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Dear Prof.  Kontoghiorghes, 

First of all, we would like to thank you, the associate editor, and the reviewers for taking their time and 

providing us with very useful comments. We believe that this has improved our manuscript 

substantially. 

Hereby, we submit the revised version of our manuscript entitled: GEE for longitudinal ordinal data: 
Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN.   
We addressed all the questions and comments raised by Associated Editor and the reviewers. In 
agreement with the Associate Editor and the reviewer’s advice, we updated all the analyses with the last 
version of each software package. We also included a newly developed package in R into our 
comparison. In regard with this improvement, the title of the manuscript has been modified. 
The manuscript has been prepared according to the guideline of the “Computational Statistics and Data 
Analysis” journal and Ms. Elizabeth Groom, who is a native English speaker, reviewed our revised 
manuscript on English spelling & grammar, which improved our paper even further. 
     
We really appreciate to have the opportunity to revise our manuscript for publication in Computational 
Statistics and Data Analysis and we hope that it is suitable for publication. 
 
Yours sincerely, 
 
Nazanin Nooraee 
PhD student in Medical Statistics 
University Medical Center Groningen 
The Netherlands 
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Response to reviewers' comments: 
 
Associate Editor: The two reviewers appreciate the high quality of the paper. While one reviewer has only 
few further suggestions, the other reviewer recommends to include STATA for comparison. I also think that 
the paper would receive more attention with such a comparison. Also using the latest versions of the other 
software packages is a good recommendation. 
Response: 

- We greatly appreciate the positive feedback.  
          -When we started our comparison, we considered STATA as a possible package. However, we believed 

that STATA could not handle GEE for ordinal data and that is why STATA was not included. We do know 
that procedure xtgee  STATA is very flexible to fit the marginal models using the GEE method to different 
types of data with a wide range of link functions, but GEE for ordinal/categorical variables has not been 
implemented in this command. To confirm this, we contacted the official technicians at STATA via e-mail 
on January 7, 2014 (please see the full correspondence at the end of this document). Dr Gustavo 
Sanchez replied: “We do not currently have an official command to fit population average repeated 
ordinal outcome models.” He pointed us to alternative commands like “meologit”, “meoprobit” and 
“gsem” for ordinal outcomes, but the first two commands fit a mixed-effects models and the latter 
command fits the generalized structural equation modeling via the maximum likelihood approach. 

-To accommodate the comment of the second referee, we updated all the results with the latest versions   
of each software, i.e. R version 3.0.2, SAS version  9.4 and SPSS version 22.0.0.  Additionally, we included 
multgee, which is a new package in R to perform GEE on ordinal outcomes, developed in:  “Touloumis, A., 
Agresti, A. and Kateri, M. (2013). GEE for multinomial responses using a local odds ratios 
parameterization. Biometrics, 69, 633-640”.    
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Reviewer #1:  
The authors undertake a simulation study to explore the various properties of the algorithms implemented 
in R and SPSS to estimate model parameters for repeated ordinal score data using the method of 
Generalized Estimating Equations (GEE).  
I found this to be a well written and well-structured manuscript that covered the most widely used methods 
for ordinal regression comprehensively. The results were clear, as were the recommendations. One minor 
comment is that equation (2), as I am sure the authors will recognise, is incorrectly stated; I think the second 
Di should be replaced by Vi and the third Di by Yi. 
I should declare that I am a co-author of one of the R packages reviewed in this manuscript. As such I have 
often been asked about the relative merits of available software for longitudinal ordinal data. The results 
described in this manuscript, do indeed concur with my experience of these packages and I think do reflect 
their relative merits and deficiencies. This is a topic of some wide interest and I would recommend this as 
acceptable for publication in CSDA. 
Response to reviewer #1:  

We are grateful for the thorough and positive review. We fully admit that there is a typo in equation (2) 
and apologize for this error. The equation is corrected in the revised version. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #2:  
This manuscript is interesting to read and is generally well-written. Following are my comments. 

-Thank you very much for the positive feedback and valuable comments. 
 
1. There is one glaring omission from the list of evaluated software packages. The authors really should 
include Stata in their evaluation. I know of individuals who use Stata to perform GEE for longitudinal data 
analysis, and it is not unusual to see questions regarding GEE appear on the Stata listserv. The appropriate 
procedure to run GEE in Stata is xtgee. This procedure should be able to fit the types of models that the 
authors describe - it contains several options for link functions, including the logit function, and correlation 
structures, including the independent, exchangeable, and unstructured matrices. I think that this will add a 
lot to the evaluation, and will certainly make the manuscript more complete. The authors may be able to 
obtain a complimentary review copy of Stata directly from Stata Corp. if they let the people at Stata know 
that the software is being evaluated for GEE capabilities and accuracy of GEE analyses.  
Response to comment #1:  
 We fully agree with the reviewer that it is a, perhaps somewhat unfortunate, omission to exclude 

STATA. As we described our response to the Associate Editor, we wanted to include STATA from the 
outset, as we did know that procedure xtgee in STATA is very flexible to fit the marginal models using 
the GEE method to different types of data with a wide range of link functions, but unfortunately GEE for 
ordinal/categorical variables has not been implemented, neither in xtgee nor in any other command. 
We had some emails correspondence with the technical support of STATA (please see the end of this 
document) and Dr Gustavo Sanchez replied: “We do not currently have an official command to fit 
population average repeated ordinal outcome models.” He pointed us toward alternative commands 
like “meologit”, “meoprobit” and “gsem” for ordinal outcomes, but the first two commands fit a mixed-
effects models and the latter command fits the generalized structural equation modeling via maximum 
likelihood approach. 

 
2. The authors should consider citing the following published papers and text, and include brief mention of 
them in the background section, as they are follow-ups to some of the papers and texts that the authors 
already cite. However, if the authors don't believe that these will be helpful for the background section, then 
they do not need to cite them. 
Hardin, J.W., Hilbe, J.M., 2012. Generalized estimating equations. 2nd edition. Chapman and Hall/CRC Press. 
Oster, R.A., Hilbe, J.M., 2008. An examination of statistical software packages for parametric and 
nonparametric data analyses using exact methods. The American Statistician 62 (1), 74-84.  
Oster, R.A., Hilbe, J.M., 2008. Rejoinder to "An Examination of Statistical Software Packages for Parametric 
and Nonparametric Data Analyses Using Exact Methods". The American Statistician 62 (2), 173-176. 
Response to comment #2:  

Thank you for pointing out these references. We included the first two references before the last 
paragraph in the Background section. Because the last article is a rejoinder and it does not address GEE, 
we decided not to include it.  

 
3. The authors mention the versions of the software that they are evaluating in the "conclusions and 
recommendations" section. However, these versions should be mentioned in the "introduction" section. All 
software packages that the authors are evaluating should be mentioned in the abstract. 
Response to comment #3:  

The version of all software packages are mentioned in both abstract and introduction. 
 
4. Related to comment #3, the authors should revise and update their results by using version 22 of SPSS, 
which is the most recent version. They used version 20 for their evaluation. They should also revise and 
update their results by using version 3.0.2 of R, which is the most recent version. They used version 2.15.3 
for their evaluation. The authors are already using the current version of SAS (version 9.4 was just released 
but is not yet in widespread use). Related to comment #1, the version of Stata that the authors should use is 
version 13, which is the most recent version. Proceeding in this manner will ensure that the manuscript is up-
to-date. 
Response to comment #4:  

All the results are updated with the last versions of software. We analyzed all the simulated data with R 
3.0.2, SAS 9.4, and SPSS 22.0.0. All the presented results in the current revision are based on these 
versions.  



In the R version 3.0.2 we realized a new developed package which is capable to perform GEE for ordinal 
outcomes based on the method described in “Touloumis, A., Agresti, A. and Kateri, M. (2013). GEE for 
multinomial responses using a local odds ratios parameterization. Biometrics, 69,  633-640”.  In the 
revised version, we included this package in our comparisons as well.  
As mentioned earlier, STATA 13 is not capable to perform GEE for ordinal/categorical outcomes (please 
see the response to the comment 1).  

 
5. The results section would be a little more interesting if the authors would report more of their results for 
n=300 subjects. Is it possible to add one or two tables containing these results? The authors make mention of 
some of these results in the text, but it would be nice to see them displayed in the manuscript. 
Response to comment #5: 

We have now included Tables 7 and 12 which are fully devoted to parameter estimations and coverage 
probabilities for the analysis of the data with 300 subjects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Email correspondence with technical specialist of STATA 
 

 

Response from: Stata Technical Support [mailto:tech-support@stata.com]  

 

Dear Edwin, 
 
Thank you for your interest in adding Stata to your paper.  
 
We do not currently have an official command to fit population average repeated ordinal outcome 
models. -meologit- and -meoprobit- are our current official alternatives for longitudinal data ordinal 
outcome models. I would suggest that you have a look at the manual entries for those two estimation 
commands: 
 
    http://www.stata.com/manuals13/memeologit.pdf 
    http://www.stata.com/manuals13/memeoprobit.pdf 
 
And the corresponding postestimation commands: 
 
    http://www.stata.com/manuals13/memeologitpostestimation.pdf 
    http://www.stata.com/manuals13/memeoprobitpostestimation.pdf 
 
There is also a more general command -gsem- that includes the two models above, as well as a large set 
of generalized structural equation models.  
The manual entry below shows the different family and link options for 
-gsem-: 
 
     http://www.stata.com/manuals13/semgsemfamily-and-linkoptions.pdf 
 
 
I hope this helps. 
 
Sincerely, 
 
Gustavo 
 
*********************** 
Gustavo Sanchez, Ph.D. 
Senior Statistician 
tech-support@stata.com                            
StataCorp LP              
*********************** 

 
Our request from STATA Technical Service: 

 
Dear Specialist, 
 
We are currently working on a paper that compares GEE for repeated ordinal outcomes from different 
software packages (R, SPSS, SAS). We would like to include STATA as well in this comparison. From 
searching the internet we have the impression that the procedure xtgee supports GEE for repeated 
binary data, but it does not support GEE for repeated ordinal data.  Could you tell us if this is correct?  If 
so (i.e. xtgee is not capable of performing GEE for repeated ordinal data), is there another procedure 
that does support this type of analysis? 
 
Thank you very much for your support, 
 

https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=mailto%3atech-support%40stata.com
https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=http%3a%2f%2fwww.stata.com%2fmanuals13%2fmemeologit.pdf
https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=http%3a%2f%2fwww.stata.com%2fmanuals13%2fmemeoprobit.pdf
https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=http%3a%2f%2fwww.stata.com%2fmanuals13%2fmemeologitpostestimation.pdf
https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=http%3a%2f%2fwww.stata.com%2fmanuals13%2fmemeoprobitpostestimation.pdf
https://mail.umcg.nl/owa/redir.aspx?C=BBT2kz-8Z0e825Z5bq6eCY6hW4qU_NAIs-4QpkFBQXeXzZ0Cb1eIl-ytN99ervZX4HBaxM1BuCQ.&URL=http%3a%2f%2fwww.stata.com%2fmanuals13%2fsemgsemfamily-and-linkoptions.pdf


Best regards, 
 
Edwin 
 
Prof. dr. E.R. van den Heuvel 
Medical Statistics 
Department of Epidemiology 
University Medical Center Groningen 
The Netherlands 
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Abstract

Studies in epidemiology and social sciences are often longitudinal and outcome measures are fre-

quently obtained by questionnaires in ordinal scales. To understand the relationship between

explanatory variables and outcome measures, generalized estimating equations can be applied to

provide a population-averaged interpretation and address the correlation between outcome mea-

sures. It can be performed by different software packages, but a motivating example showed

differences in the output. This paper investigated the performance of GEE in R (version 3.0.2),

SAS (version 9.4), and SPSS (version 22.0.0) using simulated data under default settings. Multi-

variate logistic distributions were used in the simulation to generate correlated ordinal data. The

simulation study demonstrated substantial bias in the parameter estimates and numerical issues

for data sets with relative small number of subjects. The unstructured working association matrix

requires larger numbers of subjects than the independence and exchangeable working association

matrices to reduce the bias and diminish numerical issues. The coverage probabilities of the con-

fidence intervals for fixed parameters were satisfactory for the independence and exchangeable

working association matrix, but they were frequently liberal for the unstructured option. Based on

the performance and the available options, SPSS and multgee, and repolr in R all perform quite

well for relatively large sample sizes (e.g. 300 subjects), but multgee seems to do a little better

than SPSS and repolr in most settings.
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logistic distribution, Bridge distribution

1. Introduction

1.1. Motivating example

Change in Quality of Life was investigated in a study of women who underwent a laparoscopic

hysterectomy (surgery). In total, 72 patients were measured using the Short Form-36 Health

Survey questionnaire before surgery (baseline), and six weeks after surgery, and then six months5

after surgery. One specific domain is the emotional role (ER). It was scored with just one item

having four possible outcome levels, coded {1, 2, 3, 4}. Higher scores indicate a higher quality of

life. The goal was to investigate whether ER was affected by surgery and to determine the role of

some explanatory variables, such as age (a), comorbidity (cm), blood loss (bl) and complications

(c) during surgery, and duration (d) of surgery. We decided to implement the following model10

logit [P (Oij ≤ c)] = β0c + β1ai + β2cmi + β3tij + δtij (α1bli + α2ci + α3di) ,

with Oij the jth ordinal response for subject i, tij the jth time moment for subject i (ti1 = 0,

ti2 = 6, and ti3 = 26 weeks), and with δx an indicator variable equal to one when x > 0 and

zero otherwise. The indicator δx is needed because the covariates bl, d, c can only affect ER after

surgery. The parameter β3 would indicate the effect of surgery over time when corrected for other

variables.15

We decided to estimate the parameters with generalized estimating equations (GEE) to obtain

a population-averaged interpretation and to address the correlation between subject outcomes. We

applied the geepack (ordgee function), repolr (repolr function) and multgee (ordLORgee function)

packages in R under default settings and selected the most complex working association struc-

ture available in each package: unstructured working association in geepack and multgee, and20

exchangeable working correlation in repolr. Geepack and multgee provided surprisingly different

results (Table 1), while repolr produced no parameter estimates due to the estimation of cell prob-

abilities equal to one. The highest score of 4 was indeed frequently observed: almost 90 percent

after six months of surgery. Not yet completely satisfied with the results, we decided to analyse this

data also with SAS (GENMOD procedure) and SPSS (GENLIN command) to verify the parameter25

estimates of multgee and geepack. We chose unstructured working correlation matrix in SPSS and
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independence structure in SAS, based on the options available. Similar to repolr, SPSS did not

converge, but SPSS was able to produced results with the exchangeable correlation structure. The

results are listed again in Table 1. Comparing the results demonstrates several differences. First,

Table 1: The parameter estimates (robust/empirical standard error) under an independent working correlation

matrix.

Parameters geepack multgee SPSS SAS multgee

Unstructured Unstructured Exchangeable Independent Exchangeable

Threshold 1 0.702(1.040) 0.533(0.947) 0.846(0.932) 0.289(1.063) 0.647(0.995)

Threshold 2 1.139(1.020) 1.007(0.907) 1.306(0.902) 0.739(1.009) 1.090(0.918)

Threshold 3 1.464(1.019) 1.368(0.925) 1.657(0.916) 1.077(1.023) 1.438(0.934)

Age -0.035(0.019) -0.033(0.017) 0.039(0.017) -0.026(0.019) -0.034(0.017)

Comorbidity -0.910(0.551) -0.506(0.411) 0.508(0.414) -0.631(0.439) -0.556(0.421)

Time -0.025(0.020) -0.025(0.017) 0.025(0.018) -0.022(0.018) -0.023(0.017)

Blood loss -0.002(0.001) -0.002(0.001) 0.003(0.001) -0.002(0.001) -0.003(0.001)

Complication 0.592(1.001) 1.832(0.677) -1.725(0.626) 1.812(0.800) 1.700(0.654)

Duration 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

not all packages seem to converge, but secondly, there exist differences in the parameter estimates30

between the packages (Table 1). This could be due to the different choices in correlation structure,

but differences remain even when the same class of structure is chosen. Indeed, as we already

mentioned, geepack and multgee provided different results for the unstructured association, but

also SPSS and multgee produce different results under the exchangeable structure (Table 1). Not

only did the estimates differ in this case, they are also opposite in sign. When each package is35

run with the independence structure, all packages are identical (to the results of SAS in Table 1),

except for geepack, which leads to completely different results, and for SPSS, which gives opposite

signs, but the same absolute numbers.

These different results in performance and in estimates encouraged us to investigate the sim-

ilarities and discrepancy between the GEE methods in R (version 3.0.2), SAS (version 9.4), and40

SPSS (version 22.0.0) for longitudinal ordinal data using simulation studies. In these studies we

would know what mean models the software should estimate. Note that they all estimate the same

mean model, and that they treat the associations as nuisance parameters, although they may have
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implemented different association structures (even in the same class).

1.2. Background45

Generalized estimating equations (GEE) were introduced by Liang and Zeger (1986) and Zeger

and Liang (1986) as general approach for handling correlated discrete and continuous outcome

variables. It only requires specification of the first moments, the second moments, and correlation

among the outcome variables. The goal of this procedure is to estimate fixed parameters with-

out specifying the joint distribution. Prentice (1988) extended the GEE approach by improving50

the estimation of the correlation parameters using a second set of equations based on Pearson’s

residuals, see also Lipsitz and Fitzmaurice (1996). Others modeled the association parameter as

an odds ratio (Lipsitz et al., 1991; Liang et al., 1992; Carey et al., 1993). An alternative approach

considered latent variables with a bivariate normal distribution underneath the correlated binary

variables (see Qu et al., 1992).55

Extending GEE to ordinal data is not immediately obvious because the first and second mo-

ments are not defined for ordinal observations. It requires the introduction of a vector of binary

variables that relates one-to-one to the ordinal variables (Clayton, 1992). With this set of binary

variables the original GEE method (Liang and Zeger, 1986; Zeger and Liang, 1986) as well as the

method for estimation of the association parameters can be extended to ordinal data (Lipsitz et al.,60

1994; Heagerty and Zeger, 1996; Parsons et al., 2006; Touloumis et al., 2013). Different approaches

have been used to estimate the association parameters in GEE. Lipsitz et al. (1994) used Pearson’s

residual, while Parsons et al. (2006) minimized the logarithm of the determinant of the covariance

matrix of the fixed parameters, i.e. minimized the standard errors of the parameter estimates.

Instead of using correlations, Lumley (1996) applied common odds ratios for the association65

of multivariate ordinal variables to reduce the number of association parameters. Williamson

et al. (1995) suggested a GEE method for bivariate ordinal responses with the global odds ratio

as measure of dependency. In this context, two sets of equations were used: one for the fixed

parameters and one for the association parameters. To make the approach available to others,

Williamson et al. (1999) developed two SAS macros but they were not officially incorporated in70

SAS. Yu and Yuan (2004) developed one macro that extended these two macros to unbalanced data

and it is only available upon request from the authors. The approach with two sets of equations

was further extended to multivariate ordinal outcomes using global odds ratios as measure of
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dependency, while the two sets of equations can be integrated into one set of equations for the

fixed and association parameters simultaneously (see Heagerty and Zeger, 1996). Nores and del75

Pilar Dı́az (2008) investigated the efficiency and convergence of this approach via simulation.

They applied function ordgee of R. Recently, Touloumis et al. (2013) extended the GEE method

for ordinal outcomes by considering local odds ratios as the measure of association.

Several overviews of GEE have been provided. Ziegler et al. (1998) developed a bibliography

of GEE, and Zorn (2001) indicated the use of GEE in Political science. To recent books of Ziegler80

(2011); Hardin and Hilbe (2012) were fully dedicated to GEE, while Agresti and Natarajan (2001);

Liu and Agresti (2005); Agresti (2010) discussed comprehensive reviews of more general models

and methods for (correlated) categorical data. Two particular overviews focused on the models

and tests that were programmed in the software packages LogXact 4.1, SAS 8.2, Stata 7, StatXact

5, and Testimate 6 for (correlated) categorical outcomes, including GEE (Oster, 2002, 2003). Oster85

and Hilbe (2008) also presented a general overview of software packages on exact methods, but

they did not investigate the performance of these packages. Ziegler and Gromping (1998); Horton

and Lipsitz (1999) did compare software packages for the analysis of correlated data via GEE, but

they focused on binary outcomes only. A comprehensive comparison of frequently used software

packages for correlated ordinal data using GEE has not yet been conducted.90

We applied a simulation study to compare the functions ordgee in geepack, ordLORgee in

multgee and repolr in package repolr in R 3.0.2, the procedure GENMOD in SAS 9.4, and finally

the procedure GENLIN in SPSS 22.0.0. We took the perspective of a general user with limited

knowledge of the mathematical and numerical details of GEE. This means that we mainly used

default settings in the simulation study. We simulated moderately to highly correlated multivariate95

logistic distributed latent variables using copula functions to obtain correlated ordinal data. This

choice implies the logit models for the marginal distributions, but the correlation between the

binary variables coding the ordinal outcomes is different from choices implemented in the software.

We investigated the frequency of simulation runs with numerical convergence issues, and the bias

in parameter estimates. We reported the coverage probabilities of the confidence intervals on these100

parameters using the Wald statistic. Finally we provided rejection rates of the proportionality test

(if available).
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2. Generalized estimating equations

Generalized estimating equations for ordinal outcomes require several aspects. The first aspect

is to choose a model for the covariates and a non-linear link function to connect the model to the105

cumulative probabilities. Then the second aspect is to create a set of binary variables describing

all possible outcomes for the ordinal observations (Clayton, 1992). The third aspect is to choose a

working correlation matrix or working association structure to describe the possible association be-

tween all binary variables. The fourth and final aspect is the estimation method for the association

parameters involved in the association structure.110

To illustrate these aspects in more detail, consider a random sample of observations from n

subjects. Let Oi = (Oi1, Oi2, ..., Oini) be the ordinal responses of subject i and Oit takes values

in {1, 2, ..., C} and let Xi
> =

(
X>i1, X

>
i2, ..., X

>
ini

)
be a p × ni dimensional matrix of time varying

and/or time stationary covariates for subject i. Then the connection between the covariates and

the conditional probabilities of each ordinal outcome is described by115

h[P (Oit ≤ c|Xit = xit)] = β0c + x>itβ1, (1)

for c = 1, 2, ..., C−1, β0c the threshold parameter for level c, β1 the vector of regression coefficients

corresponding to the covariates and with h a known link function. Any monotone increasing func-

tion h which would transfer the interval (0, 1) to (−∞,∞) could be applied as the link function

(McCullacgh, 1980), e.g. logit, probit and complementary log-log. The cumulative logits model is

very popular for clustered ordinal outcomes due to its simple and comprehensive interpretation,120

the same as in logistic regression. This model is often referred to as the proportional odds model

(Agresti, 2010). The cumulative probabilities with probit link function is more popular in econo-

metrics, but then the model should no longer be interpreted as an odds ratio. The formulation in

(1) is ascending in terms of level of ordinal outcomes but the model can be changed to descending

in which Oit ≤ c is replaced by Oit > c.125

There are three options for choosing the binary variables Y >it = (Yit1, Yit2, ..., YitC−1), with

dimension C − 1. The first option selects Yitc = I(Oit = c) (see Lipsitz et al., 1994; Touloumis

et al., 2013) the second option selects Yitc = I(Oit > c) (see Heagerty and Zeger, 1996), and

finally the third option selects Yitc = I(Oit ≤ c) (see Parsons et al., 2006). Note that for

all options c = 1, 2, ..., C − 1 and I(.) is the indicator function equal to one when the argu-130

ment is true and zero otherwise. Consequently, the mean vector µi = E(Yi|Xi = xi) is the
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mean of all binary variables Y >i = (Y >i1 , ..., Y
>
ini

). Now the vector of regression parameter β =

(β01, β02, ..., β0C−1, β11, β12, ..., β1p)
>

can be estimated using the GEE method by solving

u(β) =

N∑
i=1

D>i V
−1
i [Yi − µi] = 0, (2)

where Di = ∂µi/∂β and Vi is the so-called weight matrix or working covariance matrix of Yi. This

matrix may depend on the vector of parameters β and the vector of association parameters α for135

the binary variables.

Liang and Zeger (1986); Lipsitz et al. (1994) showed that given any parameterisations of the

matrix Vi and assuming that the marginal model (1) is correctly specified, the solution β̂ for (2)

is a consistent estimator of β and
√
n(β̂ − β) has an asymptotic multivariate normal distribution

with mean vector 0 and covariance matrix Vβ = limn→∞ nVβ(n), with Vβ(n) defined by140

Vβ(n) =

(
n∑
i=1

D>i V
−1
i Di

)−1 [ n∑
i=1

D>i V
−1
i COV (Yi)V

−1
i Di

](
n∑
i=1

D>i V
−1
i Di

)−1
. (3)

This form of variance is referred to as the empirical or robust variance estimator since it provides

a consistent estimator regardless of the (mis)specification of Vi (Lipsitz et al., 1994). A model-

based standard error would be obtained when COV (Yi) in (3) is replaced by matrix Vi and then

the covariance matrix in (3) would reduce to the last term in (3), which means that V −1β (n) =∑n
i=1D

>
i V
−1
i Di. It should be noted however, that the choice for a model-based estimator does not145

imply that the working covariance matrix Vi for the binary vector Yi is a true covariance matrix.

Issues related to covariance matrices for multivariate binary outcome variables were discussed by

Chaganty and Joe (2004, 2006). Fortunately, these issues do not cause difficulties in applying GEE,

since the multivariate distribution can always partially be described by semi-parametric models

(see Molenberghs and Kenward, 2010).150

To be able to determine GEE estimates, the vector of association parameters α should be

estimated. Commonly, the matrix Vi is re-parameterized by

Vi = A
1
2
i Ri(α)A

1
2
i , (4)

with Ai a ni(C − 1)×ni(C − 1) diagonal matrix with elements given by the variance of the binary

variable Yitc, and the matrix Ri(α) consists of the associations between the binary variables. The

Ri matrix contains three parts of associations. The first part is the association between the binary155
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variables at one time point. The second one is the association of the same coded binary variables

across time, and the third and final part is the association of two differently coded binary variables

across time. Thus the “variance” of each ordinal outcome and the association between any pair of

ordinal outcomes are represented by matrices rather than scalers.

Although Pearson’s correlation has been applied to the association between binary variables160

within the same time point, different association measures have been applied to model the depen-

dency between binary variables across time. Lipsitz et al. (1994) assumed Pearson’s correlation for

all associations between binary variables and estimate the association parameters α with Pearson’s

residuals. Restricting to the logit link function, Parsons et al. (2006) described the association

between each pair of the binary variables over time as a product of a function of single param-165

eter α and Pearson’s correlation of the same pair of binary variable within a time point, i.e.

gst(α) exp(−|β0c − β0k|/2) (see Kenward et al., 1994). This scaler parameter is estimated by min-

imizing the logarithm of the determinant of the covariance matrix (log |V̂β(n)|) of the parameter

estimates in each step of the fitting algorithm for solving (2). As an alternative to Pearson’s

correlation, one can use the odds ratio. Heagerty and Zeger (1996) applied global odds ratios170

for the association of repeated binary variables in the matrix Vi. They applied a second set of

estimating equations of the form (2) to obtain these association parameters. This choice was

first introduced for binary outcomes by Prentice (1988), and for ordinal outcomes by Miller et al.

(1993). Touloumis et al. (2013) utilized local odds ratios to capture the association parameters

in the Vi matrix. They used the Goodman’s row and column effects model (Goodman, 1985) to175

reparameterize the local odds, and then estimated the parameters using the iterative proportional

fitting procedure (Deming and Stephan, 1940).

All papers use the same definition for an independence, exchangeable and unstructured associ-

ation matrix, but this does not imply that they fit identical associations. Under the independence

working assumption all off-diagonal blocks are constant and equal to zero. Exchangeability over180

time indicates that the association between the binary variables Yitc and Yisk, for time t and s,

t 6= s, is independent of time, but it may depend on the levels c and k. Finally, for unstructured

associations there are no restrictions implied.
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2.1. Software packages

2.1.1. R185

R software offers several options for fitting marginal ordinal models with GEE approach. In

the current paper, we compare all three packages: geepack, repolr and multgee.

The function ordgee in geepack (Yan et al., 2012a) produces estimations according to the

method of Heagerty and Zeger (1996) (Højsgaard et al., 2005). The function allows to choose logit,

probit, and complementary log-log link function as well as four association structures (indepen-190

dence, exchangeable, unstructured, and user-defined). Selection of initial values for the regression

parameters and odds ratio parameters are possible. An option is also available to change the default

setting from descending to ascending. This package offers the robust estimator for the covariance

matrix of the fixed parameters and the Wald statistic for testing the statistical significance of each

coefficient in the model. The numerical procedure is the Fisher-scoring algorithm with the default195

number for the maximum number of iterations 25. The iteration procedure stops when the change

in the parameter estimates is less than 0.0001.

Another function, repolr, is implemented in the repolr package (Parsons, 2012). Gee pack-

age needs to be uploaded in advance. The function repolr has implemented the GEE method of

Parsons et al. (2009) which exclusively supports the logit link function. An independence, uni-200

form (exchangeable) and AR(1) working correlation structure can be selected. Under the uniform

(exchangeable) assumption each element on the off-diagonal block of the matrix Ri(α) is defined

with CORR(Yitc, Yisk) = α exp(−|β0c−β0k|/2). Under AR(1) the correlation is CORR(Yitc, Yisk) =

α|s−t| exp(−|β0c − β0k|/2). Repolr has an option to choose an initial value for the correlation pa-

rameter. It automatically provides standard errors of the parameter estimates based on both the205

robust estimator and the model-based estimator. Furthermore, the function also has an option to

test the proportionality assumption based on the score test (Stiger et al., 1999). The numerical

procedure is the Newton-Raphson algorithm and the default setting for convergence of the numer-

ical procedure is a relative change in parameters estimates less than 0.001 or a maximum number

of iterations equal to 10.210

The final option to peform GEE for ordinal outcomes in R is to use the ordLORgee function

which is implemented in the multgee package (Touloumis, 2013). This package requires the user

to upload gnm and VGAM packages in advance. The ordLORgee function uses the method of
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Touloumis et al. (2013). Beside the cumulative link functions logit, probit, cauchit, and cloglog, it

could also fit adjacent-category logit models. An independence, uniform, category exchangeable,215

time exchangeable, unstructured, and a user-defined structure can be used. Under the uniform

structure, all local odds ratios are identical. Relaxing this structure a little bit leads to two types

of exchangeability assumptions. The category exchangeability structure assumes that local odds

ratios are the same within time pairs, but could still be different between time pairs. An alternative

is time exchangeability, which assumes that local odds ratios are independent of time, but could220

change with ordinal levels. Finally, the unstructured association is indicated by RC in this package.

Robust and model-based variance estimators can be used. The numerical procedure for estimation

of the fixed effects uses the Fisher-scoring algorithm. It stops if the relative change in the parameter

estimates between two successive iterations is smaller than 0.001, or whenever it completes to 15

iterations.225

2.1.2. SAS

PROC GENMOD in SAS software is a procedure to fit models for correlated binary and ordinal

data (see Stokes et al., 2000). The SAS system selects Yitc = I(Oit = c) as binary coding for the

ordinal outcome. It can also change from ascending to descending. The procedure supports logit,

probit, and complementary log-log link function, but is limited to the independence working corre-230

lation matrix for ordinal data. It is possible to specify initial values for the regression parameters.

The quasi information criterion (QIC) (Pan, 2001), type I and type III testing using either the

Wald statistic or the generalized score statistic are available in this procedure.

Although the default setting in SAS is the use of the robust estimator, model based standard

errors can be obtained as well. The numerical procedure for solving (2) is Newton-Raphson (Jen-235

nrich and Sampson, 1976), but another alternative is to use the Fisher scoring algorithm. For

parameter estimates with an absolute value larger than 0.08, the numerical iteration procedure

stops when the relative change in the regression parameter estimates is less than 0.0001 for two

successive iterations. For parameter estimates with an absolute value smaller or equal to 0.08,

convergence is based on absolute change. The default number of maximum iterations is 50.240
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2.1.3. SPSS

The GENLIN command in SPSS performs GEE. It can also be selected from the menu using

Analyze / Generalized Linear Models / Generalized Estimating Equations. SPSS has implemented

the binary coding Yitc = I(Oit = c). It also has the option to change the reference category from

the highest level to the lowest. Moreover, it provides five options for the working correlation ma-245

trix: independent, exchangeable, AR(1), M-independent, and unstructured. SPSS uses Pearson’s

correlation as the association parameter and applies some functions of Pearson’s residual, the so-

called Pearson-like residuals, to estimate the association parameters. All of these options can be

used with both logit and probit link function.

The robust estimator is the default setting, but a model-based estimator can also be selected.250

In addition, users are able to choose type I and type III tests using the Wald statistic (default)

and the generalized score statistic.

One of the three numerical methods (Newton-Raphson, Fisher scoring and hybrid) for iteration

can be chosen. The hybrid procedure is the default. The numerical procedure stops when the

absolute change in parameter estimates is less than 0.000001. There is an option to choose for a255

relative change. The default value for the maximum number of iterations is set to 100, but this

can be changed as well.

3. Simulation study

3.1. Simulation method: multivariate logistic distributions

In our simulation, we used multivariate logistic distributions to generate repeated continu-260

ous data first and then changed them to ordinal variables using suitable intervals. Both the k-

dimensional logistic Gumbel distribution and a generalization of the k-dimensional Farlie-Gumbel-

Morgenstern (FGM) distribution (Kotz et al., 2000) were applied. The standardized multivariate

Gumbel distribution has only one parameter θ, and its joint distribution function is given by

FG (y1, ..., yk) = exp

−{ k∑
i=1

(
log
(
1 + e−yi

))θ} 1
θ

 , (5)

where θ must satisfy: θ ≥ 1. This distribution specifies an exchangeable correlation structure265

among the continuous logistic distributed variables. This means that the correlation of any pair
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of the k-dimensional vector (Y1, ..., Yk) would be the same. Kendall’s tau correlation coefficient is

given by τ = (θ − 1) /θ, but there is no closed form for Pearson’s correlation coefficient. Pearson’s

correlation coefficient can be determined numerically for different values of θ, see Table 2.

Table 2: Pearson’s correlation coefficient for Gumbel copula.

θ 2 3 4 5

ρ 0.7 0.85 0.91 0.95

The standardized (generalization of the) FGM distribution with 2s − s− 1 parameters is given270

by

FFGM (y1, ..., yk) =

{
k∏
i=1

eyi

1 + eyi

}
g (y1, y2, ..., yk) , (6)

with

g (y1, y2, ..., yk) = 1 +

k∑
j=2

∑
1≤r1<...<rj≤k

λr1r2...rj

(
1

1 + eyr1

)(
1

1 + eyr2

)
...

(
1

1 + eyrj

)
,

and each parameter must at least satisfy
∣∣λr1r2...rj ∣∣ ≤ 1. There are some other restrictions that

require that the absolute value of sums of the parameters are also less than one (see Armstrong

and Galli, 2002). Choosing different values for elements of the λ’s would create an unstructured275

correlation matrix, i.e. each pairwise correlation of the k-dimensional vector (Y1, ..., Yk) could be

another value. For example, if the higher order parameters are taken equal to zero and only the

bivariate parameters λij are non-zero, the correlation of Yi and Yj is equal to 3λij/π
2 (i 6= j).

To be able to simulate from these joint distributions, we applied copula functions. A copula

function C links the univariate marginal distributions to their full multivariate distribution (Nelson,280

2006), i.e.

C [F1 (y1) , F2 (y2) , ...., Fk (yk)] = F (y1, y2, ..., yk) .

If FL is the standardized univariate logistic distribution, i.e. FL (y) = (1 + exp (−y))
−1

, then

Gumbel copula CG (u1, ..., uk) is obtained by substituting F−1L (ui) for yi in (5). The FGM copula

CFGM (u1, ..., uk) is obtained similarly, by substituting F−1L (ui) for yi in (6). These copulas are

programmed in package copula of R and they can be used to simulate multivariate data (see Yan,285

2007; Yan et al., 2012b).
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For the standardized k-dimensional Gumbel logistic distribution, we need to use function

archmCopula first and then apply the standard univariate logistic distribution as the marginal

distributions for each variable in the function mvdc. The function rMvdc would then generate

k-dimensional random variables. For generating a set of k-dimensional variables from the Farlie-290

Gumbel-Morgenstern distribution, we need to use function fgmCopula first and again apply the

standardized univariate logistic distributions as marginal distributions. Generating random vari-

ables with function rMvdc for the FGM copula returns a warning which means that the random

generation needs to be properly tested. We investigated the generated data and they had the

appropriate means and covariances.295

For the Gumbel distribution it is easy to generate highly correlated data, since this is determined

by the parameter θ directly, see Table 2. For the FGM, the restrictions on the parameters imply

that the correlations are low. To be able to increase the correlations we added a random intercept

variable using the so-called bridge distribution function (Wang and Louis, 2003). The density of

this one-parameter distribution function is given by300

fb (x) =
1

2π

sin (φπ)

cosh (φx) + cos (φπ)
, (7)

with 0 < φ < 1 and −∞ < x <∞ and it’s distribution function is given by

Fb (x) =
1

φπ sin (φπ)

{
arctan

[
1− cos (φπ)

sin (φπ)

]
− arctan

[
cos (φπ)− 1

sin (φπ)
tanh

(
φπ

2

)]}
. (8)

The mean of the bridge distribution is zero and the variance is π2
(
φ−2 − 1

)
/3. The marginal

distribution of the Y ’s remain of the logistic form in (1) and therefore the regression parameters

still have an odds ratio interpretation. The bridge distribution was developed for this purpose

(Wang and Louis, 2003).305

The standardized latent variables generated with the multivariate logistic distributions are not

yet related to any covariates. We have selected two explanatory variables time (x1) and group

(x2) to shift the mean value of the latent variable Yit from zero to ηit. We have chosen for ηit the

following

ηit = −[βT x1it + βG x2i + βTG x1itx2i], (9)

with βT = 0.5, βG = −0.5, and βTG = −0.5, with x1it representing time points at which subject310

i has been observed and with x2i ∈ {0, 1} a group variable. The group variable may represent for
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instance treatment or gender. Then the shifted latent variable is Zit = ηit + Yit and the ordinal

outcome Oit ∈ {1, 2, 3, 4} is created by the cutpoints β01 = −1, β02 = 0, and β03 = 1 to indicate

in which of the four intervals (−∞,−1] ; (−1, 0] ; (0, 1] ; and (1,∞) the variable Zit is contained.

3.2. Simulation method: working correlation matrices315

Now consider the binary variable Yitc = I(Oit ≤ c) = I(Zit ≤ β0c) to transform an ordinal

variable to a set of binary variables using the coding of Parsons et al. (2006). Using logit link

function, Pearson’s correlation coefficient between any pair of binary variables Yitc and Yitk within

one time point t is given by exp(−|β0c − β0k|/2) and does not depend on time nor on any other

covariate (see Kenward et al., 1994). This would also be true for the coding Yitc = I(Oit > c) but320

this is not the case for the coding Yitc = I(Oit = c).

Indeed, the correlation coefficient between I(Oit = c) and I(Oit = k) is determined by the

multinomial distribution function and it is of the form −[µitcµitk/(1−µitc)(1−µitk)]1/2, with µitc,

in terms of the general model (1), given by

µitc =
exp

[
β0c + xTitβ

]
1 + exp

[
β0c + xTitβ

] − exp
[
β0c−1 + xTitβ

]
1 + exp

[
β0c−1 + xTitβ

] .
Hence the correlation between the coded binary variables I(Oit = c) and I(Oit = k) do depend on325

time t and on subject specific values of the covariates for subject i. Thus as soon as the simulated

variables were affected by covariates, the Pearson correlation between the coded binary variables

Yitc = I(Oit = c) would depend on the covariate time t and subject specific variables. Despite the

difference in correlation coefficients between these choices of coding, sofar it all fits nicely with the

theory and the software packages we are studying. The software packages have implemented these330

exact same correlations.

If we now investigate the correlation of the binary variables (Yitc, Yisk) from different time

points t and s, with t 6= s, Pearson’s correlation coefficient is given by

CORR(Yitc, Yisk) =
Fts (β0c, β0k)− Ft (β0c)Fs (β0k)

{Ft (β0c) [1− Ft (β0c)]Fs (β0k) [1− Fs (β0k)]}
1
2

, (10)

with Fts (β0c, β0k) the bivariate distribution of the latent variables Zit and Zis evaluated in

(β0c, β0k). Note that the correlation in (10) holds when c = k and c 6= k. This correlation335

coefficient will depend on the time points t and s through the means ηit and ηis of Zit and Zis
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in (9) and through the correlation of the latent variables Zit and Zis. Thus for the Gumbel dis-

tribution, the correlations of the latent variables Zit and Zis are exchangeable but the correlation

between the binary variables Yitc and Yisk are not exchangeable due to the time dependent mean in

(9). Furthermore, the correlation in (10) does also depend on the subject specific variables of the340

covariates used in (9). This means that the correlation of the binary variables Yitc and Yisk would

still depend on the subjects whenever the mean (9) would include covariates even if all subjects

would have been observed at the exact same time points. This implies that the Gumbel and the

FGM distribution using the mean in (9) would never impose the correct weight matrix or working

correlation matrix for multgee, geepack, repolr, SAS and SPSS, due to the use of covariates in the345

latent variables. Note that this would remain true when we would use I(Oit = c) or I(Oit > c) for

binary variables. Therefore the correlation between binary variables can be quite different from

the correlation between the latent variables (Molenberghs and Verbeke, 2005).

Only in case the mean in (9) would be independent of the covariates and time, i.e. ηit = η is

constant, then the Gumbel distribution would provide the exact exchangeable working correlation350

used in SPSS. Indeed, the correlation coefficient in (10) for I(Oit = c) is only a function of the

cutpoints β0c and β0k, say ρck, and independent of time. However, the correlation coefficient in

(10) for the Gumbel distribution would not generate the uniform working correlation matrix of

repolr, since they have implemented the form ρck = α exp(−|β0c − β0k|/2) which is unequal to

(10). When the mean would be constant, any exchangeable multivariate latent variable would lead355

to the exchangeable working correlation matrix used in SPSS, but only a specific subset of this

class of multivariate distributions would generate the uniform working correlation matrix of repolr.

The mis-specification of the correlation matrices when (9) is used should not be an issue though,

since GEE should still lead to the correct estimates of the parameters β when the mean in (1) is

correctly specified (Molenberghs and Kenward, 2010).360

3.3. Simulation method: parameter settings

We simulated three dimensional logistic distributed variables (three time points) using param-

eters θ ∈ {2, 3, 4, 5} for the Gumbel distribution (Gθ) and parameters λ12 = 0.3, λ13 = −0.3,

λ23 = 0.3, and λ123 = 0 for the FGM distribution in combination with a bridge distribution having

parameter φ =
√

0.5. Pearson’s correlation coefficients of the three-dimensional latent variable365

will be in the interval (0.45, 0.55) for this selected FGM distribution with bridge distribution. We
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used the same number of subjects for both levels of the group variable x2. Furthermore, we used

constant time points for all subjects, x1i1 = 0, x1i2 = 1, and x1i3 = 2 and time varying time

points x1i1 = 0, x1i2 = 1 +ui2, and x1i3 = 2 +ui3, with ui2 and ui3 independently generated using

the uniform distribution on (−0.25, 0.25). The time varying time points were included to simulate370

data that is not perfectly balanced for the time and group variable. For binary data it has been

demonstrated that the independent working correlation matrix is as efficient as the exchangeable

working correlation matrix in such balanced settings (see Mancl and Leroux, 1996).

We also investigated the effect of some variance heterogeneity in the latent variable. The

heterogeneity is determined by multiplying the latent variable, before shifting it with mean (9),375

at each time point with exp{−0.1x2i}. This means that the group of subjects with x2i = 1 has a

decreased variance of approximately 20% at each time point compared to the subjects with x2i = 0.

This variance heterogeneity does not affect the mean in (9) for the shifted latent variable Zit, since

only the variance of the latent variable has changed, but it does effect the linear relationship in

(1) for the ordinal outcome variable.380

The relationship becomes of the following form logit[P (Oit ≤ c)] = β0c + βTx1it + β2cx2it +

β12x1itx2it, with β2c = (exp{0.1}−1)β0c+βG exp{0.1} and β12 = (exp{0.1}−1)βT +βTG exp{0.1},

and βT , βG, and βTG defined in (9). It destroys the assumption of proportionality for the main

effect of the variable x2i. Thus in this setting the linear relationship in (1) is incorrectly specified,

although we have correctly selected the right variables and the linear relationship in (9) is still true385

for the latent variables. Thus both the mean in the logit scale and the working association matrix

would be incorrectly specified when this variance heterogeneity is present in the latent variable.

We evaluated how well the proportionality test, which is available in repolr only, would pick up

this small violation compared to the other models for which proportionality would be true.

An overview of the parameter settings we used to simulate data are provided in the Table 3. The390

Gumbel distribution with θ = 3 includes the heterogeneity in variance for the group variable. For

each parameter setting, 1000 simulated data sets were determined. Each data set was analysed

with R, SAS, and SPSS. On each data set, we applied “independence”, “exchangeable”, and

“unstructured” association structures with each package (if available).
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Table 3: Overview of settings for the simulations study.

Number of subjects Time points are the same Time points vary with individuals

15 subjects per groups G2; FGM -

50 subjects per groups G5; FGM G2; G3; G4; G5; FGM

150 subjects per groups G4 -

4. Results395

4.1. Theoretical considerations

As mentioned in Section 2.1, SAS and SPSS work with the same set of coded binary variables

that is also chosen in the approach of Lipsitz et al. (1994). They also used Pearson’s correlation

coefficients to estimate of the working correlation. The difference in signs in the parameters

estimates, shown in the example, is due to SPSS, which uses β0c−x>itβ1 in (1) rather than β0c+x
>
itβ1,400

which is used by other packages.

Recall that there were three ways of coding the ordinal outcomes into binary variables (Lipsitz

et al., 1994; Touloumis et al., 2013; Heagerty and Zeger, 1996; Parsons et al., 2006) and that there

were different estimation approaches for the association parameters. The difference in coding

should, in principle, not lead to different estimates of the fixed parameters β, since there a linear405

transformation exists between the binary variables. If Y Lit is a vector of binary variables with

Y Litc = I(Oit = c) and Y Pit is a vector with Y Pitc = I(Oit ≤ c), then Y Lit = GY Pit , with G a

(C − 1)× (C − 1) lower triangular matrix. The matrix G is invertible since all the elements on the

main diagonal are equal to one. This unique relationship between the binary variables connects the

means and covariances between the two sets of binary variables: i.e. µLi = GµPi and V Li = GV Pi G
>.410

Hence, under these two sets of coding the GEE equations solve the same set of parameters β. This

would hold true with any two pair-wise comparisons of the three different theories. However,

different parameterisations of the association parameters and different methods for estimation of

these parameters could still lead to different estimation of α, and thus of β.

The parameter estimates generated by R-geepack in our case study compared to the estimates of415

the other packages (under independence) is awkward considering the linear transformation in binary

variables. We could not identify what causes the difference, but we did observe an inconsistency

with Pearson’s correlation coefficient for the association of binary variables within one time point.
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The correlation coefficient between any pair Yitc = I(Oit > c) and Yitk = I(Oit > k) with the choice

of the logit link function, results into exp(−|β0c − β0k|/2). For a small and simple data set, where420

the ordinal outcome has only three levels and two time points and were generated independently,

we substituted the parameter estimates of ordgee in the GEE’s. We used the incorrect value

exp(|β0c−β0k|/2) for the correlation coefficient of Yitc and Yitk with the independence association

structure and we obtained a set of equations that is almost equal to zero. This did not occur when

we used the correct estimated correlation coefficients.425

4.2. Simulation results

Due to the unexpected results of function ordgee in the geepack and the above explanation,

we decided to exclude this package from our simulation study. The results of SAS were also

excluded since it has only one option for the working correlation matrix. Furthermore, the SAS

and SPSS results are the same with this choice of working correlation matrix (except of course for430

the difference in regression parameter signs). Hence, this simulation study provides the results of

SPSS, repolr and multgee using the logit link function under independence, time exchangeability

and unstructured association structures.

4.2.1. Simulation results: numerical convergence

Convergence problems were observed with SPSS, repolr, and multgee. Tables 4 and 5 present435

an overview of the percentages of simulation runs with numerical issues for each of the simulation

studies.

Table 4: Percentages of convergence issues for simulated data sets with constant time points for individuals.

Analysis approach G2 G3 G4 G5 FGM FGM

n = 30 n = 100 n = 300 n = 100 n = 30 n = 100

Exchangeable

SPSS 3.4% 0.01% 0 0.01% 1.5% 0

repolr 14.1% 6.6% 0 4.3% 1.9% 0

multgee 0.4% 0 0 0 0 0

Unstructured
SPSS 26.7% 3.7% 0.01 11.2% 17.8% 0

multgee 32.2% 1.6% 0 16.2% 10.2% 0

For constant time points, repolr has more numerical issues than multgee and SPSS when the
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exchangeable working association matrix is selected. It seems that the numerical issues for replor

are related to the number of subjects. For the choice of coded binary variables used in repolr, the440

correlation coefficient across time gets closer to the exchangeable structure and is more alike for

each subject as the parameter θ of the Gumbel distribution decreases. This means that we expect

fewer numerical issues at θ = 2 than at θ = 5. The relatively high percentage of 14.1% at θ = 2

compared to the percentage 4.3% at θ = 5, suggests that the difference in sample size may play

a role in the convergence. For the coding of binary variables used in SPSS all selected Gumbel445

distributions will yield working correlation matrices for the association over time that are quite

different from exchangeability and are not alike for subjects from the different groups. Numerical

issues with SPSS are limited to the choice of unstructured working correlation matrix. When

the total number subjects is relatively small, substantial numbers of data sets will demonstrate

numerical issues. Note that the unstructured working correlation matrix in SPSS requires 27450

correlation coefficients alone to describe all of the association parameters across time, which is

substantial for this relative small set of subjects. Multgee shows the lowest numbers of non-

convergence with respect to repolr and SPSS for exchangeability, but it performs worse than SPSS

for G2 and G5 when the unstructured association is applied. Similar to SPSS, sample size appears

to affect the convergence for an unstructured association. This may be caused by estimated local455

odds ratios close to the boundary values (Touloumis et al., 2013).

Table 5: Percentages of convergence issues for simulated data sets with time varying time points for individuals.

Analysis approach G2 G3 G4 G5 FGM

n = 100 n = 100 n = 100 n = 100 n = 100

Exchangeable

SPSS 28.2% 5.6% 2.5% 0.8% 0

repolr 0.8% 3.6% 9.0% 5.4% 0

multgee 0 0 0.01% 0.2% 0

Unstructured
SPSS 22.8% 9.24% 10.7% 14.2% 0.9%

multgee 0 1.2% 8.2 % 20.9% 0

For varying time points we do see that the numerical issues of repolr and multgee increase with

the parameter θ of the Gumbel distribution. Note that the number of subjects is constant at 100.

This is probably explained by the fact that the working association diverges from exchangeability
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when θ increases. Comparing Gumbel distribution G5 from Table 5 with the same distribution in460

Table 4, suggests that the varying time points for subjects enhance the numerical issues for repolr

and multgee, because the working association matrix is now different for each subject due to the

subject specific time points. For varying time points SPSS has substantial numerical issues when

the unstructured working correlation matrix is selected, but also with the exchangeable working

correlation matrix for Gumbel G2. We suspect that the true correlation matrix for the ordinal465

outcomes, that is induced by the latent variables strongly, mismatch with the choice of working

correlation matrix that is estimated. This may indicate that the estimated working correlation

matrix is not a genuine correlation matrix, which may imply that the estimated correlation matrix

is not invertible (see Chaganty and Joe, 2004, 2006). This applies to for both SPSS and repolr,

because they both reported a problem with the covariance matrix Vi for most of their numeri-470

cal issues (repolr: “grad2 < 0 minimum for alpha not achieved”; SPSS: “the Hessian matrix is

singular”). Unfortunately, multgee does not provide any clear information useful to diagnose the

non-convergence issue. Changing some of the default settings, such as relaxing the criteria of the

convergence of the parameter estimates or the maximum number of iterations, solved only a few

of the numerical issues.475

4.3. Simulation results: parameter estimates

When the working association matrix is selected as independence or exchangeable and the

number of subjects is moderate to large (say 100 subjects or more), most of the simulation cases

provided a bias in the parameter estimates up to a few percent (0 − 4%). This is illustrated

for the Gumbel distribution with θ = 5 for 100 subjects and θ = 4 with 300 subjects given in480

Tables 6 and 7, respectively. Furthermore, recall that the true parameters for G5 are equal to

β01 = −1, β02 = 0, β03 = 1, βT = 0.5, and βG = βTG = −0.5. Significant bias is obtained for

the simulations with only 30 subjects using independence or exchangeability. The bias increases to

approximately 10% for the Gumbel distribution with θ = 2 (Table 8) and to 17.2% for the FGM

with constant time points across individuals (Table 9). Note that the true parameter values for485

the FGM distribution, combined with the bridge distribution, are equal to β01 = −0.71, β02 = 0,

β03 = 0.71, βT = 0.35, and βG = βTG = −0.35. This change in true value compared to the Gumbel

distribution is caused by the additional variation of the random intercept value that follows the

bridge distribution. When the unstructured working association is used, even higher biases are
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Table 6: The mean parameter estimates (standard error) of 1000 simulated data sets, from the Gumbel distribution

with θ = 5, 100 subjects, and constant time points.

Independence Exchangeable Unstructured

All? SPSS repolr multgee SPSS multgee

β01 -1.04(0.28) -1.04(0.32) -1.04(0.28) -1.03(0.28) -0.97(0.30) -1.04(0.28)

β02 -0.01(0.26) 0.00(0.32) -0.01(0.26) 0.00(0.26) 0.04(0.29) -0.01(0.26)

β03 1.01(0.28) 1.02(0.34) 1.01(0.28) 1.02(0.28) 1.06(0.32) 1.01(0.28)

βT 0.51(0.08) -0.50(0.10) 0.51(0.08) 0.51(0.08) -0.49(0.09) 0.50(0.08)

βG -0.50(0.36) 0.51(0.41) -0.49(0.36) -0.51(0.36) 0.59(0.40) -0.52(0.36)

βTG -0.51(0.10) 0.51(0.12) -0.51(0.10) -0.50(0.10) 0.48(0.13) -0.48(0.10)

? SPSS gives the same values but with opposite signs on βT , βG, and βTG.

obtained. The bias with multgee can be as high as 20% for the FGM distribution combined with490

the bridge distribution (Table 9) while SPSS yields biases of 40% for both G2 distribution (Table

8) and FGM distribution (Table 9). When the number of subjects increases to 100, the biases

with multgee and SPSS under the unstructured association reduce to values as high as 4% and

18%, respectively (Table 6). When the number of subjects increases further to 300, the biases with

multgee and SPSS almost vanish(Table 7).495

The bias results presented here were obtained from using simulations with constant time points

across subjects. With varying time points, the bias was similar to the results for constant time

points, except for SPSS, which gave biases as high as 16% for the parameter estimate of the

group variable with the exchangeable working correlation matrix. For unstructured association

this increased to 26%. These inflation in biases were not seen with repolr and multgee.500

Bias could possibly affect the coverage probability of the Wald confidence interval on the param-

eter. Absence of bias however, does not guarantee a nominal level of coverage, since the standard

error of the parameter estimate would also affect the coverage probability. Tables 10 and 11 provide

coverage probabilities for two simulation settings.

Overall, the coverage probabilities were relatively close to the nominal value of 95% when505

either the independence or exchangeable working association matrix was used. The coverage

probabilities for the independence working association matrix ranged from 93.0% to 96.5%, and
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Table 7: The mean parameter estimates (standard error) of 1000 simulated data sets, from the Gumbel distribution

with θ = 4, 300 subjects, and constant time points.

Independence Exchangeable Unstructured

All? SPSS repolr multgee SPSS multgee

β01 -1.01(0.15) -1.01(0.18) -1.01(0.16) -1.01(0.16) -1.00(0.17) -1.01(0.16)

β02 -0.01(0.15) 0.00(0.19) -0.01(0.15) -0.01(0.15) 0.01(0.17) 0.00(0.15)

β03 1.00(0.16) 1.01(0.19) 1.00(0.16) 1.00(0.16) 1.01(0.18) 1.00(0.16)

βT 0.50(0.05) -0.50(0.06) 0.50(0.05) 0.50(0.05) -0.50(0.06) 0.50(0.05)

βG -0.49(0.21) 0.50(0.23) -0.49(0.21) -0.50(0.21) 0.52(0.22) -0.50(0.21)

βTG -0.51(0.06) 0.50(0.07) -0.51(0.06) -0.50(0.06) 0.50(0.07) -0.49(0.06)

? SPSS gives the same values but with opposite signs on βT , βG, and βTG.

for exchangeability it ranged from 92.0% to 96.4%. The coverage probability has a tendency to

be somewhat more liberal than being conservative for smaller sample sizes. In general however,

the standard errors seem to be estimated at the correct level, despite the difference between the510

selected working association matrices and the true correlation matrix induced by the latent variable

models, and the coverage probabilities are reasonably close to the nominal value.

For the unstructured association matrix we obtained in some cases poor coverage probabilities

(see Tables 10 and 11). The observed range of coverage probabilities for the unstructured working

association matrix was equal to 89.7% to 95.8% for all our simulation settings, which demonstrates515

liberal coverage probabilities. It should be noted that the bias for the parameter βT in Table 10

was only 2.8% for multgee, but the coverage probability was still only 90.4%. This may indicate

an underestimated standard error for this parameter when the unstructured association matrix is

used. This issue has been reported before by Li and Schafer (2008), who indicated that these issues

may be related to small sample sizes. On the other hand, this setting also demonstrated substantial520

numbers of simulated data sets with non-convergence, which could also be an explanation of the

poor coverage.

4.4. Simulation results: test for proportionality

Only R-repolr has a test for the assumption of proportionality and we investigated the test in

our simulation. The proportionality assumption was guaranteed for all our latent variable models,525
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Table 8: The mean parameter estimates (standard error) of 1000 simulated data sets, for the Gumbel distribution

with θ = 2, 30 subjects and constant time point.

Independence Exchangeable Unstructured

All? SPSS repolr multgee SPSS multgee

β01 -1.05(0.48) -1.05(0.55) -1.06(0.48) -1.04(0.47) -0.91(0.52) -1.03(0.47)

β02 0.00(0.46) 0.01(0.55) -0.01(0.47) 0.00(0.46) 0.12(0.52) 0.00(0.45)

β03 1.04(0.49) 1.07(0.58) 1.04(0.49) 1.05(0.49) 1.20(0.60) 1.05(0.49)

βT 0.53(0.22) -0.51(0.26) 0.51(0.22) 0.51(0.21) -0.45(0.28) 0.48(0.21)

βG -0.52(0.65) 0.55(0.71) -0.51(0.65) -0.53(0.64) 0.70(0.76) -0.55(0.63)

βTG -0.54(0.30) 0.53(0.34) -0.53(0.31) -0.51(0.29) 0.43(0.42) -0.47(0.29)

? SPSS gives the same values but with opposite signs on βT , βG, and βTG.

except for the Gumbel distribution with θ = 3, when we used constant time points for the 100

subjects. To violate the proportionality assumption, we introduced variance heterogeneity for the

group variable. The rejection rates are presented in Table 13.

The proportionality test has an inflated type I rejection rate, since it frequently rejected the

proportionality assumption more than 5%, which was the selected level of significance. The type530

I error rate was close to 5%, only for the FGM distribution combined with the bridge distribu-

tion using 100 subjects. Only 11.4% of the simulated data sets with a violated proportionality

assumption was detected using heterogeneity setting. This is as large as the false rejection rates

for situations where the proportionality is true. The difference in variance in the latent variable

between the two groups of subjects (x2 = 0 versus x2 = 1) was only 20%. This could have been535

too small to be detected with the proportionality test, although a 20% change in variance could

be clinically relevant.

5. Conclusions and recommendations

In this paper, we reviewed the GEE method for longitudinal ordinal data with five software

packages: SAS 9.4 (GENMOD procedure), SPSS 22.0.0 (GENLIN command), repolr (function540

repolr), multgee (function ordLORgee), and geepack (function ordgee) in R 3.0.2. We saw that

SPSS implements a minus sign for the regression parameters, implying a different interpretation
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Table 9: The mean parameter estimates (standard error) of 1000 simulated data sets, for the FGM with the bridge

distribution for 30 subjects and constant time point.

Independence Exchangeable Unstructured

All? SPSS repolr multgee SPSS multgee

β01 -0.73(0.47) -0.73(0.48) -0.73(0.47) -0.74(0.47) -0.67(0.53) -0.74(0.46)

β02 0.01(0.46) 0.01(0.47) 0.01(0.46) 0.00(0.46) 0.08(0.52) 0.01(0.45)

β03 0.76(0.47) 0.77(0.49) 0.77(0.47) 0.75(0.47) 0.86(0.59) 0.76(0.46)

βT 0.36(0.27) -0.36(0.28) 0.36(0.27) 0.36(0.26) -0.32(0.32) 0.34(0.25)

βG -0.40(0.64) 0.41(0.65) -0.41(0.64) -0.40(0.64) 0.49(0.74) -0.42(0.62)

βTG -0.35(0.38) 0.35(0.39) -0.35(0.38) -0.34(0.38) 0.29(0.47) -0.30(0.36)

? SPSS gives the same values but with opposite signs on βT , βG, and βTG.

of the coefficients. If an explanatory variable has a positive effect on the response, SPSS estimates

a negative effect and vice versa. SAS provides only the independence working correlation matrix

available, while SPSS is flexible in offering other types of working correlation matrices. Within545

R, the geepack, multgee and repolr packages all use a different set of binary variables for coding

ordinal data. SAS, SPSS, and multgee use the same coding. We demonstrated theoretically that

this should not lead to different parameter estimates, since the coding of the ordinal outcome into

binary variables are linearly related. The numerical procedures and the method of estimation of the

association parameters could lead to possible differences, however, particularly for the estimation550

of the standard errors. Ultimately, geepack provided results that differ significantly from the other

packages. The parameter estimates may give rise to a correlation coefficient for the coded binary

variables within a time point that is larger than one. The final comparison included SPSS, multgee,

and repolr.

We applied copula functions for generating multivariate logistic distributed latent variables555

underneath the ordinal outcomes. This provided us with a completely specified multivariate dis-

tribution on which we could evaluate the performance of the software packages. The covariates in

the mean of the latent variables induce a correlation matrix for the ordinal outcomes across time

that does not seem to fit with the current choices of the software packages. The reason is that

the covariates change the associations across subjects for time dependent association, while SPSS,560
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Table 10: The percentage of coverage probability for the FGM distribution combined with bridge distribution with

30 subjects and constant time points.

Independence Exchangeable Unstructured

SPSS repolr multgee SPSS repolr multgee SPSS multgee

β01 95.4 95.4 95.4 95.4 95.5 95.1 92.8 95.1

β02 95.0 95.0 95.0 95.3 95.0 95.3 92.7 95.8

β03 94.7 94.7 94.7 95.0 94.5 94.9 92.3 93.8

βT 93.2 93.0 93.2 93.0 93.1 92.6 90.0 90.4

βG 93.9 93.9 93.9 93.4 94.2 93.6 91.1 93.9

βTG 95.1 95.1 95.1 95.5 95.0 94.9 90.4 93.4

Table 11: The percentage of coverage probability for the Gumbel distribution with θ = 5 and 100 subject with time

varying.

Independence Exchangeable Unstructured

SPSS repolr multgee SPSS repolr multgee SPSS multgee

β01 95.1 94.7 95.1 94.8 94.8 94.2 91.0 93.8

β02 94.8 94.3 94.8 93.4 95.0 94.2 92.2 94.1

β03 94.3 93.9 94.3 95.0 94.4 93.9 93.1 93.5

βT 94.1 93.5 94.1 92.5 93.7 92.7 89.9 92.2

βG 95.6 95.6 95.6 95.9 95.6 95.1 94.1 94.8

βTG 94.2 94.9 94.2 95.6 94.9 94.2 92.3 92.5

repolr, and multgee fit constant associations for subjects. Moreover, correlation of coded binary

outcomes across time must satisfy a specific exponential form for repolr which is not required for

multgee and SPSS when both packages use the exchangeable associations. Mis-specification of the

working correlation should however not be any problem since GEE should still be able to estimate

the mean parameters appropriately when the robust estimator is applied.565

The sample size for subjects has a strong effect on the numerical process. SPSS, repolr, and

multgee show non-convergence issues when we apply the non-independence association matrices.

When we used time points that were exactly the same for each subject and the exchangeable

working association matrix, SPSS appeared to have fewer numerical issues than repolr and multgee
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Table 12: The percentage of coverage probability for the Gumbel distribution with θ = 4 and 300 subject with time

constant.

Independence Exchangeable Unstructured

SPSS repolr multgee SPSS repolr multgee SPSS multgee

β01 94.3 94.3 94.3 94.3 94.2 94.7 93.8 94.5

β02 94.1 94.0 94.0 94.7 94.1 94.1 94.3 94.1

β03 94.3 94.3 94.3 94.1 94.2 93.6 93.9 93.7

βT 93.6 93.6 93.6 94.9 93.8 93.9 94.3 94.3

βG 95.2 95.2 95.2 95.1 95.2 95.2 95.2 95.4

βTG 95.0 95.0 95.0 95.0 94.9 94.6 94.2 93.5

Table 13: Percentages of rejection the proportionality assumption in the simulated data sets.

G2 G2 G3 G4 G4 G5 FGM FGM

n=30 n=100 n=100 n=100 n=300 n=100 n=30 n=100

Time points fixed 14.3% NA 11.4% NA 11.1% 16.1% 15.5% 5.2%

Time points varying NA 8.5% 11.6% 14.3% NA 13.7% NA 5.9%

seems to have less numerical issues than SPSS. Multgee with exchangeable association is again the570

best for varying time points but no clear conclusion could be given between SPSS and repolr. For

some settings repolr was (substantially) better, but in other settings SPSS seem to do better again.

The unstructured association in SPSS and multgee, which is not offered by repolr, seem to cause

the largest problems with numerical convergence. Multgee seems to do better than SPSS, although

multgee was worse than SPSS for settings with large correlations among the latent variables. Most575

numerical issues in SPSS were related to problems with non-invertible covariance matrices. It

could almost never be resolved by changing the default settings. On the other hand, multgee did

not provide clear information on the numerical issues at all.

For relative small numbers of subjects, say 30 subjects in total, we saw the largest bias in the

parameter estimates. This bias declined to less than 4% when the number of subjects increased580

to more than 100 and the association matrix was equal to independence or exchangeable. The

unstructured association matrix needed even more subjects (N = 300) to reduce the bias to ac-

ceptable levels on all parameters for both packages (although multgee had less bias than SPSS).
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The coverage probabilities on the mean parameters were relatively close to the nominal value for

both the independence and exchangeable association matrices, although they would be more lib-585

eral than conservative. The coverage probabilities ranged from 93.0% to 96.5% and from 92.0% to

96.4%, respectively. The unstructured association matrix showed mostly liberal coverage probabil-

ities, even for larger sample sizes and for settings without strong biases. The coverage probabilities

ranged from 89.7% to 95.8%.

R-repolr, which can only fit the cumulative logistic link function, has an advantage over SPSS590

and multgee because it contains an option for testing the proportionality assumption. Unfortu-

nately, the type I error rate of this test is highly inflated, which is consistent with results published

on logistic regression (Agresti, 2010). When we introduced a simulation setting that has a violated

proportionality assumption, by introducing variance heterogeneity in the latent variables across

subjects, the proportionality test did not find this violation frequently. This has to do with the595

size of the variance heterogeneity, which was in our setting at 20% difference, i.e. one group had a

20% lower variance than the other group systematically at across time points. We conclude that

this test should be applied with care.

Overall, the GEE method performed quite well when there are more than 100 subjects and the

association structure is not too complex (no unstructured). GEE produced limited bias and the600

numerical procedures work appropriately. When sample size is small or proportionality is violated,

the methods may result in biased estimates and more numerical issues. In all our simulated data

sets the independence association structure with the robust estimator performed quite well and

can be used at least as starting point for the analysis. Both SPSS and repolr are recommended but

in our simulation multgee outperformed SPSS and repolr in parameter estimation. Both SPSS and605

multgee provide more flexibility in their choice of association and allow different link functions,

but repolr allows proportionality testing. Additional research on GEE is needed, in particular on

addressing the subject-specific correlation of the ordinal outcomes across time, and for improving

methods on detecting issues with the assumption of proportionality.
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