
COMMUNICATIONS ON doi:10.3934/cpaa.2014.13.2641
PURE AND APPLIED ANALYSIS
Volume 13, Number 6, November 2014 pp. 2641–2673

PRIMARY BIRTH OF CANARD CYCLES IN SLOW-FAST

CODIMENSION 3 ELLIPTIC BIFURCATIONS

Renato Huzak, Peter De Maesschalck and Freddy Dumortier

Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D
3590 Diepenbeek, Belgium

(Communicated by Xingfu Zou)

Abstract. In this paper we continue the study of “large” small-amplitude
limit cycles in slow-fast codimension 3 elliptic bifurcations which is initiated in

[8]. Our treatment is based on blow-up and good normal forms.

1. Introduction. This paper deals with the canard phenomenon and correspond-
ing limit cycles of canard type, as they appear in slow-fast families of vector fields in
the (x, y)-plane. The prototypical example where the canard phenomenon appears
is the Van der Pol system, where the unique singular point of a specific slow-fast
structured vector field undergoes a Hopf bifurcation upon variation of a control pa-
rameter. Letting ε denote the singular parameter separating the two time scales in
the Van der Pol system, a weighted rescaling of (x, y, ε) exposes a rescaled system
of differential equations in rescaled variables (X,Y ), where the slow-fast structure
has disappeared and where a traditional Hopf bifurcation is observed. The periodic
orbit(s) seen in the (X,Y )-space are considered small-amplitude limit cycles in the
traditional (x, y)-plane, since they typically are contained in an O(ε)-neighbourhood
of the Hopf point. Traditional techniques from dynamical systems and bifurcation
theory can be used to deal with those small-amplitude limit cycles. Besides these
cycles, the (x, y)-plane may also contain so-called slow-fast cycles of canard type,
with properties typically associated to slow-fast systems. It is precisely at the in-
terface between small-amplitude cycles and canard cycles that a delicate analysis
is needed. Those families of cycles are unbounded in (X,Y )-space and yet close
to the origin in (x, y)-coordinates. Pioneering work has been done in [12] (in a
codimension 1 scenario) and in [2] for systems that are locally similar to the Van
der Pol system in higher codimension.

In [2], the way the interface between small-amplitude cycles and canard cycles is
examined is by blowing up the origin. The traditional rescaling from above is seen
in one of the charts of the blow-up construction. In the blow-up construction, one
can also examine other charts, the so-called phase directional rescaling charts. It
is precisely those charts that become important in a study of the birth of canard
cycles. We remind the reader that in most papers on slow-fast systems using blow-
up, the phase directional rescaling charts are only studied minimally, just enabling
the contributing authors to trace orbits passing through these charts and to focus
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attention to the traditional rescaling charts. Indeed, only a few properties are
needed of these phase directional rescaling charts to examine large amplitude canard
cycles, the so-called detectable cycles, see also [10].

Here, we also study the birth of canard cycles, i.e. cycles at the interface between
small-amplitude cycles and canard cycles, but in a more degenerate context: while
the underlying bifurcation mechanism in the Van der Pol equation is a codimension 1
Hopf bifurcation, we now consider a codimension 3 singularity in a slow-fast context.
The essential extra difficulty is that besides the singular parameter ε, we now have 3
extra parameters unfolding the codimension 3 singularity, and even without a slow-
fast structure, a blow-up is needed to give a complete study. As can be expected,
we present a study where two blow-up constructions are combined: one to unfold
the codimension 3 singularity (a “primary blow-up”), and one to dissolve the slow-
fast structure (a “secondary blow-up”). Cycles that are bounded in coordinates
after the secondary blow-up could be called small-amplitude cycles. As they grow
in size under influence of some perturbation parameter, they meet the boundary
of the secondary blow-up and give birth to intermediary-sized cycles: those cycles
are of size O(1) in coordinates after the primary blow-up. This birth of canard
cycles is largely similar to the one treated in [2]. In primary blow-up coordinates,
the intermediary-sized cycles are already of canard type, but may continue growing
until they meet the boundary of the primary blow-up and give birth to canard cycles
of size O(1) in original coordinates. This birth process actually differs more than a
bit from the situation discussed in [2] and [12], and the study of limit cycles in this
situation is the topic of this paper.

One of the main properties of the primary blow-up is that it is not ε that is
included in the blow-up construction, since the primary blow-up does not involve
dissolving the slow-fast structure; instead, the primary blow-up is involved with
desingularizing a codimension 3 singularity. As a consequence, the family of vector
fields being blown up has a slow-fast structure both before and after blow-up.

Instead of presenting a general technique for treating a birth of canard situation
in case of a blow-up preserving the slow-fast structure, we choose to demonstrate
the (quite intricate) techniques in a situation for which a lot of results already have
been obtained:

• We study a slow-fast codimension 3 singularity that is the slow-fast variant of
a well-studied codimension 3 singularity (see [5]).

• The desingularization of the singularity using a primary and secondary blow-
up has been worked out before (see [8]). Both the detectable canard cycles
([3]) and the small-amplitude limit cycles ([8]) have been characterized before.
On top of that, the birth problem associated to the secondary blow-up has
been dealt with. (See [8].)

We claim that the results are general enough to be useful in other situations,
and furthermore the results contribute to a complete understanding of the slow-fast
codimension 3 singularities and nearby limit cycles.

In Section 2, we present a more detailed setting and introduce the setting using a
precise system of equations in mind. In Section 3, we carry out the desingularization
via blowing-ups. Section 4 contains precise statements of the results we aim to prove.
Section 5 finally contains detailed proofs of the results.

The technique of blow-up is crucial in this paper, not only in proving the results,
but already in stating the results. We therefore refer the interested reader to [13]
for more informations about desingularizations of nilpotent singularities in families
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of planar vector fields, and continue under the assumption that reader has sufficient
background.

2. Slow-fast codimension 3 elliptic bifurcations. We deal with the slow-fast
family of planar systems

Xε̄,b,λ :

{
ẋ = y

ẏ = −xy + ε̄
(
b0 + b1x+ b2x

2 − x3 + x4H̄(x, λ) + y2G(x, y, λ)
)
,

(1)

where G and H̄ are smooth, ε̄ ≥ 0 is the singular parameter that is kept small,
b = (b0, b1, b2) are regular perturbation parameters close to 0 and λ ∈ Λ, with Λ
a compact subset of some euclidean space. The family Xε̄,b,λ represents slow-fast
codimension 3 elliptic bifurcations, in analogy with the terminology introduced in
[5] and [8].

Let us recall that [5] is devoted to the study of generic bifurcations of three-
parameter families of planar vector fields around singular points whose linear parts
are nilpotent. The authors dealt with three categories: the saddle case, the elliptic
case and the focus case. Dealing with slow-fast systems (ε̄ ∼ 0, ε̄ > 0), in [8]
we distinguish only between the elliptic case (1) and the saddle case, obtained by
putting the +-sign in front of x3 in (1). The focus case is possible in the family (1)
if the parameter ε̄ > 0 is sufficiently large, but then (1) is not of slow-fast type. For
more details we refer to [8].

The family Xε̄,b,λ contains for ε̄ = 0 a curve of singular points given by {y = 0}.
All points on the curve except for the origin are normally hyperbolic. Of course,
the dynamics for ε̄ = 0 can be studied by canceling the common factor y and seeing
that orbits of X0,b,λ take the form y = y(x), with dy

dx = −x. In other words, orbits
lie on parabolas that intersect the curve of singular points transversally, except at
the origin, where the parabola has a second-order contact with the curve (see Figure
1). The origin (x, y) = (0, 0) is a so-called contact point, and we observe that it is
of nilpotent type.

Figure 1. The dynamics of X0,b,λ.

The ε̄-perturbation may cause the curve y = 0 to perturb into some invariant
curve with a dynamics on it, but with a speed that is O(ε̄). This way, so-called
detectable canard limit cycles may appear: a fast movement along the top of a
parabola above {y = 0} is followed by a slow movement connecting the two ends of
the parabola along y = 0.

As mentioned above the papers [8] and [3] are devoted to the study of the limit
cycles that may appear in the family Xε̄,b,λ perturbing from X0,(0,0,0),λ. The paper
[3] deals with systems (1) but emphasizes passage near the generic turning point
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(x, y) = (0, 0) in order to study the detectable canard limit cycles, whereas in the
paper [8] the focus is on small amplitude limit cycles near (x, y) = (0, 0).

Let us first explain what is our goal of the present paper. We reparametrize the
b-parameters, by introducing weighted spherical parameters as used in [8]:

(b0, b1, b2) = (r3B̄0, r
2B1, rB2), r ≥ 0, B = (B̄0, B1, B2) ∈ S2.

We obtain an (ε̄, B, r, λ)-family of vector fields in R2:{
ẋ = y

ẏ = −xy + ε̄
(
r3B̄0 + r2B1x+ rB2x

2 − x3 + x4H̄(x, λ) + y2G(x, y, λ)
)
.

(2)

For r = 0, system (2) has no limit cycles near (x, y) = (0, 0). For r 6= 0, r ∼ 0,
system (2) has been studied in an (ε̄, B, λ)-uniform neighborhood of the origin in
(x, y)-space (see [2], at least in the Liénard setting, i.e. G ≡ 0, and [1]). This local
study is valid in a small neighborhood of (x, y) = (0, 0) and the domain on which
the arguments of [2] and [1] can be applied shrinks to (x, y) = (0, 0) when r → 0.

The idea in [8] was to start the study of limit cycles of (2) in a neighborhood
of the origin (x, y) = (0, 0) that does not shrink to the origin when ε̄ → 0 and
r → 0. This means that the transition from small amplitude limit cycles to small
(but detectable) canard limit cycles has to be considered. The goal of the present
paper is to study this “birth of canards” in the (x, y)− plane, i.e. so-called “large”
small amplitude limit cycles.

As mentioned above, in [8] slow-fast codimension 3 saddle bifurcations have been
studied. In slow-fast codimension 3 saddle bifurcations, one finds no birth of canards
because detectable canard limit cycles are not present (see [8] and [3]).

Now we want to provide few details on what is shown in [8] and how the above
mentioned birth of canards comes into play. In [8], the best way we saw to study the
small limit cycles problem of (2) was by applying the so-called “primary” blow-up:

(x, y, r) = (ux̄, u2ȳ, ur̄), (3)

with x̄2 + ȳ2 + r̄2 = 1 and r̄ ≥ 0, u ≥ 0, u ∼ 0. We also divided the system we got by
u. The precise elaboration can be found in [8] or in Section 3. Roughly speaking this
blow-up transforms the r-family of quite “degenerate” two-dimensional problems (2)
into a less degenerate, but still ε̄-singular, three-dimensional problem. Instead of
having to work in a r-uniform neighborhood of the origin, we now have to consider
a neighborhood inside {u ≥ 0} of the primary blow-up locus {(u, x̄, ȳ, r̄); u =
0, x̄2 + ȳ2 + r̄2 = 1, r̄ ≥ 0}.

As it is usual in working along a sphere it is preferable to work in different charts.
He have the family chart “r̄ = 1” and the phase-directional charts “x̄ = ±1, ȳ =
±1”. The family chart is the traditional rescaling chart, and it amounts to making
a standard rescaling of the phase variables (x, y). The phase-directional charts link
the family chart to the original phase plane and we use them to study dynamics
of (2) near the “equator” {(u, x̄, ȳ, r̄); u = 0, r̄ = 0, x̄2 + ȳ2 = 1} of the primary
blow-up locus.

In [8] we detected, depending on region in the B-space, all possible closed curves
(so-called limit periodic sets) on the (primary) blow-up locus which can produce
limit cycles of the blown-up vector field for ur̄ > 0 and ε̄ > 0, and we saw that a
birth of canards, near a limit periodic set with large parts on the “equator” of the
blow-up locus, is possible only for those values of B which are in the slow-fast Hopf
region: B̄0 ∼ 0, B1 = −1 and B2 in an arbitrarily large compact interval. The
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subject of this paper is a study of cyclicity of the limit periodic set near which the
birth of canards occurs. In the slow-fast Hopf region, some of the results from [8]
have been proved by using the cyclicity results that we will prove in this paper (see
Theorem 2.4, Theorem 2.5 and Section 3.8 in [8]).

Let us recall that, instead of using coordinates on S2 (B ∈ S2), we used different
charts of the sphere (jump chart, slow-fast Bogdanov-Takens chart, slow-fast Hopf
chart, etc.) and we proved that, outside the slow-fast Hopf region (i.e. chart), sys-
tem (2) has at most one hyperbolic limit cycle, in an (ε̄, r, λ)-uniform neighborhood
of (x, y) = (0, 0). The size of this limit cycle goes to zero when r → 0 because the
essential parts of the study of this case have been done in the family chart “r̄ = 1”;
for more details we refer to [8].

Here we point out that the proofs of all these results from [8] were based on
performing an extra blow-up at the origin (x̄, ȳ, ε̄) = (0, 0, 0) which depends on
region in the B-space in which one looks. We called it “secondary” blow-up.

Being interested in the birth of canards, we consider (2) where B is in the slow-
fast Hopf region. We introduce the following rescaling:

(ε̄, B̄0) = (ε2E, εB0), ε ≥ 0, ε ∼ 0, (E,B0) ∈ S1, E ≥ 0.

The calculations will be performed, as usual, in charts. When E is in any compact
interval and B0 = ±1, then the system (2) has no small-amplitude limit cycles
(hence no birth of canards occurs); for details see [8]. When E = 1 and B0 ∼ 0,
then (2) changes into{

ẋ = y

ẏ = −xy + ε2
(
εr3B0 − r2x+B2rx

2 − x3 + x4H̄(x, λ) + y2G(x, y, λ)
)
,

(4)

where G and H̄ are smooth, ε > 0 is the singular parameter that is kept small,
r > 0 is a regular parameter that is kept small, B0 is a regular parameter close
to 0, B2 is a regular parameter in an arbitrary compact subset of R and λ ∈ Λ,
with Λ a compact subset of some euclidean space. If we introduce a new variable
Y = y + 1

2x
2, then (4) changes into

Xε,r,B0,B2,λ :


ẋ = y − 1

2
x2

ẏ = ε2
(
εr3B0 − r2x+B2rx

2 − x3 + x4H̄(x, λ)

+(y − 1

2
x2)2G(x, y − 1

2
x2, λ)

)
.

(5)

where we denote Y again by y. We prefer to work in the so-called Liénard plane.
We recall that when G = 0 and H̄ is polynomial, the given family (1) of

vector fields is of (generalized) polynomial Liénard type of degree (1, n), where
n = deg ε̄(...). The 1 in (1, n) comes from the degree of the polynomial in front of
y in ẏ. Determining the maximum number of limit cycles of a Liénard type vector
field of degree (m,n) is one of the major open problems in the field of planar dy-
namics (see [14]), and [8], [3], [9] and this paper contribute to the extensive research
in this area, in the case n ≥ 4 and m = 1. We point out that there is a strong link
between results on slow-fast type Liénard equations, as treated in this paper, and
general Liénard equations, see [6] an [7].

As mentioned in the introduction, in Section 3 we study system (5) in the family
chart and in the phase-directional charts of the primary blow-up (3), and we detect
a limit periodic set on the blow-up locus near which a birth of canards occurs (see
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Figure 2). In [8], this limit periodic set was denoted by L00. In this paper, we
denote it by Γ. The fact that Γ is on the primary blow-up locus, with a part on the
“equator” of the primary blow-up locus, explains the title “Primary birth of canard
cycles ...” that we have chosen for this paper.

In Section 4 we define a difference map near Γ which enables us to introduce
the notion of cyclicity of Γ. Then we state the results about the cyclicity of Γ,
depending on the parameter B2. When B2 6= 0, then at most one limit cycle may
appear near Γ. When B2 ∼ 0, then the cyclicity of Γ depends on the higher order
terms in H̄, in analogy with the results in [2]. If we suppose that H̄(0, λ) 6= 0 for
all λ ∈ Λ, then at most two limit cycles may come near Γ.

In Section 5, we give a detailed proof of all statements formulated in Section 4.
We use similar methods as in [2] to study the difference map near Γ; we exploit
symmetries that are present both in the system (5) and in the blow-up construction
(3), we use Ck-normal forms (see [11]) near semi-hyperbolic singularities P+

0 and
P−0 on Γ (see Figure 2), etc.

3. Blow-up construction and detection of Γ. If we add the equation ṙ = 0 to
(5), we obtain a τ = (ε, B0, B2, λ)-family of vector fields in R3:

Xτ := Xε,r,B0,B2,λ + 0
∂

∂r
.

As mentioned in the introduction, we consider the so-called primary blow-up map
(defining a singular change of coordinates)

Θ : R+ × S2 → R3 : (u, (x̄, ȳ, r̄)) 7→ (x, y, r) = (ux̄, u2ȳ, ur̄), r̄ ≥ 0.

The blown-up vector field is defined as the pullback of the original vector field Xτ

divided by u:

X̄τ :=
1

u
Θ∗Xτ . (6)

In order to detect Γ for ε = u = B0 = 0, we have to study the blown-up vector
field X̄τ near the blow-up locus {0} × S2

+, in the family chart “r̄ = 1” (see Section
3.1) and in the phase-directional chart “ȳ = 1” (see Section 3.2). (We denote
by S2

+ the half-sphere in (x̄, ȳ, r̄)-space with r̄ ≥ 0.) The phase-directional charts
“x̄ = ±1, ȳ = −1” are not relevant when studying the limit periodic set Γ.

3.1. Family chart “r̄ = 1”. We use the following family rescaling of (5):

(x, y, r) = (ux̄, u2ȳ, u), (7)

with (x̄, ȳ) in an arbitrarily large disk in R2 and u = r ≥ 0. The blown-up field is
a τ -family of 3-dimensional vector fields (after division by the positive factor r):

X(1)
τ :



˙̄x = ȳ − 1

2
x̄2

˙̄y = ε2
(
εB0 − x̄+B2x̄

2 − x̄3 + rx̄4H̄(rx̄, λ)

+r(ȳ − 1

2
x̄2)2G(rx̄, r2(ȳ − 1

2
x̄2), λ)

)
ṙ = 0.

(8)

The vector field X
(1)
τ represents a singular perturbation problem with ε as sin-

gular parameter. If we treat X
(1)
τ as a (τ, r)-family of 2-dimensional vector fields, it

can be easily seen that X
(1)
τ for ε = 0 has a curve of singularities (a critical curve)



CANARD CYCLES IN SLOW-FAST CODIMENSION 3 ELLIPTIC BIFURCATIONS 2647

given by {ȳ− 1
2 x̄

2 = 0}. The critical curve consists of partially hyperbolic singular-
ities, except at the origin (x̄, ȳ) = (0, 0), where we deal with a nilpotent singularity
(so-called turning point). We see that the curve is normally attracting when x̄ > 0
and normally repelling when x̄ < 0.

The ε-perturbation may cause the curve {ȳ − 1
2 x̄

2 = 0} to perturb to some
invariant curve which follows the attracting part of the critical curve until it reaches
the section {x̄ = 0} and then follows the repelling part of the critical curve. To
see that this connection between the attracting part and the repelling part of the

critical curve is possible for x̄ ∼ 0, we desingularize X
(1)
τ near the origin (x̄, ȳ, ε) =

(0, 0, 0) using the so-called secondary blow-up (x̄, ȳ, ε) = (vx̃, v2ỹ, vε̃) where v ≥ 0,
(x̃, ỹ, ε̃) ∈ S2 and ε̃ ≥ 0.

In the family chart “ε̃ = 1” one obtains, after dividing by v, the family of vector
fields {

˙̃x = ỹ − 1

2
x̃2

˙̃y = B0 − x̃+O(v).

For B0 = v = 0, dynamics of the above system are of center type with a regular
orbit γ = {ỹ = 1

2 x̃
2 − 1} connecting the end point of the attracting part of the

critical curve and the end point of the repelling part of the critical curve, and
pointing from the attracting part to the repelling part. The end points are located
on the “equator” of the secondary blow-up locus {v = 0} and can be studied in
phase-directional charts “x̃ = ±1, ỹ = ±1”(see also [8]).

For x̄ 6= 0, we can consider the slow dynamics along {ȳ − 1
2 x̄

2 = 0}:

x̄′ = −1 +B2x̄− x̄2 + rx̄3H̄(rx̄, λ). (9)

When parameter B2 is kept in any compact set K ⊂] − 2, 2[, then (9) is strictly
negative in an arbitrary compact set in the x̄-space by taking r small enough. For
(B2, r) ∼ (±2, 0), a saddle-node singularity appears in (9), located near x̄ = ±1.
When B2 is kept in any compact set K ⊂ R \ [−2, 2], then one has two simple
singularities in the slow dynamics, for r ∼ 0.

Combining the case x̄ ∼ 0 and the case x̄ 6= 0 we find that a passage from
x̄ = +∞ to x̄ = −∞, along the critical curve, is possible when the slow dynamics
has no simple singularities. As a consequence, the critical curve, for r = 0, will be
a part of the limit periodic set Γ (see Figure 2).

3.2. Phase-directional chart “ȳ = 1”. As we are interested in the points of
intersection of the critical curve {ȳ − 1

2 x̄
2 = 0} with the “equator” of the primary

blow-up locus, we consider the phase-directional chart “ȳ = 1” where the blow-up
map is

(x, y, r) = (UX̄, U2, UR), U ≥ 0, (10)

where U ∼ 0, R ≥ 0 and (X̄, R) is in an arbitrarily large disk in R2. We obtain a
blown-up field which, after dividing by U , can be written as

X(2)
τ :


˙̄X = 1− 1

2
X̄2 − 1

2ε
2X̄Ψ(X̄, U,R, τ)

U̇ =
1

2
ε2UΨ(X̄, U,R, τ)

Ṙ = −1

2
ε2RΨ(X̄, U,R, τ),

(11)
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where Ψ(X̄, U,R, τ) = εR3B0 − R2X̄ + RB2X̄
2 − X̄3 + UX̄4H̄(UX̄, λ) + U(1 −

1
2X̄

2)2G(UX̄, U2(1− 1
2X̄

2), λ).

On {U = 0, R = 0} X(2)
τ has singularities at X̄ = ±

√
2 + O(ε2) which represent

the above mentioned intersection points for ε = 0. The eigenvalues of the linear part
at P±ε = (±

√
2+O(ε2), 0, 0) are given by (∓

√
2+O(ε2),∓ε2(

√
2+O(ε2)),±ε2(

√
2+

O(ε2))). Hence, we find that P±ε are hyperbolic (resonant) saddles for ε > 0 and
semi-hyperbolic singularities for ε = 0.

For ε > 0, dynamics of X
(2)
τ near P±ε , restricted to {U = 0} (the blow-up locus),

are of saddle type. In P+
ε (resp. P−ε ) we have the X̄-axis as stable manifold (resp.

unstable manifold). For U = R = 0 and ε ≥ 0, dynamics of X
(2)
τ points from P−ε

to P+
ε . As a consequence, Γ will contain the part of the “equator” of the (primary)

blow-up locus between P−0 and P+
0 .

3.3. Combining the family chart “r̄ = 1” and the phase-directional chart
“ȳ = 1”. The primary blow-up locus {0}×S2

+ can be considered as a 2-dimensional

closed disc which we denote by D̄. Let Γ denote the limit periodic set on D̄ defined
as the union of the critical curve {ȳ − 1

2 x̄
2 = 0} and the regular arc A of ∂D̄

between P−0 and P+
0 (see Figure 2). Hence the limit periodic set Γ represents a

limiting situation, for ε = u = 0.
As mentioned in the introduction, we are interested in an upper bound on the

number of limit cycles of X̄τ that can bifurcate from Γ, for ε > 0 and u > 0.

P−
0

P+
0

critical curve

nilpotent singularity

{R = 0}

A

semi-hyperbolic singularities

D̄

Figure 2. The dynamics of the vector field X̄τ on D̄ for ε = 0,
and the singular cycle Γ = {critical curve} ∪A.
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4. Statement of the results. We suppose that τ ∈ [0, ε0]×[−B0
0 , B

0
0 ]×[−B0

2 , B
0
2 ]×

Λ where ε0 > 0 and B0
0 > 0 are small and fixed, and B0

2 > 2 is arbitrarily large and
fixed. We denote by B the compact set [−B0

0 , B
0
0 ]× [−B0

2 , B
0
2 ].

As it is usual in studying the cyclicity of a limit periodic set with two “corners”
(e.g. Γ with P−0 and P+

0 ), it is preferable to link limit cycles to zeros of a difference
map rather than to fixed points of a return map. We choose two sections Σ1

0 ⊂
{X̄ = 0} and Σ2

0 ⊂ {x̄ = 0}. Section Σ1
0 is expressed in the coordinates (X̄, U,R) of

X
(2)
τ and parametrized by (U,R) ∈ [−U0, U0] × [0, R0], where U0 > 0 and R0 > 0

are small and fixed; section Σ2
0 is expressed in the coordinates (x̄, ȳ, r) of X

(1)
τ and

parametrized by (ȳ, r) where ȳ ∼ 0 and r ∼ 0 (see Figure 3).
We are interested in examining orbits of X̄τ and −X̄τ , defined in (6), that start

at the section Σ1
0 and meet the section Σ2

0 in finite time. To be more precise, we
denote by o+

U,R,τ (resp. o−U,R,τ ) the forward orbit (resp. the backward orbit) of X̄τ

starting at the point (U,R) ∈ Σ1
0, for τ ∈ [0, ε0] × B × Λ. Now we can define the

following set in (U,R, τ)-space:

D = {(U,R, τ) : o+
U,R,τ and o

−
U,R,τ reach Σ2

0 in finite time}.

Remark 1. Based on Section 3.1 and Section 3.2, orbit o+
U,R,τ (resp. o−U,R,τ ) follows

the arc A until it comes close to point P+
0 (resp. P−0 ), then follows the attracting

(resp. repelling) branch of the critical curve {ȳ − 1
2 x̄

2 = 0}, for an appropriate

parameter B2, and meets Σ2
0, close to the turning point (x̄, ȳ) = (0, 0). Since γ

defined in Section 3.1 contains (x̃, ỹ) = (0,−1), ȳ = ε2ỹ and x̄-component of (8) is
equal to ȳ for x̄ = 0, we have that orbit o±U,R,τ intersects Σ2

0 transversally. Hence

we may add “transversally” in definition of D ⊂ [−U0, U0]×]0, R0]×]0, ε0]×B ×Λ.

A first result deals with the smoothness of the transition map from Σ1
0 to Σ2

0

along the trajectories of X̄τ in positive and negative time.

Theorem 4.1. There exists a small ball W around (U,R) = (0, 0) such that for
any degree k ≥ 1 of smoothness there exist 0 < εk ≤ ε0 so that the mappings

H+ : Dk = D ∩ (W × [0, εk]× B × Λ)→ Σ2
0 :

(U,R, τ) 7→ (ȳ, r) = (−ε2h+(U,R, τ), UR) (12)

and

H− : Dk = D ∩ (W × [0, εk]× B × Λ)→ Σ2
0 :

(U,R, τ) 7→ (ȳ, r) = (−ε2h−(U,R, τ), UR) (13)

(defined by following respectively the orbits o+
U,R,τ and o−U,R,τ until they reach Σ2

0)

are C∞ and have Ck-extensions to Dk. Moreover, functions h+ and h− are strictly
positive and C∞ with Ck-extensions to Dk.

A proof of Theorem 4.1 is given in Section 5.1.

Remark 2. Whereas the functions H± are C∞ on Dk (X̄τ is C∞), presence of
hyperbolic saddles P±ε , ε > 0, weakens the obtained smoothness: one has Ck-
smoothness on Dk for all k, in the sense that possibly εk → 0 as k → +∞ (see
also [3]). The boundary of the domain Dk of H± includes the sets {ε = 0} and
{R = 0}, and might include other parts of the parameter space, where orbits o±U,R,τ
get trapped at a saddle-node but nearby orbits can meet {x̄ = 0}. Let us recall that
such a saddle-node may appear for B2 ∼ ±2, in the family chart “r̄ = 1” (Section
3.1).



2650 RENATO HUZAK, PETER DE MAESSCHALCK AND FREDDY DUMORTIER

The functions h+ and h− in respectively (12) and (13) play a central role in the
search for the limit cycles near Γ. Zeros of δ := h+ − h−, for U > 0, R > 0 and
ε > 0, correspond to periodic orbits Hausdorff-close to Γ. To be more precise, for
each fixed value of (r, τ), r > 0, we can treat the function δ as 1-variable function
defined on “segment” lτr := {(U,R); (U,R, τ) ∈ Dk, UR = r, U ≥ 0}, for some
k ≥ 1. We want to study the number of isolated zeros (counted with multiplicity)
of the function δ on lτr for each fixed value of (r, τ) where r > 0.

To study the isolated zeros of δ on lτr , we will consider its Lie-derivative LY δ =
U ∂δ
∂U −R

∂δ
∂R along the vector field Y = U ∂

∂U −R
∂
∂R . The reason to introduce this

Lie-derivative is that the equation {LY δ = 0} can be reduced to a simpler form
than the equation {δ = 0} which contains exponential terms (see Section 5.2).

As the vector field Y has no zeros on {UR = r}, r > 0, Rolle’s theorem will
permit to find the maximum number of the zeros of δ from zeros of LY δ. This trick
with a Lie-derivative along a vector field is used in [2].

We say that (U0, R0, τ0) ∈ Dk, U0 > 0, is a zero of multiplicity n ≥ 1 of the
function δ if δ(U0, R0, τ0) = (LY δ)(U0, R0, τ0) = ... = (Ln−1

Y δ)(U0, R0, τ0) = 0 and
(LnY δ)(U0, R0, τ0) 6= 0. We inductively define LmY δ as: L0

Y δ = δ, L2
Y δ = LY (LY δ)

and LmY δ = LY (Lm−1
Y δ) for m ≥ 3.

The notion of cyclicity of δ enables us to state main results in this paper.

Definition 4.2. a) δ(U,R, τ) is said to have finite cyclicity at B2 = B̄2 ∈ [−B0
2 , B

0
2 ]

if there exist N ∈ N0, k ∈ N1, r0 > 0 sufficiently small, a small ball W around
(U,R) = (0, 0) and a small ball V around (ε, B0, B2) = (0, 0, B̄2) such that for
each fixed value of (r, τ) ∈]0, r0] × V × Λ the number of isolated zeros (counting
multiplicity) of δ(U,R, τ) on {(U,R); (U,R, τ) ∈ Dk∩(W ×V ×Λ), UR = r, U ≥ 0}
is bounded by N (the number of isolated zeros of a function with an empty domain
is 0).
b) the minimum of such N is called the cyclicity of δ at B2 = B̄2. The cyclicity of
Γ at B2 = B̄2 is the cyclicity of δ at B2 = B̄2.

Remark 3. Since we study the system (5) for r > 0, it is sufficient to define the
cyclicity of δ for U > 0 and R > 0 (r = UR). As we can see in Theorem 4.1, the
functions h+ and h− are defined not only for U ≥ 0, but also for U < 0. Here
we point out that symmetries defined in Section 5.2 include the variable U and
play an important role in the study of the cyclicity of δ: in Section 5.2 we will use
h−(U,R, ε, B0, B2, λ) = h+(−U,R, ε,−B0,−B2, λ).

Our first main result states that for B2 6= 0 at most one (hyperbolic) limit cycle
may perturb from Γ. The case B2 6= 0 is easy to treat because of the presence of
the term B2rx

2 in (5) which makes sure that for B0 = 0 the blown-up vector field
X̄τ is far away from center behavior on the primary blow-up locus.

Theorem 4.3. a) If −2 < B̄2 < 2 and B̄2 6= 0, then the cyclicity of Γ at B2 = B̄2

is equal to 1. When B̄2 > 0, then we deal with a hyperbolic and attracting limit
cycle. When B̄2 < 0, then we deal with a hyperbolic and repelling limit cycle.
b) If B̄2 = ±2, then the cyclicity of Γ at B2 = B̄2 is equal to 1. When B̄2 = 2, then
we deal with a hyperbolic and attracting limit cycle. When B̄2 = −2, then we deal
with a hyperbolic and repelling limit cycle.
c) If 2 < |B̄2| ≤ B0

2 , then the cyclicity of Γ at B2 = B̄2 is 0.

A proof of Theorem 4.3 is given in Section 5.3.
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Remark 4. Let K denote an arbitrary compact subset of R such that K ⊂]0, B0
2 ].

Theorem 4.3 implies that there exist k ∈ N1, r0 > 0, a ball W around (U,R) = (0, 0)
and a ball V around (ε, B0) = (0, 0) such that for each fixed value of (r, τ) ∈
]0, r0] × V × K × Λ the number of zeros (counting multiplicity) of δ(U,R, τ) on
{(U,R); (U,R, τ) ∈ Dk ∩ (W × V × K × Λ), UR = r, U ≥ 0} is bounded by 1.
Hence, we have found that at most one hyperbolically attracting limit cycle can
occur in an (ε, B0, B2, λ, r)-uniform neighborhood of Γ where ε > 0, ε ∼ 0, B0 ∼ 0,
λ ∈ Λ, r > 0, r ∼ 0 and B2 ∈ K. This result is used in the proof of Theorem 2.4.
in [8].

When B2 ∼ 0, then one might have more than one limit cycle, as explained in
[8], and it is due to the fact that one studies perturbations of a vector field of center
type (symmetries introduced in Section 5.2 imply that X̄τ is of center type on the
blow-up locus, for B0 = B2 = 0). In order to make this situation less degenerate,
we assume that H̄(0, λ) 6= 0 for each λ ∈ Λ, like in [8].

Theorem 4.4. Suppose that H̄(0, λ) 6= 0 for all λ ∈ Λ. Then the cyclicity of Γ at
B2 = 0 is bounded by 2. In other words, no more than 2 limit cycles of X̄τ may
bifurcate from Γ, for B2 ∼ 0.

Remark 5. Theorem 4.4 implies that at most two limit cycles can be found in an
(ε, B0, B2, λ, r)-uniform neighborhood of Γ where ε > 0, ε ∼ 0, B0 ∼ 0, B2 ∼ 0,
λ ∈ Λ, r > 0 and r ∼ 0. This result is also used in [8].

A proof of Theorem 4.4 is given in Section 5.4.

5. Proofs of Theorem 4.1-Theorem 4.4. We start by proving Theorem 4.1.
Besides proving Theorem 4.1, in Section 5.1 we get a nice structure of a forward
transition map between Σ1

0 and Σ2
+ (see Figure 3). (For a precise definition of Σ2

+

we refer to later sections.) That structure is given by (46) in Theorem 5.9, and in
Section 5.2 it is used to obtain the exponential form (63) of LY δ.

We repeat once more that the exponential form of LY δ will be used in the proof
of Theorem 4.3 and in the proof of Theorem 4.4.

5.1. Proof of Theorem 4.1. We will provide an explicit proof for H+, hence
working in forward time; the treatment of H− is completely analogous.

We split H+ into three parts. Choose the sections Σ1
0 and Σ2

0, as explained
above. We also choose a section Σ1

+ (resp. Σ2
+) near P+

ε transverse to arc A

(resp. transverse to the critical curve {ȳ = 1
2 x̄

2}) (Figure 3). Σ1
+ (resp. Σ2

+)
is parametrized by two regular parameters. We refer to Section 5.1.2 for precise
definitions of Σ1

+ and Σ2
+.

One defines (see Figure 3):
1. the regular transition map Rτ+ near the arc A from Σ1

0 to Σ1
+, defined by the

flow of X̄τ ,
2. the Dulac map Dτ+ describing the corner passage near P+

ε from Σ1
+ to Σ2

+ defined

by the flow of X̄τ ,
3. the singular transition map Sτ+ near the critical curve from Σ2

+ to Σ2
0, defined

by the flow of X̄τ ,
4. the transition maps Hτ±(U,R) := H±(U,R, τ) near Γ from Σ1

0 to Σ2
0 defined by

the flow of ±X̄τ . In particular Hτ+ = Sτ+ ◦ Dτ+ ◦ Rτ+ for (U,R, τ) ∈ D.
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Our goal is to study the transition maps Rτ+, Dτ+ and Sτ+. We start with Dτ+.

Choosing appropriate normalizing coordinates near P+
0 will appear to be a helpful

tool in simplifying the calculation of the transition map Dτ+.

Sτ
+

Rτ
+ P−

εDτ
+

P+
ε

Σ2
+

Hτ
−

Σ1
+

Σ2
0

Σ1
0

D̄

{R = 0}{UR = r}

Figure 3. The maps Rτ+, Dτ+ and Sτ+, for ε > 0.

5.1.1. Normalizing coordinates. Since we want to study the corner passage near P+
ε ,

we will change X
(2)
τ , defined in (11), near P+

ε by the equivalent family Yτ defined
as:

Yτ := − 2

Ψ(X̄, U,R, τ)
X(2)
τ . (14)

As τ can be chosen in the compact set [0, ε0] × B × Λ, we can suppose that Yτ is
defined in a fixed neighborhood of P+

0 .
We now introduce the coordinate change

z = X̄ −
√

2. (15)

In the coordinates (z, U,R) the vector field Yτ can be written as

Ỹτ :


ż =

2
√

2z + z2

Ψ(
√

2 + z, U,R, τ)
+ ε2(

√
2 + z)

U̇ = −ε2U
Ṙ = ε2R.

(16)

Our goal is to normally linearize the vector field (16), i.e. to linearize the dif-
ferential equation of the hyperbolic variable z in (16). We aim at getting a normal
linearization of (16) that is as smooth as possible. The theorems that are pre-
sented in [11] provide normal linearizations that respect a lot of essential structure,
combined with a maximal smoothness.
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We consider first local invariant manifolds of (16) near the singularity Qε :=

P+
ε − (

√
2, 0, 0). Section 3.2 implies that Qε is a hyperbolic saddle for ε > 0 and

a semi-hyperbolic singularity for ε = 0. The well-known center manifold theorem
implies now that for each k ≥ 1 there exists a Ck (B0, B2, λ)-family of local center

manifolds of the extended family of vector fields Ỹτ +0 ∂
∂ε at (z, U,R, ε) = (0, 0, 0, 0),

where (B0, B2, λ) ∈ B ×Λ. In fact the (B0, B2, λ)-family of center manifolds of the

extended family forms a τ -family of invariant manifolds of Ỹτ at Qε.
It is known that in general one cannot expect the existence of a C∞ center

manifold of a C∞ vector field. Since we deal with a specific C∞ vector field, we
utilize Theorem 1 in [11] to see that there exists a ball V around (U,R) = (0, 0),
0 < ε1 ≤ ε0 and a C1-graph z = φ(U,R, ε, B0, B2, λ) on V ×[0, ε1]×B×Λ that forms
a τ -family of invariant manifolds of (16), with φ(0, 0, 0, B0, B2, λ) = 0. Moreover, φ
is C∞ for U 6= 0 and there exists a decreasing sequence (εk)k≥1 for which φ is Ck

on V × [0, εk]× B × Λ.
The main benefit of Theorem 1 in [11] is hence the fact that a single center

manifold of Ỹτ+0 ∂
∂ε is constructed that can be made as smooth as required, provided

one takes ε small enough. It is clear that this result improves the center manifold
theorem.

Remark 6. We fix the center manifold z = φ of Ỹτ + 0 ∂
∂ε given in Theorem 1 in

[11].

Now we have to straighten the center manifold z = φ. After applying the coor-
dinate change

Z = z − φ (17)

to (16), the z-component of (16) can be written as{
Ż =

2
√

2(Z + φ) + (Z + φ)2

Ψ(
√

2 + Z + φ,U,R, τ)
− 2

√
2φ+ φ2

Ψ(
√

2 + φ,U,R, τ)
+ ε2Z. (18)

Here we used the fact that the family of the invariant manifolds z = φ(U,R, τ) of
(16) is expressed by a solution to the partial differential equation

2
√

2φ+ φ2

Ψ(
√

2 + φ,U,R, τ)
+ ε2(

√
2 + φ+ U

∂φ

∂U
−R ∂φ

∂R
) = 0. (19)

Remark 7. The equation (19) implies that φ = O(ε2).

Taking into account (18), one gets a family of vector fields
Ż = −(A(U,R, τ) + Zκ(U,R,Z, τ))Z

U̇ = −ε2U
Ṙ = ε2R,

(20)

The functions A and κ are C∞ for U 6= 0 and Ck for (U,R) ∈ V , |Z| small,
ε ∈ [0, εk], (B0, B2) ∈ B and λ ∈ Λ. Bearing in mind Remark 7, we find that

A(U,R, τ) = − ∂

∂Z

(2
√

2(Z + φ) + (Z + φ)2

Ψ(
√

2 + Z + φ,U,R, τ)

)∣∣∣
Z=0
− ε2

=
−2
√

2

−R2
√

2 +RB22− 2
√

2 + U4H̄(U
√

2, λ)
+O(ε), (21)
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where O(ε) is C∞ for U 6= 0 and Ck for (U,R) ∈ V , ε ∈ [0, εk], (B0, B2) ∈ B and
λ ∈ Λ. Hence A(0, 0, 0, B0, B2, λ) = 1.

We are now in a position to use the following normal linearization theorem (see
[11], Theorem 2):

Theorem 5.1. Consider a family of vector fields (20), with the above-mentioned
conditions. There exists a local C1-family of diffeomorphisms of the form

(Z,U,R)→ (z̃, U,R), z̃ = Φ(Z,U,R, τ),

with Φ(0, U,R, τ) = 0 and ∂Φ
∂Z (0, U,R, τ) = 1, defined for (Z,U,R) ∈ Ṽ near the

origin and for ε ∈ [0, ε1] (up to shrinking ε1 if necessary), (B0, B2) ∈ B, λ ∈ Λ,
conjugating the family (20) to

˙̃z = −A(U,R, τ)z̃

U̇ = −ε2U
Ṙ = ε2R.

(22)

Φ is C∞ for UR 6= 0 and Ck on Ṽ × [0, εk]×B×Λ, up to shrinking εk if necessary.

5.1.2. Dulac map Dτ+ near P+
ε . In this section we express first the Dulac map Dτ+ in

normalizing coordinates, i.e. Dτ
+ calculated from {z̃ = 1}, parametrized by (U,R),

to {R = R1}, parametrized by (z̃, U ′), for the expression (22). We suppose that
R1 > 0 is small enough such that the section {R = R1} lies in the domain of the
function A. The U ′-component of Dτ

+ is UR
R1

. Let us denote the z̃-component of Dτ
+

by dτ+.

Proposition 5.2. There exists a ball W̃ around (U,R) = (0, 0) such that the z̃-

component dτ+(U,R) = d+(U,R, τ) of Dτ
+ is Ck on Ωk := (W̃ ∩ {R > 0})×]0, εk]×

B × Λ and has a Ck-extension to the closure Ωk, up to shrinking εk if necessary
where (εk)k≥1 is introduced in Section 5.1.1. Moreover,

dτ+(U,R) = exp− 1

ε2

∫ R1

R

A(URR′ , R
′, τ)

R′
dR′

= exp− 1

ε2

(
αk(U,R, τ) + βk(U,R, τ) lnR

)
, (23)

where αk and βk are Ck-functions on Ωk and βk(U, 0, τ) = −A(0, 0, τ).

Proof. We consider a τ -family of orbits γτ of (22) starting at (1, U,R) where U ∼ 0,
R ∼ 0 and 0 < R < R1, ε ∼ 0 and ε > 0. The expression (22) implies that the
(U,R)-component of γτ is expressed by

(U(t), R(t)) = (U exp(−ε2t), R exp(ε2t)).

The time to go from {z̃ = 1} to {R = R1} is given by

t(R) =
1

ε2
ln
R1

R
.

We now look at the first line of (22) where one substitutes U(t), R(t). Integrating
from {z̃ = 1} to {R = R1}, one obtains

ln
dτ+(U,R)

1
= −

∫ t(R)

0

A(U exp(−ε2s), R exp(ε2s), τ)ds.
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Hence we have that

dτ+(U,R) = exp−
∫ 1

ε2
ln
R1
R

0

A(U exp(−ε2s), R exp(ε2s), τ)ds.

We make in the integral the change of variable: R′ = R exp(ε2s). This gives

dτ+(U,R) = exp− 1

ε2

∫ R1

R

A(URR′ , R
′, τ)

R′
dR′. (24)

To end this let us use the change of variable R̄ = R′

R1
. Then (24) changes into

dτ+(U,R) = exp− 1

ε2

∫ 1

R/R1

A( UR
R̄R1

, R̄R1, τ)

R̄
dR̄.

If we denote R/R1 by V , then we have that

dτ+(U,R) = exp− 1

ε2

∫ 1

V

f(V/R̄, R̄, U, τ)

R̄
dR̄, (25)

where f(V ′, R̄, U, τ) = A(UV ′, R̄R1, τ). Let us recall that the domain of A(U,R, τ)
only shrinks in the ε-direction when degree of smoothness k increases. If we use
a Taylor formula at first order in R̄ = 0, then we have that f(V ′, R̄, U, τ) =
f(V ′, 0, U, τ) + R̄f1(V ′, R̄, U, τ). As a consequence we have the following expres-
sion for the integral in (25):∫ 1

V

f(V/R̄, 0, U, τ)

R̄
dR̄+

∫ 1

V

f1(V/R̄, R̄, U, τ)dR̄, (26)

Let us first study the first integral in (26). Using the change of variable w = V/R̄
we have that∫ 1

V

f(V/R̄, 0, U, τ)

R̄
dR̄ =

∫ 1

V

f(w, 0, U, τ)

w
dw = −A(0, 0, τ) lnV + F̄ (V,U, τ), (27)

where F̄ is arbitrarily (finitely) smooth by taking small ε. To study the second
integral in (26), we use the following lemma (see [3]):

Lemma 5.3. 1) Let f(V,R) be a Ck-function on [0, 1]× [0, 1], k ≥ 2, and let b ≥ 0
be a fixed integer. Define

F (V ) =

∫ 1

V

Rbf(V/R,R)dR, V ∈ [0, 1].

Then F (V ) is of the form F (V ) = α(V ) + β(V )V lnV , for some Ck−2 functions

α and β, defined on [0, 1], and F (0) =
∫ 1

0
Rbf(0, R)dR. Furthermore, β = O(V b),

provided we have k ≥ b + 2. 2) Should f depend smoothly on extra parameters up
to some order, then so will the resulting functions α and β be smooth w.r.t. these
parameters up to the same order.

Hence Lemma 5.3, with b = 0, implies that∫ 1

V

f1(V/R̄, R̄, U, τ)dR̄ = α̃k(V,U, τ) + β̃k(V,U, τ)V lnV, (28)

where α̃k, β̃k are Ck functions provided f1 is Ck+2 for k ≥ 1. Let us recall that f1

is arbitrarily (finitely) smooth by taking ε small enough. Expressions (27) and (28),
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together with the fact that V = R
R1

, imply that the integral in (25) can be written
as

α̃k(
R

R1
, U, τ) + F̄ (

R

R1
, U, τ) +A(0, 0, τ) lnR1 − β̃k(

R

R1
, U, τ)

R

R1
lnR1

+
(
β̃k(

R

R1
, U, τ)

R

R1
−A(0, 0, τ)

)
lnR. (29)

If we denote the first line in (29) by αk and the expression in front of lnR by βk,
then we obtain that

dτ+(U,R) = exp− 1

ε2

(
αk(U,R, τ) + βk(U,R, τ) lnR

)
, (30)

where for each k ≥ 1 αk and βk are Ck, by taking ε sufficiently small, and
βk(U, 0, τ) = −A(0, 0, τ) = −1 +O(ε).

It remains to study the smoothness of the transition map dτ+(U,R). We focus

here to the fact that, by choosing ε small enough, the exponent A(0,0,τ)
ε2 can be

chosen arbitrarily high, so that any degree of smoothness can locally be obtained.
For the sake of completeness, let us prove it.

For R > 0 and ε > 0, we have nothing to prove due to the smoothness of αk and
βk.

Since βk(U, 0, τ) < 0, dτ+(U,R) → 0 when R → 0 or ε → 0. Choose now any

k ≥ 1. In what follows, we show that, by choosing ε small enough, ∂Idτ+(U,R) →
0 when R → 0 where I = (i1, i2, i3, i4, i5, i6), 1 ≤ |I| ≤ k and where ∂I =

∂|I|/∂U i1∂Ri2∂εi3∂Bi40 ∂B
i5
2 ∂λ

i6 .
Straightforward calculations show that any derivative ∂Idτ+(U,R), 1 ≤ |I| ≤ k,

is a finite linear combination of the following expressions:

exp− 1

ε2

(
αk + βk lnR

) l∏
j=1

∂Ij
(
− 1

ε2
(αk + βk lnR)

)
, (31)

where |Ij | ≥ 1 and
∑l
j=1 |Ij | = |I|.

On account of (31) it is sufficient to show that by choosing ε small enough the
expression

1

εm
ᾱ(U,R, τ)| lnR|n1

1

Rn2
exp− 1

ε2

(
αk + βk lnR

)
(32)

goes to 0 as R → 0 where ᾱ is continuous. We suppose that m ∈ N1, n1 ∈ N0 and
n2 ∈ N0 are arbitrary and fixed.
ᾱ in (32) is bounded and, with no loss of generality, we suppose that ᾱ = 1. The

logarithm of (32) is

−m ln ε+ n1 ln | lnR| − n2 lnR− 1

ε2

(
αk + βk lnR

)
=

1

ε2

(
−mε2 ln ε+ n1ε

2 ln | lnR| − n2ε
2 lnR− αk − βk lnR

)
(33)

As ln | lnR| ≤ ln 1
R for R ∼ 0, (33) is bounded above by

1

ε2

(
−mε2 ln ε− αk + (−βk − n1ε

2 − n2ε
2) lnR

)
. (34)

Since βk ∼ −1, we have that −βk − n1ε
2 − n2ε

2 > 0 by taking ε small enough.
Hence (34) goes to −∞ as R→ 0. It also goes to −∞ as ε→ 0, for R small.
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Let us finally define sections Σ1
+ and Σ2

+. We denote by

ϕ(X̄, U,R) = ϕτ (X̄, U,R) = (ψτ (X̄, U,R), U,R) = (Z̃, U,R)

the τ -family of coordinate changes conjugating (Yτ ), defined in (14), to (22) lo-
cally near P+

ε . ϕ is the succession of the mapping defined in (15), the mapping
defined in (17), the mapping defined in Theorem 5.1 and the dilatation (z̃, U,R)→
(−z̃/z̃0, U,R) = (Z̃, U,R), for z̃0 > 0 small enough such that for each ε ∼ 0,
(B0, B2) ∈ B and λ ∈ Λ section {(−z̃0, U,R) | U ∼ 0, R ∼ 0, R ≥ 0} lies in the
domain of the inverse of the diffeomorphism defined in Theorem 5.1. Let us remark
that (22) is unchanged under the dilatation.

Let

σ1
+ = {(1, U,R) | U ∼ 0, R ∼ 0, R ≥ 0}

and

σ2
+ = {(Z̃, U ′, R1) | Z̃ ∼ 0, Z̃ ≥ 0, U ′ ∼ 0}.

By taking R1 > 0 sufficiently small and fixed one can suppose that these sections lie
in the domain of ϕ−1 for each ε ∼ 0, (B0, B2) ∈ B and λ ∈ Λ. We now choose Σ2

+ in

the (X̄, U,R) coordinates of Yτ near P+
ε inside {R = R1} and transversally cutting

the τ -family of invariant manifolds X̄ =
√

2+φ(U,R, τ) of Yτ (φ is fixed in Remark

6). Hence we can take Σ2
+ = ϕ−1(σ2

+). We parametrize Σ2
+ by {X̄ ∼

√
2, U ∼ 0}.

We choose Σ1
+ = ϕ−1(σ1

+) transversally cutting the arc A. We parametrize Σ1
+ by

(U,R). The sections Σ1
+ and Σ2

+ depend, in a Ck way, on τ bearing in mind that
only ε decreases when the smoothness requirements increase.

The map Dτ+ from Σ1
+ to Σ2

+, defined by the flow of Yτ (i.e. X
(2)
τ ), can be

studied now, by Proposition 5.2, in the normalizing coordinates (Z̃, U,R) in the

region {Z̃ > 0, R > 0}, from σ1
+ to σ2

+. It can be expressed by:

(U,R)→ (d+(U,R, τ), UR/R1).

5.1.3. Regular transition map Rτ+. Let us recall that the map Rτ+, from a subset of

Σ1
0 to Σ1

+, is defined by the flow of X
(2)
τ . The transition map Rτ+ can be represented

as going from a subset of Σ1
0 to σ1

+, i.e. with values in the normalizing coordinates

(Z̃, U,R). One obtains map R+(U,R, τ). Hence R+ is expressed in (U,R) with
values in (U,R).

We split R+ into two parts. Choose X̄0 ∈]0,
√

2[, sufficiently close to
√

2, such
that for each ε ∼ 0, (B0, B2) ∈ B and λ ∈ Λ section {(X̄0, U,R) | U ∼ 0, R ∼ 0, R ≥
0} lies in the domain of ϕ and such that X̄0 is strictly smaller than the X̄-coordinate
of ϕ−1

τ (1, 0, 0). Let T+(U,R, τ) represent the transition map from (a subset of) Σ1
0

to {X̄ = X̄0} along the trajectories of X
(2)
τ .

Lemma 5.4. There exists a ball W̃1 around (U,R) = (0, 0) and 0 < ε̃ ≤ ε0 such

that T+ is C∞ on Ω1 := (W̃1 ∩ {R ≥ 0})× [0, ε̃]× B × Λ and

T+(U,R, τ) =
(
U(1 + ε2T̄ (U,R, τ)), R(1 + ε2T̄ (U,R, τ))−1

)
, (35)

where T̄ is C∞ on Ω1.

Proof. Notice first that the parameter (B0, B2, λ) takes values in the compact set

B × Λ. Hence the X̄-component of X
(2)
τ is strictly positive for X̄ ∈ [0, X̄0] and

(ε, U,R) ∼ (0, 0, 0). This means that the family (11) has no singularities between
the sections Σ1

0 and {X̄ = X̄0}, under the given conditions on the parameters.
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In other words, the orbit of (11), starting at (U,R) ∈ Σ1
0, (U,R) ∼ (0, 0), reaches

{X̄ = X̄0} in a finite time. Remark that this fact is clear for ε = 0. The fundamental
results on the existence, uniqueness and continuity with respect to parameters of
solutions to initial value problems imply now that we deal with a C∞ transition

map T+ = (T 1
+, T

2
+) (X

(2)
τ is C∞).

We know that T+ preserves UR, i.e. T 1
+(U,R, τ)T 2

+(U,R, τ) = UR for any τ .
We also know that T+ preserves {U = 0} and {R = 0}. It means that there exist
C∞-functions t1+ and t2+, such that:

T 1
+(U,R, τ) = Ut1+(U,R, τ), T 2

+(U,R, τ) = Rt2+(U,R, τ).

Hence we find that t1+(0, 0, τ) 6= 0 and t2+ = 1/t1+, for any τ . We obtain that

T+(U,R, τ) = (Ut1+(U,R, τ), R
1

t1+(U,R, τ)
).

If ε = 0, then T+(U,R, τ) = (U,R). This means that there exist a C∞-function T̄
such that t1+(U,R, τ) = 1 + ε2T̄ (U,R, τ).

Choose sections π+
τ := ϕ({(X̄0, U,R) | U ∼ 0, R ∼ 0, R ≥ 0}). We parametrize

π+
τ through ϕ by (U,R). In order to finish the study of R+, we need to consider the

regular transition map F+ : π+
τ → σ1

+ along the trajectories of (22), expressed using
the chosen parametrization on π+

τ , σ1
+. Notice that ϕ leaves the (U,R)-component

unchanged. This means that the regular map T+ is expressed by (35) if we use for

{X̄ = X̄0} the normalizing coordinates (Z̃, U,R). Then we have

R+(U,R, τ) = F+(T+(U,R, τ), τ).

Lemma 5.5. There exists a ball W̃2 around (U,R) = (0, 0) such that F+ is Ck on

Ω2
k := (W̃2 ∩ {R ≥ 0})× [0, εk]× B × Λ, up to shrinking εk if necessary, and

F+(U,R, τ) =
(
U(1 + ε2F̄ (U,R, τ)), R(1 + ε2F̄ (U,R, τ))−1

)
,

where F̄ is Ck on Ω2
k.

Proof. The study of F+ is analogous to the study of T+. Notice that the domain of
A in (22) only shrinks in the ε-direction as the smoothness requirements increase,
and that π+

τ is a graph of a Ck-function which has the same smoothness property
as A.

Combining Lemma 5.4 and Lemma 5.5 we get:

Proposition 5.6. There exists a ball W̃3 around (U,R) = (0, 0) such that R+ is

Ck on Ω3
k := (W̃3 ∩ {R ≥ 0})× [0, εk]×B ×Λ, up to shrinking εk if necessary, and

R+(U,R, τ) =
(
U(1 + ε2R̄(U,R, τ)), R(1 + ε2R̄(U,R, τ))−1

)
, (36)

where R̄ is Ck on Ω3
k.

Proof. We have

R+(U,R, τ) = F+(T+(U,R, τ), τ)

=
(
U(1 + ε2T̄ )(1 + ε2F̄ (T+, τ)), R(1 + ε2T̄ )−1(1 + ε2F̄ (T+, τ))−1

)
=
(
U(1 + ε2R̄(U,R, τ)), R(1 + ε2R̄(U,R, τ))−1

)
.
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5.1.4. Combining R+ and Dτ
+. In the following proposition we give the expression

for the transition map

(Dτ
+ ◦R+)(U,R, τ)

going from (a subset of) Σ1
0 to σ2

+, using the chosen parametrization on Σ1
0, σ2

+.

Proposition 5.7. There exists a ball W̃4 around (U,R) = (0, 0) such that Dτ
+ ◦R+

is well defined and Ck on Ω4
k := (W̃4 ∩ {R > 0})×]0, εk] × B × Λ and has a Ck-

extension to Ω4
k, up to shrinking εk if necessary. Moreover,

(Dτ
+ ◦R+)(U,R, τ) =

(
dτ+(R+(U,R, τ)),

UR

R1

)
,

where

dτ+(R+(U,R, τ)) = exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ + ε2l(U,R, τ)

)
, (37)

with

l(U,R, τ) = l
(k)
1 (U,R, τ) + l

(k)
2 (U,R, τ)R lnR.

Functions l
(k)
1 , l

(k)
2 are Ck on Ω4

k. The function l does not depend on k.

Proof. The above-mentioned smoothness properties of Dτ
+ ◦R+ follow directly from

Proposition 5.2 and Proposition 5.6. From Section 5.1.2 and (36), it is clear that
the U ′-component of Dτ

+ ◦R+ is

U(1 + ε2R̄(U,R, τ)).R(1 + ε2R̄(U,R, τ))−1/R1 = UR/R1.

Using expressions (23) (we write α = αk and β = βk) and (36) we obtain that

dτ+(R+(U,R, τ)) = exp− 1

ε2

(
α(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ)

+β(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ) lnR(1 + ε2R̄)−1
)

= exp− 1

ε2

(
α(U,R, τ) + β(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ) lnR

+O(ε2R̄)− β(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ) ln(1 + ε2R̄)
)
. (38)

On account of Proposition 5.2, we have that

β(U,R, τ) = −A(0, 0, τ) +Rβ̄(U,R, τ). (39)

Based on (39), we have

β(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ)

= −A(0, 0, τ) +R(1 + ε2R̄)−1β̄(U(1 + ε2R̄), R(1 + ε2R̄)−1, τ)

= −A(0, 0, τ) +R(β̄(U,R, τ) +O(ε2R̄))

= β(U,R, τ) +RO(ε2R̄). (40)

Using (40) and the fact that ln(1 + ε2R̄(U,R, τ)) = O(ε2R̄), the expression (38)
changes to

dτ+(R+(U,R, τ))

= exp− 1

ε2

(
α(U,R, τ) + β(U,R, τ) lnR+O(ε2R̄) +O(ε2R̄)R lnR

)
= exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ +O(ε2R̄) +O(ε2R̄)R lnR

)
.
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This completes the proof.

The section σ2
+ is contained in a family directional chart and we can use for it

better adapted coordinates. On section σ2
+ we can consider coordinates (x̄, r), where

(x̄, ȳ, r) are the coordinates of X
(1)
τ , defined in (8). The changes of coordinates

(Z̃, U ′)→ (x̄, r)

are given by r = U ′R1 (ϕ leaves the (U,R)-component unchanged) and x̄ = x̄τ,r(Z̃)
(we have eliminated U ′ = r

R1
in the expression of x̄).

Lemma 5.8. One has

x̄τ,r(Z̃) =
1

R1

(√
2 + φ(

r

R1
, R1, τ)

)
− z̃0

R1
Z̃(1 +O(Z̃)), (41)

where φ is fixed in Remark 6, z̃0 > 0 is defined at the end of Section 5.1.2 and

the domain of O(Z̃) only shrinks in the ε-direction as the smoothness requirements
increase.

Proof. On account of blow-up formulas (7) and (10) we get the following relation
between the coordinates x̄ and X̄, on σ2

+:

x̄ =
X̄

R1
. (42)

The mappings defined in (15) and (17), together with Theorem 5.1 and the dilata-
tion defined in Section 5.1.2, imply the following relation between the coordinates

X̄ and (Z̃, U ′), on σ2
+:

X̄ =
√

2 + φ(U ′, R1, τ)− z̃0Z̃(1 +O(Z̃)). (43)

Based on Theorem 5.1, O(Z̃) in (43) has the required property stated in Lemma
5.8.

Putting together (42) and (43) we find the relation between x̄ and (Z̃, r) on σ2
+:

x̄ =
1

R1
(
√

2 + φ(
r

R1
, R1, τ))− 1

R1
z̃0Z̃(1 +O(Z̃)). (44)

Parameterizing section σ2
+ by (x̄, r), the transition map from (a subset of) Σ1

0 to

σ2
+ along the trajectories of X̄τ is equal to(

x̄τ,UR(dτ+(R+(U,R, τ))), UR
)
. (45)

We denote by x̄(U,R, τ) the first component in (45). Combining Proposition 5.7
and Lemma 5.8 we obtain the final form for the transition map from (a subset of)
Σ1

0 to Σ2
+ = ϕ−1(σ2

+), where Σ2
+ is parametrized by (x̄, r):

Theorem 5.9. There exists a ball W̃5 around (U,R) = (0, 0) such that x̄(U,R, τ) is

well defined and Ck on Ω5
k := (W̃5∩{R > 0})×]0, εk]×B×Λ and has a Ck-extension

to Ω5
k, up to shrinking εk if necessary. Moreover,

x̄(U,R, τ) =
1

R1

(√
2 + φ(

UR

R1
, R1, τ)

)
− exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ + ε2L(U,R, τ)

)
, (46)
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where

L(U,R, τ) = L
(k)
1 (U,R, τ) + L

(k)
2 (U,R, τ)R lnR.

Functions L
(k)
1 and L

(k)
2 are Ck on Ω5

k. The function L does not depend on k.

Proof. The above-mentioned smoothness property of x̄(U,R, τ) follows directly from
Proposition 5.7 and Lemma 5.8. Taking into account (41) we get

x̄(U,R, τ) =
1

R1

(√
2 + φ(

UR

R1
, R1, τ)

)
− z̃0

R1
dτ+(R+(U,R, τ))

(
1 +O(dτ+(R+(U,R, τ)))

)
. (47)

Of course, we have that

1 +O(dτ+(R+(U,R, τ))) = exp− 1

ε2

(
− ε2 ln(1 +O(dτ+(R+(U,R, τ))))

)
,

where ln(1 +O(dτ+(R+(U,R, τ)))) is arbitrarily (finitely) smooth by taking ε small

enough. This follows directly from the fact that functions O(Z̃) in Lemma 5.8 and
dτ+(R+(U,R, τ))) are arbitrarily (finitely) smooth by taking ε small enough. If we
use (37), then the expression (47) changes to

x̄(U,R, τ) =
1

R1

(√
2 + φ(

UR

R1
, R1, τ)

)
− exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ + ε2l(U,R, τ)

−ε2 ln(1 +O(dτ+(R+(U,R, τ))))− ε2 ln
z̃0

R1

)
.

The rest of the proof is now trivial.

5.1.5. Transition map Sτ+ and conclusion. We consider the transition map Sτ+ from

Σ2
+ to Σ2

0 ⊂ {x̄ = 0} along the trajectories of the vector field X
(1)
τ defined in (8).

Remark that Sτ+ can be treated entirely in the family chart “r̄ = 1”. Section Σ2
+ is

parametrized by (x̄, r) and section Σ2
0 is parametrized by (ȳ, r). One obtains map

Sτ+(x̄, r) = (s+(x̄, r, τ), r).

As mentioned in Section 3.1, in the family chart we consider r as a regular
parameter and observe that ε is a singular perturbation parameter. It is important
to realize that the slow dynamics (9) are characterized by a regular flow box, with
possible isolated saddle-node singularities for (B2, r) ∼ (±2, 0), located away from
the origin (x̄, ȳ) = (0, 0). This case has already been treated in [4].

In order to be able to use the results in [4], we define a section

T = {x̃ = 0},

along the secondary blow-up locus of the origin (x̄, ȳ) = (0, 0) (see Section 3.1).
More precisely, T is defined in the family chart {ε̃ = 1}, and parametrized by the
(secondary) blow-up coordinate ỹ. We denote by ỹ = ŝ+(x̄, r, τ) the transition map
between Σ2

+ and T . By following the orbits through the curve {x̄ = x̄(U,R, τ), ȳ =
1/R2

1, r = UR}, (U,R, τ) ∈ D, (ε, U,R) ∼ (0, 0, 0), in forward time until they reach
T , we end up with a Ck-transition map ỹ = ŝ+(x̄(U,R, τ), UR, τ) with a Ck-
extension to the closure of its domain. Degree of smoothness k can be chosen
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arbitrarily high by taking ε small enough. We refer to Theorem 3.1 of [4] and
Theorem 5.9 in this paper.

Since ȳ = ε2ỹ, we obtain s+ = ε2ŝ+. For (ε, B0) ∼ (0, 0), ŝ+ is strictly negative
because γ ∩ T = (0,−1) where γ is defined in Section 3.1.

It is now clear that the transition map

H+(U,R, τ) = (s+(x̄(U,R, τ), UR, τ), UR), (U,R, τ) ∈ D, (ε, U,R) ∼ (0, 0, 0),

has all the properties mentioned in Theorem 4.1 in this paper.

5.2. Difference map and Lie-derivative. In order to prove Theorems 4.3 and
4.4, we need to consider the difference map

∆(U,R, τ) = H+(U,R, τ)−H−(U,R, τ), (48)

where (U,R, τ) ∈ Dk and Dk,H± are defined in (12) and (13).
The r-component of ∆ is equal to 0. The ȳ-component of ∆ can be written as

−ε2δ(U,R, τ), where

δ(U,R, τ) = h+(U,R, τ)− h−(U,R, τ), (49)

where (U,R, τ) ∈ Dk.
The expression of (5) is invariant under the symmetry:

S : (r,B0, B2)→ (−r,−B0,−B2). (50)

From the family rescaling (7) and the symmetry S, defined in (50), it follows that

the vector field X
(1)
τ is invariant under the symmetry:

SF : (x̄, ȳ, r, ε, B0, B2, λ, t)→ (−x̄, ȳ,−r, ε,−B0,−B2, λ,−t). (51)

The directional blow-up formula (10) and the symmetry S, defined in (50), imply

that X
(2)
τ is invariant under the symmetry

SP : (X̄, U,R, ε, B0, B2, λ, t)→ (−X̄,−U,R, ε,−B0,−B2, λ,−t). (52)

By the invariance of X
(1)
τ (resp. X

(2)
τ ) under SF (resp. SP ), defined in (51) (resp.

(52)), one can write (49) as

δ(U,R, ε, B0, B2, λ) = h+(U,R, ε, B0, B2, λ)− h+(−U,R, ε,−B0,−B2, λ), (53)

where (U,R, ε, B0, B2, λ) ∈ Dk.
To study isolated zeros of δ, we will consider its Lie-derivative LY δ = U ∂δ

∂U −R
∂δ
∂R

(see Section 4). It is clear that LY (UR) = 0. We first apply the Lie-derivation to
the expression −ε2h+(U,R, τ):

LY
(
− ε2h+(U,R, τ)

)
= LY

(
s+(x̄(U,R, τ), UR, τ)

)
=
∂s+

∂x̄
(x̄(U,R, τ), UR, τ).LY

(
x̄(U,R, τ)

)
, (54)

where (U,R, τ) ∈ Dk.

Remark 8. From now on, we avoid mentioning the fact that degree of smoothness
of h+(U,R, τ), x̄(U,R, τ), etc., depends on ε. We also do not specify domains of
h+(U,R, τ), x̄(U,R, τ), etc., and we avoid pointing out that αk, βk, etc., depend on
degree k of smoothness. We merely say that all these functions are Ck bearing in
mind that any (finite) degree of smoothness can be obtained. Similarly, we say that
F (U,R, τ) is Ck in (U,R,R lnR, τ) if we can choose a sufficiently smooth function
f such that F (U,R, τ) = f(U,R,R lnR, τ).
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5.2.1. Study of LY

(
x̄(U,R, τ)

)
. On account of (23) and (46) we get

LY
(
x̄(U,R, τ)

)
=

1

ε2
exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ + ε2L

)
.LY

(
α+ β lnR+ ε2L

)
, (55)

where α and β are the Ck-functions defined in (23), and L(U,R, τ) is the Ck-function
in (U,R,R lnR, τ) introduced in Theorem 5.9.

We can write P = LY
(
α + β lnR + ε2L

)
. In order to study P , we need the

following easy properties of the Lie-derivation:

Lemma 5.10. 1. LY (lnR) = −1.
2. If ν̃(U,R, τ) = ν(U,R,R lnR, τ) is Ck in (U,R,R lnR, τ), then ζ(U,R, τ) =
LY ν̃(U,R, τ) is Ck in (U,R,R lnR, τ) and moreover ζ(0, 0, τ) ≡ 0 (one can also
write: ζ = o(1)).

Taking into account Lemma 5.10 and the fact that β(U, 0, τ) = −A(0, 0, τ) (see
Proposition 5.2), we obtain that

P (U,R, τ) = LY (α+ β lnR+ ε2L)

= LY α+ (lnR)LY β − β + ε2LY L
= −β(U,R, τ) + o(1), (56)

where o(1) is Ck in (U,R,R lnR, τ). Based on (56), we find that P (0, 0, τ) =
A(0, 0, τ) > 0. As a consequence, the function P (U,R, τ) remains strictly positive
for U,R small enough and its logarithm is Ck in (U,R,R lnR, τ). Hence (55) changes
to (
LY x̄(U,R, τ)

)
(U,R, τ) =

1

ε2
exp− 1

ε2

(∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ + ε2L̄(U,R, τ)

)
,

(57)
where L̄ is Ck in (U,R,R lnR, τ).

5.2.2. Study of ∂s+

∂x̄ (x̄(U,R, τ),UR, τ). The derivative ∂s+
∂x̄ can be expressed in

terms of an integral of divergence:

∂s+

∂x̄
(x̄, r, τ) =

−ε2π(x̄, r, τ)

s+(x̄, r, τ)
exp

∫
Ox̄,r,τ

divX(1)
τ dt, (58)

where Ox̄,r,τ is the orbit through (x̄, 1
R2

1
, r) ∈ Σ2

+ in positive time until it hits Σ2
0

and where

π(x̄, r, τ) = εB0 − x̄+B2x̄
2 − x̄3 + rx̄4H̄(rx̄, λ)

+r(
1

R2
1

− 1

2
x̄2)2G(rx̄, r2(

1

R2
1

− 1

2
x̄2), λ). (59)

This follows directly from the following well known result (see Proposition 2 of [10]):

Proposition 5.11. Let f be a vector field on an open subset of Rn. Let S1 and S2

be two open sections of Rn, transverse to the flow of f . Assume p ∈ S1, q ∈ S2 and
the orbit through p reaches q in finite time. Let T : S0 ⊂ S1 → S2 be the transition
map defined in a neighborhood of p. If φi : Ui → Si are coordinates for Si with
Ui ⊂ Rn−1, then

det(D(φ−1
2 ◦ T ◦ φ1))(s1) =

det(Dφ1(s1)|f(p))

det(Dφ2(s2)|f(q))
exp

{∫
O(p,q)

divfdt

}
,
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where s1 = φ−1
1 (p), s2 = φ−1

2 (q), and where (Dφ1(s1)|f(p)) is a matrix composed
of the n × (n − 1) matrix Dφ1(s1) and the column vector f(p), and similarly for
(Dφ2(s2)|f(q)). The integral is taken over the orbit O(p, q) from p to q parametrized
by t.

We denote the integral in (58) by I(x̄, r, τ).
From (58), we finally get:

∂s+

∂x̄
(x̄(U,R, τ), UR, τ) =

π(x̄(U,R, τ), UR, τ)

h+(U,R, τ)
exp I(x̄(U,R, τ), UR, τ), (60)

where we used −ε2h+(U,R, τ) = s+(x̄(U,R, τ), UR, τ).

Remark 9. 1. Taking into account Theorem 5.9 and (59) we see that function
π(x̄(U,R, τ), UR, τ) in (60) is a strictly negative Ck-function by taking ε, U and R
small enough. Let us recall that R1 is sufficiently small and fixed such that Ψ in
(11) is strictly negative for X̄ ∼

√
2, U ∼ 0, |R| ≤ R1, ε ∼ 0, (B0, B2) ∈ B and

λ ∈ λ.
2. On account of Theorem 4.1, we see that h+(U,R, τ) is Ck and strictly positive.

Remark 9 implies that −π(x̄(U,R,τ),UR,τ)
h+(U,R,τ) is strictly positive and Ck, and its log-

arithm is a Ck-function. Hence, (60) can be written as

∂s+

∂x̄
(x̄(U,R, τ), UR, τ) = − exp

1

ε2
(
ε2I(x̄(U,R, τ), UR, τ) + ε2L̃(U,R, τ)

)
, (61)

where L̃ is a Ck-function.

5.2.3. Combining LY

(
x̄(U,R, τ)

)
and ∂s+

∂x̄ (x̄(U,R, τ),UR, τ). Bearing in mind
(57) and (61), (54) can be written as(

LY
(
− ε2h+

))
(U,R, τ) = − 1

ε2
exp

1

ε2

(
−
∫ R1

R

A(URR′ , R
′, τ)

R′
dR′

+ε2I(x̄(U,R, τ), UR, τ) + ε2L∗(U,R, τ)
)
, (62)

where L∗ is Ck in (U,R,R lnR, τ).

5.2.4. Lie-derivative of δ. Let us recall that τ = (ε, B0, B2, λ). We denote by τ∗

the parameter (ε,−B0,−B2, λ).

Lemma 5.12. Suppose that f(U,R, τ) is Ck and write g(U,R, τ) = f(−U,R, τ∗).
Then

(LY g)(U,R, τ) = (LY f)(−U,R, τ∗).

Proof. We have:

(LY g)(U,R, τ) = U
∂g

∂U
(U,R, τ)−R ∂g

∂R
(U,R, τ)

= (−U)
∂f

∂U
(−U,R, τ∗)−R ∂f

∂R
(−U,R, τ∗)

= (LY f)(−U,R, τ∗).
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Using (53), (62) and Lemma 5.12, we find the Lie-derivative of δ:(
LY δ

)
(U,R, τ) =

1

ε4
exp

1

ε2

(
−
∫ R1

R

A(URR′ , R
′, τ)

R′
dR′

+ε2I(x̄(U,R, τ), UR, τ) + ε2L∗(U,R, τ)
)

− 1

ε4
exp

1

ε2

(
−
∫ R1

R

A(−URR′ , R
′, τ∗)

R′
dR′

+ε2I(x̄(−U,R, τ∗),−UR, τ∗) + ε2L∗(−U,R, τ∗)
)
. (63)

It is clear that for ε > 0 and R > 0 the equation {LY δ = 0} is equivalent to

−
∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ +

∫ R1

R

A(−URR′ , R
′, τ∗)

R′
dR′

+ε2I(x̄(U,R, τ), UR, τ)− ε2I(x̄(−U,R, τ∗),−UR, τ∗) + ε2L̄∗(U,R, τ) = 0, (64)

where L̄∗ is a Ck-function in (U,R,R lnR, τ) which is identically zero for U = B0 =
B2 = 0. Our goal is to solve the equation (64) on segment {(U,R); UR = r, U ∼
0, U > 0, R ∼ 0, R > 0}, for each possible (r, τ) such that r ∼ 0 and r > 0.

We first simplify (64). It is clear that
∫ R1

R

A(UR
R′ ,R

′,τ)

R′ dR′ goes to +∞ as R→ 0.

We aim at controlling the difference
∫ R1

R

A(UR
R′ ,R

′,τ)

R′ dR′ −
∫ R1

R

A(−UR
R′ ,R

′,τ∗)

R′ dR′ in
(64).

Lemma 5.13. One has that∫ R1

R

A(URR′ , R
′, ε, B0, B2, λ)

R′
dR′

= (1 + εf1(ε))

∫ R1

R

A(URR′ , R
′, 0, B0, B2, λ)

R′
dR′ + εf2(U,R, τ), (65)

where f1 is a Ck-function, depending only on ε, and where f2 is a Ck-function in
(U,R,R lnR, τ).

Proof. The expression (21) implies that A(U,R, 0, B0, B2, λ) > 0. If we keep the
notation τ for (ε, B0, B2, λ) and denote (0, B0, B2, λ) by τ0, then we obtain that

A(U,R, τ) = A(U,R, τ0)
(

1 + εF1(τ) + εRF2(U,R, τ) + εUF3(U,R, τ)
)
, (66)

where F1, F2 and F3 are Ck. If we suppose that (U,R) = (0, 0) in (66), then we get

A(0, 0, τ) = A(0, 0, τ0)
(

1 + εF1(τ)
)
> 0. (67)

Taking into account (19) and the fact that the parameters B0, B2 and λ are ac-
companied by U or R in the expression Ψ, defined in (11), the family of invariant
manifolds φ, fixed in Remark 6, does not depend on (B0, B2, λ), for (U,R) = (0, 0).
As Ψ and φ appear in the expression (21), it follows that A(0, 0, τ) does not depend
on (B0, B2, λ). Formula (67) now implies that F1(τ) does not depend on (B0, B2, λ),
hence F1(τ) = f1(ε).

It is clear that we can write (66) as

A(U,R, τ) = A(U,R, τ0)
(

1 + εf1(ε)
)

+ εRF2(U,R, τ) + εUF3(U,R, τ), (68)
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for some new Ck-functions F2 and F3. Using (68), we have that∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ =

(
1 + εf1(ε)

)∫ R1

R

A(URR′ , R
′, τ0)

R′
dR′

+ε

∫ R1

R

R′F2(URR′ , R
′, τ)

R′
dR′ + ε

∫ R1

R

URF3(URR′ , R
′, τ)

R′2
dR′. (69)

Take any Ck-function F4(U,R, τ). In the proof of Proposition 5.2, we found that∫ R1

R

F4(URR′ , R
′, τ)

R′
dR′ = α∗(U,R, τ) + β∗(U,R, τ) lnR, (70)

where α∗ and β∗ are Ck and where β∗(U, 0, τ) = −F4(0, 0, τ). If we choose
F4(U,R, τ) = RF2(U,R, τ), then we get β∗(U, 0, τ) = 0. In other words, lnR
in (70) is accompanied by R. Hence the second integral on the right hand side of
(69) is a Ck-function in (U,R,R lnR, τ). If we take F4(U,R, τ) = UF3(U,R, τ) in
(70), then we get β∗(U, 0, τ) = 0. Hence the third integral on the right hand side
of (69) is a Ck-function in (U,R,R lnR, τ).

Using (21) and Lemma 5.13, we find that

−
∫ R1

R

A(URR′ , R
′, τ)

R′
dR′ +

∫ R1

R

A(−URR′ , R
′, τ∗)

R′
dR′

=
(

1 + εf1(ε)
)
C(U,R,B2, λ) + εf̄2(U,R, τ), (71)

where f̄2 is a Ck-function in (U,R,R lnR, τ) and identically zero for U = B0 =
B2 = 0, and where

C(U,R,B2, λ) = −8
√

2

∫ R1

R

B2R
′ + UR

R′

(
H̄(URR′

√
2, λ) + H̄(−URR′

√
2, λ)

)
R′D(U,R,R′, B2, λ)D(−U,R,R′,−B2, λ)

dR′,

(72)
with

D(U,R,R′, B2, λ) = −
√

2R′2 + 2B2R
′ − 2

√
2 + 4

UR

R′
H̄(

UR

R′

√
2, λ).

Taking into account (71), (64) changes to

ε2I(x̄(U,R, τ), UR, τ)− ε2I(x̄(−U,R, τ∗),−UR, τ∗)

+
(

1 + εf1(ε)
)
C(U,R,B2, λ) + εL̃∗(U,R, τ) = 0, (73)

where L̃∗ is a Ck-function in (U,R,R lnR, τ) and identically zero for U = B0 =
B2 = 0.

It can be easily seen that C, defined in (72), is bounded for R ∼ 0. We make
this statement precise in the following lemma:

Lemma 5.14.

C(U,R,B2, λ) = B2c1(U,R,B2, λ) + Uc2(U,R,B2, λ), (74)

where c1 and c2 are Ck-functions in (U,R,R lnR,B2, λ) and where c1 is strictly
negative for R ∼ 0 and R ≥ 0.
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Proof. Using (72), we can write C as

C(U,R,B2, λ) = B2

∫ R1

R

C1(
UR

R′
, R′, B2, λ)dR′ +

∫ R1

R

UR

R′2
C2(

UR

R′
, R′, B2, λ)dR′,

(75)
where C1 and C2 are C∞-functions. Bearing in mind (70), we see that the first inte-
gral in (75) is a Ck-function in (U,R,R lnR,B2, λ). We denote it by c1(U,R,B2, λ).
It is clear from (72) that c1 is strictly negative.

The second integral in (75) we can write as

UR

∫ R1

R

1

R′2
C2(

UR

R′
, 0, B2, λ)dR′ + UR

∫ R1

R

1

R′
C3(

UR

R′
, R′, B2, λ)dR′, (76)

where C3 is a C∞-function. The second expression in (76) can, by (70), be written
as UC4(U,R,B2, λ) where C4 is a Ck-function in (U,R,R lnR,B2, λ).

If we use the change of variables: R
R′ = w, then the first expression in (76)

changes to

U

∫ 1

R
R1

C2(Uw, 0, B2, λ)dw.

The above integral can be written as UC5(U,R,B2, λ), for some C∞-function C5.
We define now c2(U,R,B2, λ) = C4(U,R,B2, λ) + C5(U,R,B2, λ).

It remains to simplify the difference of divergence integrals in (73). The integral
of divergence I has been studied in detail in [10], if the slow dynamics (9) has no
zeros, and in [4], if the slow dynamics (9) has isolated saddle-node singularities
located away from the contact point (x̄, ȳ) = (0, 0).

As we mentioned above, a saddle-node singularity appears in (9) for (B2, r) ∼
(±2, 0), located near x̄ = ±1. Hence we may rely on [4]. When parameter B2 is
kept in any compact set K ⊂] − 2, 2[, then (9) is regular in an arbitrary compact
set in the x̄-space by taking r small enough. As a consequence, we are allowed to
refer to [10]. When 2 < |B2| ≤ B0

2 , then one has simple zeros in the slow dynamics
and hence limit cycles near Γ are not possible.

We are now in a good position to prove Theorems 4.3 and 4.4.

5.3. Proof of Theorem 4.3. The symmetries SF and SP defined, respectively, by
(51) and (52) imply that it suffices to prove Theorem 4.3 for B2 strictly positive.
Based on the discussion above, we distinguish three possibilities.

5.3.1. B2 ∈ K ⊂]0,2[, K is any compact set. Our goal is to show that, by taking
U ∼ 0, R ∼ 0, R ≥ 0, ε ∼ 0 and ε ≥ 0, the left hand side of the equation (73) is
strictly negative for any B0 ∼ 0, B2 ∈ K and λ ∈ Λ. This implies that the equation
{LY δ = 0} has no solutions along {UR = r}, under the given conditions on the
parameters and variables, and for (R, ε) > (0, 0). Using the Rolle’s Theorem one
finds that the cyclicity of Γ at B2 ∈ K is bounded by one.

Consider first the expression

ε2I(x̄(U,R, τ), UR, τ)− ε2I(x̄(−U,R, τ∗),−UR, τ∗).
We may use Theorem 5.9 and results in [10], for B2 ∈ −K∪K, to write the function
ε2I(x̄(U,R, τ), UR, τ) as

I(B2, UR, λ) + ϕ1(U,R, τ) + ϕ2(U,R, τ)ε2 ln ε, (77)
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where ϕ1 and ϕ2 are Ck-functions, including at ε = 0 and R = 0, ϕ1 = O(ε) and
where I(B2, r, λ) represents the slow divergence integral, defined as:

I(B2, r, λ) =

∫ √
2

R1

0

wdw

−1 +B2w − w2 + rw3H̄(rw, λ)
< 0. (78)

Using (77) we obtain that

ε2I(x̄(U,R, τ), UR, τ)− ε2I(x̄(−U,R, τ∗),−UR, τ∗)
= I(B2, UR, λ)− I(−B2,−UR, λ) + ϕ̄1(U,R, τ) + ϕ̄2(U,R, τ)ε2 ln ε, (79)

where ϕ̄1 and ϕ̄2 are Ck-functions, including at ε = 0 and R = 0, and ϕ̄1 = O(ε).
Taking into account (79) and Lemma 5.14 the equation (73) can be written as

I(B2, UR, λ)− I(−B2,−UR, λ) + C(U,R,B2, λ)

+εL̃∗(U,R, τ) + ϕ̄2(U,R, τ)ε2 ln ε = 0, (80)

for some new Ck-function L̃∗ in (U,R,R lnR, τ).

Remark 10. When B2 ∼ 0, we also deal with a regular slow dynamics and we may

hence use (80), where L̃∗ and ϕ̄2 are identically zero by taking U = B0 = B2 = 0
(see Section 5.4).

Note that the left hand side of the equation (80) can be treated as a continuous
(including ε = 0) perturbation of I(B2, UR, λ)− I(−B2,−UR, λ) + C(U,R,B2, λ).
Hence it suffices to show that the first line in (80) is strictly negative for B2 ∈ K,
λ ∈ Λ, U ∼ 0, R ∼ 0 and R ≥ 0.

Using the change of variables w = −w′ in I(−B2,−UR, λ), it can be easily seen
that

I(B2, UR, λ)− I(−B2,−UR, λ)

=

∫ √
2

R1

−
√

2
R1

wdw

−1 +B2w − w2 + URw3H̄(URw, λ)
. (81)

Consider now

Ĩ(x̄, B2, r, λ) =

∫ x̄

−x̄

wdw

−1 +B2w − w2 + rw3H̄(rw, λ)
, (82)

for B2 ∈ K, λ ∈ Λ and r ∼ 0. From Lemma 3.1 in [8] we know that for any ρ > 0

small there exist r0 > 0 and ν > 0 sufficiently small such that Ĩ(x̄, B2, r, λ) ≤ −ν
for x̄ ∈ [ρ, 1

ρ ], B2 ∈ K, r ∈ [−r0, r0] and λ ∈ Λ. If we take ρ = R1√
2
, we get that (81)

is strictly negative for B2 ∈ K, λ ∈ Λ, U ∼ 0, R ∼ 0 and R ≥ 0.
To see that the first line in (80) is strictly negative for B2 ∈ K, λ ∈ Λ, U ∼ 0,

R ∼ 0 and R ≥ 0, it suffices to observe that C(U,R,B2, λ) is, by Lemma 5.14,
strictly negative for B2 ∈ K, λ ∈ Λ, U ∼ 0, R ∼ 0 and R ≥ 0. Hence the cyclicity
of δ at B2 ∈ K is bounded by one.

To see that the cyclicity of Γ at B2 ∈ K is precisely one, we use Theorem 4.1.
We claim that there exists a Ck-function b0(U,R, ε, B2, λ) ∼ 0, for B2 ∈ K, λ ∈ Λ,
(U,R, ε) ∼ (0, 0, 0), R ≥ 0 and ε ≥ 0, such that zeros of δ will occur for B0 =
b0(U,R, ε, B2, λ). In fact, since δ is Ck (see Theorem 4.1), δ(U,R, 0, 0, B2, λ) = 0
and ∂δ

∂B0
(U,R, 0, 0, B2, λ) 6= 0 (B0 is a breaking parameter), the implicit function

theorem implies existence of unique Ck-function b0(U,R, ε, B2, λ) such that solution
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of δ = 0, for ε ∼ 0 and B0 ∼ 0, can only occur for B0 = b0(U,R, ε, B2, λ). Hence
the cyclicity of Γ at B2 ∈ K is at least one.

Since the left hand side of the equation (80) is strictly negative, we deal with a
hyperbolically attracting limit cycle.

5.3.2. B2 ∼ 2. We invoke Lemma 5.14 and see that the function C in (73) is

bounded. Of course we have that εL̃∗ introduced in (73) is bounded due to the

fact that L̃∗ is Ck in (U,R,R lnR, τ). It remains to study ε2I(x̄(U,R, τ), UR, τ)−
ε2I(x̄(−U,R, τ∗),−UR, τ∗), i.e. the first line in (73).

Since the slow dynamics (9) is regular for x̄ ≤ 0, the paper [4] shows us that
the contribution ε2I(x̄(−U,R, τ∗),−UR, τ∗) is bounded. Using [4] once more we
have that ε2I(x̄(U,R, τ), UR, τ) is dominated by the contribution of the saddle-node
singularity and it tends to −∞ as (U,R,B2, ε)→ (0, 0, 2, 0).

Hence we find that the cyclicity of Γ at B2 = 2 is bounded by one. Since the left
hand side of (73) is always negative for (U,R,B2, ε) near (0, 0, 2, 0), we deal with
a hyperbolically attracting limit cycle. We refer to Section 5.3.1 to see that the
cyclicity of Γ at B2 = 2 is one.

5.3.3. 2 < B2 ≤ B0
2. The cyclicity of Γ in this case is zero.

5.4. Proof of Theorem 4.4. We suppose that H̄(0, λ) 6= 0 for all λ ∈ Λ. Our
goal is to solve equation (73) along the segment {(U,R)|UR = r, U ∼ 0, U > 0, R ∼
0, R > 0} for each fixed (r, ε, B0, B2) ∼ (0, 0, 0, 0), r > 0, ε ≥ 0 and λ ∈ Λ. Remark
10 implies that the equation (73), for B2 ∼ 0, can be written as

I(B2, UR, λ)− I(−B2,−UR, λ) + C(U,R,B2, λ) +
˜̃
L(U,R, τ) = 0, (83)

where
˜̃
L(U,R, τ) is O(ε), Ck in (U,R,R lnR, τ, ε2 ln ε) and identically zero by taking

U = B0 = B2 = 0. Hence, we can write˜̃
L(U,R, τ) = UG1(U,R, τ) +B0G2(U,R, τ) +B2G3(U,R, τ), (84)

where Gi, i = 1, 2, 3, is O(ε) and Ck in (U,R,R lnR, τ, ε2 ln ε).
When U = B2 = 0, then I(B2, UR, λ)− I(−B2,−UR, λ) and C(U,R,B2, λ) are

identically zero. Based on (81), we have that

I(B2, UR, λ)− I(−B2,−UR, λ) = B2

(
−
∫ √

2
R1

−
√

2
R1

w2dw

(1 + w2)2
+ I1(U,R, τ)

)

+UR
(
− H̄(0, λ)

∫ √
2

R1

−
√

2
R1

w4dw

(1 + w2)2
+ I2(U,R, τ)

)
, (85)

where I1 and I2 are O(UR,B2) and C∞. Using (72) we obtain

C(U,R,B2, λ) = B2

(
− 4
√

2

∫ R1

R

dR′

(2 +R′2)2
+ η1(U,R, τ)

)
+U
(
− 8
√

2H̄(0, λ)

∫ R1

R

RdR′

R′2(2 +R′2)2
+ η2(U,R, τ)

)
, (86)

where η1 and η2 are O(U,B2) and Ck in (U,R,R lnR, τ) (see Lemma 5.14).
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Taking into account (84), (85) and (86), (83) changes to:

U
(
− H̄(0, λ)R

∫ √
2

R1

−
√

2
R1

w4dw

(1 + w2)2
− 8
√

2H̄(0, λ)

∫ R1

R

RdR′

R′2(2 +R′2)2
+G1(U,R, τ)

)

+B2

(
−
∫ √

2
R1

−
√

2
R1

w2dw

(1 + w2)2
− 4
√

2

∫ R1

R

dR′

(2 +R′2)2
+G3(U,R, τ)

)
+B0G2(U,R, τ) = 0, (87)

for some new functions G1, G2, G3 that are O(U,B2, ε) and Ck in the variable
(U,R,R lnR, τ, ε2 ln ε).

Lemma 5.15. We have that

(i) −R
∫ √

2
R1

−
√

2
R1

w4dw

(1 + w2)2
− 8
√

2

∫ R1

R

RdR′

R′2(2 +R′2)2
= −2

√
2 + f1(R)

and

(ii) −
∫ √

2
R1

−
√

2
R1

w2dw

(1 + w2)2
− 4
√

2

∫ R1

R

dR′

(2 +R′2)2
= −π

2
+ f2(R),

where f1 and f2 are C∞-functions in R and identically zero when R = 0.

Proof. We get

−R
∫ √

2
R1

−
√

2
R1

w4dw

(1 + w2)2
− 8
√

2

∫ R1

R

RdR′

R′2(2 +R′2)2

= −R
( ∫ √

2
R1

−
√

2
R1

w4dw

(1 + w2)2
+ 2

∫ √
2
R

√
2

R1

w4dw

(1 + w2)2

)
= −R

∫ √
2
R

−
√

2
R

w4dw

(1 + w2)2

= −
√

2(4 + 3R2)

(2 +R2)
+ 3RArcctg(

R√
2

) = −2
√

2 +O(R),

where O(R) is a C∞-function in R. In the first step we used the change of variable:

w =
√

2
R′ . Similarly, we obtain

−
∫ √

2
R1

−
√

2
R1

w2dw

(1 + w2)2
− 4
√

2

∫ R1

R

dR′

(2 +R′2)2

= −
∫ √

2
R1

−
√

2
R1

w2dw

(1 + w2)2
− 2

∫ √
2
R

√
2

R1

w2dw

(1 + w2)2
= −

∫ √
2
R

−
√

2
R

w2dw

(1 + w2)2

=

√
2R

2 +R2
−Arcctg(

R√
2

) = −π
2

+O(R),

where O(R) is a C∞-function in R.

With the help of Lemma 5.15 we infer that the equation (87) can be written as

U
(
− H̄(0, λ)2

√
2 +G1(U,R, τ)

)
+B0G2(U,R, τ)

+B2

(
− π

2
+G3(U,R, τ)

)
= 0, (88)
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for some new functions G1, G2, G3 that are O(U,R,B2, ε) and Ck in the variable
(U,R,R lnR, τ, ε2 ln ε). In order to be able to apply an algorithm of derivation-
division to the left hand side of (88), we have to get rid of the parameter B0 in
(88).

Again we invoke Theorem 4.1 and obtain that there exists a unique Ck-function
b0(U,R, ε, B2, λ), for (U,R, ε, B2) ∼ (0, 0, 0, 0) and λ ∈ Λ, such that solutions of
δ(U,R, τ) = 0, for ε ∼ 0 and B0 ∼ 0, can only occur for B0 = b0(U,R, ε, B2, λ).
Hence, it is sufficient to solve the following equation, with respect to variable R
(R > 0, R ∼ 0):

δ(
U2R2

R
,R, ε, b0(U2, R2, ε, B2, λ), B2, λ) = 0, (89)

for each fixed (U2, R2) > (0, 0), (U2, R2) ∼ (0, 0), ε > 0, ε ∼ 0, B2 ∼ 0 and

λ ∈ Λ. We will prove that there exist RP > 0, UP > 0, ε0 > 0, B̃2 > 0 sufficiently

small such that for each U2 ∈]0, UP [, R2 ∈]0, RP [, ε ∈]0, ε0], B2 ∈ [−B̃2, B̃2] and
λ ∈ Λ the equation (89) has at most two solutions (counting with multiplicity)
w.r.t. R ∈ [U2R2

UP
, RP ].

It can be easily seen that

−R ∂

∂R

(
δ
(U2R2

R
,R, τ

))
= (LY δ)

(U2R2

R
,R, τ

)
. (90)

Taking into account that {LY δ = 0} is equivalent, for R > 0 and ε > 0, to the

equation (88), (90) implies that { ∂
∂R

(
δ
(
U2R2

R , R, ε, b0(U2, R2, ε, B2, λ), B2, λ
))

= 0}
is equivalent, for R > 0 and ε > 0, to

U2R2

R

(
− H̄(0, λ)2

√
2 +G1(

U2R2

R
,R, ε, b0(U2, R2, ε, B2, λ), B2, λ)

)
+b0(U2, R2, ε, B2, λ)G2(

U2R2

R
,R, ε, b0(U2, R2, ε, B2, λ), B2, λ)

+B2

(
− π

2
+G3(

U2R2

R
,R, ε, b0(U2, R2, ε, B2, λ), B2, λ)

)
= 0, (91)

where G1, G2, G3 are identical to G1, G2, G3 introduced in (88).
Since δ(0, R, ε, 0, 0, λ) = 0 and δ(U, 0, ε, 0, 0, λ) = 0, we find that

b0(0, R, ε, 0, λ) = 0 and b0(U, 0, ε, 0, λ) = 0.

Hence we can write b0 as:

b0(U2, R2, ε, B2, λ) = U2R2 b̄0(U2, R2, ε, B2, λ) +B2 b̃0(U2, R2, ε, B2, λ), (92)

where b̄0 and b̃0 are Ck-functions.
Denote by ξ parameter (U2, R2, ε, B2, λ). Keeping in mind (92) the equation (91)

changes to

U2R2

R

(
− H̄(0, λ)2

√
2 + Ḡ1(R, ξ)

)
+B2

(
− π

2
+ Ḡ2(R, ξ)

)
= 0, (93)

where Ḡ1 and Ḡ2 are O(U2R2

R , R,B2, ε) and Ck in (U2R2

R , R,R lnR, ξ, ε2 ln ε).

Let us now recall the notion of a strict Chebyshev system of Ck-functions of
degree one as it was introduced in [2].

Definition 5.16. Let F = {f0, f1} be a sequence of Ck-functions defined on an
interval [a, b] ⊂ R. One says that F is a strict Chebyshev system (in short, ST-

system) on [a, b] (of degree one) if one has that f0 6= 0 for all z ∈ [a, b] and ( f1

f0
)′(z) 6=

0 for all z ∈ [a, b].
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In the next proposition, we give an essential property of ST-systems (of degree
one) that has been proven in [2].

Proposition 5.17. Let F = {f0, f1} be a ST-system on [a, b]. Let (α0, α1) ∈
R2 \ {(0, 0)} and let f = α0f0 + α1f1. Then the function f has at most one simple
zero on [a, b].

Let us write

f0(R, ξ) = −π
2

+ Ḡ2(R, ξ)

and

f1(R, ξ) = R−1
(
− H̄(0, λ)2

√
2 + Ḡ1(R, ξ)

)
.

In what follows, we prove that there exist RP > 0, UP > 0, ε0 > 0, B̃2 > 0
sufficiently small such that for each U2 ∈]0, UP [, R2 ∈]0, RP [, ε ∈ [0, ε0], B2 ∈
[−B̃2, B̃2] and λ ∈ Λ the system {f0(R, (U2, R2, ε, B2, λ)), f1(R, (U2, R2, ε, B2, λ))}
is a ST-system of degree one in the variable R ∈ [U2R2

UP
, RP ].

It is clear that f0 < 0 for (U2R2

R , R,B2, ε) ∼ (0, 0, 0, 0). We have

f1

f0
= R−1

(
ϑ1 + G̃1(R, ξ)

)
(94)

where ϑ1 =
H̄(0, λ)4

√
2

π
and where G̃1 is an O(U2R2

R , R,B2, ε)-function and Ck in

(U2R2

R , R,R lnR, ξ, ε2 ln ε). We can write

G̃1(R, ξ) = g̃1(U2R2

R , R,R lnR, ξ, ε2 ln ε),

where g̃1 is a Ck-function. Applying ∂
∂R to (94) we get

R−1
(
− U2R2

R2
∂1g̃1 + ∂2g̃1 + (1 + lnR)∂3g̃1

)
−R−2

(
ϑ1 + g̃1

)
= R−2

(
− ϑ1 −

U2R2

R
∂1g̃1 +R∂2g̃1 +R(1 + lnR)∂3g̃1 − g̃1

)
, (95)

where g̃1 and its derivatives are calculated in (U2R2

R , R,R lnR, ξ, ε2 ln ε). The ex-

pression in (95) is non-zero by taking (U2R2

R , R, ε, B2) ∼ (0, 0, 0, 0).
Using the Rolle’s Theorem one finds that the cyclicity of δ at B2 = 0 is bounded

by two. This completes the proof of Theorem 4.4.
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