
Made available by Hasselt University Library in https://documentserver.uhasselt.be

SOFA: Software for Observing Force-feedback Algorithms

Peer-reviewed author version

RAYMAEKERS, Chris & CONINX, Karin (2006) SOFA: Software for Observing

Force-feedback Algorithms. In: Proceeding of Eurohaptics..

Handle: http://hdl.handle.net/1942/1747

Online Submission ID: 0

SOFA: Software for Observing Force-feedback Algorithms

Category: Research

ABSTRACT

Over the past few years, haptic algorithms have advanced consider-
ably. However, no standard evaluation method exists, which allows
researchers to compare their results in an objective manner. This
paper elaborates on an evaluation method for haptic algorithms. As
this method makes use of user input, an experiment was conducted
to define how to the evaluation method should be applied.

In order to allow researchers to apply the evaluation method, a
C++ library was developed: SOFA, Software for Observing Force-
feedback Algorithms. This library can be used in haptic rendering
libraries, which allows developers to provide their own haptic de-
vice implementation.

Finally, the SOFA library can also aid in debugging haptic algo-
rithms, as it can provide developers with consistent haptic input and
can allow them to experience what the users felt.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Validation; D.2.5 [Software Engineering]: Testing
and Debugging—Debugging aids; H.5.2 [Information Interfaces
and Presentation (e.g., HCI)]: User Interfaces—Haptic I/O

Keywords: haptics, algorithm evaluation

1 INTRODUCTION

Although the number of haptic algorithms have grown over the
last couple of years, no standards currently exist for evaluating and
comparing haptic algorithms. Different methods have been used in
the past. For instance, the time complexity of a haptic algorithms
can be mathematically calculated [self-reference]. Although this
leads to a better understanding of the algorithms’ performance, it
does not allow for the comparison of two algorithms with the same
time complexity. Furthermore, due to the behaviour of the end user,
some optimizations are difficult to predict. Thus, these theoretical
findings should be complemented with real-life measurements in
order to know the exact behaviour.

Another approach is to load the haptic loop until the calcula-
tions cannot be performed any longer in real-time. For instance,
Acosta and Temkin [1] compared different versions of the GHOST
API by rendering objects and scenes of increasing complexity until
the API could not obey the 0.9ms maximum haptic rendering time.
Although, it does not take the performance at a lower load into ac-
count, this approach is suited to test the limits of an implementation,
which is a valuable metric.

As a third approach, a graphical tool can be used in order to visu-
alize the hapic load. The GHOST haptic API provides a graphical
tool which displays the haptic load using 10% intervals, as depicted
in figure 1. This approach was used to compare the mesh rendering
implementation of GHOST and e-Touch [2].

The above-mentioned approaches have two flaws. A first prob-
lem is that they do not provide exact numerical results, which can
make it more difficult to draw conclusions. The second problem is
that the algorithms are not compared in an equal manner. As the
evaluation occurs while the user is interacting in real-time with the

Figure 1: GHOST haptic load tool

algorithm, it is possible to unintentionally give one algorithm input
which can be more easily handled (e.g. by unintentionally avoiding
concave parts of the object used).

In this paper, we introduce the SOFA library, a C++ library,
which supports an empirical approach for evaluation of haptic algo-
rithms. In the next section, we will discuss this evaluation method.
Afterwards, we elaborate on the SOFA library and explain how it
can support the evaluation method. Next, an experiment will be de-
scribed in which we investigated how the evaluation method can be
applied. Finally, we draw some conclusions.

2 EVALUATION METHOD FOR HAPTIC ALGORITHMS

The evaluation method is based on our theoretical framework for
comparing haptic algorithms. In this section, we will summarize
the major points of this framework. For a more detailed and formal
explanation, we refer the interested reader to [self-reference]. We
will first give a definition of the terms, our evaluation method is
based on.

2.1 Defintions

First, we define what we mean with haptic algorithms in the scope
of this paper.

Definition 1 A geometric haptic algorithm is a two-fold algorithm.
Its input is the current position and velocity of the pointer, as de-
fined by the force-feedback device, and a virtual object , which has
to be rendered. The first part is a collision-detection step, which
calculates whether the pointer position is located inside the object.
The second step, called the render step, calculates the surface con-
tact point (SCP) and the force that should be exerted by the force-
feedback device.

Next, we can define if two algorithms produce the same output.

Definition 2 Two haptic algorithms are collision equivalent if their
collision-detection steps produce the same result for each possible
input.

Definition 3 Two haptic algorithms are render equivalent if they
are collision equivalent and the position of the SCP, as calculated
in their render steps, differ less than the appropriate JND1 for each
possible input.

1The just noticeable difference (JND) is the smallest change in pressure,
position, . . . that can be detected by a human and depends on the body

1

Online Submission ID: 0

Definition 4 Finally, two haptic algorithms are equal if they are
render-equivalent and the forces, as calculated by their render
steps, differ less than the appropriate JND for each possible input.

We define the three levels in definitions 2 through 4 because dif-
ferent algorithms can have different purposes. For instance, a new
algorithm can be created in order to be faster. In that case, the new
algorithm should be equal to existing implementations.

It is also possible that a new algorithm modifies the force vector
in order to implement a haptic texture [8]. This algorithm can be
render-equivalent to existing algorithms.

Finally, a new algorithm could be created which rounds certain
edges by modifying the SCP. This algorithm can be collision equiv-
alent to existing algorithms.

2.2 Evaluation Method

The evaluation method consists of four steps. In a first step, a num-
ber of users inspect a number of 3D objects with a haptic device
for a certain amount of time. During this phase, the position and
velocity of the user’s pointer is recorded in the haptic loop.

In a next step, this data is used as input for the algorithms that
are being evaluated. This means that the stored user input is used
instead of real-time user input, thus ensuring that all algorithms
receive the same input values. The time needed to execute each
haptic loop, the SCPs and the calculated forces are logged.

Next, the logged data is stored in a database for easy retrieval.
This is needed in order to handle the large amounts of data involved.
For instance, the experiment in section 4 resulted in 1,440,000 mea-
surements.

Finally, the data can be analyzed. When comparing two algo-
rithms, we can not only use statistical techniques in order to com-
pare which one is faster, but we can also see if they are collision-
equivalent, render-equivalent or equal. This should be checked, as
this evaluation method only works on algorithms that are at least
collision-equivalent.

When comparing the execution times of the different algorithms,
one must make sure to not just take the average time of the different
loops. A loop in which the pointer collides with the object will take
more time, as the SCP and the force have to be calculated. It is
therefore better to calculate the average time of the loops where
no collision has occurred and the average time of the loops with
collision.

This evaluation method has been put to the test by evaluat-
ing a naive and an optimized algorithm, as these results can be
easily interpreted. We found that the results of our evaluation
method are supported by the theoretical comparison of both im-
plementations [self-reference]. It was also successfully used for the
evaluation of different algorithms for haptic cloth rendering [self-
reference].

However, some question do remain about the exact usage of the
evaluation method, which will be explained in the next section.

2.3 Open Questions

As it is impossible to provide the algorithms with all possible input
combinations, we have to limit the amount of data that is collected
in the first step. Assuming that nu users inspect no objects for te
seconds and that the haptic loop has a sampling rate of fsr Hertz,
we obtain the following number of data points nd :

nd = nu×no× te× fsr (1)

area where the stimulus is applied [3]. As an example, one cannot tell the
difference between two orientations of one’s wrist if they are less than 2.5◦
apart.

The only constant in this equation is fsr as most haptic APIs use
1000 for this value. However, the question remains how many ob-
jects should be used, the number of test subjects and the amount of
time that they can investigate the objects. Furthermore, objects can
range in complexity. Here we can differentiate between complex-
ity for the algorithm (e.g. the polygon count) and for the user (e.g.
different geometric features). Furthermore, users with a different
experience level do not use haptics in the same manner. Usability
tests of interaction paradigms have shown us that user experience
can play a major role in the evaluation [self-reference]. This can
potentially pose a problem, as people with much experience are
hard to find. Besides the researchers involved in developing the al-
gorithm to be tested, it is difficult to find people who are familiar
enough with haptics. Of course, the involved researchers should not
participate in the experiment as they may involuntary influence the
outcome of the result because of their knowledge of the system to
be tested.

Finally, the user must have enough time to be able to fully inspect
the object, but this should not take to long in order not to bore them.

Section 4 will elaborate on an experiment we conducted in order
to answer some of these remaining questions. First, we will ex-
plain the SOFA library, which can be used to support the evaluation
method.

3 SOFTWARE FOR OBSERVING FORCE-FEEDBACK ALGO-
RITHMS

The evaluation method described in this paper is supported by the
SOFA library, Software for Observing Force-feedback Algorithms.
SOFA consist of a C++ library, which can be incorporated in most
haptic libraries, and a number of Perl scripts, which can extract data
from the database in which the SOFA C++ library stores its results.
For this database PostgreSQL, a powerful open source database, is
used.

This section explains how SOFA can be used in the four steps of
our evaluation method, as explained in section 2.2, and discusses a
Haptic Viewer which can aid in the analysis and discussion of hap-
tic algorithms. The SOFA library and Haptic Viewer are available
on http://. . . (will be made public if the paper is accepted).

3.1 Recording

One of the classes in the SOFA library allows to log the user’s po-
sition and velocity. This Recorder class provides a method which
should be called in each loop. This method assigns an ID to the
current loop and records the pointer’s position and velocity, which
it receives as parameters.

The Recorder class stores the positions and velocity in main
memory as disk latencies could result in an unacceptable slowdown
of the haptic loop. Therefore, the Recorder class also provides a
method for saving the log to a comma-separated values file after-
wards. This log file can than be used in the next step of the eval-
uation method. Listing 1 shows the first lines of an example log
file.

The first line indicates that this is a file that can be handled by the
SOFA library. The following lines each contain the ID of the loop,
the pointer position and velocity. Note that this velocity is 0 in these
lines, as this is the result returned by the PHANToM device; after a
few loops, the velocity gets a non-zero value.

Listing 1: Example SOFA recording

Sofa r e c o r d i n g v1 . 0
0 ,0 .00189182 ,−0 .0044273 ,−0 .00369428 ,0 ,0 ,0
1 ,0 .00189262 ,−0 .00295216 ,−0 .00221647 ,0 ,0 ,0
2 ,0 .00126255 ,−0.00295279 ,−1.37262 e−006 ,0 ,0 ,0
3 ,0 .00126201 ,−0 .00295258 ,−0 .00147804 ,0 ,0 ,0

2

Online Submission ID: 0

The Recorder class can be used in each haptic library, which
can be extended (e.g. GHOST). The researcher wanting to use the
evaluation method has to write an application, which allows the
user to investigate the object. This application hence has to provide
graphic feedback and haptic feedback using a reference algorithm,
and must use the Recorder class to log the haptic data. Listing 2
gives an example of the Recorder class’ use.

Listing 2: Example use of the Recording class

/ / c r e a t e a r e c o r d i n g o b j e c t
Sofa : : R e c o r d e r r e c o r d e r ;

/ / r e c o r d t h e i n f o r m a t i o n t o main memory
r e c o r d e r . S t a r t () ;
whi le (/∗ r e c o r d i n g ∗ /)
{

/∗ g e t c u r r e n t p o s i t i o n and v e l o c i t y
from t h e h a p t i c d e v i c e ∗ /

r e c o r d e r . Log (pos x , pos y , pos z ,
v e l x , v e l y , v e l z) ;

}
r e c o r d e r . s t o p () ;

/ / save t h e i n f o r m a t i o n t o t h e d i s k
r e c o r d e r . Save (l o g f i l e) ;

3.2 Playback

In order to provide the data saved by the Recorder class, the SOFA
library provides a Playback class, which can read back the comma-
separated file and provide the data to an application. However, the
data used does not have to be limited to prerecorded data. Although,
we advise to use data from user interactions, it is also possible to
use other data, such as recordings of physical objects [10], in order
to validate the correctness of the algorithms, as long as the data is
stored using the correct file format.

The Playback class can only be used in a haptic library that al-
lows the use of different haptic devices, such as CHAI 3D [5], e-
Touch [2], Haptik [6] or HAL (see section 3.5). In order to use
this class for the evaluation, an application must be written, which
uses one of the algorithms to be tested and a pseudo haptic de-
vice, which acts like a real haptic device, but uses the data from
the comma-separated file instead of life interactions with a user.
This application must use the same objects as the application that
recorded the user data. Listing 3 gives an example of the Playback
class’ use.

This process is not only suitable for evaluating haptic algorithm,
but can also used for debugging purposes. As haptic applications
are highly interactive, it is difficult to reproduce the exact user in-
put that led to a problem. It is also often difficult to use breakpoints
while debugging haptic applications due to their highly interactive
nature. By logging the user input, developers can recreate the prob-
lem time after time.

3.3 Logging

Each loop, the data provided by the algorithm to be tested has to
be stored. A third class, the Logger class, provides this function-
ality. This class contains methods for measuring the time needed
to execute the algorithm, using the MS Windows high performance
counters. These methods for starting and stopping the measurement
should be called just before and after the executing of the algorithm
in order to avoid measuring other parts of the haptic loop (e.g. the
time needed to traverse the scene graph). Since MS Windows is not
a real-time operating system, unexpected delays can occur [4]. This
can be minimized, by setting the measurement thread’s priority to

“time critical” and by allowing other threads to be executed during
each loop just before the algorithm is measured. Furthermore, the
measurement thread should always execute on the same processor
if a multi-processor system is used as a switch from one processor
to another has an influence on the high performance counters.

The Logger class must also be called in each loop in order to
store the results of the algorithm to be tested in the PostgreSQL
database. The class provides a method for this purpose, which
stores the IDs of the algortihm, test subject, object and loop. Fur-
thermore, the fact if collision has occurred, the SCP and the force
vector are stored in the database using the C library which is pro-
vided with PostgreSQL. Listing 3 gives an example of the Logger
class’ use.

Listing 3: Example use of the Playback and the Logger classes

/ / c r e a t e a p l a y b a c k o b j e c t
Sofa : : P l a y b a c k p l a y b a c k (l o g f i l e) ;

/ / c r e a t e a l o g g e r o b j e c t and c o n n e c t t o t h e DB
Sofa : : Logger l o g g e r (a l g o r i t h m , s u b j e c t , o b j e c t) ;
l o g g e r . I n i t (” l o c a l h o s t ” , ” s o f a ” , ” s o f a ” , ” s o f a ”) ;

/ / read t h e da ta from t h e l o g f i l e
whi le (p l a y b a c k . NextLoop ())
{

p l a y b a c k . G e t P o s i t i o n (pos x , pos y , p o s z) ;
p l a y b a c k . G e t V e l o c i t y (v e l x , v e l y , v e l z) ;

Swi tchToThread () ;
l o g g e r . S t a r t () ;
/∗ g i v e t h e da ta t o t h e h a p t i c a l g o r t i h m ∗ /
l o g g e r . S top () ;

l o g g e r . Log (loop , c o l l i s i o n , SCP x , SCP y ,
SCP z , f o r c e x , f o r c e y , f o r c e z) ;

}

/ / l e t t h e DB commit t h e da ta
l o g g e r . S a v e R e s u l t s () ;

The Recorder class stores its data in comma-separated files for
performance purposes. However, for the analysis phase, it is more
efficient to also have this data in the database. SOFA therefore pro-
vides a Perl script for storing the Recorder data into the database.

3.4 Analysis

After all data is logged, the database can support in the analysis
phase. An administration program, such as pgAdmin III, which
comes with PostgreSQL and allows the user to make SQL queries
and copy the result to another program, can be used. For instance,
the results of table 1 were obtained by executing the SQL query in
listing 4.

Listing 4: Sample SQL query

SELECT s u b j e c t , STDDEV(p o s i t i o n x) ,
STDDEV(p o s i t i o n y) , STDDEV(p o s i t i o n z)

FROM l o g s GROUP BY s u b j e c t

However, SOFA already has a number of Perl scripts which can
be used for the analysis. These scripts make use of a common Perl
module, which handles the communication with the database and is
part of SOFA. It is thus easy for researchers to write their own Perl
scripts for performing an analysis that is specific for their research.

One of these scripts checks if the tested algorithms are collision
equivalent as this is the requirement for our evaluation method. A

3

Online Submission ID: 0

(a) Sphere with a football texture (b) Couch (c) Car (d) USS Enterprise

Figure 2: Objects used in the experiment (curtesy of www.3dcafe.com)

second Perl script indicates in which loops the tested algorithms re-
turn a different result for the collision detection step as the previous
loop. This can help to understand the behaviour of the algorithms.

The third Perl script exports the time measurements as two files
that can be read by statistical programs, such as R [9]: one file for
the loops where no collision occurred and one files for the loops
where collision occurred. This way the algorithms can be statisti-
cally compared. SOFA also contains an R script for executing the
statistical analysis. However, a number of statistical packages have
problems handling the large amount of data involved.

3.5 Haptic Viewer

A last Perl script extracts data from the database into comma-
separated file, which allows developers of an haptic algorithm to
recreate the feeling that a test user had. This data combines the data
stored the Recorder by class and by the Logger, as can be seen from
listing 5.

Listing 5: Example input for the Haptic Viewer

Sofa v i ewing v1 . 0
0 .00189182 ,−0.0044273 ,−0.00369428 , ←↩

0 .001892 ,−0 .004427 ,−0 .003694 ,0 ,0 ,0
0 .00189262 ,−0.00295216 ,−0.00221647 , ←↩

0 .001893 ,−0 .002952 ,−0 .002216 ,0 ,0 ,0
0.00126255 ,−0.00295279 ,−1.37262 e−006 , ←↩

0.001263 ,−0.002953 ,−1 e−006 ,0 ,0 ,0
0 .00126201 ,−0.00295258 ,−0.00147804 , ←↩

0 .001262 ,−0 .002953 ,−0 .001478 ,0 ,0 ,0

Each line consists of the pointer position, the SCP and force in a
particular haptic loop. As no collision occurs in this example, the
SCP is equal to the pointer position and the force is zero.

Whereas in training systems, such as the Virtual Haptic
Back [11], forces are used to draw the user towards the recording
path, the haptic viewer returns the recorded forces to the user. The
original position and the SCP is visually rendered as a red and blue
sphere respectively. Furthermore, the force is depicted by a line,
starting from the SCP and in the direction of the force vector. This
can be useful for discussing rendering artifacts, since these can be
felt in the same manner by all parties involved.

The haptic viewer can also be useful to communicate the re-
sults of an algorithm to fellow researchers. This has already been
achieved for inspecting objects. Phantom-X [7] allows users to feel
objects via an ActiveX control in their web browser. Although, this
has as advantage that the user is able to see the original object, this
ActiveX control only supports a limited number of algorithms and
devices.

The SOFA haptic viewer makes use of our haptic library, HAL.
This library consists of a extensible core library and a number of
libraries, which implements haptic devices, scene graphs and object

rendering algorithms. The haptic device can be loaded by the HAL
library at run-time. This means that an application, such as the
Haptic Viewer, that is written on top of HAL does not need to know
the implementation of the haptic device.

The next section elaborates on an experiment that was conducted
using the SOFA library.

4 EXPERIMENT

In order to address the problems as elaborated on section 2.3, we
conducted an experiment in which different test subjects were asked
to interact with four different virtual objects. These objects, as de-
picted in figure 2, each have a different complexity, both for the
algorithm as for the test subject.

For this experiment, we choose 12 test subjects: four persons
with much experience with haptics (haptics researchers), four per-
sons with moderate experience (who have occasionally used a hap-
tic device) and four persons with little to no experience. All twelve
test subjects inspected all four objects for 30 seconds. In order to
avoid learning effects, we used a latin square design in order to to
present the four objects to each test subject within one of the three
groups in a different sequence.

We recorded and logged for each loop the position and veloc-
ity of the pointer, the fact if collision has occurred, the SCP and
the output force. This was realized by using the SOFA library for
recording, logging and analysing the results, and CHAI 3D [5] as
haptic library.

The results of the experiment are discussed in the next section.

5 RESULTS AND DISCUSSION

In order to define a set of recommendations for evaluating haptic
algorithms, we investigated the influence of user behaviour and ob-
ject complexity.

5.1 Spread of Pointer Position

In order to analyze how the test subjects investigated the virtual
objects, we first looked at the spread of the pointer positions during
the experiment, using the standard deviation of the pointers’ X, Y
and Z coordinates. In our work, we use a right-handed co-ordinate
sytem, where X, is right-left and Y is up-down. As can be seen from
table 1, little difference in standard deviation can be found among
the test subjects.

More importantly, we wanted to investigate if there exists a dif-
ference between users with a different level of experience. We
therefore, divided the test subjects into three groups according to
experience level and calculated the standard deviation. Table 2 con-
firms that experience makes little difference in the spread of the
pointer position.

4

Online Submission ID: 0

Table 1: Standard deviation of the user’s point position, grouped by
user

user X Y Z
1 0.44705 0.33562 0.32943
2 0.42455 0.30784 0.32465
3 0.43965 0.39586 0.34408
4 0.50323 0.39450 0.31595
5 0.41006 0.29739 0.27124
6 0.39574 0402010 0.42818
7 0.44907 0.38026 0.36373
8 0.47683 0.33691 0.34002
9 0.42557 0.43067 0.37193

10 0.49264 0.3430 0.41487
11 0.47935 0.3888 0.45041
12 0.46881 0.3258 0.46392

Table 2: Standard deviation of the user’s pointer position, grouped
by experience level

experience X Y Z
much experience 0.46842 0.36178 0.33767
some experience 0.44935 0.35791 0.36159
little experience 0.46890 0.38318 0.43028

Although, little variation exists between test subjects, the com-
plexity of the object being investigated does have an influence on
the spread of the pointer movements. As can be seen from table 3,
the shape of the object has an influence on the user’s movements.
We did not find any significance for the X values, but this can be ex-
plained as the user first had to move their pointer to the right since
the objects were located to the right of the pointer’s starting posi-
tion. Using an F-test for variance we found a significant difference
for the Y value between object 1 and the three other objects and
between objects 2 and 4. We also found a similar results for the Z
values.

Table 3: Standard deviation of the user’s pointer position, grouped
by object

object X Y Z
1 0.50994 0.48185 0.49315
2 0.46394 0.31897 0.44135
3 0.49595 0.15784 0.25430
4 0.36212 0.41015 0.20122

5.2 Collisions

When looking at the number of collisions with the objects, as de-
picted in table 4, one can see that the test subjects were more confi-
dent in investigating object 1 (the football). Using paired student t-
tests, we can find a significant difference between this object and the
other objects (p<.5). No significant difference between the other
objects can be found.

This implies that an evaluation of a haptic algorithm should in-
corporate both simple as complex objects. Using only simple ob-
jects will generate little data to validate the case were no collision
occurs. Using also complex objects increases this amount of data.
Combining both makes sure that enough data is collected when col-
lision occurs as this will likely be more critical for the haptic algo-
rithm. Furthermore, the test subjects indicated that the task of ex-
ploring the football was very simple. Also using complex objects
helps to keep the test subjects engaged.

Table 4: Number of collisions per user and per object
user object

1 25617 17101 21374 20354
2 25648 17184 17843 18348
3 28774 21539 18449 15859
4 29448 17850 16477 15535
5 29385 17692 13895 16472
6 28015 11763 18897 14687
7 28668 19460 19632 19708
8 29159 16531 16645 15678
9 25263 17578 14770 14791

10 28783 17710 17887 10225
11 28939 13626 8577 14116
12 26489 15323 12843 12456

On the other hand, we can see a difference in the behaviour of
test subjects according to the experience they have with haptics.
Table 5 groups the total number of collision by experience level.
Using paired t-test, we found a significant difference (p<.5) be-
tween users with much experience and users with little experience
for objects 3 and 4. For object 4, we also found a significant dif-
ference between users with some experience and users with little
experience

Table 5: Number of collisions per object, grouped by user experience
experience object

1 2 3 4
much experience 109487 73674 74143 70096
some experience 115227 65446 69069 66545
little experience 109474 64237 54077 51588

This implies that an evaluation of a haptic algorithm should in-
corporate both test subjects with much experience as test subjects
with little experience.

Furthermore, when we look at the transitions between collision
and no collision and vice versa, we can see a significant difference
between the first object and the other objects (p<.001). However,
we cannot find a significant difference when looking at the experi-
ence level. Table 6 summarizes these results.

Table 6: Average number of transitions between collision and no-
collision and vice versa, grouped by user experience

experience object
1 2 3 4

much experience 16.5 52.25 89 76.75
some experience 11.25 77.75 51.75 41.25
little experience 20.5 48.5 57.5 55

5.3 Forces

When comparing the average of the forces that the algorithm had
to calculate, little difference between the three categories of experi-
ence can be found, as shown in table 7.

5.4 Discussion

In this experiment, we obtained 1,440,000 data points, as can be
seen by filling in values of equation 1:

5

Online Submission ID: 0

Table 7: Average length of the force vector, grouped by user experi-
ence

experience object
1 2 3 4

much experience 9.301 10.740 9.831 6.764
some experience 8.904 9.0184 10.043 6.466
little experience 8.723 7.940 7.7962 6.425

nd = nu×no× te× fsr

= 12×4×30×1000
= 1,440,000

(2)

This amount of data is too large to be handled efficiently, con-
sidering that this has to be multiplied by the number of algorithms
to be tested. Also, the setup of the test can be difficult. In this pa-
per, we had 4 experienced participants as only 4 members of our
research group (excluding the authors) met this criterium. Further-
more, finding good objects can be difficult at least, as most available
objects are made with only visual applications in mind, thus having
invisible gaps, where the user’s pointer can “fall” through. This can
be remedied if researchers make their test data public, but still pro-
vides difficulties when evaluation a new kind of haptic algorithms.
For instance, the data presented in this paper is suitable for ren-
dering algorithms that deal with rigid objects, not with deformable
objects.

It is therefore advisable to reduce the amount of data. This can
not be achieved by reducing the haptic sampling rate, as the 1 kHz
rendering rate is an established value. Furthermore, during our ex-
periment we did not find any reason that the 30 second sampling
time was not suitable.

On the other hand, the small amount of difference between the
complex objects suggests that the number of objects can be de-
creased. We propose to use one simple, such as object 1, one more
complex objects, such as object 2 and one complex object, such as
object 3 or 4.

Likewise, the number of test subjects can be decreased. We
found a significant difference between test subjects with much ex-
perience and test subjects with little experience. Therefore, both
categories should be involved. Within the groups, little differences
can be found. We therefore propose to use two users with much
experience and two users with little experience.

This leads us to a smaller amount of data as calculated in equa-
tion 3.

nd = nu×no× te× fsr

= 4×3×30×1000
= 360.000

(3)

Although this amount of data is still considerable, it can be han-
dled more easily.

6 CONCLUSIONS

This paper discussed a method for evaluating haptic algorithms in
an objective manner. Based on our theoretical framework for the
evaluation method, we investigated the sample size that is needed
in order to perform the evaluation. Furthermore, SOFA, a software
library for conducting such an evaluation was elaborated on. This
library can be used in extensible haptic libraries. The experiment
conducted not only determined the sample size, but also showed
that SOFA can be used in combination with the CHAI 3D library.
REFERENCES

[1] Eric Acosta and Bharti Temkin. Scene complexity: A measure
for real-time stable haptic applications. In Proceedings of the sixth
PHANToM Users Group Workshop, Aspen, CO, USA, October 27–30
2001.

[2] Tom Anderson and Nick Brown. The activepolygon polygonal algo-
rithm for haptic force generation. In Proceedings of the sixth PHAN-
ToM Users Group Workshop, Aspen, CO, USA, October 27–30 2001.

[3] Grigore C. Burdea. Force And Touch Feedback For Virtual Reality.
Winley Inter-Science, 1996.

[4] Nicolas Castagne, Jean-Loup Florens, and Annie Luciani. Computer
platforms for hard-real time and high quality ergotic multisensory sys-
tems. In Proceedings of 2nd International Conference on Enactive
Interfaces, Genoa, IT, November 17–18 2005.

[5] F. Conti, F. Barbagli, R. Balaniuk, M. Halg, C. Lu, and D. Morris. The
CHAI libraries. In Proceedings of Eurohaptics 2003, pages 496–500,
Dublin, IE, July 6–9 2003.

[6] M. de Pascale, G. de Pascale, F. Barbagli, and D. Prattichizzo. The
haptik library: a component based architecture for haptic device ac-
cess. In Proceedings of Eurohaptics 2004, pages 44–51, Munich, Ger-
many, June 5–7 2004.

[7] Unnur Gretarsdottir, Federico Barbagli, and Kenneth Salisbury.
Phantom-X. In Proceedings of Eurohaptics 2003, pages 466–470,
Dublin, IE, July 6–9 2003.

[8] Marylin Rose McGee, Phil Gray, and Stephen Brewster. The effec-
tive combination of haptic and auditory textural information. Lecture
Notes in Computer Science, 2058:118–126, 2001.

[9] R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2004. ISBN 3-900051-07-0.

[10] Emanuele Ruffaldi, Dan Morris, Timothy Edmunds, Federico
Barbagli, and Dinesh K. Pai. Standardized evaluation of haptic render-
ing systems. To appear in proceedings of 14th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, Arling-
ton, VA, USA, March 25–26 2006.

[11] Robert L. Williams, Mayank Srivastava, Robert Conaster, and John N.
Howell. Implementation and evaluation of a haptic playback system.
Haptics-e, The Electronic Journal of Haptics Research (www.haptics-
e.org), 3(3), May 3 2004.

6

