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Abstract 
 

SMARAD is the Smart and Novel Radios research unit at Aalto University in Helsinki. In the 

context of their smart radio research the area of influence of existing television transmitters is 

important data for the placement of experimental transmitters. Currently these areas are 

calculated with a regular Voronoi tessellation ignoring variation in transmitter characteristics. 

This thesis offers a more accurate generalised Voronoi implementation. 

In this thesis the optimal construction method for a regional division with given 

characteristics is selected and implemented.  This results in three different versions with a 

similar algorithm but on different platforms: Matlab, C and OpenCL. The Matlab version is 

the slowest but includes an additional API to map the result automatically to a topographic 

map of the target region using an internet source. The other implementations require an 

input image with the correct dimensions defined by the user to achieve the same results. The 

fastest implementation is the OpenCL version; however, cross-platform compatibility is 

limited. In this thesis the adaptive nature of the algorithm is also demonstrated by 

implementing different generalisations of the Voronoi tessellation to achieve a more accurate 

result for a given real world scenario. 

The knowledge gathered from this thesis has applications for region division in signal 

processing as well as other scientific fields given the adaptive nature of the code. Examples of 

possible use include cellular and crystal growth, computer generated graphics and 

computational geometry. 
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Introduction 

Context 

The purpose of this project is to make a computer based implementation of a generalized 

Voronoi plot, an improvement to the currently used regular Voronoi plots, to achieve a 

higher accuracy by adding two additional factors to the normal Euclidian distance formula 

used in regular Voronoi Tessellations. A proposed usage of this enhanced accuracy is the 

determination of the optimal placement for new transmitters in an existing radio wave 

network. 

 

Research question 

 

Regular Voronoi plots assume generator points of uniform strength and influence on the 

tessellation. When we take a look at a real life transmitter we know this assumption is not 

accurate, since not every transmitter has the same transmission power and path loss on the 

signal. To model this accurately we need at least two factors, an additive and a multiplicative 

factor. A problem with this multiplicative factor is that one small change in the dataset or an 

extra generator point can require a complete recalculation of the Voronoi plot rendering 

divide and conquer techniques useless and requiring a brute force approach. We need to find 

an implementation that performs better in such a situation.  

 

Research goals 

 

We can summarise all our goals in a short list: 

 Implementation of a sequential method in Matlab 

 Implementation of a parallel method 

 Calling the parallel code from the Matlab implementation 

 Comparing and selecting the optimal implementation 

  

  



 
 

 

 

Method 

 

To build the Voronoi diagram we must first study known algorithms and their limitations. 

The multiplicative factor in the problem greatly limits the possible algorithms and even 

standard approaches to numerical computing problems might prove unfeasible. 

Since Matlab uses only one processor core we are restrained to single threaded sequential 

computing. This limits the possible performance of the application. Therefore we will 

examine different approaches of parallelising the application. First we take a look at the 

different concepts for parallelism to determine the most efficient way to parallelise our 

program. The next step is deciding the platform, the major candidates being CPU, GPU and 

FPGA.  

After having chosen the platform we have to decide how we are going to address that 

platform. There are many tools available for creating a parallel application. The list of 

languages and API’s we are going to evaluate is highly dependent on the choice of the 

platform. In order to decide which combination of language and API should be used we will 

evaluate them to certain criteria like speed, compatibility, I/O and difficulty of 

implementation.  

The programming part of this thesis is started by making a Matlab implementation of the 

problem and check the speed of that implementation. This can optimised from a straight 

forward brute force method by adding sections of code for certain combinations of points. 

For example for two points with only multiplicative weights the edge between the two 

regions is always circular in shape. For our problem circles can be calculated faster than a the 

polyline generated by two generators with different multiplicative and additive weights.  

Finally we can make the parallel implementation. Depending on the choices we made we may 

need to reconsider our approach from the sequential Matlab version. Every combination has 

different strengths and weaknesses that should be explored to achieve the best result possible. 

Next we compare it to the sequential Matlab implementation both in time and in complexity. 

In the expected case of the superiority of the parallel application we will make a final change 

to the Matlab code to call the parallel program.
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1 Studying Voronoi Tessellation  

 
The Voronoi Tessellation has been studied extensively and many algorithms have been 

developed to compute them in a time-efficient way. In this chapter we will evaluate their 

usefulness to our specific problem. First we take a look at what the compoundly weighted 

Voronoi tessellation exactly is. 

 

1.1 Principles of Voronoi tessellations   

 

Voronoi tessellations come in a lot of varieties but the basic principle is always the same. We 

divide a plane in regions by means of a list of generators and a distance formula. In an ordinary 

Voronoi diagram, the most common Voronoi diagram, this is the Euclidian distance formula 

and the regions contain all points closest to their respective generator. Points which are 

equidistant to two or more generators form the edges between regions. 

    √(      )  (      )  

Other variations utilise the Manhattan distance, farthest-point regions, power regions and for 

this thesis the most important variation: the weighted distance Voronoi tessellation. 

 

1.1.1 Regular Voronoi  

 

The most commonly used Voronoi tessellations are ordinary Voronoi tessellations. 

Definition of a regular Voronoi diagram. 

“Given a finite set of two or more distinct points in the Euclidean plane we can allocate 

all locations in the plane to the point to which its Euclidian distance is smaller than to 

any other point in the plane. The resulting tessellation of the plane is called the planar 

ordinary Voronoi Diagram” [1]. 

We can write this definition mathematically [1]:  

  {          }    
         

With   (       )    (       )                   

We call  (  ) a region where: (  )  {    |      |  ||    ||                    
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     |      | the euclidian distance between the Cartesian points   and    

so |      |   √(      )  (      )   

The combined regions finally form the Voronoi plot    

  { (  )  (  )    (  )} (1) 

In Figure 1 and Figure 2 we see an example of a Voronoi plot generated by our Matlab program. 

The added red lines demonstrate the fact that the edges are defined such that the distance to the 

two respective generators is equal. Note that this Voronoi plot is bounded by a region S where 

the definition above defines an unbounded region. So we alter formula (1) to  

  { (  )     (  )       (  )   } (1) 

 

Figure 1 Ordinary Voronoi plot in Matlab 

 

Figure 2 Ordinary Voronoi plot in OpenCL 
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1.1.2 Weighted Voronoi tessellations  

 

Weighted Voronoi tessellations are a form of generalised Voronoi diagrams. In this thesis we 

discern three types of weighted Voronoi tessellations, additively weighted, multiplicatively 

weighted and compoundly weighted. The formulas for these generalised diagrams are displayed 

in Table 1. 

Table 1 Overview of distance formulas for weighted Voronoi 

Ordinary Voronoi 
   √(      )

  (      )  

Additively weighted Voronoi 
   √(      )

  (      )     

Multiplicatively weighted Voronoi 
   

√(      )
  (      ) 

  
 

Compoundly weighted Voronoi 
   

√(      )
  (      ) 

  
    

 

Additively weighted 

 

The first of the weighted Voronoi Tessellations is the additively weighted Voronoi plot where a 

positive weight is subtracted from the regular distance function. Therefore an empty region can 

be generated when:     {|      |            }       [1]  

Edges of additively weighted Voronoi tessellations are usually hyperbolic arcs or straight line 

segments if the distance between two generators is smaller than their combined weights. 

 

Multiplicatively weighted 

 

The second weighted Voronoi Tessellation is the multiplicatively weighted one. Here the 

distance formula is altered by multiplication with a positive weight greater than zero. The edges 

between two regions can be circular in shape or straight lines. Edges are only a straight line if 

they have equal weights. Areas can be completely contained in other areas and areas can grow 

around obstacles like other areas. We can see both effects in Figure 3 Multiplicative weighted 

Voronoi. The grey areas contain no generator but are part of the area under control by generator 

one even if the regions are disconnected. Generator 2, 3 and 4 each have the same weight, the 

borders between their areas are straight lines and region 5 is contained in region 6.  
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Figure 3 Multiplicative weighted Voronoi, eleven points 

The multiplicatively weighted Voronoi diagram poses some serious problems to our program. 

Unlike the ordinary Voronoi diagram or the additively weighted Voronoi diagram point 

insertion is impossible here due to the big impact of the multiplicative weight. Where in an 

ordinary or additively weighted Voronoi plot the area of influence with point insertion is limited 

by the areas adjacent to the new generator this is not the case with multiplicatively weighted 

Voronoi diagrams as proven in Figure 4 and Figure 5. This is the situation if we enter one more 

point P1 in the diagram we created in Figure 3. We see that areas that are not connected to the 

region where the point was inserted also are affected. This implies that normal computational 

approaches like divide and conquer don’t work here. The tessellation has to be redrawn 

completely every time. [2] 

 

Figure 4 Multiplicatively weighted Voronoi, twelve points 
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Figure 5 Multiplicatively weighted Voronoi, point insertion problem  

 

Compoundly weighted 

 

If we combine both weights in the distance formula we get the compoundly weighted Voronoi 

diagram. Now the edges are generally fourth order polynomial curves. The compoundly 

weighted distance becomes the additively weighted distance in case the multiplicative weight is 

one. When the additive weight is zero, this becomes the multiplicative weighted distance. Since 

this kind of Voronoi tessellation is a combination of additively weighted and multiplicatively 

weighted it also combines their characteristics. This means a brute force method is once again 

necessary. 

 

1.2 Strategies of Voronoi construction 

 

Since the multiplicative factor prohibits the use of standard algorithms we have no other choice 

then a brute force algorithm. This is why we need brute force methods or approximation 

methods. 
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1.2.1 Approximation by a digital image 

 

Input 

This program takes the following input:  

 X & Y, dimensions of the digital image D(X*Y) 

 [xn, yn]set of n generators in boundaries of the digital image 

Output 

The program returns the following output: 

 digital image D approximating the Voronoi diagram for the given generator set 

o value of a pixel if added to an area = number of the generator 

o value of a pixel if undeterminable = -1 

Procedure 

We place the generators on the digital image and grow the region outwards by evaluating each 

pixel in the plot according to these rules[1]: 

 if a pixel has no neighbours that are not zero it stays zero 

 if all the positive valued neighbours of a pixel have the same value it gets the same value 

 if the neighbouring pixels have two or more different positive values it gets the value -1 

We continue evaluating until all pixels have been assigned a nonzero value. This can take 

multiple iterations. 

Result 

An x*y array with values -1 or 1 to n. All the pixels with the same value except -1 form a group. 

Some groups are separated by a value of -1 but this is not always the case. To plot the borders 

we would need to run one last iteration that marks every pixel with a non-equal neighbour. If we 

plot these lines we get 2 pixel wide lines when there was no -1 separating the two regions and 

three otherwise. We could also assign a colour to each value and plot the images with those 

values. This version of the algorithm is only valid for the ordinary Voronoi but we can adapt it 

easily by not only marking the generator in the first step but also marking the area around it in a 

circular area with the radius equal to the additive weight. We should do this incrementally so that 

if there is an overlap we don’t overwrite it. The multiplicative factor can be the grow rate of the 

areas but this might prove difficult to implement. If an obstacle is encountered the growth in 

that direction is stopped and so we lose the property of multiplicative Voronoi on disjoint 

regions. 
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1.2.2 Intersecting polygons 

 

Input 

This program takes the following input:  

 List of generator coordinates and their additive and multiplicative weights 

 Bounding box containing all the generators.  

Output 

The program returns the following output: 

 List of edges or alternatively list of areas 

Procedure 

If we compare two distance functions for two generators we get the points that determine the 

border between those two generators.  

√(    )
  (    ) 

   
      

√(    )
  (    )

 

   
     

 

Knowing this we can shrink the bounding box by determining the intersections of the border 

and the bounding box, if any. The simplified procedure would be: 

1. Input area = bounding box 

2. Calculate the border first generator pair g1-g2 

3. Find intersections g1-g2  

 No intersections → the border creates a closed area, find the area that contains 

g1. This is or the enclosed area or everything except the enclosed area 

 Intersections → find the area that contains g1 

4. Go back to step 2 and change g2 with the next generator if there are generators left and 

change input area to the output of step 3 

5. Go back to step 2. Set g2 back to the first generator of the list and g1 to the next 

generator if there are generators left in the list and change input area to the output of 

step 3 

This method is not complete because it is not always trivial to determine the area containing the 

main generator e.g. with some additive weights there are more than two intersections with the 

input area. There are some possible optimisations as now every calculation is done multiple 

times and some calculations can be done faster e.g. the intersection between the polygon and a 

line segment. While the intersecting polygon is strictly convex we only need to find two 
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intersections while with a concave polygon there might be more intersections, and so more 

computing time. To maximise performance we need to guarantee that the polygon is strictly 

convex as long as possible by planning the order in which we evaluate the generators. 

Result   

The result is a list of edges ranging from straight lines to fourth order polynomials or a list of 

areas. These can easily be plotted.  

 

1.2.3 Distance lists 

 

Input 

This program takes the following input:  

 x and y dimensions of the plane 

 list of n generators and their respective weights 

Output 

The program returns the following output: 

 digital image D approximating the Voronoi diagram for the given generator set 

o value of a pixel if added to an area = 0 

o value of a pixel if it is on an edge = 1 

Procedure 

For all points P(x,y) of the plane we calculate the distance from this point to all generators in the 

list according to the distance formula. This gives us an x*y*n matrix.  

Next we look for the two minimum distances for each point P(x,y). If these distances are the 

same with a certain margin, this point, or pixel, is part of an edge between the two generators. If 

the distance is bigger than the margin the point does not belong to an edge but only to the area 

with the smallest distance. 

Result 

The result of this method is an array that can easily be printed to a binary image. Data on edges 

and vertices is not directly available. This method is a good candidate for parallelisation due to 

the many relatively easy independent calculations that have to be done. 
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2 Comparison of different computation approaches  

2.1 Sequential computing 

 

In traditional computing, software is constructed for sequential computation. This means the 

programmer analyses the problem and breaks it down into a discrete series of instructions. 

These instructions are queued for execution on a single processing unit on a single computer 

system. The instructions are executed one after another in the order they were queued in the 

instruction pipeline: an instruction has to be completed before the next one can be processed. 

Figure 6 displays the basic idea of sequential computing. 

 

Figure 6 Principle of sequential computing 

 

 

2.2 Parallel computing 

 

The idea of parallel computing is nearly as old as the computer itself. One of the earliest 

examples is the Hollerith Tabulator , a mechanical computer created by Herman Hollerith in 

1890. 

It has also been clear for a long time that there are many different approaches to achieving 

parallel computation as indicated by this extract from a 1958 computer magazine. 

“So far the subject of parallel programming has been introduced only in situations where 

there are two or more separate parts of a machine, each dealing with its own branch of 

the program. However, very similar logical problems of programming can occur in a 

situation which does not involve more than one control unit to divide its time between 

two different activities” [3]. 

We will examine the three main philosophies of parallel computing and some of the modern 

methods of parallel programming. 
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2.2.1 Instruction level parallelism 

 

The first way of parallelising computing is instruction level parallelism or ILP. ILP is the 

concurrently execution of multiple machine instructions. Consider this simple mathematical 

problem: 

 C = (x+y)*(z-w) 

1. A = add x y 

2. B = sub z w 

3. C = mult A B 

Instruction 3 is based on the results of instruction one and two and the results of those have to 

be known before this instruction can be executed. One and two are mutually independent. If 

our processing unit has two or more functional units capable of executing these instructions we 

can calculate both in the same time span where a sequential system would only calculate one of 

the instructions. 

 

2.2.2 Data level parallelism 

 

Data level parallelism is a special case of instruction level parallelism. In instruction level 

parallelism we execute different instructions over different processing units at the same time. In 

data level parallelism we execute the same instructions on multiple processing units at the same 

time but with different data. This is also called Single Instruction Multiple Data, SIMD. 

Alternatively multiple processing units can work more independently and execute multiple 

instructions or even complete programs independently. This is called Multiple Instruction 

Multiple Data. 

 A good example to demonstrate the possibilities of data level parallelism is the for loop. In 

Table 2 we give a simple for loop and its decomposition. We see that this can be parallelised in 

an easy manner because the actions that have to be done are always the same, only the (input) 

data changes. We can divide the task over all processing units with the required functionalities.  

Table 2 Data level parallelism example 

For loop 
For(int i = 1; i < n; i ++) 
{ 

DataOut[i] = DataIn[i]*2; 
} 

Decomposed for loop 
DataOut[0] =DataIn[0]*2; 
DataOut[1] = DataIn[1]*2; 
… 
DataOut[n] = DataIn[n]*2; 
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2.2.3 Task level parallelism 

 

Task or thread level parallel structured programs are designed in such a way that multiple 

processing units each get a subsequent part of a sequential program to execute. To design a 

program for task level parallelism you must divide the big problem in a number of smaller 

problems. These smaller problems get partitioned over the available hardware and solved 

simultaneously. This approach to parallelism only works when only a small amount of data 

dependencies exists. The fewer dependencies the more tasks can be executed in parallel. When 

there are dependencies, tasks can be grouped in task groups. Task level parallelism is scetched by 

Figure 7. 

 

Figure 7 Task level parallelism 
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2.3 Approaches to parallelised computing 

 

Before we can choose a programming language or API we need to research which platform 

would be best suited for our situation.  

 

2.3.1 Parallel capable hardware  

Central Processing Units 

 

Around 2001 the first attempt at parallel computing on a single Central Processing Unit, or 

CPU, was performed by Intel with their hyper threading technology. Here a second execution 

core is added to an existing processor design sharing cache with the first core [4]. In 2005 the 

first real multicore CPU’s were introduced with two or more cores on the same die, opening the 

path to continuously increasing core-counts in CPU’s with current day processors ranging from 

2 to 10 real cores and up to 20 hyper threading cores. 

The multiple cores don’t have to be all on the same device. Some motherboards are designed to 

support multiple processors and clustered computers can also combine their computational 

possibilities to get an even higher core-count. But while the hardware is capable of handling 

simultaneous execution of multiple threads most software is still programmed for only one 

processor core. Since the cores of a typical CPU are designed for heavyweight tasks the most 

common multithreading approach on CPU’s is task parallelism. 

 

Graphical processing units 

 

While multicore CPU architecture is focussed on the simultaneous processing of a few 

heavyweight threads and a high performance per thread, GPU architectures take a different 

approach and focus on simultaneous execution of many lightweight threads and features many 

small cores. Single core capabilities of a GPU are generally poor and not all GPU’s support 

double precision computation or performance is decreased significantly when using the double 

precision floating point format, see Table 3. In Figure 8 we see the G80 architecture of a Nvidia 

GPU. This architecture was first used in 2006 and was the first one to feature unified shader 

models. 
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Figure 8 Architecture of a Nvidia 8800 GTX GPU [5] 

The unified shader model implies that every core in the GPU can do the same task with 

consistent performance. This makes GPU programming easier and opens the door to General 

Purpose computation on the GPU[6] or GPGPU in short. The G80 architecture features 128 

computation cores (green blocks) that share L1 cache per 16 cores. The cores are grouped in 16 

workgroups [5]. These workgroups indicate the maximum amount of different tasks a GPU can 

execute simultaneously. On a GPU data parallelism is the preferred approach to multithreading 

because of this limitation but task parallelism is also possible. 

When we do a one on one comparison between CPU’s and GPU’s in Table 3 we notice that 

high-end professional CPU’s offer less options for data-parallelisation compared to mid-end 

consumer GPU’s. It is worth noting that the professional GPU lacks a display output and is 

created purely for GPGPU applications. 

Be aware that not all of the data in Table 3 is supplied by the manufacturer. For the CPU’s 

we’ve done a measurement on the test system to get the FLOPS and for the other two CPU’s 

we used the theoretical formula: 4*cores*clock*threads/core [7].  

 

FPGA  

 

FPGA designers have two choices when making parallel applications: programming an 

application in C on the soft processor or in a hardware description language on the hardware. 

When programming hardware parallel applications on FPGA the designer can create the 

hardware to suit his specific needs. The parallel cores can be created to the exact requirements 

of the application making denser logic possible compared to the general purpose CPU or GPU 

cores. FPGA’s typically offer higher performance per watt. The limiting factor to the use of 

FPGA’s in parallel computing is the I/O. In parallelised computing FPGA’s are usually used as 

a co-processor to a regular x86 computer system. The communication between those devices is 

the weak point of the parallel system. The application should be designed with minimal 

bandwidth overhead between the host and the co-processor in mind and the fastest possible 
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interconnect between the devices. Usually PCI is chosen because it is connected to the main 

processor bus. FPGA parallel computation usually is limited to low precision fixed point 

calculations. 

Typical problems that need to be parallelised can be hard to write in VHDL or Verilog, the 

standard hardware description languages used in FPGA design. Instead C programmes are often 

written for a soft processor. The area performance however is about 13x worse and the speed 

performance about 17x with optimised vector code compared to a hardware design [8]. 

 

Conclusion 

 

While multithreaded CPU’s are available in almost all modern computers they are not really 

suited for this problem. CPU’s are the best choice for relatively few heavyweight threads 

opposed to many lightweight threads needed for our problem. FPGA’s can do many lightweight 

threads but the communication with the FPGA is harder and can potentially bring a lot of 

overhead. Parallelisation on GPU’s is the most promising for this thesis. They offer a big 

improvement over sequential computation for a small increase in difficulty and no increase in 

cost as GPU’s are commonly available in modern computers. GPU’s also offer perspective on a 

higher level of parallelisation in distributed computer systems.
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Table 3 CPU/GPU comparison [9, 10 ,11, 12, 13, 14, 15] 

 Consumer 
CPU 

Professional 
CPU 

Test system 
CPU 

Consumer 
GPU* 

Professional 
GPU 

Best 
performance / 
price GPU 

Test system 
GPU 

Brand 
and 
name 

Intel core i7 
3960X 

Intel XEON  
E7-2850 

Intel core i7 
3740QM 
(mobile high 
end chip) 

Nvidia Titan Nvidia Tesla 
K20X  

AMD Radeon 
HD 7970 

Nvidia NVS 
5200M 
(mobile low-
midrange chip) 

Cores 6 (12 with 
hyper 
threading) 

10 (20 with 
hyper 
threading) 

4 (8 with 
hyper 
threading) 

2688 2688 2048 96 

Peak 
GFLOP
S 
Single / 
double 
precision 

158,4 / 158,4 
(theoretical) 

192 / 192 
(theoretical) 

75 / 75 
(benchmark) 
 

4500 / 1500 
(marketed 
speed) 

3950 / 1310 
(marketed 
speed) 

3788,8 / 974,2 
(marketed 
speed) 

240 / 80 **  

price $999 $2558 $378 $999  $3199+ $280 Unknown  
< $200 

* here we didn’t take the GPU with the highest core count because it has a rather poor dual precision performance  

** there is no official data on the NVS 5200m available, instead we took the data of the similar GeForce 620m which has the same 

architecture but different drivers. 
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3 Study of different programming languages and API’s 

3.1 Introduction 

 

To evaluate available  languages and API’s we will look at their respective advantages and 

disadvantages as well as the key requirements summarised in Table 4:  

Table 4 Comparison criteria 

Available platforms For a high speedup we would want to run the program on a 
computers GPU, this assures the highest possible level of 
multithreading without specialised hardware 

Available languages In case of an API we are interested in which languages can be used 
with the API. 

I/O The way the language or API can read and write parallel data 

Compatibility  Some API’s or languages work on any normal x86 computer with 
standard compilers, others require special drivers, compilers or even 
hardware. 

Relative speedup 
factor 

Speed gained compared to the same program executed single-
threaded on the same hardware. This comparison is not 
straightforward as it usually strongly depends on factors like the total 
number of available processing units and uniform capabilities of 
those units 

 

Since evaluating all existing parallel languages and API’s goes beyond the scope of this thesis 

we decided to evaluate only a selected group of languages and API’s which offer the best 

perspective and are well documented.  

 

3.2 Matlab Parallel Computing toolbox 

 

The most obvious way to start the parallel implementation is with Matlab. Matlab offers a 

parallel computing toolbox to enable running code on multiple computing units. The toolbox 

isn’t limited to local resources but can also be used to run the application on big computer 

clusters in a distributed computing environment. This can be done with the same code as for 

a single desktop system. 

The Matlab parallel computing toolbox supports up to 12 local workers on the CPU and can 

use the complete capacity of a Nvidia CUDA enabled GPU. On GPU there are only a few 

Matlab functions available. However the toolbox also provides the possibility of CUDA 

kernel inclusion in only one line of code. Table 5 provides an overview.  
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Table 5 Matlab Parallel Computing toolbox [16] 

Matlab Parallel Computing toolbox conclusion 

Advantages  No translation necessary from sequential Matlab code  

 Computer cluster and grid support 

 Some of the highly optimised mathematical functions of 
Matlab available 

Disadvantages  GPU functions are limited unless we include CUDA kernels 

 Bound to certain instructions 

 CPU: maximum 12 workers on single system 

Available platforms CPU, GPU (Nvidia)  

Available languages Matlab 

I/O Same as Matlab 

Compatibility  System requirements are the same as Matlab  

Relative speedup 
factor 

Matlab’s Parallel computing toolbox isn’t really powerful on a 
normal desktop computer but only comes into its own in use on 
cluster computers 

 Medium (desktop multicore CPU) 

 High (desktop Nvidia GPU) 

 Extremely High (computer clusters) 

 

 

3.3 OpenMP 

 

When switching from programming for a system with a single processing unit to a system 

with multiple independent processing units to program applications in parallel the problem of 

memory sharing arises. If two independent processing units work on the same dataset a 

problem can occur if there are data dependencies. To understand the utility of Open Multi 

Processing, or in short OpenMP, we’ll take a quick look at the given problem. In Figure 9 

and Table 6 we see a possible problem when unified memory is used. 

 

Figure 9 Unified shared memory model 

Table 6 Using two processors to solve a problem 

 Processor A Processor B 

1 Read x z = read 
mem 

2 Read y z = mult z 2 

3 z = add x y print z  

4 Store z mem NOP 
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Processor B uses the output of Processor A but because both processors work independently 

and asynchronously processor B does not know if the value it reads from the memory is the 

right value. To be able to have a reliable result OpenMP was designed to address these kind 

of problems. 

OpenMP is an API consisting of compiler directives, runtime libraries and environment 

variables, enabling programmers to efficiently use those shared memory systems. However 

OpenMP does not support GPGPU applications. Thus the maximum level of parallelism is 

limited to the number of available CPU cores. In typical workstations this translates to two to 

sixteen threads. 

OpenMP is easy to use. The programmer only has to define which loops have to be 

parallelised and OpenMP takes care of thread creation, synchronisation and destruction. The 

amount of threads created is also determined by OpenMP [17]. Table 7 provides an overview. 

Table 7 OpenMP [17,18] 

OpenMP conclusion 

Advantages  Explicit instead of automated parallelism. No extra 
intelligence in the compiler required to find the parallel parts 

 Scalable to systems with higher processing unit count like 
clusters 

 Translation from sequential code to OpenMP is relatively 
easy 

 Incremental parallelism 

 Obfuscates hardware 
o No need to understand underlying CPU/GPU 

architecture 
o Can also be a downside for optimising  

Disadvantages  Hard to parallelize loops of variable size 

 Overhead when using recursive code 

 Inefficient on non-shared memory systems 

 High overhead for loading the executable and load balancing 
compared to single threaded programs. Only interesting for 
longer programs 

Available platforms Only on CPU 

Available languages C, C++ and Fortran 

I/O Not specified in the standard. Major issues can arise if the threads 
write back to the same file. Complete responsibility of the 
programmer 

Compatibility  Supported by many compilers 

 GCC, VS C++, Intel Oracle and IBM C/C++/Fortran  
All hardware can theoretically run OpenMP if the compilers 
support the hardware  

Relative speedup 
factor 

Highly depending on number of cores, can only use CPU cores 

 Medium 
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3.4 OpenACC 

 

Another standard for parallel computing is OpenACC. Just like OpenMP it is an API 

designed for use with C, C++ and Fortran. Converting a program in any of those languages 

to be OpenACC enabled is very easy and can be achieved by just adding a few lines of code 

with compiler directives. These directives are ignored by incompatible compilers but 

compatible compilers know these sections of code have to be executed on an accelerator. 

Unlike OpenMP these accelerators can be CPU’s as well as GPU’s, providing a potential 

performance gain.  

However just adding these compiler directives to an existing piece of code can be inefficient. 

To gain as much performance as possible the directives should be added around loops and 

the loops should be designed with parallelism in mind. When designing a program the 

programmer should try to keep in mind the envisioned execution model of the OpenACC 

group. Some key features of the execution model include[20]:  

 Most of the user application is executed on the host device (e.g. The CPU) 

 An accelerator takes care of the most tasking sections of code 

o These are typically coded in loops 

 Even in regions tasked to the accelerator the host device can interfere with the 

execution on the accelerator e.g. by allocating memory and passing arguments and 

results back and forth 

 The host program initiates the master thread 

 The accelerators operation can be synchronous or asynchronous, the latter requiring 

some form of command queue 

Being a high-level API memory management isn’t a key point in OpenACC, it can be done 

implicit and is managed by the compiler. Table 8 provides an overview. 
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Table 8 OpenACC [20] 

OpenACC conclusion 

Advantages  Easy to implement 

 High level 
o No need to understand underlying CPU/GPU 

architecture 
o Can also be a downside for optimising 

 Portable 

Disadvantages  Performance is highly dependent on loop design (more than 
other languages) 

 Relatively new: not much documentation or support  

Available platforms CPU and GPU (AMD, Nvidia and Intel) 

Available languages C, C++ and Fortran 

I/O Not applicable, same as the chosen language 

Compatibility  Only supported by a few compilers, other compilers are planning 
support  

 CAPS Enterprise HMPP Workbench, Cray CCE (only on Cray 
systems) and PGI Accelerator (C and Fortran only) 

 GCC (in a future version) 
OpenACC supports most Intel, Nvidia and AMD multicore 
hardware, details not provided 

Relative speedup 
factor 

Depending on the choice of accelerator, GPU capable 

 Medium-High 

 

 

3.5 OpenGL 

 

OpenGL, again an API, is entirely different from the other API’s and languages in this list in 

that its main purpose is rendering graphics. Until recently it was very hard to do GPGPU 

computing with OpenGL: the programmer had to think in triangles and pixels and remap his 

problem to these objects. In version 4.3 (August 2012) of the OpenGL standard compute 

shaders were added. These structures are used for computations that don’t necessarily lead up 

to rendering. Normal shaders work in well-defined boundaries and accept a range of user 

input and generate output whereas compute shaders are more abstract in nature and operate 

more autonomously, forcing the user to make explicit reads and writes from within the 

shader[21]. A simplified scheme is provided in Figure 10. The second stage actually consists 

of an explicit read, the required calculations and a write back.  
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Figure 10 OpenGL compute shaders principle  

The origin of OpenGL makes it an interesting choice to render the results of the application 

if we write it in a compatible language that lacks having its own Window agent. OpenGL has 

no such functionality out of the box either but OpenGL libraries that do are widely available. 

One of the most widespread libraries is GLUT. GLUT offers window definition and control, 

basic drawing functionality for vectors and vertices as well as keyboard and mouse 

support[23]. GLUT is no longer in development but an open source alternative, freeGLUT, 

offers the same functionality and is still in development [24]. Table 9 provides an overview. 
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Table 9 OpenGL [22,23] 

OpenGL conclusion 

Advantages  No extra packages/API’s required * 

 Highly scalable  

 Code is compatible between different GPU brands 

Disadvantages  Hard to implement (prior to 4.3) 

 Multiple distinct libraries 

 Memory management is done automatically. No way to 
assign certain blocks of memory to certain threads thus 
minimising possible performance gain for memory usage 

Available platforms GPU (AMD, Nvidia) 

Available languages OpenGL offers capability and language bindings with over 15 
languages amongst others: C, C++, C#, Java, Fortran, Haskell, 
Visual Basic, Python. This choice can shrink depending on the 
chosen OpenGL library (GLUT, SDL, GLFW, CPW…)  

I/O Not applicable, same as the chosen language 

Compatibility  No OpenGL specific compiler required. Other compatibility 
features depend on the library of choice. (free)GLUT offers 
compatibility and portability between the most common OpenGL 
implementations and platforms. 
On hardware level all GPU’s from AMD and Nvidia support at 
least version 1.2 of OpenGL 

Relative speedup 
factor 

Can use the full parallel power of a GPU 

 High 

* if we take into consideration that we will need OpenGL anyway to display the Voronoi 

plot. 

 

3.6 OpenCL 

 

OpenCL is the result of the increasing request for cross-platform GPGPU capable 

applications. OpenMP was limited to the CPU, OpenGL prior to version 4.3 was hard to 

code and isn’t really suitable for GPGPU computing but rather rendering. The OpenCL API 

was specifically designed for computation so it has no rendering capability on its own. The 

OpenCL standard specifies that OpenCL code can be executed on CPU, GPU, accelerator 

hardware or any combination of those devices. In reality however this depends on the 

implementation you choose. OpenCL has three major releases: Nvidia, AMD and Intel. The 

former two are the biggest players on the GPU market. These two versions are not 

interchangeable and have some inconsistencies. For example the AMD API supports CPU 

and GPU while the Nvidia implementation supports only GPU. Table 10 provides an 

overview. 

  



38 
 

Table 10 OpenCL [25, 26, 27, 28, 29] 

OpenCL conclusion 

Advantages  Added support for accelerator (Intel API) 

 Easy definition of global and local work items 
o Global: partitioning workload between 

different devices (Crossfire / SLI setup or 
CPU+GPU) 

o Local: partitioning workload between 
different processing units of the same 
device 

 Possible to combine CPU and GPU effort for even 
greater capabilities  

 Programmer can plan memory management to 
maximise memory performance 

 Memory abstraction, this increases portability 

 Most recent release (November 2013) supports 
ARM hardware 

 Easy translation from CUDA to OpenCL 

Disadvantages  Relatively complex to set up 

 Bad compatibility between different versions of the 
API (see compatibility) 

Available platforms GPU (Nvidia), GPU & CPU (AMD), GPU & CPU & 
Accelerator (Intel) 

Available languages Amongst others: C / C++ / C# Fortran / Java / Python 

I/O OpenCL buffers can be read by the master program thus 
I/O depends on the language of the master program. 

Compatibility  OpenCL has many different implementations which are 
not fully compatible. The main ones are Nvidia, AMD, 
Intel and IBM. Compiler-wise all compilers that can 
handle C/C++/Fortran can be used. 
OpenCL is compatible* with the following hardware: 

 AMD CPU’s supporting at least SSE2 

 AMD GPU’s with unified shaders 

 Nvidia GPU’s with unified shaders 

 Intel CPU’s starting at the Core 2 family except 
Celeron, Pentium and Atom processors 

 Intel integrated graphics from the 3th generation 
Intel Core CPU’s onwards 

 Many more 
In practice this means all devices from AMD, Nvidia and 
Intel designed after 2006 support OpenCL with exception 
of low end Intel CPU’s 
* This again depends on the chosen implementation and 
version of OpenCL.  

Relative speedup factor Can use the full parallel power of a GPU and CPU 
simultaneously  

 Very high 
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3.7 CUDA 

 

Before the first OpenCL specifications were released Nvidia already offered its own 

proprietary GPGPU package under the name Compute Unified Device Architecture or 

CUDA in short. CUDA offers parallel programming capabilities on supported Nvidia GPU’s. 

CPU support is completely absent in CUDA and hardware from other manufacturers is not 

supported. Nvidia’s recent hardware architectures Fermi (2010-2011) and Kepler (2011-2012) 

are designed to natively support more coding languages as well as CUDA. The CUDA API is 

mapped completely to the use of CUDA cores, the smallest computational unit on a GPU 

die, for high efficiency computing. OpenCL has the disadvantage that it cannot directly 

access the CUDA cores but it needs an abstraction layer. This creates a computational 

overhead and performance loss compared to CUDA. This performance loss is in the 10% 

range most of the time but on smaller datasets this overhead gets bigger [30,31]. 

CUDA programs are backwards compatible until the GeForce 8 series from 2006 that 

introduced unified shaders. Earlier cards without the unified shader architecture do not 

support CUDA. Translation between CUDA and OpenCL is relatively easy. The major 

differences are in the terminology as demonstrated in Figure 11Table 11. Other differences 

include a new compiler, buffer definitions and pointers being no longer compulsory[32].  

Table 12 provides an overview of the CUDA API. 

Table 11 Terminology changes between OpenCL and Nvidia [32] 

CUDA OpenCL 

Thread  Work Item 

Thread block Work group 

Shared memory Local memory 

Local memory Private memory 

 

Table 12 CUDA [22, 25, 33] 

CUDA conclusion 

Advantages  Easy definition of blocks and threads, analogue to global and 
local work items 

o Block: partitioning workload between different 
devices (SLI setup) 

o Thread: partitioning workload between different 
processing units of the same device 

 Programmer can plan memory management to maximise 
memory performance 

 Maximum theoretical performance from Nvidia cards 

 Kernel integration in Matlab can be done with only one line 
of code 
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Disadvantages  Not compatible with cards from other manufacturers 

Available platforms GPU (Nvidia only) 

Available languages Amongst others: C / C++ / C# Fortran / Java / Python with 
appropriate language bindings 

I/O Identical to OpenCL 

Compatibility  On hardware level CUDA is compatible with all Nvidia cards with 
the unified shader model. CUDA has its own compiler (NVCC) 
opposed to OpenCL 

Relative speedup 
factor 

Can use the full parallel power of a GPU, no overhead on Nvidia 
GPU’s  

 Very high 

 

 

3.8 Conclusion on Voronoi theory 

 

Based on this evaluation of the most interesting aspects of each language we reviewed we can 

make a decision on which one suits us most. 

Matlab’s parallel toolkit only has limited GPU capabilities. We would have to make a 

compromise between compatibility and functionality. If we choose to support only CPU’s 

and Nvidia GPU’s or if only basic instructions would suffice Matlab would be a good option. 

However we prefer to have more cross-platform compatibility. OpenMP only has CPU 

capabilities. While providing a significant boost in performance over single threaded 

applications the maximum amount of threads an application with OpenMP can spawn will 

always be significantly less than a program that does utilise a GPU. OpenGL can use the 

power of the GPU but even with the compute shaders it is still a cumbersome task to remap 

the problem that has to be solved to OpenGL standards.  

Then we are left with three API’s: OpenACC, OpenCL and CUDA. While these three 

languages offer similar performance we decided to go with OpenCL. CUDA is faster on a 

Nvidia GPU but cannot use a GPU from another brand, OpenACC can run on both 

platforms but is relatively new and undocumented compared to the others. OpenCL also 

features the possibility of combining hardware for even more performance gain, something 

the other API’s don’t offer. This extra speed and compatibility with non-Nvidia GPU’s make 

up for the slightly lower performance on single Nvidia cards. 
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4 Matlab implementation  
 

Our first attempt at solving the compoundly weighted Voronoi problem is a Matlab 

implementation. Matlab already offers a Voronoi function but this implementation has no 

support for the additional weights we want. Adjusting this version to take weights is not 

possible; this implementation is based on the relation between the Delaunay triangulation and 

the ordinary Voronoi plot. This relation is only valid for ordinary Voronoi tessellations. 

Instead we had to make our own implementation. As discussed there are no available 

methods for incremental construction or other divide and conquer techniques. This makes a 

brute-force method necessary. We originally designed this method for dynamic Voronoi 

Tessellations with only one weight but as the thesis progressed the subject changed to 

compoundly weighted Voronoi. We changed the code to also accept a second, additive 

weight. 

 

Algorithm description 

 

In our approach we first calculate the equation of the locus of each pair of generators. To 

calculate the locus we equalise our distance formula between g1 and P and the generator g2 

and P. This yields an implicit equation. P is not a single point but a set of points. When we 

solve the resulting equation 3 for x and y we have a valid equation for the locus. 

1.     
√(        )  (        ) 

    
      

2.     
√(        )  (        ) 

    
      

3. 
√(        )  (        ) 

    
       

√(        )  (        ) 

    
      

Now we define a bounding box that contains all generators and we take the first generator in 

the list, g1, and all the equations of that generator and all other generators. We group these 

equations in four groups: 

 Lines 

 Circles 

 Hyperbolas 

 Others, generally fifth order polynomial 

To create the Voronoi tessellation out of these lines and curves we are going to create 

polygons out of the intersection between these equations and the bounding box. In some 
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particular cases the equation generates a locus that does not intersect with the bounding box. 

If there is no intersection we know the locus is a closed area and we can also make a polygon. 

Lines are easier to process than the other types of borders. We know that a line intersects 

with the bounding box at exactly two points. After calculating these points we can split the 

bounding box in two polygons. We save the polygon that contains the generator g1. If this is 

the first polygon we calculated we temporarily save it and calculate the next one. If there´s 

already a polygon we use the Matlab function polybool to merge both polygons. Polybool 

takes an array of x-coordinates and an array of y-coordinates of two polygons and a flag 

indicating the way this polygon-polygon intersection should be calculated. We enter the x- 

and y-coordinates of the two polygons and the flag ‘intersection’. This creates a new polygon 

matching the overlapping areas of the input polygons. We overwrite the temporary polygon 

with this new one and continue the cycle until the last generator pair is processed. The 

remaining region is the region for which all points have the smallest distance to input 

generator g1. 

We could use a similar approach to the more complex borders. However they provide new 

problems. While lines always have exactly two intersections with a border this is not a case 

for these lines. A circle for example can have 0, 2, 4, 6 or 8 intersections with the bounding 

box. For this reason we implemented different functions for different equation types. A first 

step is to sample all line segments. This is possible with a solve function in a for loop but can 

be done much faster by vectorisation of the code as seen in Figure 11. 

        eqn = sqrt((G1(1)-x)^2+(G1(2)-y)^2)-G1(4) ... 

               == sqrt((G2(1)-x)^2+(G2(2)-y)^2)-G2(4); 

        % solve for y, this gives two equations because eqn is implicit 
        Y = solve(eqn,y, 'MaxDegree', 4); 

        % determine the sample rate 
        beginpoint = -1100; 
        endpoint = 1100; 
        n = (endpoint-beginpoint)*0.5; 

        % make the vector 
        vect = linspace(beginpoint,endpoint,n); 

        % place the vector in the solution of the solve 
        Y = double(subs(Y,x,vect)); 

        % adjust the result so that only meaningful data remains (no NaNs  

        % or imaginary numbers) 
        Y1 = Y(1,:); 
        Y1(imag(Y1)~=0) = nan; 

Figure 11 Vectorisation of a piece of the curve sampling function 

The second equation type is the circle. Circular borders occur when the additive weights of a 

generator pair equal zero and the multiplicative weights are not equal. When we encounter a 

circle we determine if the main generator is inside or outside of the circle. The generator is 

inside the circle only if the generator has a smaller weight then the other generator. After 

marking the region containing the generator we can again evaluate the region to the input 

polygon. If there is no input polygon present this region becomes the input polygon for the 

evaluation of the next generator. 
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The last two types of borders can be processed with the same function. Unlike circles these 

sections are not closed by definition. Polybool requires two closed regions as input. Instead 

we calculate the intersections of the polynomials with the bounding box. By combining these 

intersections with the sampled curve we now get a finite number of polygons. After this step 

we again evaluate each polygon and repeat the same procedure as with circles.  

 

Optimisations 

 

The process described in this chapter is very time consuming. To calculate intersection points 

of two borders we use the solve function or the more optimised fsolve. Both functions rely 

on the mupadmex file to calculate our intersections. On our system a set of only seven 

additively weighted generators takes 56 seconds. From those 56 seconds 53 are spent in the 

mupadmex file after a total of over 32.000 calls. After optimising we reduced the amount of 

calls to mupadmex for this problem size with 50% resulting in a time of 30 seconds for the 

complete program. This proved to be the minimum as the processing of all generator pairs 

was only done once. 

To further increase the speed of the program there are two options: 

1. Lowering the vector size for generating the sampled curve. This will cause a 

significant performance gain but lowers the accuracy. 

2. Keep a list of already generated areas. For the first generator we would have to 

calculate the effect of all other generators, and for the subsequent generators we only 

calculate the next generators in the list. If this is done we temporarily save the output 

polygon and subtract all earlier generators from this polygon.  

The only interesting option is the second one. It makes sure that the equation for each 

combination of generators is only calculated once. This was already the case with previous 

optimisations. When we analysed the timing of this function, we noticed the performance 

gain was minimal but another interesting effect occurred.  

In Figure 12 we see the original output on the left. On the right we see the output with this 

optimisation. In the left image we filled the areas without generator with the Matlab patch 

function. These black areas are called remote areas and are separated from the main area of 

their generator by one or more areas. In the right image these areas are allocated to 

neighbouring areas. This makes this optimisation unsuitable for our implementation but in 

applications where remote areas are unwanted and all area should be occupied, e.g. crystal or 

cell growth, this can be interesting. 
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Figure 12 Marking holes in the tessellation 

 

Conclusion 

 

Given the O(n²) time complexity of the optimised program and the already long processing 

time for a small dataset we determined that this approach is unsuitable for our problem. Our 

100 generator goal for the project would require significantly faster resources or a long 

processing time and make the program almost unworkable. Figure 13 demonstrates the 

polygon cutting principle while Figure 14 shows a timing breakdown. 

 

Figure 13 Cutting in a polygon. 
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Figure 14 Timing breakdown of the most optimised version with 7 points 

Figure 14 shows the nine most time critical functions. It is clear that mupadmex causes the 

biggest problems by using up to 94% of the total execution time. Without the additive 

weights this method is three to thirty times faster for the same problem size. 
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5 OpenCL implementation 

5.1 Environment 

5.1.1 Introduction 

 

The test system runs on Microsoft’s Windows 8 Professional operating system. This makes 

the Microsoft Visual Studio IDE an obvious choice as development environment. Microsoft 

Visual Studio 2013 is not compatible with Nvidia’s OpenCL SDK but Microsoft Visual 

Studio 2012 offers full compatibility. Visual Studio natively supports C, C++, C#, VB.NET 

and F#. So the choice for this project, C, is already supported and needs no further set-up. 

The professional version of Microsoft Visual Studio is available for students for free. 

One downside to Microsoft Visual Studio is that the C11 standard is not supported and the 

C99 standard is only partially supported. Instead we are bounded to the first standard of C, 

C89 or ANSI-C. Figure 15 is the welcome screen of Microsoft Visual Studio. 

 

Figure 15 Microsoft Visual Studio 2012 Professional 
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5.1.2 Set up 

 

To set up Microsoft Visual Studio for OpenCL we need to install the SDK of our choice. For 

our system with an Nvidia GPU the Nvidia version is the most logical choice. The OpenCL 

package is part of the Nvidia GPU Computing Toolkit also used for CUDA GPGPU 

applications. Nvidia provides an installer that places all the necessary libraries, header files 

and other tools in the system and includes the Nsight menu in Visual Studio. The only thing 

the programmer has to do to get started with OpenCL is to set up Visual Studio. The setup 

menu is shown in Figure 16. 

 

Figure 16 Setting up OpenCL 

In the Properties of the project we need to change a few entries to include OpenCL. In 

Figure 16 one of these entries is visible. It is also noticeable that we have not only included 

Nvidia’s toolkit but also freeGLUT. freeGLUT is used as window manager for rendering the 

output image. With mainCRTStartup “WinMain” is defined as the entry point for the 

application instead of “main”. This is necessary because otherwise a reference error is 

encountered. Table 13 shows all the changes we need to make in the properties menu. 
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Table 13 OpenCL property menu entries 

Location Property  

C/C++  
> General  
> Additional include 
Directories 

. \NVIDIA GPU Computing Toolkit\CUDA\v5.5\include 

.\freeglut\include 

Linker 
 > Gerneral  
> Additional Library 
Directories 

. \NVIDIA GPU Computing Toolkit\CUDA\v5.5\lib\Win32 

.\freeglut\lib 

Linker 
> Input 
>Additional Dependencies 

OpenCL.lib 
Opengl32.lib 
freeglut.lib 

Linker 
> Advanced 
> Entry Point 

mainCRTStartup 

 

 

5.2 Choice of programming approach  

 

We chose to use the distance list approach as discussed in chapter 1.2. We made this choice 

because its implementation can be done with one kernel file where the different kernel 

instances can be executed without data dependencies with the other instances. To calculate all 

distances to every generator for one pixel we only need a list of all generators with their 

coordinates and weights and the coordinates of the pixel. This data is static so the execution 

of one kernel instance has no effect on other instances. This means the kernels instances can 

be executed out-of-order. Approximation by a digital image is not as efficient to parallelise as 

we need to do multiple iterations with a changing image. The execution of one kernel 

instance would influence subsequent instances and necessitate in-order execution making the 

program more complex and partially sequential.  

 

5.3 CWVoronoi.c 

 

This is the main file of our program. It can be divided in three general parts: reading the 

input, processing the output of OpenCL and rendering the output image with OpenGL. 

 

5.3.1 #Include and #define 

 

In addition to the standard input-output library (stdio) and the standard library (stdlib) we 

include the math and time header files to give us access to mathematical functions as well as 
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calculating the time spent in parts of the code. We also included OpenCL.h. This is the 

header to our OpenCL code, and the freeGLUT library for OpenGL rendering. We also 

defined a few macros. WIDTH and HEIGHT are the respective width and height of the 

plane in which all generators should be placed. We chose to make this the 720p HD 

resolution or 1280 vertical pixels by 720 horizontal pixels. We also defined the font we want 

to use with OpenGL and the maximum dataset size for the input. The last define is 

disable_output. If set to one the Voronoi tessellation will not be printed and no other output 

will be sent to the terminal. This is used for benchmarking the program. 

 

5.3.2 Reading input file 

 

Reading the input file is a trivial task in C. However it is notable that we use fopen_s instead 

of the ANSI-C fopen. The MSVC compiler used by visual studio marks a few commonly 

used I/O functions as deprecated and offers secure replacements. We could still use fopen 

and the other deprecated functions by including the macro #define CRT_SECURE_NO_WARNINGS if 

required for compatibility with other compilers. 

Our read function detects signs of invalid data such as points outside of the defined plane, 

multiplicative weights with value zero or additive weights smaller than zero. In case one or 

more of these problems are encountered the application halts and prints the coordinates of 

the violating entry. 

 

5.3.3 Processing the OpenCL data 

 

The data returned by the OpenCL kernel is a 2D array with each element containing the 

number of the generator it belongs to. However this information is not directly printable. To 

be able to display the Voronoi plot we want to convert this data into a binary image. To 

achieve this we need to evaluate all elements in the array one final time. To determine if a 

pixel is a border we look at all its neighbours. If all these neighbours are assigned to the same 

area as the pixel we are currently evaluating this pixel is not a border pixel. If there is at least 

one pixel belonging to another generator this pixel is marked as a border pixel. After we 

processed all the items in the matrix we end up with a binary image. With this method two 

white pixels belonging to different regions are always separated by two black pixels. We are 

unable to process the edges of the plane in a similar way since we did not calculate all their 

neighbours. Instead we mark them automatically as being a border pixel. This has the added 

advantage of making all regions closed.  

This whole process is demonstrated on small scale in Figure 17 where we examine what could 

happen at the border between the regions of generators ‘7’ and ‘9’. In the top row we see 

how the 3x3 box starts at (1,1) and moves row by row to the position (N-1,N-1). If the 3x3 

box only contains pixels owned by the same generator it will place a zero in the output matrix 
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in the corresponding place. Otherwise a one will be placed. We can then map each element 

directly to a pixel to display it. This output does not include the positions of the generators. 

These are added by the GLUT draw function. 

Because it is possible to parallelise this code it can be implemented as a kernel in a future 

version of this project. The current sequential version however is typically executed in 0.020 

seconds or less. The time the program spends in this section of the code is independent from 

the complexity and size of the input and effectively constant. Due to these factors the 

potential benefits gained from implementing a secondary kernel are minimal and 

implementation has been deemed to be of low priority for this project. 
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Figure 17 Border detection process 
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5.3.4 Rendering in OpenGL 

 

Now we finally have a binary image of the Voronoi plot we still need to display it. The 

OpenGL part of the code for rendering the image consists of three functions: initGlut, 

mouseEvents, and drawPlot .  

In initGlut we take necessary steps to prepare a window for displaying the results of the 

Voronoi plot. The initialisation code is shown in Figure 18. 

void initGlut(int argc, char **argv) 

{ 

    // initialise GLUT 

    glutInit ( &argc, argv ); 

    /* define window mode 

     we choose the RGB color mode and a single buffer  

     since we won't be displaying moving images this is less demanding     

     for the system */ 

    glutInitDisplayMode(GLUT_RGBA | GLUT_SINGLE); 

    /* define window, -1 means we let the window manager decide on x and y                                                                                                                           

coordinates */ 

    glutInitWindowPosition(-1, -1); 

    /* define window size in pixels */ 

    glutInitWindowSize(WIDTH, HEIGHT); 

    /* create the actual window with the required title */ 

    glutCreateWindow("Compoundly weighted Voronoi"); 

    /* set white background */ 

    glClearColor ( 1.0, 1.0, 1.0, 0.0 );  

    /* set drawing range, we need to convert the size to GL datatypes */ 

    gluOrtho2D(0.0,(GLdouble)WIDTH,0.0,(GLdouble)HEIGHT); 

    /* indicate the drawing function for GLUT 

    cannot pass arguments to glutDisplayFun, this explains why global vars  

are needed */ 

    glutDisplayFunc(drawPlot);  

    /* track mouse */ 

    glutPassiveMotionFunc( mouseEvents); 

    /* enable exiting the glutMainLoop (freeGLUT supports this, the 

original GLUT doesn't) */ 

    glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE, 

GLUT_ACTION_GLUTMAINLOOP_RETURNS); 

} 
Figure 18 GLUT initialisation 

All functions are documented in the code. The last line of code is a particular interesting line. 

gluSetOption enables the programmer to set parameters for the OpenGL environment. This 

particular variable is the main reason why we chose for freeGLUT over the nearly identical 

GLUT. It enables us to give control back to the main program loop after exiting the window 

while the original GLUT would halt the application. This makes our application more 

suitable for further development and use in other programs. In the init function we also 

define the drawing function with glutDisplayFunc. 
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MouseEvents keeps track of the mouse position and uses that position to alter global 

variables, these variables are then used by the drawPlot function to give the user additional 

information about the plot. The coordinates of the mouse pointer are shown as well as the 

coordinates and weights of the nearest generator. In this function we also changed the 

standard ANSI-C function sprintf to the safer sprintf_s. The biggest advantage of this is that 

if the user enters values in the input file that overflow the allocated variables the program will 

now no longer crash as it did with the sprintf function. Whenever the mouse is moved 

glutPostRedisplay forces a refresh of the window. 

The final OpenGL function, drawPlot, fills the canvas with the generated Voronoi 

tessellation. To draw the tessellation we will evaluate every item in the plot[] matrix. Each 

item in this matrix corresponds with a pixel in the window on the same coordinates. To draw 

this single pixel we need to delimit all the drawing actions with glBegin(GL_POINTS) and 

glEnd. This will make OpenGL treat all the vertices we define in this delimited group as 

single pixels. To define these vertices we have two choices depending on the required 

precision. Since our data is not sub-pixel precise glVertex2i suffices, otherwise glVertex2f 

could give us higher precision. In a similar manner we plot all the generators specified in the 

input file with larger, red pixels. A notable characteristic of the draw function is that no 

arguments can be passed to it directly. This means global variables are necessary. 

In this function we also draw the overlay with additional information. This additional 

information is drawn over the current plot and again uses the same drawing principle we used 

to plot single points. Some of the information provided to the user is in text form. To print 

numbers and text we need to use the OpenGL function glutBitmapString. The data in this 

information box is seen in Figure 19. 

 

Figure 19 Information box 

The information box is rendered in the top left corner of the Voronoi diagram. It features the 

mouse coordinates as well as coordinates of the nearest generator. The nearest generator is 

also rendered in green instead of the default red colour. This enables the user of the program 

to analyse the diagram in greater detail. The data is updated on every mouse movement.  
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5.3.5 Running the executable 

 

This program is compiled to a 32 bit Windows executable. To pass arguments to the program 

we use the Windows command prompt. To load the program we use “CWVoronoi.exe data”. 

The data parameter is a file. We prefer using .txt files due to their easy editing possibilities. In 

the file there should be four columns with from left to right the x coordinate, y coordinate, 

multiplicative weight and the additive weight all separated by spaces. The file length is not 

restricted but can be capped internally in the application. Currently the internal limit is 5000 

points. All data after the 5000th line will be ignored. To run the program it is important that 

the freeglut.dll file is in the same folder as the executable.  

If the user omits the filename parameter the program will use the coordinates.txt file if a file 

with that name is present in the current folder. If an invalid filename has been entered 

execution will halt.  

 

5.4 OpenCL.c 

 

Executing a program on the GPU of a computer with OpenCL requires a few mandatory and 

a few recommended steps. If we outline the general principle it comes down to some basic 

steps. 

1. Query system information 

2. Create access points to required hardware 

3. Create and load memory buffers 

4. Load and build kernel file or load binary  

5. Set kernel arguments  

6. Execute kernel 

7. Retrieve results 

8. Destroy objects and free resources  

The order of step 2 and 3 and 4 can be changed if wanted all other steps have dependencies 

with previous steps. Table 14 shows all the OpenCL specific functions in the order we used 

them with a short description. 

 

Table 14 Used OpenCL functions [34] 

# Function name Explanation  

1 clGetPlatformIDs OpenCL works with the platform model, a platform is 
defined as a host connected to one or more OpenCL 
devices. On a regular computer there can be e.g. one 
platform consisting of one CPU and one GPU. 
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2 clGetDeviceIDs Gets the list of devices available on the selected platform 
and chosen type (CPU, GPU, Accelerator). 

3 clGetDeviceInfo Query for device information such as name, number of 
cores and maximum array size. Not required but useful.  

4 clCreateContext A context is a container and manager for different objects 
(memory, program, kernel, command-queues) for the 
OpenCL runtime. A context can have multiple devices 
and all objects in a context can be shared by those 
devices. A context provides synchronisation points for all 
devices for e.g. memory updates. 

5 clCreateBuffer Create memory objects that can be accessed and used by 
both the host and the OpenCL device. 

6a clCreateProgramWithSource Creates a program object from source code for the 
defined context. 

6b clCreateProgramWithBinary Creates a program object from a binary for the defined 
context, mutually exclusive with 
clCreateProgramWithSource. 

7 clBuildProgram Builds executable from the program object created with 
clCreateProgramWithSource or 
clCreateProgramWithBinary. 

8 clGetProgramBuildInfo This command should only be executed when 
clBuildProgram fails to return CL_SUCCESS. It allows 
the programmer to view the problem with his code. 

9 clCreateKernel Creates a kernel object from the program object. A 
program object can contain multiple kernels. Each 
function in a program object with the __kernel qualifier 
can yield a kernel object. 

10 clSetKernelArg Set the arguments to a kernel object for execution. These 
are all arguments a function with the __kernel qualifier 
has. 

11 clCreateCommandQueue All commands on context objects such as memory are 
queued in the command queue. Queuing can be in-order 
as well as out-of-order . 

12 clEnqueueWriteBuffer Writes data from host memory to buffer accessible by 
both the host and the OpenCL device. 

13 clEnqueueNDRangeKernel Executes data parallel kernel on the selected OpenCL 
device. 

14 clEnqueueReadBuffer Copies a buffer object to the host memory. 

15 clFlush Forces all remaining commands in the command queue 
to the corresponding device. 

16 clFinish Holds the program until all commands issued to the 
corresponding device have been executed. 

17 clReleaseKernel Releases the defined kernel object. 

18 clReleaseProgram Releases the defined program object. 

19 clReleaseMemObject Releases the defined memory object. 

20 clReleaseCommandQueue Releases the defined command queue. 

21 clReleaseContext Releases the defined context. 
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Most consumer PCs can have one or two platforms installed: one platform for the CPU and 

another one for the GPU. In the current application we take the first platform that is found 

by the system. The next step is selecting the device from that platform. To do this we first 

query and select any devices of the “GPU” type. If that fails we fall back on a CPU type 

device. After the device selection we can create a context. Our context will only contain the 

selected device but selecting multiple devices for a higher level of parallelisation is also 

possible. 

For our program we need two buffers: one input buffer and one output buffer. The input 

buffer contains four floats per generator point so the size of the required buffer is 

4*lines*sizeof(float). The OpenCL kernel returns a 2D array with an integer for each pixel in 

the x-y plane. The size we need to reserve for this buffer is 

planeWidth*planeHeight*sizeof(int).  

After reading and building the kernel the last step is to create a command queue before we 

can start with the actual execution of the kernel. This command queue is bound to a single 

device in a context and the runtime API. The runtime API now can be used to define and 

modify all memory objects. We first load the input buffer with the float array from 

CWVoronoi.c, modify it with a data parallel kernel and finally we copy the result to the 

output buffer. These three actions are all executed in the OpenCL runtime API.  

Note that compilation of the OpenCL kernel files is not done at the same time as the rest of 

the program. Instead the OpenCL Toolkit is responsible for building the kernels. OpenCL 

supports two different compilation strategies: online and offline compilation. With online 

compilation the kernel file will be compiled at runtime. With offline compilation a binary file 

is loaded instead of a readable .cl file. The advantages and disadvantages can be found in 

Table 15. 

Table 15 Online vs. Offline compilation 

 Online Offline 

Advantages  Higher portability, can be 
compiled on all OpenCL 
conformant systems 

 Faster, less overhead in 
program execution as 
compiling the kernel is one of 
the most time consuming 
steps in the OpenCL 
initialisation 

Disadvantages  Source code is readable, 
might be unwanted in certain 
applications 

 More time consuming 

 Not portable between 
different systems 

 

In this implementation we made the choice to work with online compilation. Although it has 

a speed disadvantage it offers greater portability between different systems. The speed 

disadvantage also proves to be minimal as the total building time is around one microsecond 
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as shown in Figure 20. Changing between online and offline compilation is trivial. The code 

to read the source code .cl file is identical to the one reading the binary .clbin file. 

clCreateProgramWithSource and clCreateProgramWithBinary should be swapped and finally 

clBuildProgram is used only with online compilation.  

 

Figure 20 OpenCL timing breakdown 

 

 

5.5 CWVoronoi.cl 

 

The last part of the OpenCL implementation is the actual OpenCL kernel. The kernel is 

written in OpenCL C, a variation on C99 that enables parallel programming. The kernel itself 

is a single function marked by the __kernel qualifier. OpenCL .cl files can contain multiple 

kernels. 

A kernel is executed for each work item defined by the OpenCL runtime. Work items are the 

smallest division of the problem that can be parallelised. A work-item is defined by its global 

ID, the coordinates in the index space. Work-items are grouped in work-groups. These work-

groups are often the upper limit for simultaneously executable work. This limit is imposed by 

hardware limitations. Some implementations of the OpenCL API tolerate work-groups that 

exceed device specifications while guaranteeing correct execution. This feature should be 

avoided for portability of the code. 

Our kernel function as seen in Figure 21 has five inputs, two of them are buffers: one input 

buffer with the generator coordinates and weights and a second buffer for the output. Both 

buffers are placed in the global address space. We have to place both buffers in the global 

address space because all instances of the kernel need access. The other three inputs are 

integers. The first two integers are the dimensions of the output array. This helps us to 

calculate the position of the kernel instance in the global scheme. The final integer is the 

amount of rows in the input array. Kernels always have to be of the void type, returning data 

is not part of the OpenCL standard. 

__kernel void VoronoiOne(__global float *inputArray, __global int *result, 

int width, int height, int points) 
Figure 21 Kernel function header 

Initialisation

Building Phase

Execution time

C processing
elapsed time
OpenGL
drawing time
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For data parallel applications OpenCL uses get_global_id(0) to determine the position of a 

kernel instance in the global scale. However this global ID is only one dimensional so we 

need to do some calculations on it to get usable x and y coordinates.  

To convert the 1D position to 2D coordinates we make the assumption we go through the 

plane in horizontal direction first and then in vertical direction. First we take the modulus of 

the global ID and the width. This gives us the x position in the current line. For the y 

position we divide the global ID by the width. Since both these numbers are integers this will 

give us the line number. We cast both the x and y position to the float type to be able to 

calculate the square root. Figure 22 shows the complete formulas. 

//width and height of current pos(s) 

xPos = (float)((globalID ) % width); 

yPos = (float)(globalID/ width);  

Figure 22 Determining the position of this kernel instance in the global scale 

To calculate the closest generator to a certain point P(xPos, yPos) in the x-y plane we use an 

iterative process. We start with the maximum possible distance between two points. This is 

the distance between point P(0,0) and P(width, height). According to the Pythagoras theorem 

this is  

      √(       )
  (        )   

Then we will calculate the distance from the point P(xPos, yPos) to each generator in the 

generator list updating D each time a smaller value is found. The distance formula here is the 

weighted distance formula so we need not only the x and y position of the generator but also 

the additive and multiplicative weights of that generator.  

Each time the distance D is updated we also update an integer that holds the number of the 

generator linked to that distance. Once we processed all generators for a certain point we 

save this value in the output buffer on the same coordinates xPos and yPos. Since the output 

buffer is another 1D array we can use the global ID for this. 

It is worth mentioning that in an OpenCL kernel double precision computation is not 

enabled by default. We initially decided to keep double precision disabled to provide higher 

speeds and compatibility as not all GPU’s support double precision computation. If GPU’s 

provide double precision calculations there is a typical theoretical performance loss of factor 

3. To test if there was a major difference in accuracy of the output image or other benefits we 

created a double precision kernel. Our Nvidia Quadro NVS card is double precision enabled 

by default so the only changes needed were to the kernel. As demonstrated in Figure 23 and 

Figure 24 there is no noticeable difference between the single and double precision output.  
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Figure 23 Single precision floating point Voronoi 

 

Figure 24 Double precision floating point Voronoi (same dataset) 

 Although there are no visible changes between the single and double precision floating point 

pictures we note that the total program time for this particular dataset almost doubled. The 

OpenCL execution time was ten times higher opposed to the predicted theoretical three 

times. For this relatively small dataset this is not an issue but larger datasets will become 

about ten times slower as the OpenCL execution time will become a more important factor 

with larger datasets while the other parts of the code are executed in constant time. Two of 
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the measurements are printed in Figure 25 and Figure 26. Note that for this comparison the 

calculation of the tessellation is done multiple times. We took an average run for both cases. 

 

Figure 25 Single precision floating point timing results 

 

Figure 26 Double precision floating point timing results 

From these observations we can conclude that our initial motivation to make a single 

precision kernel proved valid. In some applications the double precision accuracy might be 

more valuable than the execution speed but for our application the accuracy of the single 

precision floating point kernel is adequate.  

 

5.6 Calling the OpenCL program from Matlab 

 

One of our goals was being able to execute the program directly from the Matlab 

environment with Matlab variables. Because our program has its own printing function we 

decided to make Matlab write the data to a file and let the OpenCL program read that file. To 

achieve this we need only two Matlab commands: one to write the file and a second one to 

execute the program. Both functions are printed in Figure 27. 

dlmwrite('coordinates.txt', A, 'newline', 'pc', 'delimiter', ' '); 
!CWVoronoi.exe; 

Figure 27 Linking matlab to OpenCL 

Dlmwrite will create a file ‘coordinates.txt’ or overwrite an existing file with that name. In the 

file it will place the contents of matrix A. Subsequent numbers in the matrix are delimited by 

a space and rows are ended with a newline symbol. 

The program will now execute as normal. A Voronoi Tessellation will be displayed if it can be 

generated from the provided data. If the user saves bad data to the coordinates.txt file the 

program will throw an error and halt execution. On error or successful execution output data 

will be printed to the Matlab console.
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6 Comparison  

6.1 Sequential implementation 

 

To make a valid comparison we wrote a simple sequential version of this code in C and 

Matlab. The basic principle is the same. For the C version the opencl.c file has been replaced 

by the sequential.c file that contains similar code to the OpenCL CWVoronoi kernel.  

The sequential implementation needs at least one extra for-loop to calculate all points but the 

distance functions and main principles are the same. We chose to use two for loops: one for 

the x coordinates and one for the y coordinates to make it easier to find the position in the 

grid. A similar approach as in the kernel could be used to determine the position. The 

sequential implementation yields exactly the same output as the OpenCL version. This is 

demonstrated in Figure 28. 

 

Figure 28 The output of the sequential code is identical to the OpenCL code 

The reason we evaluate this sequential version is that this code does not need any of the 

OpenCL initialisation or buffer transfers. These parts are a big overhead for the OpenCL 

program so a sequential program could be faster in small datasets. Our 100 point goal is 

considered a small dataset for GPGPU computation. 
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6.2 Speed and input data sizes 

 

To compare the sequential and the parallel OpenCL version we made some minor 

adjustments to the code. We disabled all the prints and the entire OpenGL part. A Matlab 

script was made to generate a new random input file and start the executable one hundred 

times. With the Matlab profiler we checked what amount of time was spent in the executable 

for different dataset sizes. This means we compare the complete programs including input 

file reading and OpenCL overhead. We tested for dataset sizes 10 to 10.000. Larger datasets 

work on the sequential versions but the OpenCL version ran out of resources. In theory it is 

possible to run larger datasets in the OpenCL implementation but it would require better 

hardware then the available hardware in the test system. The result of this comparison can be 

found in Table 16 and Figure 29. For this comparison we also translated the sequential code 

to a Matlab file and ran the double precision variant of the kernel.  

Table 16 Average timing results for total program time 

Dataset 
size 

Matlab Sequential C OpenCL Single 
precision 

OpenCL Double 
precision 

10 0,837s 0,238s 0,170s 0,206s 

100 5,069s 1,455s 0,191s 0,353s 

1.000 46,928s 12,367s 0,500s 5,012s 

10.000 465,911s 123,276s 3,016s N/A 

100.000 4670,870s* 1233,762s* N/A N/A 

* For 100.000 points we only ran ten simulations instead of 100 because linear time was 

expected and the simulations could potentially take multiple days. 
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Figure 29 Timing results for sequential Matlab, sequential C and OpenCL (single precision)  

We see that for small data sets the advantage of OpenCL over the sequential C program is 

almost negligible. Although 40% faster is significant, both programs still execute in under a 

second. At a dataset size of 1000 points the difference increases further. The OpenCL 

version is now almost 25 times faster and still executing in under a second. The speed of both 

sequential programs appears to have a linear relation to the dataset size. At 100.000 points the 

OpenCL version failed, crashed the driver and returned error code -5: 

CL_OUT_OF_RESOURCES. This can have two causes: we are trying to access too much 

memory or we try to execute the kernel with local workgroup sizes that exceed the hardware 

specifications. The double precision version already failed at problem sizes just over 1.000 

generators with the same symptoms. 

We ran an analysis tool on the GPU to locate the problem but the memory usage appeared to 

be well within boundaries at any time. Figure 30 is a screenshot of our troubleshooting 

attempt. 
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Figure 30 GPU-Z, GPU monitoring software 

We see three spikes where GPU activity is 100%. All these spikes are attempted 

computations of datasets of 100.000 generators. In the Memory Usage (Dynamic) field we 

see two corresponding small peaks were memory usage is maximum 56MB. On the third run 

less memory was used at the time of the driver crash and there is no visible peak. From this 

we can exclude excessive memory usage as possible cause of the crash. Instead the problem is 

located with the local workgroup sizes. 

Common practice, when designing OpenCL programs, is to let the OpenCL API determine 

the local workgroup size. Most API’s are designed by the hardware manufacturer and 

implement a way to determine the optimal work group size for faster execution. We tried to 

gain more control over the program by changing the local workgroup size to a size the GPU 

could definitely handle. This workgroup size might not be the optimal for speed purposes but 

is guaranteed to be within the bounds our GPU’s hardware capabilities. First the maximum 

local workgroup size supported by the GPU is queried. This maximum is used when we 

queue the kernel. The code can be seen in Figure 31. 

 

/* Query the maximum workgroup size supported by the hardware */ 
clGetDeviceInfo(deviceID, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(cl_uint), 

&maxWorkGroupHW, NULL); 

 

/* Use that value in the kernel execution */ 

clEnqueueNDRangeKernel(commandQueue, kernelOne, 1, NULL, &globalItemSize, 

&maxWorkGroupHW, 0, NULL, &k_events[0]); 
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Figure 31 Code changes for maximum workgroup size 

Executing this program takes longer than the original one and exceeds the five second mark 

when the Windows GPU Watchdog halts the kernel execution by rebooting the display 

driver. This is standard behaviour in Microsoft Windows and many other operating systems 

and is a safeguard for the operating system in normal circumstances to prevent the computer 

from locking up. This behaviour is possibly the reason why the API tried to create larger 

workgroups. 

From this we can conclude that we will always have a problem with an input dataset of 

10.000 or more generators on the hardware present in our test system. When we take local 

workgroup sizes that comply with the hardware specifications we exceed the five second 

mark and the watchdog kills the program. If we take bigger workgroups or let the OpenCL 

API decide the workgroup size will be too big for the hardware and the driver will crash. The 

only solution to this problem is to run the program on hardware with greater capabilities or 

to split up the problem in smaller groups. 

 

6.3 Real world scenarios 

 

The envisioned application of this project was to plot the areas of influence for different 

transmitters. Instead of dummy data we would load in real-world coordinates and 

characteristics of antennas placed in the Helsinki region. At this point we concluded that it 

was impossible to extract an additive weight from the data provided from the transmitters. 

To describe the signal strength at certain coordinates we replace the current distance formula 

Dist = M*D+A for the new formula Dist=P1*log(D)+P2 with P1 < 0, P2 > 0 and D the 

Euclidean distance to the transmitter. The normal Voronoi Tessellation calculates the 

shortest distance. Another adjustment is required to convert this to the highest signal 

strength. Due to the construction of our kernel file implementing these changes in the 

OpenCL version is a trivial task. The sequential C and sequential Matlab version are also easy 

to change although recompilation is necessary for the C version. 

 

 To make the resulting plots more readable we loaded in a background image of the region 

under observation. Rendering a background is the most convenient in the Matlab versions. 

We used a Matlab implementation of the Google Maps API by Zohar Bar-Yehuda[35] that is 

covered under the BSD license and free for redistribution and use in source and binary 

forms. This API renders a map to the currently opened plot. To determine which map to 

render the maxima and minima of the x- and y-axes are used as longitude and latitude 

respectively.  

 

For the Matlab version of the code this meant we had to make some changes to the code. 

Since the transmitters are often positioned relatively close integer pixel coordinates aren’t 

accurate enough. Transmitters located at a few kilometres apart will be mapped to the same 
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coordinates. Our specific dataset is included in appendix A. We scale up this dataset so it’s 

stretched between 0 and 1280 for x and 0 and 720 for y. We choose these values arbitrarily 

because 1280x720 is also the working resolution of our OpenCL implementation and the 

data could be used there as well. After upscaling the data we can calculate the Voronoi 

tessellation and downscale the results to the original size. Plotting this matrix instead of the 

upscaled version enables us to use the Google API without further adjustments. Figure 32 is 

our result for the Helsinki region.  

 
Figure 32 Sequential Matlab with Google Maps API background 

For the sequential C and OpenCL versions there is no plug-and-play version of the API 

available. To be able to display a map we expanded the OpenGL code to draw a background 

image from a bitmap file. This background image has to be delivered by the user and the 

coordinates of the generator should be relative to the origin of this image. To draw the 

bitmap we use the glDrawPixels function. This function is not the fastest option to draw a 

predefined image but offers an easier implementation opposed to the default printing of 

images by loading textures and rendering them with quad structures.  

 

We choose to limit the background capabilities of the program to bitmap images only. 

Bitmap images require no extra decompression steps opposed to jpeg, png or other 

compressed image formats. Figure 33 is a plot for a similar dataset for the Helsinki 

metropolitan area with the OpenCL code. 
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Figure 33 OpenCL Voronoi with background  

To generate a Voronoi plot with map we need to add the image name as an additional 

parameter to the command “CWVoronoi.exe Helsinki.txt Helsinki.bmp”. For now this image 

has to be a 24 bit bitmap image with the same resolution as defined in CWVoronoi.c. This 

resolution is currently 1280 by 720 pixels but can be changed by altering two macros in the 

source code and recompiling the program.  
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7 Conclusion and future work 
 

When we wrote our sequential C and sequential Matlab version for comparison purposes we 

expected them to be much slower then they proved to be. Our typical problem size is 100 

points or less and at this size both of the sequential versions are competitive with the 

OpenCL version. While the Matlab version is about 26 times slower and the C version seven 

times slower for this problem size this can be considered acceptable. The double precision 

OpenCL implementation is only two times slower but due to compatibility issues with some 

graphics cards we already excluded this version.  

The major tradeoff for the speed of our application is the lack of a scaling feature. When the 

user would zoom in on the plot the edges between different regions are not recalculated or 

rescaled and become visually bigger. This disadvantage is shared with both sequential 

applications but is absent in the much slower polygon intersection implementation. In Figure 

34 we see why this lack of rescaling could be an issue. 

 

Figure 34 Voronoi Tessellation with 1.000 points.  
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When we plot some points close to each other some regions can become smaller than a 

single physical pixel and so it would seem one region contains two generators as seen in the 

red box. With another method of Voronoi construction such as the intersecting polygon 

method we could zoom in and examine this region. This is not possible with this 

implementation. The area would remain invisible and other borders would become wider. A 

possible improvement to the program would be to make such a zoom function. A suggested 

approach for this is: 

1. Register mouse clicks. The first click is the first corner of the region of interest, the 

second click is the opposed corner. If required we could draw a rectangle between the 

first click and the mouse pointer position to give the user feedback on what he is 

doing. The right mouse button could be a possible “cancel” function. 

2. Calculate horizontal and vertical scaling vectors from this input  

a. Scale_x = original_x/ input _x 

b. Scale_y = original_y/ input _y 

3. Alter the generator list. Removing generators that are outside of the selection box 

should be avoided because this can have effects in the box. Instead we remap all 

coordinates. This requires more memory space so a maximum zoom factor should be 

established. Remap the generators by multiplication of the coordinates with the 

scaling vectors. 

4. Recalculate the Voronoi tessellation with the new generator list, adjusted widths and 

heights. 

5. Remap the output so that only the area in the bounding box gets plotted. This can be 

done with altering the parameters of the for loops in the draw function. 

Another way to raise the accuracy of the drawing itself is by replacing glVertex2i with 

glVertex2f. This enables sub-pixel precision.  

A second weakness of the OpenCL and sequential C implementations is not related to the 

Voronoi tessellation itself but rather the lack of a convenient way to display a background 

image accurately. This can be resolved in a future version by implementing the Google Maps 

API like in the Matlab version or alternatively by sending the OpenCL output to a Matlab 

program that can use this API. However for this application the coarse mapping of the 

background is suitable. The bitmap we currently render can be considered a proof of 

concept. 

In the opencl.c file some improvements are possible as well. Currently we let the system 

automatically select the platform that is detected first. On some systems there are multiple 

platforms available and this might not be the best choice. We could query the amount of 

devices first with clGetPlatformIDs(0, NULL, &platformsFound). If we do not send an 

object containing a list of platforms and an integer containing its length this function will 

only return the number of platforms. We can then use this number to make a list of all 

platforms. With all platforms known we compare the names property. This returns the 
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company name of the manufacturer of the API. We can then select the API we want by 

comparing those names. In our application we would prefer Nvidia: since Nvidia only 

supports GPU’s we are sure the code will be executed on a GPU whereas Intel is on CPU 

and AMD can be both CPU and GPU. 

The capabilities of the OpenCL code are somewhat limited to the available hardware. On our 

test system a maximum of 10.000 points could be calculated. This value can be higher on 

systems with more powerful hardware. The desired feature, solving problem sizes of about 

100 generators, can be achieved easily. For this problem size an OpenCL implementation is 

not the only possible solution. Even the much compacter sequential C or sequential Matlab 

code can solve this problem size in acceptable time. The OpenCL code however remains 

capable of fast execution with large datasets where the speed of the other applications drops 

off dramatically. For small problem sizes the OpenCL implementation is also the fastest but 

with a smaller margin. Since the OpenCL kernel is automatically compiled at runtime it is 

more convenient to change the distance formula compared to the sequential C 

implementation since recompilation of the executable is not required. From these arguments 

we can conclude that the OpenCL version is the most appropriate solution for the given 

problem. 
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Appendices  
 

Appendix A: Dataset Helsinki 

Appendix B: OpenCL and sequential C background image  

Appendix C: Calculation of signal strength 

Appendix D: OpenCL on FPGA 
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Appendix A: Dataset Helsinki 

X Y P1 P2 
24.8073 60.2177 -18.7478 96.6675 
24.8082 60.2067 -19.4634 101.8989 
24.8200 60.1755 -19.1553 101.8080 
24.8228 60.1692 -19.9216 107.7748 
24.8235 60.1688 -18.8743 96.4893 
24.8240 60.1692 -19.8026 106.6524 
24.8507 60.2538 -19.8435 108.7242 
24.8692 60.2188 -18.8685 96.2597 
24.8742 60.1427 -18.8627 96.0203 
24.8835 60.1577 -18.8743 96.4893 
24.9087 60.1583 -19.0671 101.7647 
24.9170 60.1583 -20.1127 112.2409 
24.9180 60.2040 -19.5253 103.8193 
24.9207 60.2028 -19.1566 101.9207 
24.9233 60.1530 -20.0718 112.6212 
24.9393 60.1913 -19.9720 112.4409 
24.9415 60.1592 -19.8522 112.5329 
24.9550 60.2353 -19.1085 103.0721 
24.9582 60.2880 -19.8934 110.5542 
24.9583 60.1862 -18.9518 100.4958 
24.9693 60.1835 -18.3331 93.4968 
25.0502 60.2057 -18.7321 97.2313 
25.0897 60.2728 -19.7954 110.3761 
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Appendix B: OpenCL and sequential C background image 

int readBackground(char *background) 

{ 

    /* vars */ 

    FILE *f; 

    char *extension; 

    /* tF is a global var, it is not possible to pass a local variable to a   

     * draw function 

     */ 

 

    extension = strrchr(background,'.'); 

    if(extension != NULL )  

    { 

        /* check extension of the input, currently only bitmaps can be  

         * drawn  

         */ 

        if(strcmp(extension,".bmp") == 0) 

        { 

            /* read background file */ 

            fopen_s(&f, background, "r"); 

            if(f != NULL) 

            { 

                tF = (GLubyte*)malloc(WIDTH*HEIGHT*3); 

                fread(tF, WIDTH*HEIGHT*3, 1, f); 

                fclose(f); 

                return 1; 

            } 

        } 

        else 

        { 

            printf("Image is not a bmp and will not be displayed.\n"); 

return 0; 

        } 

        

    } 

    else 

    { 

        printf("Image file not loaded.\n"); 

    } 

    return 0; 

} 

 

void printBackground() 

{ 

    if(tF != NULL) 

    { 

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  

        /* reset raster position */ 

        glRasterPos2f(0,0); 

        /* draw bitmap */ 

        glDrawPixels (WIDTH, HEIGHT, GL_BGR_EXT, GL_UNSIGNED_BYTE, tF);  

        glClear(GL_DEPTH_BUFFER_BIT); 

    } 

} 

 



 
 

 

 



81 
 

 

 

Appendix C: Calculation of signal strength 

The characteristics of the transmitters are estimated based on the radio wave propagation 

recommendation  bundle by the International Telecommunications Union. The version of 

the recommendation that was used is ITU-R P.1546-5 “Methods for point-to-area 

predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz” [36]. 

This bundle offers graphs where the signal strength is given in relation to the Euclidean 

distance. Different graphs are included for different frequencies, areas and antenna heights. 

Figure 35 shows a similar graph. 

 

Figure 35 Field strength 

We approximate the curves in these graphs by fitting an equation with two variables P1 and 

P2 with the model P1*log(distance)+P2 so P1 < 0 and P2 > 0. 
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Appendix D: OpenCL on FPGA 

OpenCL programs can also be run on FPGA’s by specialised SDKs such as the Altera 

OpenCL SDK. The advantage of FPGA’s over GPU’s in massive multithreaded applications 

is the customisability of the device. The hardware can be fine-tuned for maximum 

performance for the envisioned application giving higher performance and potential lower 

power and lower costs. The OpenCL compiler enables the designers to model their problem 

with a high level language instead of a low level HDL languages. For optimal performance 

the FPGA can be connected via the PCI bus. Table 17 shows comparison of an OpenCL 

program on different devices. Figure 36 shows a possible setup. 

 

 

Figure 36 FPGA as OpenCL host connected to x86 machine [37] 

 

Table 17 Monte Carlo Black-Scholes simulation results 

Platform Power  
Watts (W) 

Performance 
Simulations per seconds 
(Bsims/s) 

Efficiency 
Simulations per second 
per Watt (Msims/s/W) 

W3690 Xeon Processor (CPU) 130 0.032 0.0025 

Nvidia Kepler 20 (GPU) 212 10.1 48 

BittWare S5-PCIe-HQ (FPGA) 45 12.0 266 
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