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Abstract

Bayesian modeling of dose-response data offers the possibility to establish the rela-
tionship between a clinical or a genomic response and increasing doses of a therapeutic
compound and to determine the nature of the relationship wherever it exists. In this
paper we focus on an order restricted one-way ANOVA model which can be used to
test the null hypothesis of no dose effect against an ordered alternative. Within the
framework of the dose-response modeling, a model uncertainty can be addressed using
model averaging techniques. In this setting, the uncertainty is related to the number of
all possible models that can be fitted to the data and should be taken into account for
both inference and estimation. In this paper, we propose an order restricted Bayesian
variable selection model that addresses the model uncertainty and can be used for both
inference and estimation. The proposed method is applied to two case studies and is
compared to the likelihood ratio test and the multiple contrast tests in both the anal-
yses of the case studies and a simulation study.
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1 INTRODUCTION

Dose-response experiments are an important part of a biomedical research to study rela-

tionships between increasing doses of a therapeutic compound and a variety of responses.

Typically, the response represents a phenotypical effect of a compound such as inhibition,

stimulation, toxicity, or expression level of a certain gene. The primary goal of such an exper-

iment is to detect a dose-response relationship and to determine the nature of the relationship

wherever it exists. In this paper, we focus on a continuous response and an experimental

design with fixed number of doses. We further assume that the dose-response relationship,

if exists, is monotone, i.e., the compound effect (increasing or decreasing) becomes stronger

(or stays the same) with an increasing dose. Such property is very common in real appli-

cations, especially when inhibition or toxicity is measured. More general umbrella-shaped

profiles (Bretz and Hothorn 2003) can occur within a context of an over-dosing and therefore

a decreasing (increasing) effect is expected after reaching some threshold dose. This setting

will not be considered further in the paper.

There are two main approaches for the analysis of dose-response experiments. The first ap-

proach uses parametric nonlinear models in order to estimate the dose-response relationship

(Pinheiro et al. 2006; Whitney and Ryan 2009). The second approach assumes an underlying

one-way ANOVA model with order restricted parameters (Robertson et al. 1988; Bretz and

Hothorn 2003; Peddada et al. 2005; Lin et al. 2012) and can be used in order to test the null

hypothesis of no dose effect against an ordered alternative.

We consider the second setting. The response is measured in K − 1 dose levels

and a control dose (placebo). Let µ0 be the mean response under the control dose and

µ1, µ2, . . . , µK−1 represent the mean responses under increasing doses of a therapeutic com-

pound with K − 1 dose levels. The primary interest is to test the null hypothesis of no dose

effect given by

H0 : µ0 = µ1 = µ2 = . . . = µK−1, (1)
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against an ordered alternative

Hup : µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK−1, or Hdn : µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µK−1, (2)

with at least one strict inequality. Here, Hup and Hdn correspond to an upward and down-

ward directions of the order constraints, respectively. Note that the nature of the dose-

response relationship, i.e., the dose-response curve shape, depends on a decomposition of the

alternative hypothesis into a finite set of simpler hypotheses under monotone constraints.

The decomposition results in 2K − 1 basic models under each of the monotone directions.

For example, for a dose-response experiment with one control dose and three increasing dose

levels (i.e., K = 4), the alternative hypothesis can be decomposed into seven basic models

(Table 1). Denote the whole set of models as GR. The problem of an estimation of dose-

response profile is therefore equivalent to the selection of monotone models that best describe

the data given GR. When one particular model is selected and inference is done under the

selected model, the uncertainty due to the model selection is ignored (Claeskens and Hjort

2008). Such an approach can lead to a bias in estimation of dose-specific means, especially

when two models are almost equally supported by data. Inference within the dose-response

framework that accounts for the model uncertainty is discussed by Pinheiro et al. (2006),

Bornkamp et al. (2009) and Whitney and Ryan (2009) who use parametric nonlinear models

to characterize the dose-response relationship and propose to use model averaging techniques

to account for model uncertainty. Within this approach several parametric nonlinear mod-

els are fitted to the data and information from all models is combined, using information

criteria, for both estimation and inference.

The likelihood ratio test (LRT, Barlow et al. 1972 and Robertson et al. 1988) and

the multiple contrast tests (MCT, Mukerjee et al. 1987) are commonly use to test the null

hypothesis of no dose effect. However, the inference of these tests ignores the uncertainty

due to possible models that can be fitted to the data. In fact, the inference for the LRT

is based on one specific model from all models under the alternative (the one that is esti-
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Table 1: The set of eight possible monotonic dose-response models for an experiment with

four dose levels (including placebo). Denote µi the mean response of dose level. The model

g0 represents the null model of no dose effect.

Model Up: Mean Structure Down: Mean Structure

g0 µ0 = µ1 = µ2 = µ3 µ0 = µ1 = µ2 = µ3

g1 µ0 < µ1 = µ2 = µ3 µ0 > µ1 = µ2 = µ3

g2 µ0 = µ1 < µ2 = µ3 µ0 = µ1 > µ2 = µ3

g3 µ0 < µ1 < µ2 = µ3 µ0 > µ1 > µ2 = µ3

g4 µ0 = µ1 = µ2 < µ3 µ0 = µ1 = µ2 > µ3

g5 µ0 < µ1 = µ2 < µ3 µ0 > µ1 = µ2 > µ3

g6 µ0 = µ1 < µ2 < µ3 µ0 = µ1 > µ2 > µ3

g7 µ0 < µ1 < µ2 < µ3 µ0 > µ1 > µ2 > µ3

mated by the isotonic regression) while inference for MCT takes into account that different

models are possible under the alternative but the inference is done based on one specific

model as well. In this paper, we focus on Bayesian variable selection (BVS) models for

order restricted one-way ANOVA models for dose-response data that offers a framework to

simultaneously establish a dose-response relationship (inference) and to determine the na-

ture of the relationship (estimation). For both inference and estimation, model uncertainty

is taken into account. The proposed BVS approach is closely related to the Gibbs variable

selection method proposed by Whitney and Ryan (2009) for the case of parametric nonlinear

dose-response modeling. However, in contrast with the Gibbs variable selection approach,

the BVS approach estimates the posterior probability for each one of the models in GR. The

posterior mean response at each dose level is a weighed average of the posterior means of all

models in which the weights are the model posterior probability. In addition, the posterior

probability of the null model is of the primary interest, since it also represents a probability

for false positives, i.e., wrongly rejecting the null hypothesis, and therefore can be used for

the inference (Newton et al. 2007).
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The paper is organized as follows. In Section 2, we describe the case studies used for the

analysis presented in the manuscript. The current frequentist procedures, formulation of the

hierarchical Bayesian model for the dose-response data and the Bayesian variable selection

approach are discussed in Section 3. In Section 4, we present the results from the application

of the methodology to the case studies. The simulation study for the comparison between

BVS and the frequentist methods is introduced in Section 5 and the paper is concluded with

a discussion in Section 6.

2 CASE STUDIES

Two real life studies are used to illustrate the methodology discussed in this paper. Both of

the case studies have the same data structure: response is measured under increasing doses of

the respective compounds with the first dose being a control (placebo). The dose-response

data for the case studies are shown in Figure 1. The third case study is presented in he

supplementary appendix of the manuscript.

2.1 The AMES Study

The AMES dataset (Bretz and Hothorn 2003) contains the data about a mutagenicity level

of a compound. The mutagenicity is reflected by an increasing relationship between dose

level and frequency of visible colonies among plated salmonella bacteria. Dose level is used

as a covariate and a frequency of colonies as a response. Although we suspect very high

doses to lower number of microbes due to toxicity, in the following analysis we assume only

the nondecreasing profile. More detailed information about the data can be found in Ames

et al. (1975). Five observations are available for a placebo and three for each of four active

doses.
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Figure 1: Case studies analyzed in the manuscript. Triangles represent dose-specific means.

Left panel: the LITTER dataset. Right panel: the AMES dataset.

2.2 The LITTER Study

The LITTER dataset is available in R (R Core Team 2013) as part of the R package multcomp

(Hothorn et al. 2008). It contains data about pregnant mice that were divided into four

groups and the compound in four different doses was administered during pregnancy. For

a placebo, 20 mice were used, for active doses 19, 18 and 17 mice, respectively. The litters

were evaluated for birth weights. We focus on relationship between the birth weight and the

dose. For the LITTER dataset, the null hypothesis of no dose effect is tested against the

nonincreasing alternative in order to detect toxicity effects due to the used drug.

6



3 BAYESIAN VARIABLE SELECTIONMODELS FOR

DOSE-RESPONSE MODELING

3.1 Testing The Null Hypothesis Against a Simple Ordered Al-

ternative

The basic setting we considered in this paper consists of a response variable measured in a

sequence of dose levels. Let Yij represents the response for jth observation at the dose level

i and µi denotes the mean response at the dose level i. In order to model the relationship

between the response and the increasing doses of a therapeutic compound we formulate the

following linear model

Yij = µi + εij, εij ∼ N(0, τ−1), i = 0, . . . , K − 1, j = 1, 2, . . . , ni (3)

For a given direction, the likelihood ratio test (LRT) computes the maximum likelihood

estimates for the mean response under the two hypotheses formulated in (2). The maximum

likelihood estimator computed under the null hypothesis H0 equals the sample mean µ̂ =(∑K−1
i=0

∑ni

j=1 Yij

)
/
∑K−1

i=0 ni. The maximum likelihood estimator under the order restricted

alternative Hup is the vector of isotonic means (Robertson et al. 1988). The likelihood ratio

test statistic, proposed by Barlow et al. (1972), can be expressed as

TLRT =
RSS0 −RSS1

RSS0

= 1− RSS1

RSS0

, (4)

where RSS0 represents the residual sum of squares under the null hypothesis and RSS1 the

residual sum of squares under the alternative Hup (or Hdn). The null hypothesis is rejected

for a large value of TLRT (details about procedure are given in a supplementary appendix of

the manuscript).

A second approach to test the null hypothesis is the so-called multiple contrast test (MCT).

The motivation for developing multiple contrast tests by Mukerjee et al. (1987) was to achieve
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tests with similar power to the LRT, but easier to use and interpret (Lin et al. 2012). The

key idea is to perform as small number of comparisons as possible while covering sufficiently

the space of all possible alternative hypotheses. The test is based on the simultaneous testing

of the multiple comparisons using the contrast test defined as

T SC =

∑K−1
i=0 ciµ̂i

s ·
√∑K−1

i=0
c2i
ni

, (5)

where µ̂i = 1
ni

∑ni

j=1 Yij, s =
√

1
ν

∑K−1
i=0

∑ni

j=1(Yij − µ̂i)2 and ν =
∑K−1

i=0 (ni −K).

The contrast vector c = (c0, . . . , cK−1) fulfills the condition
∑K−1

i=0 ci = 0. Bretz

(2006) shows that, under normality assumption, the test statistic T SC follows an univariate

central t-distribution with ν degrees of freedom under H0. The MCT test statistic is the

maximum over these V single contrast tests:

TMC = max
v=1,...,V

{T SC1 , T SC2 . . . T SCV }. (6)

Covering the space of the alternative hypotheses translates into a choice of a combination of

vectors cv, v = 1, . . . , V (Lin et al. 2012). The choice of the set of the vectors cv determines

properties of the test and distinguish between the different MCTs (Hothorn 2006). For fur-

ther comparison, Williams’ and Marcus’ MCTs (Bretz 1999) based on the tests proposed by

Williams (1971) and Marcus (1976) are used. Williams’ MCT is based on the comparison of

the last dose mean µ̂?K−1, estimated by the isotonic regression, with µ̂0, the estimate of the

mean of the first dose, under the different possible profiles. Marcus’ MCT is a modification

of Williams’ MCT in which µ̂0 is replaced with the isotonic estimate µ̂?0. An elaborate dis-

cussion about both the LRT and Williams’ and Marcus’ MCTs is given in the supplementary

appendix of the manuscript.
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3.2 Bayesian Estimation Under Strict Inequality Constraints

Our aim is to estimate the parameters under a strict inequality constraints µ0 < µ1 <

µ2 < · · · < µK−1. The constraints can be achieved by constraining the parameter space of

µ = (µ0, . . . , µK−1), whereby the order restrictions are imposed on the prior distributions.

For a monotone upward profile we assume that for a profile function ψ(i) it holds that

ψ(i) = µbic and that ψ(i) is a right-continuous, nondecreasing function defined on interval

[0, K − 1]. We do not assume any deterministic relationship between µi and the dose levels,

instead we specify a probabilistic model for µi at each distinct dose level.

To estimate µ under the order restrictions, µ0 < µ1 < . . . < µK−1, the K dimensional

parameter vector is constrained to lie in a subset SK ∈ RK . The constrained set SK is

determined by the order among the components of µ. In this case, it is natural to incorporate

the constraints into the specification of the prior distribution (Klugkist and Mulder 2008).

Let Y = (Y11, Y12, . . . , YK−1,nK−1
) be the response value and η and τ the hyper parameters

for µ. Gelfand et al. (1992) showed that the posterior distribution of µ, given the constraints,

is the unconstrained posterior distribution normalized such that

P (µ|Y ) ∝ P (Y |µ)P (µ|η, τ )∫
Sk P (Y |µ)P (µ|η, τ )dµ

, µ ∈ SK . (7)

Let SKi (µl, l 6= i) be a cross section of SK defined by the constraints for µi at a

specified set of µl, with l = 0, 1, 2, . . . , i− 1, i+ 1, . . . , K − 1. In our setting, SKi (µl, l 6= i) is

part of the interval [µi−1, µi+1]. It follows from (7) that the posterior distribution for µi is

given by {
P (µi|Y ,η, τ ,µ−i) ∝ P (Y |µ)P (µ|η, τ ), µi ∈ SKi (µl, l 6= i),

0, µi /∈ SKi (µl, l 6= i).
(8)

where µ−i = (µ0, . . . , µi−1, µi+1, . . . , µK−1). Hence, when the likelihood and the prior distri-

bution are combined, the posterior conditional distribution of µi|Y ,η, τ ,µ−i is the standard

posterior distribution restricted to SKi (µl, l 6= i), i.e., restricted to the interval [µi−1, µi+1]
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(Gelfand et al. 1992). As a result, during the MCMC simulations, the sampling from the full

conditional distribution can be reduced to the interval restricted sampling from the stan-

dard posterior distribution. Following Klugkist and Mulder (2008), we formulate an order

restricted ANOVA model for which the mean response at the ith dose level is given by

E(Yij) = µi =


µ0, i = 0,

µ0 +
i∑

`=1

δ`, i = 1, . . . , K − 1
(9)

with the constraints that δ` ≥ 0 for an upward trend or δ` ≤ 0 for a downward trend. In a

matrix notation, the mean gene expression for an upward trend model (for K = 4) is given

by

E(Y ) = Xβ′ =



1 0 0 0

1 0 0 0

1 0 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1




µ0

δ1

δ2

δ3

 =


µ0, control,

µ0 + δ1, first dose level,

µ0 + δ1 + δ2, second dose level,

µ0 + δ1 + δ2 + δ3, third dose level.

(10)

In order to complete the specification of the hierarchical model, we assume the following

prior distribution for the unknown model parameters,

µ0 ∼ TN(ηµ0 , τ
−1
µ0
, 0,∞),

δi ∼ TN(ηδi , τ
−1
δi
, 0, A) k =, 1, . . . , K − 1.

(11)

Here TN(µ, σ2, a, b) is a truncated normal distribution and A is a positive constant. The

truncated distribution improves properties of the MCMC chains and it is a priori constrained
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to lie between zero and the difference in the range of the response vector. We assume a

noninformative distribution for the hyper parameters in the model,

τ ∼ Γ(10−3, 10−3),

ηµ0 ∼ N(0, 106),

τµ0 ∼ Γ(10−3, 10−3),

ηδk ∼ N(0, 106), k = 1, . . . , K − 1

τδk ∼ Γ(10−3, 10−3), k = 1, . . . , K − 1.

(12)

3.3 Bayesian Variable Selection Models

The Bayesian inequality model defined above cannot be used in our framework due to the

equality constraints on the means of the null model and some of the alternative models.

As pointed out by Dunson and Neelon (2003), since the priors of the components of δ =

(δ1, δ2, . . . , δK−1) are the truncated normal distributions, the mean structure µi = µ0 +
i∑

`=1

δ`

implies an order constraints mean structure with the strict inequalities µ0 < µ1 <, . . . , <

µK−1. The equality constraints would, in practice, assign zero probabilities to all other

competing models except the model with the strict inequality constraints (Klugkist and

Hoijtink 2007). In what follows we propose a Bayesian variable selection model that can be

seen as an extension of the informative hypothesis inference framework discussed by Klugkist

and Hoijtink (2007) to the setting in which equality constraints can be incorporated in the

mean structure. Then, all the different models under the alternative hypothesis are taken

into account for both inference and estimation. The equality constraints can be incorporated

in the model by setting some of the components in δ to be equal to zero. Indeed, δi = 0

implies µi = µi−1.

The differences in the mean structures of the different models, therefore, depends on which

of the components in δ are set to be equal to zero or equivalently which columns in the

ordered design matrix X are excluded. Hence, the design matrix for each of the models is in
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fact a subset of the design matrix X. As a result, the problem of the model estimation in the

presence of equality constraints is reduced to a problem of the variable selection depending on

which of the columns of X are selected or deleted. This is related to the Bayesian variable

selection approach (George and McCulloch 1993) which is used to determine an optimal

model from a priori set of R known plausible models. As pointed out by O’Hara and

Sillanpää (2009) the choice of an optimal model reduces to the choice of a subset of variables

which are included in the model (i.e., model selection), or the choice of which parameters

in the parameter vector are different from zero (i.e., inference). Let zi, i = 1, . . . , K be an

indicator variable such that

zi =

{
1, δi is included in the model,

0, δi is not included in the model,

and let θi = δi × zi, β = (µ0, θ1, θ2, θ3) and Y be the response vector. Hence, we can

reformulate the mean structure in (9) (O’Hara and Sillanpää 2009) in terms of θi and zi as

E(Yij) = µ0 +
i∑

`=1

θ` = µ0 +
i∑

`=1

z`δ`. (13)

For the four dose level experiment (K = 4) discussed above, the triplet z = (z1, z2, z3)

defines uniquely each one of the 8 plausible models. For example, for z̃1 = (0, 0, 0) holds that

E(Yij|GR, z = z̃1) = (µ0, µ0, µ0, µ0) (which corresponds to the mean of the model g0) and for

z̃2 = (1, 0, 0) we obtain E(Yij|GR, z = z̃2) = (µ0, µ0 + δ1, µ0 + δ1, µ0 + δ1) (which corresponds

to the mean of the model g2). Hence, in our setting the BVS model estimates the posterior

probability of each model, P (gr|data) and in particular the posterior probability of the null

model P (g0|data). For example, P [z = (0, 0, 0)|data] = P [E(Yij) = µ0|data].

Kuo and Mallick (1998) approach was used for the specification of the prior models

for zi and δi. It assumes that zi and δi are independent, i.e., P (δi, zi) = P (δi)× P (zi), with

a truncated normal prior distribution for δi (Equation 11) and

zi ∼ Bernoulli(πi),

πi ∼ U(0, 1).
(14)

12



The variable πi represents inclusion probability of zi and can be estimated by the

proportion of the zi = 1 within the MCMC run.

As pointed out by O’Hara and Sillanpää (2009), the posterior inclusion probability

of δi in the model is the posterior mean of zi. Further, for a given value of K, using the

indicator variable zi we specify a transformation function that uniquely defines each one of

the plausible models (Ntzoufras 2002), G = 1+
∑K−1

i=1 zi2
i−1. Thus, the posterior probability

of G = r+1 defines uniquely the posterior probability of a specific model gr (when gr defined

as in Table 1). In particular (for K=4), the posterior probability of the null model is given

by

P (G = 1|data) = P [E(Yij) = µ0|data] = P [z̄ = c(0, 0, 0)|data] = P (g0|data). (15)

For K = 4 there are eight possible monotone models (for a given direction): seven monotone

models (given in Table 1) and the null model. It follows that G is given by

G =



1, for z = (z1 = 0, z2 = 0, z3 = 0), model g0,

2, for z = (z1 = 1, z2 = 0, z3 = 0), model g1,

3, for z = (z1 = 0, z2 = 1, z3 = 0), model g2,

4, for z = (z1 = 1, z2 = 1, z3 = 0), model g3,

5, for z = (z1 = 0, z2 = 0, z3 = 1), model g4,

6, for z = (z1 = 1, z2 = 0, z3 = 1), model g5,

7, for z = (z1 = 0, z2 = 1, z3 = 1), model g6,

8, for z = (z1 = 1, z2 = 1, z3 = 1), model g7.

(16)

The BVS model discussed in this section is not only an extension of the informative

hypothesis inference framework of Klugkist and Hoijtink (2007), but provides in addition a

model selection procedure that can be based on the maximum posterior model probability.

Furthermore, the posterior mean at each dose level can be seen as a Bayesian model average

of all the models that were fitted during the MCMC simulation. The weights for the Bayesian

model average are the posterior model probabilities P (G = r|data, g0, . . . , gR). Thus, the

BVS model provides a framework for inference, model selection and estimation that takes
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into account model uncertainty.

4 APPLICATION TO THE CASE STUDIES

The dataset from each study was analyzed using the LRT, the MCT with Williams’ and

Marcus’ contrast and the BVS model. The BVS models were fitted in Winbugs 1.4 using

MCMC simulation with 20,000 iterations from which the first 5,000 were discarded as burn-in

period.

4.1 The AMES Data

The results obtained for all the methods are presented in Table 2. All the frequentist methods

show no evidence in favour of the null hypothesis. The posterior probability of the null model

obtained for the BVS model (6.7 ·10−5) indicates no evidence in favour of the null model, but

substantive evidence in support of an alternative model with monotone relationship between

the frequency of mutation and the increasing doses of the compound (0.408).

Figure 2a reveals a close agreement between the posterior means obtained for the BVS

model and maximum likelihood parameter estimates obtained by the isotonic regression for

the AMES study. Note that the posterior means obtained from the BVS model do not

correspond to the one specific model but it is the Bayesian weighted model averaging of

all competing models (for K = 5 there are 16 possible models, including the null model).

Interestingly, similar to the isotonic regression which pools together the means of the last

three dose levels, the inclusion probabilities (Figure 2b) obtained from the BVS model show

little evidence in support of different dose effects for dose 3 and dose 4 (with the estimated

posterior probabilities of 0.11 and 0.09, respectively).
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Table 2: P-values for the frequentist methods and the posterior model probabilities for

the BVS model. ”BVS null” shows the posterior probability of the null model and ”BVS

max” shows the maximal posterior probability among the posterior probabilities of all the

alternative monotone models.

LRT MCT(W) MCT(M) BVS null BVS max

AMES 6 · 10−5 1.4 · 10−5 3.6 · 10−5 6.7 · 10−5 0.408

LITTER 0.029 0.019 0.029 0.220 0.623
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Figure 2: The AMES mutagenity data. Left panel: observed data, isotonic regression (solid

line) and posterior mean of the BVS model (dashed line). Dotted line; the posterior mean

obtained by MCMC when only model with maximum posterior probability for BVS was taken

into account. Right panel: posterior mean of the inclusion probability of δi into the model.

4.2 The LITTER Data

The p-values and the posterior model probabilities for the LITTER data are shown in 2. The

LRT and MCTs reject the null hypothesis. The posterior probability of the null hypothesis

obtained from BVS is 0.22, which implies that there is more support in favor of the alternative

hypothesis given the data. Specifically, the BVS shows more substantive evidence in support

of the alternative model g1 (defined in Table 1) whose posterior model probability is 0.623

(see Figure 3b). This model has a common dose effects for dose 1 to dose 3. This illustrates
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Figure 3: The LITTER data. Left panel: observed data, isotonic regression (solid line) and

posterior mean of the BVS model (dashed line). Dotted line; the posterior mean obtained

by MCMC when only model g1, i.e., model with maximum posterior probability for BVS,

was taken into account. Dotted line coincides with solid line almost perfectly. Right panel:

Posterior probability of null model g0 and alternative models gi, i = 1, . . . , 7. Notation

corresponds to the model numbers presented in Table 1.

an important aspect of the BVS model which simultaneously performs the inference and

provides the evidence for all the possible models given the data. Furthermore, the inclusion

probabilities, shown in Figure 3c, indicate that the δ2 and δ3 should not be included in the

model which corresponds to the results obtained from the isotonic regression.

Due to the fact that the posterior probability of model g1 is relatively high compared to

the other models, the posterior means of the BVS model are similar to those of the isotonic

means and the posterior means from g1 with the common mean for dose 1 to dose 3 and the

different mean for control (Figure 3a). Note that model g1 is different from the BVS model

since its design matrix is fixed while the BVS fits all the possible models simultaneously

and produce the model averaging of the posteriors means for doses across all the competing

models, weighted by their respectively posterior probabilities given the data.
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5 SIMULATION STUDY

A simulation study was conducted in order to investigate the performance of the BVS model

in terms of controlling the Type I error and the power. The simulation settings correspond

to the setting used by Marcus (1976) and experiment with four and five dose levels was

investigated. Configurations for the mean response at each dose levels, µ = (µ0, µ1, µ2, µ3)

and µ = (µ0, µ1, . . . , µ4), for K = 4 and K = 5 are given in Table 12 and Table 13 in the

supplementary appendix of the manuscript. For each simulation setting the data were gener-

ated according to the model Yij = λµi+εij, εij ∼ N(0, 1). A sequence of λ = 0, 1, 1.5, 2, 2.5, 3

were used to investigate the magnitude of the differences between the mean response across

the doses. Note that using λ = 0 implies the null model with no dose effect. Number of

observations per dose was equal to n = 3, 4, 5.

The BVS model, one-sided LRT and one-sided MCTs were performed. Table 3 shows the

empirical Type I error obtained from each method. All the methods control the Type I

error, while the MCTs are more conservative than the LRT. The BVS model seems even

more conservative. To achieve similar proportion of false rejections as in case of the LRT

and the MCTs, i.e. 0.05, we can use a threshold as high as 0.35 for the BVS rejection (see

Table 3 and Figure 5 in the supplementary appendix).

Table 4 shows the power of the methods for K = 4. As expected the the LRT seems to be

the most powerful test with both MCTs slightly worse and BVS with threshold 0.05 about

0.10 behind the MCTs. With an increasing λ, the difference between the methods diminishes

(this pattern is visualized in Figure 4 for n = 4). Such result is expected, because with higher

λ, the power tends to one for all the methods. Similar result was obtained for the case of five

dose levels. The improving performance of the BVS with an increasing threshold is natural,

too. When using higher threshold (that still controls Type I error) we achieve results in

terms of power comparable with frequentist methods (Figure 4). The results for the case

of n = 5 observations per dose level, shown in Table 3 in the supplementary appendix of
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Table 3: Type I error of the frequentist methods and the BVS model for K = 4 and K = 5.

LRT MCT(W) MCT(M) BVS 0.05 BVS 0.10 BVS 0.15 BVS 0.35

K = 4

n = 3 0.041 0.037 0.036 0.002 0.003 0.003 0.034

n = 4 0.044 0.044 0.048 0.002 0.002 0.005 0.027

n = 5 0.053 0.057 0.051 0.001 0.001 0.001 0.017

K = 5

n = 3 0.047 0.048 0.048 0.000 0.002 0.005 0.046

n = 4 0.056 0.051 0.052 0.000 0.002 0.003 0.030

n = 5 0.048 0.056 0.051 0.000 0.002 0.004 0.022

the manuscript, indicate that the BVS model achieves the similar power compared to the

frequentist methods. The very same pattern can be seen for K = 5, tables with all the

results are included in the supplementary appendix of the manuscript.

Figure 5 demonstrates visually the change in the power when the number of dose levels in-

crease from K = 4 to K = 5 which corresponds to a change from 1/8 to 1/16 for the model

prior probabilities, respectively. Note that the first seven models corresponds to K = 4

(circles) while the last 15 models corresponds to K = 5 (filled circles). We can see that a

change in the power across the models and dose levels for the BVS model behaves in very

similar way as the change in the power obtained for the LRT. Hence, one can conclude that

the change in power is due to the additional information provided by the data (by adding

more dose levels) and not due to the change in the prior probabilities. Similar patterns were

observed for different values of λ and n (e.g. Figure 7, 8 in the supplementary appendix).
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Table 4: Results for K = 4 and n = 3. The columns RT and MCTs show estimation of the
power of the particular tests. The columns BVS shows proportion of (mean of) posterior
probabilities of the null model given the data that are smaller then α = 0.05, 0.10, 0.15, 0.35.

MCT MCT BVS BVS BVS BVS

λ Profile LRT (W) (M) 0.05 0.10 0.15 0.35

1 g1 0.36 0.42 0.34 0.22 0.37 0.49 0.81

g2 0.38 0.31 0.36 0.22 0.37 0.48 0.80

g3 0.40 0.39 0.35 0.22 0.38 0.50 0.83

g4 0.36 0.26 0.35 0.22 0.38 0.50 0.83

g5 0.44 0.42 0.39 0.26 0.41 0.54 0.86

g6 0.41 0.33 0.38 0.22 0.36 0.49 0.82

g7 0.46 0.42 0.41 0.24 0.40 0.52 0.85

2 g1 0.85 0.90 0.85 0.74 0.88 0.93 0.99

g2 0.86 0.73 0.84 0.74 0.88 0.94 0.99

g3 0.89 0.88 0.86 0.81 0.90 0.95 0.99

g4 0.85 0.72 0.82 0.74 0.85 0.92 0.99

g5 0.90 0.91 0.87 0.80 0.92 0.96 1.00

g6 0.90 0.81 0.87 0.80 0.91 0.96 1.00

g7 0.90 0.88 0.87 0.82 0.93 0.97 1.00

3 g1 0.99 1.00 0.99 0.98 0.99 1.00 1.00

g2 0.99 0.98 0.99 0.99 1.00 1.00 1.00

g3 0.99 0.99 0.99 0.98 0.99 1.00 1.00

g4 0.99 0.97 0.99 0.97 0.99 1.00 1.00

g5 1.00 1.00 0.99 0.98 1.00 1.00 1.00

g6 1.00 0.98 0.99 0.99 1.00 1.00 1.00

g7 1.00 0.99 0.99 0.99 1.00 1.00 1.00

6 DISCUSSION

In many applications, an analysis of the dose-response data requires to test the null hypoth-

esis of no dose effect against an ordered alternative or to estimate the dose-response curve.

In this paper we focus on a Bayesian approach for an order constrained one-way ANOVA

models. The inequality constraints were incorporated as priors in the Bayesian formulation

of the model. We have shown that the approach of (Gelfand et al. 1992) assigns zero proba-

bilities to the models with equality constraints, which cannot be used in our setting. In order

to overcome the problem of the zero probabilities for the quality constraints, we introduced
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Figure 4: Comparison of the power between the BVS (with varying threshold) and the fre-

quentist tests. Circles represent the results for threshold α = 0.05, triangles α = 0.10 and

rectangles α = 0.15. The plot is based on simulation under n = 4. Top left: LRT vs. BVS.

Top right: MCT Williams vs. BVS, Bottom left: MCT Marcus vs. BVS.

the BVS model formulation for the dose-response modeling.

The BVS model presented in the manuscript assumes an independent prior model for the

joint distribution of zi and δi, i.e., P (δi, zi) = P (δi) × P (zi) and non-informative priors for

both P (δi) and P (zi). An alternative approach is to formulate a model for P (zi, δi) by tak-

ing into account the conditional distribution P (δi|zi). Dellaportas et al. (2002) proposed the

Gibbs Variable Selection (GVS) method which assumes a mixture model for the conditional

distribution P (δi|zi), i.e., P (δi|zi) = ziN(ηi, S) + (1 − zi)N(0, τ 2). The Stochastic Search

Variable Selection (SSVS) by (George and McCulloch 1993) assumes the following mixture

model for P (δi|zi) = ziN(0, τ 2) + (1− zi)N(0, gτ 2). In both GVS and SSVS is necessary to

specify priors for the tuning parameters (S and τ 2 for GVS, g and tau2 for SSVS). In both

cases a prior knowledge about the increment is needed for specification. The influence of the

choice of the prior model for P (δi|zi) will be investigated further and will be reported in a

separate manuscript.
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Figure 5: Comparison of the power between K = 4 and K = 5 for BVS (with varying

threshold) and LRT test (top right panel). The plot is based on a simulation under λ = 2

and n = 3. The models are ordered arbitrarily, seven models for K = 4 on the left (circles)

and 15 models for K = 5 on the right (filled circles).

We have shown that using the BVS model allows us to calculate the posterior probability

for each one of the candidate models and in particular the posterior probability of the null

model. Therefore, the BVS model proposed in this paper can be used for both the inference

and the estimation of the dose-response curve. Further, the posterior mean obtained from

the BVS model is a model average of all the candidate order restricted one-way ANOVA

models for a given value of the dose levels.

The simulation study showed that the BVS can match the frequentist methods in terms

of the power while controlling similar level of the Type I error. The comparison is valid,
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because we avoid to compare p-values and the posterior probabilities themselves, but rather

the results based on using any of these two quantities for answering a question of the null

hypothesis testing. The power of the BVS method indeed depends on chosen threshold. The

approach on how to choose or estimate the threshold for a real dataset is one of the topics

planned for a future research.

Framework of the microarray data enables us to overcome a necessity of the threshold spec-

ification by using the FDR control mechanism. Details are given in Section Multiplicity

adjustment in the supplementary appendix of the manuscript.

Additionally, the BVS provides an evidence for the possible models under the monotone

constraints. The probability of identification of the true monotone profile based on the pos-

terior probabilities may bring further insight into the BVS model properties. Together with

the comparison between the posterior probability of the most likely model and the posterior

probability of other models, the BVS may also be used for the model selection among the

alternative monotone models. We suggest this problem as a topic for a further research.

The BVS model presented in the paper was based on the use of non-informative priors for

the selection variables z1, . . . , zK . Strong prior scientific knowledge is typically rare in dose-

response modeling situations, but when it is present (e.g., if historical data are available),

it can be very easily incorporated. Simple change of the hyperprior for πi or even straightly

prior for zi immediately translates into change in the prior probability of the null hypothesis

and all the alternative profiles. Indeed, such a change can highly influence the posterior prob-

ability of the different models and so the estimated dose-specific means (since they are in fact

weighted average of model-specific means with weights equaled to the posterior probability

of the models). Hence, we suggest to use informative priors only in cases, when scientific

knowledge is really strong and to specify them very carefully. Analysis of the impact of

particular changes of priors on posteriors is very complex, because it depends on multiple

criteria such as properties of the observed data set or the number of dose levels.
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