string matching algo-
rithms," Algorithmica, Vol. 12, No. 4/5, 1994, pp.247-267.

[15] Colussi, L., "Fastest pattern matching in strings," Journal of Algo-
rithms, Vol. 16, No. 2, 1994, pp.163-189.

[16] Hume, A., Sunday, D. M., "Fast string searching," Software Practice &
Experience, Vol. 21, No. 11, 1991, pp.1221-1248.

[17] Crochemore, M. and Rytter, W., "Jewels of Stringology," World Scien-
tific, Singapore, 2002.

[18] Berry, T. Ravindran, S., "A fast string matching algorithm and expe-
rimental results, in proceeding of the Prague Stringology," Club
Workshop-99, Collaborative report DC-99-5, Czech Technical Univer-
sity, Prague, Czech Republic, 1999, pp.16-26.

[19] Frantisek Franek, Christopher G. Jennings, W. F. Smyth, "A simple
fast hybrid matching algorithm," Journal of Discrete Algorithms, Vol. 5,
2007, pp. 682-695.

[20] Iftikhar Hussain, Muhammad Zubair, Jamil Ahmed and Junaid Zaf-
far, “Bidirectional Exact Pattern Matching Algorithm,” TCSET’2010,
Feb. 2010, pp. 293 (Abstract).

[21] Charras, C. and T. Lecroq, Hand Book of Exact String-Matching Algo-
rithms, Publication 2004, First Edition, ISBN: 978-0-7546-64.

[22] T. Lecroq, “Experimental Results on Exact String Matching,” Soft-
ware-Practice & Experience, Vol. 25, pp. 727-765, 1995.

[23] A. Sleit, W. AlMobaideen, A. H. Baarah and A. H. Abusitta, “An
Efficient Pattern Matching Algorithm,” Journal of Applied Sciences,
Vol. 7, no. 18, pp. 269-2695, 2007.

[24] M. Ahmed, M. Kaykobad and R. A. Chowdhury, “A New String
Matching Algorithm,” International Journal Computer and Maths, Vol.
80, no. 7, July 2003, pp. 825-834.

[25] A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq and A. Al-Anani, “A
Fast Pattern Matching Algorithm with Two Sliding Windows
(TSW),” Journal of Computer Science, Vol. 4, no. 5, pp. 393-401, 2008.

663

IJSER

http://www.ijser.org/

	1 Introduction
	2 Improved-Bidirectional Exact Pattern Matching Algorithm
	2.1 Basic Idea
	2.2 Example of Improved-Bidirectional EPM
	2.3 Implementation of Improved-Bidirectional EPM
	2.4 Analysis of Improved-Bidirectional EPM

	3 Results and Discussions
	3.1 Attempts Base Comparison
	3.2 No. of Characters compare base Comparison

	4 Conclusion
	References

