
 

 

 


 

Abstract—Effective design of agricultural policies requires an 

understanding of the drivers behind the evolution of the 

agricultural sector. This project builds an evolutionary 

economic model of the Belgian agricultural sector, as a testing 

ground for new policies. This agent-based model simulates the 

dairy, cow and pig sector. The model is calibrated to historical 

data of production and farm diversity during the period 2003 – 

2013.  

Profit maximising agents cannot replicate the historical 

trends. When assuming heterogeneous behaviours, the actual 

evolution can be reproduced much more closely. The calibration 

reveals key behaviour variables. The evolution in the 

agricultural sector can only be explained when accounting for a 

resistance to change at farm level or at market level. However, 

this approach cannot determine the exact location of this 

resistance. The resistance to change can result from personal 

convictions of the farmer or from  market rigidities and 

learning effects.  

I. INTRODUCTION 

ultiple agricultural policies and instruments are 

created to direct farmers towards more innovation, 

higher sustainability and efficiency. This requires in practice 

a far-reaching transition in the sector. Currently, the 

European Common Agriculture Policy (CAP) focuses on 

three objectives. First, enhanced competitiveness of 

agricultural markets is promoted by reducing production 

constraints and encouraging modernisation. Secondly, the 

CAP pursues a more sustainable agriculture with intense 

rural development. And finally in order to achieve this, the 

CAP wants a more effective and equitable framework of 

support policies for agriculture. Unfortunately, the creation 

of effective policies is challenging, given the complexity of 

agriculture and its relations with the environment and 

society. New policies influence an on-going evolution of the 

sector, though these policies are not always designed taking 

their evolutionary effects into account. Historically, policies 

are often designed based on a neo-classical understanding of 

the farmer’s situation. There are concerns that this approach, 

founded on static equilibriums or general optimisation 

principles is too constrained [1]. It is not equipped to deal 

with uncertainty, lack of knowledge on diversity or 

complexity effects between markets. Evolutionary economics 
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offers a more appropriate starting point to analyse economic 

transitions and to design policies [2]. Evolutionary models 

can also incorporate different behaviours. This can be an 

additional step in agricultural research to bring models closer 

to reality, given the complexity and diversity in behaviour of 

farmers [3, 4]. This project builds an empirical evolutionary 

model of the Belgian agricultural sector. We compare two 

types of modelled behaviour with the evolution of the sector 

between 2003-2011. The results indicate that rational profit-

optimising behaviour cannot always explain the past 

evolutions.  

Evolutionary economics have seen a growing interest since 

the second half of the last century. The evolutionary 

approach engages in the study of a phenomenon over time. 

The models include imperfections, non-equilibrium and 

selection mechanisms over time. There is a large focus on 

group effects, complexity and learning [5]. A specialised 

strand of evolutionary economics focuses on the 

development of agent-based modelling of economic 

evolutions. This approach models economies as 

decentralised, complex and adaptive systems. The models 

are founded on groups of autonomous agents, that have 

individual behaviours, technical characteristics and 

communication possibilities [6]. Such agent-based models 

(ABM) directly provide possibilities to investigate 

interactions and relations in detail. An ABM model is built 

from the bottom up: the individual agents being each 

represented with their decision process and historical 

pathways. This leads to research on co-evolution of markets, 

dynamics in consumer demand, emergence of innovations, 

historical path-dependence, environmental impacts and 

effects or co-evolution with institutions and policies [7-9]. 

Especially the translation of this approach to empirical 

research unlocked new methods to investigate economic and 

social phenomena [10].  

This approach has also been applied to study evolutions in 

agriculture on multiple occasions. The first models have 

been created by Balmann [11], studying structural change in 

an abstract landscape. Further developments have elaborated 

this model to study impacts of new policies and CAP 

changes in different regions in Europe [12-14]. Berger [15] 

continued this approach and integrated detailed submodels 

for farm-level innovations, water management and irrigation. 

Other models included the effect of forest clearing by 

farmers to model regional land use changes in Indiana [16]. 
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There are even initiatives to standardise farm models in this 

context [17]. 

A particular strength of this approach is the openness to 

interdisciplinary models. Several applications combine for 

instance technical, geological, and behavioural submodels. 

In the context of evolutions of the agricultural sector, the 

inclusion of behaviour is very important. Farms are often 

modelled at household level. The behaviour is related to the 

household directly and this implies influences from personal 

risk adversity, off-farm labour, work preferences, resistance 

to change or limited information availability. The behaviour, 

the bounded knowledge and the adaptation capacity of the 

agents confronted with new developments are all hidden 

drivers of agricultural transitions. Many models incorporate 

particular behavioural rules such as heuristics or constrained 

maximisation [18]. These decision rules are already more 

developed than the standard profit-maximising procedure 

from neo-classical models. However, most models exert the 

same decision procedure for every agent. Decisions 

ultimately vary due to differences in technical and historical 

characteristics. But the heuristic process remains the same. 

Empirical applications demand a method that also relaxes 

this requirement for a similar behaviour for all agents. Other 

research projects include an intrinsic diversity of behaviour 

rules in the construction of ABM.  

The increased application of evolutionary modelling has also 

nurtured the debate on the robustness of ABM-modelling. 

There are several reasons to control carefully an ABM-based 

analysis. First of all, this is a new development. Neoclassical 

models can present a long historical range of applications 

and scrutiny, as well as regular modes of operation. These 

new evolutionary models are being developed in a new and 

burgeoning discipline. Agreed standards of construction and 

application have not yet been developed and the knowledge 

on the limitations of this approach is restricted. Secondly, 

compared to standard neoclassical economic models, an 

ABM can display several times the number of degrees of 

freedom. This implies that validation and calibration of 

empirical models is a crucial step to demonstrate the 

robustness and credibility of the results [20-22].  

This paper reports advances in a project focussed on the 

Belgian dairy, cow and pig production sector. This sector is 

confronted with multiple problems such as low profitability 

of animal farms, high environmental impacts and high price 

volatility. The model needs to provide a testing ground for 

new policies and future scenarios. One particular focus of the 

model is the integration of new sustainable innovations for 

manure treatment in the current economic structure. Excess 

of manure constitutes an important economic and 

environmental problem in Belgium. The excess of manure 

leads to water pollution, high costs for disposal and 

important changes in local ecosystems.  This urgency has led 

to the creation of new innovative methods to treat manure in 

a more sustainable way. These innovations are intensively 

researched and provide new production methods for 

fertilisers, algae-based products, feedstock or water 

purification. The potential influence on the overall 

sustainability of agriculture is large. However, the 

integration of these new technologies encounters multiple 

structural barriers. The current project builds an ABM model 

to test different scenarios of support policies for agriculture 

and for related sustainable technologies.  

This paper develops the calibration of the ABM model 

according to the Werker-Brenner approach  [23]. The 

calibration is aligned to the historical evolutions in dairy, pig 

and cattle production during the years 2003 – 2013. We 

compare two different models of farm agent behaviour.  A 

first model follows uniform behavioural rules for all agents, 

based on profit maximisation. A second model implements a 

structured behavioural diversity. The calibration method 

allows the determination of several behavioural variables.  

This paper is structured as follows. In the second section, the 

structure of the ABM model is described. This comprises the 

architecture and the behaviour submodels. The third section  

reports the calibration results for the initial benchmark 

situation and for the historical evolution. The fourth section 

discusses and interprets these results. Section five concludes. 

II. CHOICES IN THE MODEL CONSTRUCTION 

The main research orientation looks at the evolution of the 

agricultural sector in Belgium, and the influence of new 

manure-treatment methods on this evolution. More 

particularly, the focus is directed towards the investigation of 

structural change in agriculture. Structural change has been 

investigated as shifts between different types of producers 

(Baumol et al., 1985) or shifts in labour allocation per sector 

(Ngai and Pissarides, 2007). Generally, structural change can 

be regarded as shifts in productive assets at the level of an 

economic sector. The definition of the farm agent should 

thus include different types of productive assets, and allow to 

see modifications in asset compositions over time. The main 

answer to this requirement is the inclusion of different types 

of animal stocks, investments and land types for each 

individual farm agent. The farm agent can therefore 

specialise on one type of production, or he can choose to 

combine multiple stocks and create a mixed farm.  

Mixed farms are an important part of the Belgian agriculture. 

Multiple economic studies focus on specialised farms 

(Berentsen, 2003; Meul et al., 2007; Nevens et al., 2006; 

Van Passel et al., 2007; Van Passel et al., 2009). But the 

Belgian agriculture contains different forms of mixed 

farming. This combination of different animal products and 

crops can be historical, but can also be strategic in response 

to economic adversity or low productivity (Meert et al., 

2005). Mixed farms keep different production options open, 

allowing for more evolutionary pathways than specialised 

farms. So co-production and mixed farming should in 

principle remain possible for the farm agent. The chosen 

farm model allows for a simultaneous production of crops 

and animals. However, the categories of production do not 

detail specific crops or products.  The different types of 

crops are divided in four groups (i) Forage : cultivation of 

plants destined for animal nutrition, (ii) Pastures and 

grasslands, (iii) Horticulture and (iv) Crops : all other types 

of crops. The animal products are grouped in three broad 



 

 

 

categories : (i) Pig products : The output of this category 

consists mainly of live pigs, (ii) Dairy products  : This output 

does contain raw milk, but also live reform cows for sale, 

(iii) Cattle products : All other live cattle are grouped in this 

category.  

Pastures and grasslands constitute a particular category, as in 

this model the farmer cannot directly draw profit from the 

grassland. The available grassland is integrated in the 

production for dairy products and cattle. The production of 

the other categories can be used internally or can be sold, 

leading to six potential types of revenue for each farm. 

Specialised farms will focus on one category only. Mixed 

farms can combine different revenue streams.  

A second field of detailed investigations is the agricultural 

land. The level of detail in the description of the agricultural 

land is highly dependent on the objectives of the study. For 

instance, many projects incorporate geographical data of 

land parcels to study local characteristics and geographical 

proximity as determinants of land transactions. This can be 

spatially explicit in a theoretical land framework (Epstein 

and Axtell, 1996; Happe et al., 2004), or based on real 

geographical information (Smajgl and Bohensky, 2013). 

This has been used to study water management options, 

regional farm structure, or management of common 

resources (Matthews et al., 2007; Parker et al., 2003).  

 

 

 

Figure 1: Schematic overview of the agent-based model  

In this case however, the focus is not on the geographical 

characteristics of the farm. The main objective is to study the 

emergence on the market of new technological solutions for 

manure treatment. Given the small size of the region under 

consideration – Belgium – differences in regional 

characteristics can play a role in reality, but are not 

preponderant. The emergence of these technologies is 

studied as a results of technology evolution, learning, 

acceptance by farmers and related policy measures. Other 

studies also investigate agent-based dynamics without 

geographical specification (Möhring et al., 2010).  

If geographical information is not included in the land 

market, then this requires specific assumptions for the land 

market model. Because in reality geographical limitations 

impose specific dynamics on the exchanges of land between 

farmers, the implemented market model ensures that these 

are preserved.  

III. THE MODEL ARCHITECTURE 

Figure 1 present a schematic overview of the model. It 

illustrates the group of farmers in relation with different 

markets. The exogenous markets are capital, labour, 

fertilisers, investments and output markets for different 

products. Their prices are fixed and given by external data. 

The endogenous markets react to the quantities and prices 

requested by the farmers: for land,for manure, and for live 

animals. The market for live animals considers the exchange 

with slaughterhouses. The price determination is based on an 

econometric model of market power in the slaughterhouse 

market. The other two  markets, for land, 

manure and feedstock, are implemented 

as double auction markets [24]. In these 

markets, any party has the possibility to 

enter bids for either the purchase or the 

sale of a good, combined with a 

requested price. The double auction 

mechanism combines sales bids with 

purchase bids and establishes a 

negotiated price for the transaction. For 

the purpose of the calibration, the 

manure treatment sector is fixed. 

Existing technologies are present and 

unchanging, new technologies are not yet 

introduced.  

 

Other external evolutions are set 

according to the historical prices in terms 

of market prices. Hence, the current 

application focuses on the dynamics 

within the agricultural sector itself. No 

external shocks are applied during the 

calibration. 

 

The evolution of a farm agent during the 

course of one year is illustrated in Figure 

2. The annual process in divided in four 

steps : (i) After the initialisation of the 



 

 

 

model for the first year, the agent starts producing. 

Whenever possible, the manure is first spread on the fields of 

the farm itself. The remaining manure has to be sold in the 

manure market. (ii) The second step is the sales of output 

products and manure. After the sales, the total annual 

turnover can be calculated and farm agents decide whether 

they want to continue farming or not. Reasons to cease 

activity are bankruptcy, passing of the farmer or a decision to 

leave animal farming and to focus on crops only. (iii) If the 

farm agent continues, he optimises assets for next year. This 

step contains most of the behavioural decisions. (iv) Finally 

the farmer updates his financial liabilities and new starting 

farmers enter the group for the next year.  

 

The third quadrant of the annual cycle combines all steps to 

decide on the future lay-out of the Farm Agent. The 

decisions concern a number of variables that cover assets 

and efficiency investments. This part of the annual cycle also 

gathers all aspects related to adaptation and learning of the 

farm agent. The decisions are split between three steps, each 

changing several production variables. The first step of the 

decision process is the overall strategic decision, allowing 

the farmer to review the types of animals on his farm. This 

means that the agent can decide whether or not to continue 

raising a certain type of animal. The agent can also decide to 

invest in an innovation to improve production efficiency. 

 

Figure 2: The different steps for every farm agent in the 

evolution of one year. 

 

In the second step, the farm agent can change land surfaces, 

and interacts on the land market. Consistent with the choices 

of the land market rules, this second step is not entirely 

available to all Farm Agents every year. On an annual basis, 

only a small percentage of the Farm Agents (according to the 

‘Land Access Factor’), can carry out this second step to buy 

land.  Finally in the third step, the farm agent optimises the 

production assets by minor de- or investments and allocates 

different crops to the remaining available land surfaces. 

Based on the type of animals and the land surfaces available, 

the farm agent can adjust the amount of livestock with a 

maximum of ± 20%. Increases in animal stock are 

accompanied by investments for additional stables and 

machinery, and the farmer has to respect a minimum surface 

of grassland per cow at all times.  

The third quadrant of the annual cycle assembles the 

different parts of the decision framework of the farmer. In 

this paper, we compare the results of two different behaviour 

submodels each applying a different set of decisions for the 

agents : a profit-maximising model and a diversified 

behaviour model. As all other input data remain equal, the 

results show the impact of the decision heuristics on the 

simulated evolution.  

 

The evolution of the farmer’s community is subject to the 

following variables in each case :  

- Transaction costs : Changes at farm level do not 

immediately yield their optimal return. The farm agent 

has to adapt to the new specialisation or investment. This 

learning period is implemented as a 

transaction cost, proportionate to the 

investment cost of the change, 

separately for each of the three animal 

productions.  

- Adaptability: The general framework 

provides the option for the farmer to 

change his overall strategy every year. 

In reality there are several reasons that 

induce a farmer not to change his 

strategy every year. First of all, large 

strategic changes require willingness to 

change and a learning capacity. 

Secondly, large changes are disruptive 

at farm level. They reduce the options 

for future production and render some 

past investments obsolete. Finally, there 

can also be a form of persistence or 

stubbornness that explains why farmers 

continue production with an existing 

configuration rather than ‘giving up’ 

one type of animal or crop. The model 

integrates this lack of adaptability. The 

overall adaptability of the farmers’ 

community is defined as the percentage 

of the farmers that review their strategy 

in one year.  



 

 

 

IV. ADAPTATION AND LEARNING 

Three aspects that determine the adaptation and learning 

capabilities of the Farm Agent, are historical path-

dependence, the ability to forecast and the individual 

objective function. Adaptation of an agent requires the 

maintained link with the historical evolution of the agent. 

The agent follows a path during its development, and the 

effects of learning are determined by the past experiences of 

the agent. The second obliged concept in relation with 

adaptation is the ability to forecast. Even in situations where 

high uncertainty is prevalent over future trends, agents are 

obliged to determine forecasts for future productions and 

prices [33, 35]. Finally, adaptation obliges the definition of 

an objective function or fitness measurement. The agent will 

then adapt his situation in order to maximise his fitness [36]. 

These three aspects are reflected and implemented at 

different instants during the decisions taken in the third 

quadrant of the annual cycle.  

First, historical path-dependence is present in the decisions 

taken in the third quadrant of the annual cycle. As such, 

path-dependence is a standard characteristic in agent-based 

models. Each agent starts an evolutionary cycle with an 

individual situation as a result of choices and experiences in 

the past. The starting situation determines to a large extent 

the possibilities that the agent has for the future. This is also 

the case in this model. At the start of the cycle, the Farm 

Agent begins with the results of the past cycle. The choices 

of productive assets indicate the present productions. Also, 

the past expenditures determine the present production 

efficiency and characteristics. Finally, the starting situation 

also limits his future choices for coming cycles. Farm Agents 

can choose to reduce the types of animals they raise, but they 

cannot choose to increase them. This means in practise for 

instance that a specialised dairy farmer cannot decide 

strategically to discard all dairy production and to turn to 

specialised pig farming instead.  

Secondly, the farm agents display an ability to forecast. Each 

farm agent individually optimises his annual income based 

on personal price predictions. These price predictions are 

formed by averaging the prices the farmer received for this 

output during the last three years. External trends that could 

influence future prices are not taken into account by the farm 

agent. This is narrow foresight, similar foresight methods 

used in other projects [12].  

V. OBJECTIVE FUNCTIONS AND OPTIMISATION CONSTRAINTS 

The final aspect of adaptation is the objective function and 

the related optimisation constraints. Multiple models use an 

objective function based on various forms of profit-

optimisation. In these models, every farmer decides on his 

strategy and assets while optimising his annual profit. Profit-

optimisation has been applied before in agricultural agent-

based models, but rarely in the strict neoclassical sense. 

Several adaptations to this basic decision model have been 

applied to bring the behaviour closer to reality. The 

Agripolis model [12, 13] utilise a farm income maximisation 

decision module. This maximisation is based on limited 

information and personal prediction of future output prices. 

Similar constrained and bounded rational optimisation of 

annual farm income is found in agricultural models such as 

MP-MAS [18, 25] or CATCHSCAPE [26, 27], the latter 

combining optimisation with linear programming. 

 

In this model, the objective maximisation of the farm agent 

is constrained by the availability of loans and by the level of 

financial risk the farm agent is willing to take. New 

investments in land, animals, farms or installations require 

loans. Banks will not base the restrict the maximum amount 

of the loan on the future business plan, but to the value of the 

land of the farm that the farmer can give as a guarantee. The 

financial risk of the farm agent is defined as the ratio of 

liabilities over owned assets. Every farmer disposes of a 

unique maximum level of risk he is willing to take. This 

maximum financial risk level is age-dependant. The 

fixed level  is normally distributed among the agents 

with parameters N(0.32; 0.224), corresponding to risk levels 

in 2003. With growing age, the risk preference of farmers 

decreases and falls to zero at the age of 65  : 

.  

 

Because two different behaviour submodels, of which one 

with behavioural diversity are used, as explained in the next 

section, three different objective functions are integrated. A 

first objective function is based on profit. This is similar to 

the projects mentioned above. Constrained by limited 

choices and loan availability, the farm agent decides on the 

optimal quantity of land, animals and animal types for a 

maximum profit next year. A second objective function 

expands this to farm value. Annual profit maximisation is a 

very short-term planning horizon for the farm agent. In order 

to incorporate a focus with a longer time-frame, farm agents 

maximise the entire value of the farm rather than solely their 

profit. This entire value includes liquid and fixed assets and 

agricultural land. This type of farmers does not pursue the 

largest profit for next year, but they pursue the creation of a 

large and rich farm, yielding important annual profits each 

year. 

The third objective function is not based on a value, but on 

an ideal farm structure. Maximisation implies that the agent 

disposes of a range of choices. For instance, the choice of a 

mixed farmer to stop raising pigs and to specialise on dairy 

farming instead, can be part of the decision process. But this 

is not a valid choice for one type of farms called ‘stable 

family farms’. The ‘stable family farm’ is based on 

characteristic behaviour of Belgian small-scale farmers. This 

type of farmers are active in agriculture and are passionate 

about their specific farm type or about the animals they raise. 

Entirely driven by personal preferences and conviction, this 

type of farm can for instance prefer pigs. Despite the fact 

that crop farming presents larger marginal benefits, this farm 

will continue to raise pigs. There are no alternatives 

considered during a maximisation process. Their objective is 

the creation of an ‘ideal’ farm configuration and size, based 

on personal preferences of animals and crops. The ‘ideal’ 



 

 

 

farm contains a certain land surface, and a specific stock of 

animals. This ideal also consists of a full ownership of all the 

land under cultivation. Every affordable step that can bring 

the farm closer to the ideal, is implemented. When achieved, 

the farmer stops the farm growth and invests only in 

efficiency.  

VI. BEHAVIOUR DIVERSITY 

The first behaviour model uses behaviour uniformity and 

assumes a constrained profit maximisation for all agents.  

 

The second behaviour model implements behavioural 

diversity, constructed according to the procedure of Smajgl 

et al. [19].  Diversity is a key feature in evolutionary 

analyses. Following the variety of farmers in Belgium, the 

implementation of technical diversity leads to a large range 

of technical variables, combinations and characteristics in 

the model. The additional implementation of behavioural 

diversity adds another level of differentiation between the 

agents, leading to a multiplication of variable combinations. 

This large combinatorial freedom could signify in practice 

that the model is very hard to build empirically. But the 

application of diversity in both technical and behavioural 

characteristics is feasible because one can rely on the 

coherence between the two aspects. Farm agents are 

classified in different groups based on their technical 

characteristics, including farm size, type of activity, location, 

profitability, or age. This defines the attribute data, and 

attribute-based classes. The behavioural diversity is also 

explicitly integrated by forming classes of farmer behaviour. 

When one considers certain behaviour to be continuous, it 

will influence the lay-out and structure of the farm over the 

long term. Mixed farms will not be held by farmers pursuing 

a maximum production efficiency, or large farms require a 

certain willingness to take risks from the farmer. Through 

recursive optimisation of the classes, groups of farmers are 

constructed that combine each a technical type and a 

behaviour class. In each case, the method integrates 

empirical datasets and qualitative information to build the 

full model [28].  

 

Figure 3 : The links between the different farm agent  

behaviour types 

In this case, different types of farmer behaviour have been 

distinguished through discussion with experts. For this 

application, five different types of farms have been 

determined: (i) growing family farms, (ii) stable family 

farms, (iii) innovator farms, (iv) elderly farmers and (v) 

industrial farms. Every behaviour type is related to technical 

farm characteristics, as described in Table 4.  

 

At the start the farm agent can be defined as a growing 

family farm, or as a stable family farm. The two types have 

very different behaviours. Stable family farms are based on 

one family pursuing a stable surface of land and stock of 

animals. The main objective of these farmers is to obtain a 

stable farm configuration, while increasing ownership of the 

land under cultivation and achieving a growing income and 

farm value. The farmer does not optimise the value nor the 

income of the farm. The farmer defines an ideal farm and 

pursues this structure. Investments to increase efficiency are 

implemented when affordable. The farm size is limited, the 

total amount of external labour does not exceed 1 FTE.  

Growing family farms on the other hand, have a very 

different behaviour. These farms are also created from one 

family with a growing surface of land and stock of animals. 

But the main objective of these farmers is to grow steadily. 

Growth of production can be achieved both by acquisition of 

production assets as by implementing innovative 

technologies for increased production efficiency. Through 

multiple adaptations, the growing family farm can become an 

innovator farm or an industrial farm.  

The innovator farm adopts a long-term strategy based on 

high specialisation and innovation. The farm aims for high 

specialisation and innovation. Growth is pursued, but it is 

not the primary objective. Investments in efficiency increase 

and in niche production are preferred. The farmers of 

innovator farms are over 45 years old, allowing them to 

achieve sufficient experience and background to invest in 

multiple innovations. These farms achieve the highest 

production efficiencies. The type is most commonly 

associated with specialised pig and dairy farms, less with 

cattle farmers. The industrial farms on the other hand, are 

less specialised, but larger than innovator farms. Industrial 

farms are managed as industrial plants. The farms maximises 

the total value of the farm in the long run. The strategy is 

based on economies of scale, and leads to intensive growth 

of the farm. These are the largest farms but do not require 

specialisation. 

 

Finally, at the end of the lifetime of the farmer, the farm has 

to find a successor, or he is to evolve into an elderly farm. 

Succession is a crucial step in the history of family farms. 

This is increasingly the case, as farms grow larger in size, to 

a point where it is difficult to start a new farm without any 

capital or assets available from a predecessor [37]. However, 

the current rate of farms that find a successor on time is low. 

Farms without a successor can present zero growth or 

decrease in total farm assets [38]. On the other hand, elderly 

farmers stay active after their pension age, and continue 

farming without further adapting their farm structure.  



 

 

 

The typology of elderly farms consists of farmers that 

gradually retire, and don’t find a successor. The elderly 

farmers live up the farm’s assets, maintain the land in 

ownership and do not invest in higher efficiency or new 

innovations. The activity only stops when the owner passes 

away. Besides the high age of the farmer, these farms also 

present low efficiencies and high stability of activities or 

even decreasing activities. Currently, a succession rate of 

41% is implemented in the model. Any farm that fails to 

have a successor on time (growing family farm, innovator, 

industrial or stable family farm), becomes an elderly farm 

when the farmer’s age reaches 65 years.  

So the behaviour typology can be divided in two very 

different evolutions, one based on stable family farms, the 

other on growing family farms that can potentially evolve 

towards industrial or innovator farms. Both types turn to 

elderly farms at the end of their life. The difference between 

the two evolutions is especially a difference of adaptability 

& learning capacity. The growing family farm is responding 

to market prices by adapting his production assets. This is 

characteristic shared with the innovator and industrial farms. 

On the other hand, the stable family farms remain focused on 

their ideal farm structure. Stable family farms do not adjust 

their production according to market prices. At most they 

delay investments because of insufficient liquid assets. The 

stable family farms represent a very stubborn and fixed 

behaviour. The other farm types represent a very flexible and 

adaptive behaviour. The percentage stable family farms in 

the total farm population is therefore an important factor for 

the overall adaptability of the agricultural sector. This 

percentage also has to be determined through calibration.  

 

 

 

Table 1 : Comparison of the calibrated farm agent set 

with quantities in reality 

VII. CALIBRATION METHOD AND RESULTS 

Empirical calibration of evolutionary models has been 

gaining attention lately [39], and several approaches are 

available [40]. Still, calibration has been noted as a critical 

problem in applications of empirical ABM’s and solid 

calibration methods are required to guarantee the credibility 

of the results [41]. Standard calibration takes two steps. The 

first step calibrates the input data of the model on realistic 

data sets and benchmarks. The second step compares the 

output with empirical data for the output and determines the 

validity of the model. A specific and pragmatic calibration 

method, the Werker-Brenner method, adds a third step [23]. 

The method uses specificities of evolutionary models, 

exhibiting often numerous degrees of freedom. The Werker-

Brenner approach labels itself as ‘critical pragmatist’ in the 

sense that the model is not required to deliver one correct 

solution. The more pragmatic approach is to allow for 

several realistic solutions that are able to explain the same 

phenomenon. Several acceptable sets of input data are 

determined that return solutions in line with the calibration 

constraints. The third step is thus to investigate the 

underlying dynamics, similarities and differences between 

the inputs sets. These patterns show underlying principles 

common to all acceptable data sets. This approach narrows 

the sets of possible entry data down to more realistic figures, 

and this improves robustness of the model [42]. This paper 

applies this calibration method. First the initial situation is 

fixed. This initial situation is calibrated to technical and 

production characteristics of the Belgian agricultural sector 

in the period 2001-2003. A limited number of immeasurable 

parameters, especially those related to behaviours, are 

selected at random. The model is executed separately with 

profit maximising and with the heterogeneous behaviour 

rules. After hundreds of model runs with random parameters, 

the results are chosen that correspond best with the historical 

evolutions in the period 2003-2013.  

General data Weights 

# of reference farms selected 49 Avg SDv Min  Max 

Total number of agents at initialisation 40583 828  299  86  1 000  

Comparison according to farmer's age Comparison with macroeconomic benchmarks 

Age 

Number of farmers 

in reality 

Represented at 

initialisation 

2001 2002 2003 

Cow production 104% 96% 103% 

18-34 5 002 99% Pig production 104% 103% 101% 

35-44 12 059 97% Dairy production 100% 101% 101% 

45-54 11 154 96% Comparison according to the size of the animal stock on the farm 

55-64 9 989 97% Total LSU 

on farm 

Number of animals 

in reality 

Represented at 

initialisation >65 9 016 96% 

Comparison according to land size Cows < 20 109 440 100% 

Land size 

Number of farmers 

in reality 

Represented at 

initialisation 

Cows 20-50 1 082 940 98% 

Cows >50 1 585 710 97% 

<5 8 780 84% Total LSU 

on farm 

Number of animals 

in reality 

Represented at 

initialisation 5-10 5 180 88% 

10-20 7 010 102% Pigs < 20 3 480 100% 

20-30 5 850 102% Pigs 20-50 85 380 102% 

30-50 7 840 103% Pigs >50 1 872 723 108% 

>50 7 240 103% 



 

 

 

A. Calibration of the initial reference farm agents  

The start of the model is calibrated on production 

benchmarks and on benchmarks of farmer diversity during 

the years 2001-2003. The model is populated with a 

heterogeneous group of farm agents. This group consists of 

reference farm agents, each attributed a specific weight that 

determines their multiplication at the initialisation of the 

model. The model selects farms from the Farm Accountancy 

Data Network (FADN) database to shape the reference 

situation of the farm agent on a realistic basis. In this case, 

the farm selection is not based on expert knowledge, as this 

would imply a manual selection. This is not feasible given 

the high number of agents and several simultaneous 

conditions. Therefore, we adopted a method, based on the 

solution of Happe et al. [12] and Sahrbacher et al. [14]. This 

enables to automate the selection as an optimisation solved 

with quadratic programming. There have been 26 criteria 

fixed for the selection of the reference farms. Nine criteria 

are related to the total macroeconomic production of the 

Belgian agriculture during the years 2001-2003. 

 

It is the objective that the selected farms should replicate the 

annual national production of cows, dairy and pigs. The 

reason to decide on three consecutive years rather than on 

one single year, is to avoid selection of farms with irregular 

production output, or farms for which data was not available 

for a longer period. Seventeen additional criteria relate to the 

age diversity and size distribution of farms in the year 2003. 

The selected group of reference farms should represent the 

same age pyramid, and size distribution, both in land surface 

as in livestock size, as the Belgian agricultural sector in 

reality. The quadratic optimisation yielded a total of 49 

different reference agents, representing 40 583 farms. The 

comparison of this selection for each criterion is illustrated 

in Table 1. 

 

B. Calibration runs compared with historical evolutions 

The simulation results are compared to the actual 

productions of dairy, cows and pigs during the period 2003-

2011. The calibration is used to determine behavioural 

uncertainties.  

 

When the first submodel is used, all agents are focused on 

profit maximisation. Profit-maximisation is a more 

determined behaviour, but it still disposes of some variables 

that have to be chosen randomly for the calibration runs. 

These are the size of transaction costs, the annual land 

availability for farmers and the price of efficiency 

investments. In this case however, no sufficient 

approximation has been found for the profit-maximising 

model. The results are illustrated in Figure 4. When the 

model assumes profit-maximising behaviour for all farms, 

the simulated productions cannot be brought closer to the 

quantities in reality. 

 

In the second submodel, assuming heterogeneity, several 

scenarios can be determined that bring the simulated 

evolutions closer to the real annual productions. The 

variables that need to be determined through calibration are : 

the adaptation capacity of the farmers’ community, the 

annual availability of land, the transaction costs, the 

efficiency increase/innovation cost for efficiency improving 

investments, the proportion of growing family farms 

compared to the number of stable family farms.  

Not all of these variables exert a similar influence on the 

evolution of the model. An essential role remains for the 

proportion of growing family farms compared to the 

proportion of stable family farms. This can be clarified by 

highlighting the large differences between the two.  

 

Figure 4 : The model assuming profit-maximising 

behaviour cannot replicate the real evolutions. 
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Figure 5 : Comparison of annual turnover for 

simulations and historical data 

The growing family farms are very reactive to their 

environment and to the price signals they receive. They are 

also the basis for the emergence of larger and more 

innovative farms.  

The stable family farms however, are mostly driven by 

internal motivations and constrained by personal limits on 

size and labour.  A high proportion of growing family farms 

yields a model that is highly reactive to price evolutions. 

Consequently, a high proportion of stable family farms yields 

a model driven by changes in land surfaces and age pyramids 

of the farmers.  

 

 Table 2 : Optimal parameter sets to simulate the actual 

production 

 

 

The calibration has been done for a varying proportion of 

growing versus stable family farms. The optimal values for 

the corresponding parameters are reported in Table 2. The 

three best approximations (with 45%, 60% and 75% of 

stable family farms) are illustrated in Figure 4. 

 

Proportion of stable family farms 0% 15% 30% 45% 60% 75% 90% 

Adaptation capacity
1
 1% 10% 10% 15% 20% 30% 10% 

Land availability
2
 5% 10% 20% 30% 40% 40% 50% 

Transaction costs
3
    

    

Dairy 5 - - - - - - 

Other cattle 15 10 - - - - - 

Pigs 5 5 5 5 5 5 - 

Efficiency / cost ratio
4
    

    

Dairy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Other cattle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Pigs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Approximation quality
5
 22.1% 11.1% 7.0% 3.8% 2.8% 4.1% 7.2% 

1 : The adaptation capacity is the proportion of farm agents that execute the strategic decision process per year. 
2 : The Land availability is the proportion of farm agents that has land available for purchase or for rent in his neighbourhood per year.  
3 : The transaction costs are defined as an additional cost when change is undertaken, of x times the price of the livestock quantity change. 
4 : The cost of an efficiency improving investment is the e/c ratio times the size of the livestock, per percentage efficiency improvement.  
5 : The average relative differences with the real macroeconomic productions is used as a measure of approximation quality for the scenario.  
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Table 3 : Translation of the behaviour in 

modelled rules 

 

Name Evolutionary traits Technical 

characteristics 

Optimisation objectives Optimisation constraints 

Industrial 

farms 

These farms set out 

from the start to 

behave strategically as 

industrial firms and 

have a relatively high 

chance to find a 

successor.  

Farm owner is older 

than 45 years.  

Farm size exceeds 350 

LSU. 

Farm is not specialised 

in one animal type. 

The farm maximises the 

profit of the firm. 

Growth is constrained by a 

maximal financial risk of 

60%.  

Innovators These farms start as 

family farms. When the 

farm achieves sufficient 

experience, efficiency 

and specialisation, it 

can become an 

innovator. These farms 

also have a relatively 

high chance to find a 

successor. 

Farm owner is older 

than 45 years.  

Farm is specialised in 

one animal type. 

The farm production 

efficiency exceeds 

110% for dairy farms, 

135% for cattle farms, 

150% for pig farms. 

The farm maximises a 

double objective, 

maximum farm value and 

maximum production 

efficiency.  

Growth is constrained by a 

maximal financial risk 

dependant of the owner’s 

preference. And the total 

labour burden should remain 

smaller than 20 times the 

farm household size.  

Growing 

family 

farms 

Farms start as growing 

or as stable family 

farms. Only growing 

farms are interested in 

an evolution towards 

industrial or innovator 

configurations.  

The farm owner is 

younger than 65 years, 

or has a successor.  

There is no other 

technical restriction for 

this type of farms.  

Farm types are 

randomly designed 

growing or stable 

family farms at the 

creation of the farm 

agent.  

The farm maximises the 

total value of the farm, 

composed of liquid assets, 

and fixed assets including 

land.  

Growth is constrained by a 

maximal financial risk 

dependant of the owner’s 

preference. And the total 

labour burden should remain 

smaller than the farm 

household size plus one.  

Stable 

family 

farms 

Farms start as growing 

or as stable family 

farms. These farm 

remain in this category 

unless they fail to find 

a successor in time.  

The farm pursues a size of 

land and livestock, 

determined on beforehand 

as ideal. Whenever land is 

available or financial 

reserves allow it, these 

farmers grow their assets 

until they reach their ideal 

size.  

Purchase of new assets is 

constrained by a maximal 

financial risk dependant of 

the owner’s preference. And 

the total labour burden 

should remain smaller than 

the farm household size plus 

one.  

Elderly 

farmers 

All farms that do not 

find a successor in time 

become elderly farms.  

The farm owner is 

older than 65 years, 

and has no successor.  

The farm doesn’t change investments any more, nor does it 

invest in efficiency improvements. The same activity is 

maintained with slowly declining efficiency.  

Remarks:  

- Farms that are facing bankruptcy due to negative cash flows, revert to cash maximisation as a short term survival strategy. When the 

danger of bankruptcy is averted, they return to their standard optimisation procedure.  



 

 

 

VIII. DISCUSSION  

Profit-optimisation in this approach induces a lot of effects 

that do not represent realistic behaviour. A first effect is that 

farmers tend to sell land, and increase their rented area under 

cultivation. Secondly, the agents are not inclined to invest in 

longer-term solutions or in innovations to improve 

production efficiency. Finally, production forecasts are set 

on prices. The real prices have been relatively low in this 

period; so many farm agents decide to focus on crops or to 

leave farming altogether. A decrease in sales prices for one 

year has the immediate effect that the least productive 

farmers leave this segment of production. One year of 

bottom prices thus has a very strong effect on the number of 

active farmers. The assumption of profit-maximisation is 

related to several other suppositions. It implicitly assumes 

that farmers have multiple alternatives to choose from and 

that they also consider these choices annually. This is not 

supported by the actual evolutions of animal production. As 

discussed above, because of lack of skills or knowledge, 

several alternatives can be unattainable for the farmer. The 

farmers prefer a longer time-frame, and present a certain 

persistence. They avoid making disruptive changes to their 

farm. Finally it has to be stressed that the considered decade 

2003-2013 has not been very profitable for Belgian farmers. 

The prices for their production were and are still relatively 

low. Several segments of the market contain active farmers 

that have a very hard time to cope with these negative market 

developments. Still bankruptcy remains very low in 

agriculture. This is again a sign of strong persistence, 

showing why classic economic behaviour models cannot 

replicate the actual historical evolutions adequately.  

The results from the model applying diversified behaviour 

are more realistic. The evolutions for pigs and dairy can be 

approximated closely. The closest predications can be made 

assuming a proportion of stable family farms between 45% 

and 75%. Both below and above this range the simulations 

remain further from the real historical productions. However, 

there are general tendencies over the entire range. With a 

low proportion of stable farmers, higher transaction costs , 

low adaptability and rigid land markets are required to match 

the real evolutions. Transaction costs serve as a barrier for 

change. When considering a change, the farm agent 

calculates the benefit. Large transaction costs indicate that 

the additional benefit from the change has to be substantial, 

before the change is considered. With an increasing 

proportion of stable family farms, the transaction costs 

diminish, the adaptability has a tendency to increase, as well 

as the land availability. However, these increases are non-

linear, indicating intricate dynamic relations between the 

different parameters. The best approximation, with 60% 

stable family farms, stays each year within a range of 5% of 

the historical dairy production, and within a 10% range of 

the cow and pig production.  

The common patterns between these parameter sets are the 

resistance to change in the agricultural sector. With low 

proportions of stable farms, there is rigidity in the market 

and in the learning processes. With growing proportions of 

stable family farms, the rigidity in the market and in learning 

can be reduced significantly. In these last cases, the rigidity 

resides in the behaviour of the farm agents themselves. 

Stable family farms are modelled to remain on an 

evolutionary track that they determine themselves at the start 

of their activity. Adverse price conditions or market pressure 

do not change their strategy. This rigidity is required if one is 

to explain the reasons behind the evolution of Belgian 

agriculture during the last decade. Whenever a modelled 

farm agent gets a chance to review his own situation and to 

consider alternatives, he chooses in most cases to leave 

animal farming and to do something else. An extreme 

illustration of this rational decision making is in the profit  

maximising model. But these large exits from animal farming 

did not happen in reality. Farmers rather continue to produce 

and invest despite low output prices. It is mostly because of 

this behaviour that the Belgian agriculture is capable of 

presenting a stable and growing annual production.  

This application of diversified behaviour modelling  yields 

promising results, given the fact that it flows from a first 

tentative construction of such a model for the Belgian 

agriculture. The model results are capable as such to indicate 

the existence of important rigidities in the evolution of farms. 

But it cannot pinpoint the exact location of this rigidity in 

this first application. The current application can only 

present the first step in an iterative refinement of the model 

through questionnaires, participatory techniques or mediated 

modelling. The present shortcomings include the difficulty to 

adequately predict the production of live cows, and the 

simplicity of  behaviour rules for certain farm agent types.  

IX. CONCLUSIONS 

A better understanding of the drivers and dynamics behind of 

the evolution of the agricultural sector is crucial to increase 

the effectiveness of new policies in the long run. To this 

effect, an agent-based model of the dairy, cow and pig 

production sector in Belgium is constructed, to benchmark 

new policy scenarios. This model is calibrated on historical 

data, with two different behaviour submodels, all other 

inputs remaining equal. A first submodel assumes 

constrained profit-maximisation with limited information 

availability. The second submodel assumes behaviour 

heterogeneity, linked with technical characteristics of the 

farm agents. The results from the profit-maximising 

submodel indicate that this type of optimisation behaviour is 

not appropriate for most farms in Belgium. We show that a 

combination of diverse types of behaviour should be 

preferred to model farm evolutions. Hence, using a more 

diversified range of optimisation objectives and constraints 

can mimic closer the past evolutions of production.  

The results of the calibration show an important resistance to 

change. This resistance can be caused by difficulties in the 

learning process, by market rigidities or by farmers unwilling 

to give up their ideal farming configuration. The exact cause 

of the evolutionary rigidity can be the subject of further 

research. Still, these results show that farmers very often 



 

 

 

continue producing the same animals and crops, despite 

adverse economic situations. And it is mostly because of this 

behaviour that the Belgian agriculture is capable of 

presenting a stable and growing annual production.  

Both behaviour and technical characteristics influence 

heavily the evolution of the agricultural sector. Currently, 

there is a lot of data available to describe the technical 

characteristics and the micro-economic situations of farms. 

Unfortunately, data on behaviour and decision frameworks is 

less available. More research on the actual behaviour of 

farmers is required to produce more realistic models. Aspect 

such as household characteristics and risk balancing 

behaviour can improve actual behaviour models. 
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