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Abstract We present a new window-based stereo match-
ing algorithm which focuses on robust outlier rejection dur-
ing aggregation to allow for windows of arbitrary size.
Working from the assumption that depth discontinuities oc-
cur at colour boundaries, we segment the reference im-
age and consider all window pixels outside the image seg-
ment that contains the pixel under consideration as outliers
and greatly reduce their weight in the aggregation process.
We developed a variation on the recursive moving average
implementation to keep processing times independent from
window size. Together with a robust matching cost and the
combination of the left and right disparity maps, this gives
us a robust local algorithm that approximates the quality of
global techniques without sacrificing the speed and simplic-
ity of window-based aggregation.

1. Introduction

The stereo correspondence problem is an important chal-
lenge in computer vision. Much work is increasingly be-
ing done on stereo algorithms that produce dense dispar-
ity maps, as these can be used for view synthesis and
video based rendering. A thorough survey and taxonomy
of dense stereo techniques was provided by Scharstein and
Szeliski[10].

Fast area-based approaches focus mostly on the aggrega-
tion step but run into problems when deciding the window
size to be used during cost aggregation. Small windows do
not contain enough information and lead to noisy results,
while large windows contain enough texture information
but encompass pixels at different depths near depth discon-
tinuities, which leads to overblown foreground objects, as
pixels near depth discontinuities become bimodal and will
display a strong preference towards the foreground dispar-
ity, even if they are part of the background (the foreground
fattening effect[10]). In this paper we present a method to
avoid this through segmentation-based outlier rejection.

2. Related Work
In 2001, Scharstein and Szeliski published a taxonomy and
evaluation of dense stereo algorithms [10]. This work fur-
ther illustrated the intuitive notion that while local tech-
niques excell at achieving high speeds, global techniques
are better suited to generate high quality disparity maps.
Consequently, most recent work has focused on develop-
ing global algorithms. But significant work has also been
done on local methods.

Adaptive-window methods change the size and shape of
their window adaptively for each pixel. Kanade and Oku-
tomi [6] evaluated the local variation of intensity and dis-
parity at each pixel to select an appropriate window. Their
window shape was limited to rectangles and therefore ran
into problems near arbitrarily shaped depth discontinuities.
The method was also computationally expensive and relied
heavily on a sufficiently accurate initial disparity estima-
tion. To improve performance, multiple-window methods
[3][7] use a small number of predefined windows amongst
which they choose the optimal one.

By assigning different support-weights to different pix-
els in the window, Prazdny [9] and Xu et al. [12] tried to
overcome this problem. The former assigned weights to
neighbouring pixels iteratively while the latter used radial
computations. Both these methods are dependent on an ini-
tial disparity estimation, which needs to be accurate enough.
Yoon and Kweon [13] eliminated this reliance by using a
non-iterative approach. They based their weights on the
photometric and geometric relationship with the pixel un-
der consideration. They achieved good results but at a high
computational cost. Their technique was also susceptible to
image noise.

In recent years, segmentation-based techniques have
proven adept at correctly handling edges. Though they of-
ten come at a computational cost, they have proven to be
some of the highest quality algorithms to date.

Tao et al.[11] proposed an analysis-by-synthesis method
to maintain depth discontinuities. A reference image is seg-
mented based on color and each image segment is then it-
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eratively warped to the other views. The depth within an
image segment is assumed to be smooth and representable
by a plane-plus-parallax model.

Zhang and Kambhamettu[14] presented a stereo match-
ing algorithm with integrated 3D scene flow computation.
The algorithm consists of a hierarchical rule-based match-
ing scheme employing color segmentation to enforce depth
discontinuities. Scene flow is estimated via an energy min-
imization procedure and later applied as constraints on the
depth estimation to make it more accurate and robust.

3. Algorithm

3.1 Overview

We start out by applying a robust function to our per-pixel
matching costs to reduce the influence of all outlier pixels.
This gives us the disparity volume to aggregate over.

During aggregation, all pixels inside the window whose
disparities differ greatly from the central pixel under consid-
eration, should be considered as outliers. But it is exactly
these disparities we are trying to determine. We solve this
problem by making the assumption that depth discontinu-
ities occur across colour discontinuities and use a segmen-
tation of the image to ignore outliers.

Finally we improve our results by combining the left and
right disparity maps.

3.2 Robust Matching Costs

The need for robust matching costs becomes clear when we
look at the problem as one of pure outlier contamination.
After all, when aggregating the matching costs, pixels with
very high matching costs will disrupt the average, especially
near depth discontinuities where they will exert too much
influence. Scharstein and Szeliski[10] noted this and exper-
imented with truncated matching costs, which provided a
small improvement. We chose to use the Geman-McClure
function[4], a proven technique to handle outliers:

ρ(x) =
x2

x2 + σ2

Beyond a certain point, determined byσ, its influence be-
gins to descend and smoothly converges to zero. The trans-
formed matching costρ(x) converges to 1. Therefore,
no matter how large the raw costs become, after applying
Geman-McClure, they will never exceed 1.

3.3 Segmentation Based Outlier Rejection

We assume that depths vary smoothly within any image seg-
ment with homogeneous colour. Based on this assumption,
we can disregard or diminish the influence of those pixels
within the aggregation window that fall outside the image

segment which contains the central pixel under considera-
tion. We use Comaniciu and Meer’s mean shift algorithm
[2] to segment the reference image.

Unlike other segmentation based techniques, we do not
impose that all pixels in the same segment must share the
same depth or lie on a simple, locally fitted surface such
as a plane. Instead, we use the segmentation as a guide
for robust aggregation. Ideally, any pixels outside the im-
age segment should be considered outliers. However, these
outlier pixels are not completely ignored in our aggregation
but receive a small weightλ compared to the pixels inside
the image segment. We do this to protect our algorithm
from oversegmentation artefacts. By weighing the pixels
outside of the window with a small weight, we can aggre-
gate enough information in highly textured areas while still
remaining accurate around depth discontinuities.

Because we aggregate across a window and thus not nec-
essarily across all pixels in a segment, we are protected
from some artefacts of undersegmentation, where depths
from one object will cut into another object because an im-
age segment crosses an object boundary. In the hypothet-
ical worst-case scenario where the whole image is one big
segment, our technique will still score equally well as the
normal aggregation technique combined with the Geman-
McClure function, whereas other segmentation based tech-
niques would run into severe problems.

3.4 Disparity Map Combination

To improve the accuracy of our results, we calculate a depth
image for both stereo images and combine them to elimi-
nate some final oversegmentation artefacts. Depending on
which view we are computing the disparity map for, we will
warp the other disparity map back to this view. Underseg-
mentation faults will lead more frequently to overly high
disparities than overly low disparities (because of the fore-
ground fattening effect). Therefore, assuming that any un-
dersegmentation fault only occurs in one of the two views,
we take the minimum of both disparity maps.

This technique has the added advantage of improving
disparities in occluded areas, as pixels in these areas will
usually have too high disparities as they try to move out
from under the occluding object to match with similar pix-
els in the background object.

3.5 Implementation

Most window-based aggregation techniques thank their
high performance speeds to the fact that they can be im-
plemented as recursive moving average filters with running
times independent of the window size.

While our segmentation based outlier rejection allows
for windows of arbitrary size without suffering from the
foreground fattening effect, the recursive moving average
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(a) Ground truth (b) SSD + MF from [10] (c) State of the art, [1] (d) Our method

Figure 1:Comparison of our technique with others

filter implementation will no longer work in this case.
When aggregating the disparity rows in the classic recursive
implementation of the moving average filter, the aggregated
valueAi+1 for pixel i + 1 equalsAi - Ci−w/2 + Ci+w/2,
whereCx is the matching cost at pixelx. Unfortunately,
when working with segments, pixelsi, i + 1, i − w/2 and
i + w/2 can all fall in different segments.

Algorithm 1 Segmented Moving Average
1. For each row:

(a) For each segment s:Ts = 0

(b) For each pixeli in row j:

i. Tsi+w/2,j
= Tsi+w/2,j

+ Ci+w/2,j

ii. Tsi−w/2,j
= Tsi−w/2,j

− Ci−w/2,j

iii. Ar
i,j = Tsi,j

iv. As
i,j = As

i−1,j + Ci+w/2,j − Ci−w/2,j

2. For each column:

(a) For each segment s:Ts = 0

(b) t = 0

(c) For each pixelj in columni:

i. Tsi,j+w/2
= Tsi,j+w/2

+ As
i,j+w/2

ii. Tsi,j−w/2
= Tsi,j−w/2

- As
i,j−w/2

iii. t = t + Ar
i,j+w/2

- Ar
i,j−w/2

iv. Ai,j = λ × (t − Tsi,j
) + Tsi,j

A brute force implementation of the segmentation-based
moving average filter would be far too slow to be of any
practical use. Therefore we developed a variation on the
moving average algorithm, so that our aggregation speeds
are again independent from the window size, allowing us to
use large windows without any speed penalties.

Our solution is explained in simplified form in Algorithm
1. Trivial precautions that need to be taken at the borders of
the image are left out for clarity. For each segments, we
keep track of a running averageTs. As the edges of our
aggregation interval move through different segments, we

update the corresponding averages. To find the aggregated
costAr of the central pixel in the interval, we simply check
which segment the pixel falls into and look up its average.
At the same time, we also perform regular recursive moving
average computation (As) so we can combine the aggre-
gated value inside the segment with the aggregated value
outside the segment, weighed by a factorλ.

4. Results
Figure 1 and Table 1 show our result on the Tsukuba data
compared to other techniques. Figure 2 shows the result of
our technique on two other standard Middlebury data sets.
Even though our algorithm is significantly faster and less
complex, our results approach those of global correspon-
dence techniques. Calculating the final disparity map with
51 × 51 windows andλ = 0.01 for the Tsukuba stereo pair
took 1.26 seconds in a C++ implementation on a 3 GHz
Pentium 3 computer. Approximately 35% of that time was
spent on segmentation, 20% on calculating the per-pixel
matching costs, 25% on aggregation and 15% on combining
the two disparity maps.

Algorithm Tsukuba Venus Teddy Cones

Segm+visib [1] 1.57 1.06 6.54 8.62

AdaptWeight [13] 1.85 1.19 13.3 9.79

GC+occ [8] 2.01 2.19 17.4 12.4

Our method 2.27 1.22 19.4 17.4

Reliablty-DP [5] 3.39 3.48 16.9 19.9

GC [10] 4.12 3.44 25.0 18.2

SSD+MF [10] 7.07 5.16 24.8 19.8

Table 1: Percentage of badly labeled disparities of several
techniques, including ours, on the Middlebury test case

5. Conclusion
In this paper, we have shown how local, window based
stereo aggregation can be performed with arbitrarily sized
windows without suffering from the foreground fattening
effect. We used a combination of robust matching costs
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(a) Teddy, 30 disparities

(b) Cones, 16 disparities

Figure 2: Results of our algorithm on some of the Middle-
bury datasets

based on the Geman-McClure function, and segmentation-
based outlier rejection. We developed a variation on the
recursive moving average filter to keep running times inde-
pendent of the window size. By combining the left and right
disparity map, we further improved our results.

Using these techniques, we approach the results of global
methods without sacrificing the simplicity, flexibility and
speed of local aggregation methods.
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