
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Interactive Acquisition and Rendering of Humans

Peer-reviewed author version

DE DECKER, Bert & BEKAERT, Philippe (2006) Interactive Acquisition and

Rendering of Humans. In: Workshop on Content Generation and Coding for 3D-Television..

Handle: http://hdl.handle.net/1942/1716



Interactive Acquisition and Rendering of Humans
Bert De Decker and Philippe Bekaert

University of Hasselt - Expertise Centre Digital Media
Diepenbeek, Wetenschapspark 2, Belgium

Email: {bert.dedecker,philippe.bekaert}@uhasselt.be

Abstract— We present a distributed model-based system for
interactive acquisition and rendering of free viewpoint video
of humans. All current model-based systems are offline. Online
systems which can be used for free viewpoint video of humans
use few low resolution cameras or use only silhouette information
while the method presented here can cope with high resolution
images and uses both color and silhouette information. A person
is captured with multiple synchronized and calibrated digital
video cameras attached to a cluster of pcs. At interactive rates,
the shape of the person is estimated and the person can be
rendered from novel viewpoints. First the pose of the person is
obtained using a real-time motion capturing algorithm. A generic
mesh of a human is transformed into this pose to obtain a first
approximation of the shape of the recorded person. This mesh
is refined to match the input images as closely as possible by
translating its vertices along their normals. The refined mesh
is rendered using a distributed version of the unstructured
lumigraph algorithm.

I. INTRODUCTION

In this paper we present a distributed model based system
for interactive acquisition and rendering of free viewpoint
video of humans. A person is captured with multiple syn-
chronized and calibrated digital video cameras. From these
recorded images a mesh, resembling the shape of the person,
is estimated using a model based approach. Both silhouette
and color information are used to calculate the mesh. Using
this mesh we are able to render the person from an arbitrary
viewpoint using unstructured lumigraph. Our system is able to
deal with images from 12 cameras at a of resolution 1024x786
at interactive rates because it doesn’t need all the pixels. We
only sample the images at some interesting positions and know
where to sample because a model based approach is used.

In movie production, such a system can be used to compose
a person into a hostile environment and preview the results dur-
ing recording. This way the scene can be altered immediately
if necessary. Another application would be to play a computer
game featuring ones own body.

To our knowledge, we are the first to present an interactive
model-based system for acquisition and rendering of free
viewpoint video of humans.

II. RELATED WORK

Some model based systems for free viewpoint video of
humans have been proposed. In the work by Carranza et al.
[1] only motion capturing is done to obtain the shape of the
person, and this is not refined later on. An improvement of
the work by Carranza et al. that does change the shape after

motion capturing to make it better fit the input images is pre-
sented by Aguiar et al. [2]. Another improvement to the work
by Carranza et al. is presented where it becomes possible to
relight the person [3]. The previous three mentioned methods
don’t use skinning, every limb is presented as a rigid body.
The work presented in this paper is most similar to the one
presented by Starck et al. [4]. In that work one also tries to fit
a mesh to input videos by using motion capturing to obtain a
first approximation of the shape of the person and refine that
shape later on by using silhouette and color information. They
also use skinning to represent their model, but their system is
offline. Chueng et al. [5] describe an offline system to scan
humans. A system that estimates animatable human models
from range scan data is presented by Allen et al. [6].

The main difference between the method presented here and
other model based methods is that they are all offline while
our method is an interactive online system.

Some online systems have been presented, but they only
use few low resolution cameras or they only take silhouette
information into account. An online system that calculates
visual hulls is presented by Matusik et al. [7]. This system
can be used for free viewpoint video of humans, but it
works with low resolution images and uses only silhouette
information. Another online system based on point clouds has
been developed by Würmlin et al. [8]. They use a distributed
system to calculate a point cloud representation of the visual
hull. Li et al. [9] describe an interactive system that calculates
the visual hull and refines it later on using color information.

Numerous methods have been proposed for online rendering
in a small baseline setup [10]. But these systems only allow a
small change of camera position while our system is able to
do true free viewpoint video.

III. OVERVIEW

In this section the system will be discussed in general, more
details of every part will be given in later sections.



We use one single mesh to represent a person. The mesh
can be transformed into every possible pose by using skinning
[11]. This is a technique that assigns each vertex of the mesh
to one or more limbs of the skeleton. When a limb is moved,
the vertices assigned to it move with it. Weights are used to
determine how much influence a certain limb has on a vertex.

Fig. 1. Different steps in the algorithm. From left to right: input images,
pose estimation, transformation of generic human mesh, mesh refinement,
texturing.

Our system can be considered a pipeline consisting of a
number of steps. In Figure 1, the result of each step is shown.
The steps are as follows.

• Capturing Images
• Motion Capturing: First the pose of the person in the input

images is estimated using the realtime motion capturing
algorithm presented by Caillette et al. [12]. It is fast
enough for our purposes, but this speed comes at a cost.
The pose isn’t very precise and shivers even if the person
that is being motion captured isn’t moving at all. Most
of these imperfections are eliminated during the mesh
refinement phase.
Using skinning, a mesh of a generic human is transformed
into the pose estimated by the motion capture algorithm.
This transformed mesh is a first crude approximation of
the shape of the person in the input images.

• Mesh Refinement: The transformed generic human mesh
from the motion capturing step is refined to better approx-
imate the shape of the person in the input images. This
is done by translating its vertices along their normals. A
more detailed discussion of this process can be found in
section IV.

• Rendering: Unstructured lumigraph [13] is used to render
and texture the refined mesh calculated during the mesh
refinement step. Section V elaborates on this.

The motion capturing step and the mesh refinement step
need silhouette information, but they both only need it at
some pixels. They don’t need silhouette information for all
the pixels of the images. So when we need to know whether a
pixel is foreground or background, the segmentation algorithm
is executed locally for this pixel only. We never calculate
the segmentation for the entire image. A simple background
subtraction algorithm is used. To facilitate the segmentation
process, we worked in a green screen environment.

In our implementation we have, As is shown in Figure 2,
four pcs which each have three cameras attached to them,
henceforth we refer to these pcs as ”camera nodes”. A dis-
tributed approach is used where the camera nodes do all the
computations concerning the images of the cameras attached
to them, and send partial solutions to a central module that

calculates the final solution from these partial solutions. For
every step of our algorithm, we have one dedicated module to
combine all the partial solutions. As is visible in Figure 2 the
following modules are present in our system: a motion capture
module, a mesh refinement module and a render module.
These modules only have to gather and combine the partial
solutions, so they don’t need that much resources and can all
run on one pc without a problem. The cameras are calibrated
using a matlab toolbox by Svoboda et al. [14].

Not all the images of all the cameras are needed for doing
the motion capturing and full resolution images aren’t needed
either. So, every camera node calculates a low resolution
image for two of its cameras and sends these images to the
motion capture module. Using these images the motion capture
module estimates the pose of the person.

All the camera nodes work in parallel with each other and
all the steps of the pipeline are executed simultaneously in
parallel. There are always 4 frames present in the pipeline:
one is being captured by the cameras, one is being motion
captured, yet another one is in the mesh refinement phase and
finally the fourth one is being rendered. By processing this
many frames in parallel we are able to process more frames
per second, at the cost of an increased lag in our system.

Fig. 2. Overview of the network setup and the network traffic between the
components of the system.

IV. MESH REFINEMENT

In this section is explained how the mesh, obtained from the
motion capture phase, is adjusted to match the input images
as closely as possible.

The mesh is improved by translating its vertices along a line
defined by the normal of the vertex. Improving the mesh now
boils down to calculating the translation distances. For every
vertex a fixed set of translation distances is considered. The
translation distances are uniformly distributed in the interval
[−tmax, tmax] with tmax a user defined parameter. For every
translation distance an error is calculated. The smaller the
error, the higher the probability of the translation distance
being the correct one.



The error function is a sum of four terms. One term makes
sure all the vertices lie inside or on the visual hull. Another
term favors large translation distances, it is a cheap heuristic
which prefers translated vertices near the visual hull. If a
translated vertex is projected to all cameras for which it is
visible, the colors of all these projected points should be as
similar as possible. The third term takes care of this. To decide
whether a vertex is visible from a camera, the mesh is rendered
from this camera and a low resolution depthmap is extracted.
The vertex is visible if its depth matches the depthmap. When
using only the previous three terms, sometimes multiple local
minima occur, as can be seen in Figure 3. Each minimum
corresponds to a 3d point on the surface of the real person.
When this occurs, the last term chooses the minimum closest
to zero or, put differently, the translated vertex closest to the
mesh obtained by the motion capturing step.

Fig. 3. Vertex v that belongs to the torso has two valid translation distances,
d1 on the torso and d2 on the arm. The last term of the error function favors
d1, the one on the torso.

The camera nodes extract all the needed information from
the input images and send only this information to the mesh
refinement module. The mesh refinement module uses this
information to calculate the error function and select the best
translation distance for each vertex.

The camera nodes need to calculate and send the color
for each translated vertex for each camera, the average color
of each translated vertex, the number of cameras for which
each translated vertex is projected inside the silhouette, and
visibility information for each vertex.

All this data fits well on a gigabit ethernet network and it
needs less than one tenth of the bandwidth needed to send the
raw images.

than sending the images, even if we are able to compress
them ten times.

V. DISTRIBUTED RENDERING

Unstructured lumigraph [13] is used to render the mesh with
texture information from the input images. Every vertex of the
mesh is given a texture coordinate and a blending weight for
each camera. The texture coordinates are calculated simply
by projecting and distorting the vertex for every camera. The
blending weight for vertex v, input camera ci and desired
camera cd is a function of 2 terms. On one hand the angle
between the surface normal at v and the vector connecting v
and ci. This make sure that the input cameras that see the

vertex head on provide much texture information, and input
cameras that see the vertex not at all or at a small angle
are ignored. On the other hand, the angle between the vector
connecting v and cd and the vector connecting v and ci. This
makes sure that when de desired camera is very close or on an
input camera, almost all texture information is gathered from
this input camera. The final image is obtained by rendering the
mesh from every input camera and blending all these rendered
images together using the blending weights.

Since it is not feasible to send all the images to one pc for
processing, a distributed unstructured lumigraph algorithm is
required. The refined mesh is distributed to all the camera
nodes and every camera node calculates the unstructured
lumigraph using only the images of the cameras attached to it.
This is done by means of a pixel shader. To render one pixel,
the pixel shader takes as input the texture coordinates of all
cameras and a blending weight for each camera. The alpha
value of the pixel is the sum of all the blending weights. The
color of the pixel is calculated by taking the weighted average
of the colors of the pixels from the input cameras using these
blending weights. The colors along with the alpha values of
this rendered image are compressed using run length encoding
and are sent to the render module.

Finally, the images received from the camera nodes are
blended using a pixel shader. The color of a pixel is calculated
by normalizing all the alpha values of the received images
and calculating the weighted average of the colors using these
weights.

VI. RESULTS

All results are generated with four camera nodes which each
have three cameras attached. The motion capture module, the
mesh refinement module and the render module ran on one pc,
so in total five pcs were used. The generic human body mesh
we used, consists of 2000 vertices and 21 translation distances
are considered. The input images are 1024x768 pixels and the
system runs at 3 to 4 frames per second when rendering images
of 640x480 pixels. The camera nodes are the slowest part of
our system. No real bottleneck is present in the system, all
components of the pipeline are approximately equally fast.

Fig. 4. Some frames of two movies where the camera rotates around the
person being captured.

The algorithm was tested on real world data. Some frames
of a movie generated by our system are shown in Figure 4.



Fig. 5. Actor cloning is possible with negligible loss of speed.

Our scene representation permits 3D video editing. An
example of actor cloning where the person is copied to other
positions in the scene is shown in Figure 5. By construction,
the algorithm is able to do this with negligible loss of speed.

VII. CONCLUSION AND FUTURE WORK

We presented a distributed approach for interactive acquisi-
tion and rendering of 3D video of humans. Such a system
could be used for generating content for a live 3D TV
application or it could be used in a computer game.

A first approximation of the shape of the person was
obtained by transforming a mesh of a generic human into
a pose estimated by a real-time motion capturing algorithm.
A distributed method to refine and render this mesh was
presented. The vertices of the mesh were translated along their
normals to approximate the shape of the recorded person as
closely as possible. Finally this refined mesh was rendered
using a distributed version of the unstructured lumigraph
algorithm.

Currently no threading is used in our implementation, so our
system spends some time waiting for the network, the cameras
and the graphics hardware. When threading is implemented,
this time could be used for useful things and a speedup is
expected. Most of the artifacts visible in our results are because
the motion capturing isn’t very precise. More research could
be done to improve this. After the mesh refinement step, a
reasonable shape of the person is obtained and this information
could be used for better realtime motion capturing.

VIII. ACKNOWLEDGEMENTS

The authors acknowledge financial support on a structural
basis from the ERDF (European Regional Development Fund),

the Flemish Gouvernment and the Flemish Interdisciplinary in-
stitute for BroadBand Technology (IBBT), and from a research
grant by ”tUL impulsfinanciering”.

REFERENCES

[1] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel, “Free-
viewpoint video of human actors,” ACM Trans. Graph., vol. 22, no. 3,
pp. 569–577, 2003.

[2] E. de Aguiar, C. Theobalt, M. Magnor, and H.-P. Seidel, “Reconstructing
human shape and motion from multi-view video,” in To appear in: Proc.
of IEE CVMP, (London, UK), 2005.

[3] C. Theobalt, N. Ahmed, E. de Aguiar, G. Ziegler, H. Lensch, M. Magnor,
and H.-P. Seidel, “Joint motion and reflectance capture for creating re-
lightable 3d videos,” Technical Report MPI-I-2005-4-004, Max-Planck-
Institut fuer Informatik, 2005.

[4] J. Starck and A. Hilton, “Model-based multiple view reconstruction of
people.,” in ICCV, pp. 915–922, 2003.

[5] K. M. Cheung, S. Baker, and T. Kanade, “Shape-from-silhouette of
articulated objects and its use for human body kinematics estimation and
motion capture,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 77–84, June 2003.

[6] B. Allen, B. Curless, and Z. Popović, “Articulated body deformation
from range scan data,” vol. 21, no. 3, pp. 612–619, 2002.

[7] W. Matusik, C. Buehler, and L. McMillan, “Polyhedral visual hulls for
real-time rendering,” in Proceedings of the 12th Eurographics Workshop
on Rendering Techniques, (London, UK), pp. 115–126, Springer-Verlag,
2001.

[8] S. Würmlin, E. Lamboray, and M. Gross, “3d video fragments: Dynamic
point samples for real-time free-viewpoint video,” in Computers and
Graphics 28, vol. 1, pp. 3–14, 2004.

[9] M. Li, H. Schirmacher, M. A. Magnor, and H.-P. Seidel, “Combining
stereo and visual hull information for on-line reconstruction and ren-
dering of dynamic scenes,” in Proceedings of the 5th Conference on
Multimedia Signal Processing, (St. Thomas, US Virgin Islands), pp. 9–
12, IEEE, IEEE, 2002.

[10] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-based scene
reconstruction using commodity graphics hardware,” in Proceedings of
the 10th Pacific Conference on Computer Graphics and Applications,
p. 225, October 2002.

[11] M. Deloura, Game Programming Gems. Rockland, MA, USA: Charles
River Media, Inc., 2000.

[12] F. Caillette and T. Howard, “Real-Time Markerless Human Body
Tracking with Multi-View 3-D Voxel Reconstruction,” in Proceedings
of British Machine Vision Conference (BMVC), vol. 2, pp. 597–606,
September 2004.

[13] C. Buehler, M. Bosse, S. Gortler, M. Cohen, and L. McMillan, “Un-
structured lumigraph rendering,” in Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pp. 425 –
432, 2001.

[14] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multi-camera self-
calibration for virtual environments,” PRESENCE: Teleoperators and
Virtual Environments, vol. 14, pp. 407–422, August 2005.


