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Abstract 

 

This paper studies the procedure to program a vertically articulated robot with six degrees of 

freedom, the Mitsubishi Melfa RV-2SD, with Matlab. A major drawback of the programming 

software provided by Mitsubishi is that it barely allows the use of vision-based programming. 

The amount of useable cameras is limited and moreover, the cameras are very expensive. 

Using Matlab, these limitations could be overcome. However there is no direct way to control 

the robot with Matlab. The goal of this project is to set up a serial connection between the 

robot and Matlab. The procedure is investigated for a case in which the robot has to pick up 

geometrical objects and sort them. The camera, connected via a USB-connection to the PC, 

provides an image of the working field. This image is processed in Matlab. The resulting data 

is transformed to a trajectory with the different passing points. These points are converted to 

the correct format to send to the robot in a command through the serial connection. The 

results are simulated and performed with the actual robot.  

  



  



Abstract in Dutch 

  

Deze paper bestudeert de procedure om een verticaal gelede robot met zes vrijheidsgraden, 

de Mitsubishi Melfa RV-2SD, met Matlab te programmeren. Een grote tekortkoming van de 

software van Mitsubishi is dat de mogelijkheden omtrent visie erg beperkt zijn. Er zijn maar 

enkele camera’s mogelijk om te gebruiken en deze zijn bovendien erg duur. Door gebruik te 

maken van Matlab is het wel mogelijk beeldverwerking met eender welke camera te doen, 

maar er is geen rechtstreekse methode om de robot aan te sturen met Matlab. Het doel van dit 

project is om een seriële connectie tussen de robot en Matlab tot stand te brengen. De hele 

procedure is onderzocht voor het geval waar de robot geometrische objecten moet opnemen 

en deze moet sorteren. De camera, verbonden via een USB-connectie met de PC, biedt een 

beeld van het werkveld aan. Dit beeld wordt verwerkt in Matlab tot een traject met de 

verschillende tussenpunten die de robot moet doorlopen. Deze punten worden dan 

geconverteerd naar een formaat dat kan worden doorgestuurd naar de robot via de seriële 

connectie. De resultaten worden gesimuleerd en uitgevoerd met de echte robot.  
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3 Introduction 

 

Nowadays, robots are more important than ever before. A lot of robotic arms replace the 

simple labor. They are, for example, used for welding, spraying, assembly lines, etc. This 

results in faster and much safer labor, because less people have to work in the potential 

danger zones of the other machinery. On top of that, robots are independent of stress, 

illness and other human factors.  

My final project work aims to program and control a vertical articulated robotic arm with 

six degrees of freedom to pick up and sort certain objects with Matlab. The big problem is 

that the Mitsubishi software limits the usage of vision-based control. Only Melfa vision 

cameras are supported. Not only does this limit the amount of cameras, they are also very 

expensive. The software is perfectly suited for fast programming in an industrial 

environment, but for the university, the robot is used for research. Therefore they want to 

be able to use cheap cameras. Matlab provides a lot of easy and powerful image processing 

functions and allows using every camera.  

I will do this project work at the University of West Bohemia (Západočeská univerzita v 

Plzni). This university is located in Pilsen in the Czech Republic. The project work will be 

done at the department of Mechanical engineering and  the department of Cybernetics. 

The robotic arm is the MELFA RV-2SD from Mitsubishi and the programming will be done 

mainly in Matlab.  

 

 

 Problem statement 3.1

 

For a lot of robotic applications cameras are necessary to perform the desired tasks. For 

example, a robot needs to remove bad products on a product line. You need an image to see 

whether there are certain defects and eventually whether the product is bad and has to be 

removed. 

The problem described in this thesis exists of a field that contains square, rectangular and 

circular objects that need to be sorted. The robotic arm should be able to pick up these 

objects and bring them to the correct place.  This means that a procedure should be 

developed to localize and identify the objects on the field with a camera. When these 

properties of the objects are found, they must be sent to the program that handles the 

planning of the trajectory for the robotic arm. 

To let the robot perform these moves, a communication between the robot and the 

computer, running Matlab, must be created, so that the necessary actions can be 

transferred to the robot and the robot can perform them.  
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 Objectives 3.2

 

The main goal is to establish a communication between Matlab and the robot with a serial 

connection, because Matlab makes it possible to create vision applications with almost 

every camera.   

In this case, the desired application is to let the robot pick up square, rectangular and 

circular shapes and to sort them.   

The first objective is to place the camera in a good way to get a complete picture of the 

field. A method must be developed to process the image and recognize the shapes of the 

objects and to get their position. Next, their position can be used in the program to plan the 

trajectory. With the knowledge of the shapes, the robot knows where to bring the objects. 

When the trajectory is known, the necessary movements can be performed. To do this, we 

have to establish a good communication between the robot and the computer, running 

Matlab. There are a few options to do this, like serial line, USB connection, Ethernet… In 

this case, our aim is to use a serial line connection.  

 

 

 Materials and methods 3.3

 

The main tools we need are: 

 a robotic arm with a electromagnet attached to the end-effector; 

 the camera to recognize and locate the different shapes and to check the position of 

the robot; 

 the software to process the images coming from the camera; 

 The software to control the robotic arm.  

For the robotic arm we are using the robot from Mitsubishi, the MELFA RV-2SD. The robot 

is equipped with an electromagnet at the end of the arm, to pick up the metal objects. 

For the camera we will use a simple USB connected webcam. This webcam is attached to a 

frame above the working area and is independent from the robot. 

The images will be processed with Matlab and a toolbox called Image Processing Toolbox. 

To communicate with the robot we will also use a toolbox for Matlab called Robotic 

Toolbox from Peter Corke. As an extra, there is the possibility to use RT Toolbox 2 instead, 

provided by Mitsubishi themselves. In that case, a connection between Matlab and the 

toolbox must be established. The communication will be done using a serial port.  
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4 Hardware 

 

 Robot 4.1

 

The robot used in this project is the Mitsubishi Melfa RV2-SDB.  This robot is a vertical 

articulated robot with six degrees of freedom.  

The robot has these six degrees of freedom because of the six rotating joints. The first three 

degrees of freedom determine the position of the end effector. The three remaining degrees 

of freedom determine the orientation of the end effector.  

 

Figure 1: Mitsubishi Melfa RV2SD (adapted from [1]) 

The working area of the robot is visible in Figure 1, indicated by the outer black lines. In the 

horizontal plane (visible in the top view) the working area is described as a partial circle 

with a radius of 504mm. The robot is unable to rotate 360° degrees around joint 1, the 

vertical rotating axis through the base point. It is limited between +/-240°. Also the robot 

cannot reach near its base in the circle with radius 140mm without encountering a wrist’s 

downward singularity. This means when the wrist is faced downwards and the end effector 

is send near the base of the robot, the 4th joint has to rotate 180° all of a sudden, for the 

robot to be able to reach closer to the base while keeping the wrist downwards. 

In the vertical plane, the robot can only move between the partial circles with a radius of 

140mm and 504mm. The second joint is limited between +/-120° in relation to the vertical 

axis. The red lines in the side view of the robot in Figure 1 indicates the limits of the 

working area where the wrist singularity occurs.  

The position repeatability is ±0.02mm, which means that when the robot is sent to the 

same position multiple times, the difference in positions is maximum 0.02mm. 

The robots rated mass load capacity is 2kg. However, with the wrist positioned 

downwards, the maximum load capacity is 3 kg.  
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 Environment 4.2

 

4.2.1 Robot setup 

 

The robot is mounted on a table, as shown in visible in Figure 2. 

 

Figure 2: Setup robot 

The working field has a width of 295mm and a height of 350mm. This corresponds to the 

white area on the table. The distance in the x-direction between the robot base and the 

start of the working field is 155mm. In the y-direction the working field is centered.  

 

 

4.2.2 Camera frame 

 

The camera has to take a picture so that the field of view matches the working field as close 

as possible. However, the camera should be out of the reachable zone of the robot. 

The USB camera used is the Logitech C170. This camera has a diagonal field of view of 58°. 

The aspect ratio is 4:3.  The minimum height of the camera, when it is centered with the 

working field, can be calculated. With Figure 3, this is determined. 

295 

>720 
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Figure 3: Camera height 

   √          = 458 

        

  
 

   (   )
 

   

   (   )
 

        

Thus, the minimum height of the camera to capture the complete working area is 413mm.  

Figure 4 shows the robot in its stretched position with the end-effector at the same x-

position as the camera frame. 

 

Figure 4: Interference robot and camera 
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Since the camera is centered above the working area it is  

    
   

 
        

away from the robot’s origin. When the elbow is stretched, the robot’s arm is 570mm long. 

The offset of 50mm after the elbow of the robot is neglected.  

The maximum height of the robot reached at this point is: 

    √                      

Thereby, the frame of the camera should be at least 720mm high. 
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5 Software 

 

 Matlab 5.1

 

MATLAB® is a high-level language and interactive environment for numerical 

computation, visualization, and programming. Using MATLAB, you can analyze data, 

develop algorithms, and create models and applications. The language, tools, and 

built-in math functions enable you to explore multiple approaches and reach a 

solution faster than with spreadsheets or traditional programming languages, such 

as C/C++ or Java™ [2] 

 

For this project Matlab is used to do the image processing and for controlling the robot. The 

camera will be connected to the computer with USB and the robot will be connected with a 

serial line. Matlab will control these communications  with the help of some additional 

toolboxes, which are described in paragraphs 5.1.1 - 5.1.4. 

 

 

5.1.1 Image Acquisition Toolbox 

 

To import the data from the camera to the Matlab software, the Image Acquisition Toolbox 

is used. This toolbox makes it possible to import pictures or videos, so they can be further 

processed with the Digital Image Processing Toolbox. 

 

  

5.1.2 Digital Image Processing Toolbox 

 

The Digital Image Processing Toolbox for Matlab makes it possible to process the images to 

useful data. The images provided from the camera come with both useful and useless data. 

For this application, the only useful data is where the objects are and what their shape is. 

The colors, background, etc. is all useless information which slows down the program. That 

is why it is important to process the image to the information that is needed.   
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5.1.3 Peter Corke Robotics Toolbox 

 

“The Toolbox has always provided many functions that are useful for the study and 

simulation of classical arm-type robotics, for example such things as kinematics, 

dynamics, and  trajectory generation. The Toolbox is based on a very general 

method of representing the kinematics and dynamics of serial-link manipulators. 

These parameters  are encapsulated in MATLAB ®  objects -  robot objects can be 

created by the user for any serial-link manipulator and a number of examples are 

provided for well know robots such as the Puma 560 and the Stanford arm amongst 

others.  The Toolbox also provides functions for manipulating and converting 

between datatypes such as vectors, homogeneous transformations and unit-

quaternions which are necessary to represent 3-dimensional position and 

orientation.  

… 

Advantages of the Toolbox are that:  

•the code is quite mature and provides a point of comparison for other 

implementations of the same algorithms; 

•the routines are generally written in a straightforward manner which allows for 

easy understanding, perhaps at the expense of computational efficiency. If you feel 

strongly about computational efficiency then you can always rewrite the function to 

be more efficient, compile the M-file using the Matlab compiler, or create a MEX 

version; 

•since source code is available there is a benefit for understanding and teaching. “ [3] 
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5.1.4 Mitsubishi Melfa Toolbox 

 

The Mitsubishi Melfa Toolbox is created at the Czech Technical University in Prague at the 

Faculty of Electrical Engineering. The website gives an explanation of the functions, which 

are shown below, but translated to English. 

“This toolbox provides access to control robots from Matlab using a single interface 

for Mistubishi Melfa robots. It moves the articulated robot in Cartesian coordinates. 

In order to use the toolbox to control the robot,  a definition file must be 

available. The robot definitions for the Mitsubishi Melfa RV-6S and the  Mitsubishi 

Melfa RV-6SDL are provided. For others it is necessary to have their own definition.” 

[4] 

The Mitsubishi Melfa Toolbox uses functions of the Peter Corke Robotics Toolbox. It 

provides a simulation and a way of connecting between the PC and the robot. The big 

advantage is that all the other possible inputs of Matlab can be used, especially cameras. 

 

 

 RT Toolbox2 5.2

 

RT Toolbox2 from Mitsubishi is simple software coming with the robot. It allows to connect 

the robot quickly and to make programs and send them to the controller of the robot. The 

big problem with this software is, as mentioned before, that the software only allows vision 

applications with a limited amount of cameras.  

The software also allows to do some quick simple tests of reachability. The jog function 

allows to go in straight motions in the Cartesian space. In this way, the limits of the robot 

can be found experimentally. 
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25 
 

6 Image acquisition 

 

To be able to localize and identify the objects in the working field, a USB camera is used. 

This camera is attached horizontally to a grounded frame and pointed down.  

The data is imported from the camera to the Matlab software with the image acquisition 

toolbox. The code used to do this is as follows: 

vid = videoinput('winvideo', 1); %connect the camera 

set(vid, 'ReturnedColorSpace', 'rgb');  

img = getsnapshot(vid); %saves the picture 
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7 Image processing 

 

 Preprocessing of the image 7.1

 

The main goal of the preprocessing of the image is to eliminate all the useless data. The 

desired resulting image is an image of the working field without the surroundings with 

black background and white objects with the least possible distortion. 

In order to achieve this goal, the following steps are performed: 

1. Crop the image; 

2. Convert to black and white; 

3. Enhance the image. 

 

 

7.1.1 Crop the image 

 

The webcam makes a picture which contains more than just the working field. To adjust 

the picture so that it matches the working field completely, the picture needs to be cropped 

and maybe rotated, in the case that the camera is mounted crooked. The cropping of the 

image is performed with the imcrop function provided by the Digital Image Processing 

Toolbox. The image gets cropped along with the border of the working field. With these 

two actions, the image matches the working field perfectly. 

c = imrotate(c, angle); 

c = imcrop(img, [topLeftX topLeftY ... 

bottomRightX bottomRightY]); 

 

 

7.1.2 Convert to black and white 

 

Since the colors are unimportant for this task and image enhancing is much easier with 

black and white images, the image gets converted to black and white 

The function im2bw allows to do this. 

bw = im2bw(c, level); 
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With level the threshold level, a value between 0 and 1, with 0 black and 1 white. 

Everything above this level becomes white and vice versa. The level depends on the 

application. If the objects are brighter than the background, the image also needs to be 

inverted. 

When the contrast between the fore- and background is high enough and the distortion of 

the image is limited, it is possible to calculate the level automatically with the function 

threshold. For this function we need to convert the image to gray scale first.  

bw = im2bw(c, graythresh(rgb2gray(c))); 

 

 

7.1.3 Enhance the image 

 

This part of the preprocessing differs for each application, but mostly consists of a noise 

removal- and sharpening operation. 

 

 

7.1.3.1 Noise removal 

 

There are several methods to reduce noise. In this case, most of the noise is ‘Salt&Pepper-

noise’. An effective way to remove this kind of noise is to use a Medianfilter. A medianfilter 

takes the median value (in this case ones and zeros, since the image is in black and white) 

of all the surrounding pixels, defined by a structural element.  

For example the structural element could be a 5x5 matrix with only ones. The filter takes 

the 5x5 matrix around the current pixel to calculate the median and then replaces the 

current pixel with this value.  

The result is that a single white pixel or small white zone in a black surrounding gets 

removed and vice versa. 

The command in Matlab is medfilt2(image, SE) with SE the structural element. 
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7.1.3.2 Sharpening 

 

There are several reasons why the images can be unsharp, for example lens defects. By 

using combinations of erosion and dilation, the image can get sharpened. The functions 

imopen and imclose from the Digital Image Processing Toolbox makes use of this principle. 

“IM2 = imopen(IM,SE) performs morphological opening on the grayscale or binary 

image IM with the structuring element SE. The argument SE must be a single 

structuring element object, as opposed to an array of objects. The morphological 

open operation is an erosion followed by a dilation, using the same structuring 

element for both operations.” [5] 

 

“IM2 = imclose(IM,SE) performs morphological closing on the grayscale or binary 

image IM, returning the closed image, IM2. The structuring element, SE, must be a 

single structuring element object, as opposed to an array of objects. The 

morphological close operation is a dilation followed by an erosion, using the same 

structuring element for both operations.” [6] 

By using these two functions, the shapes will match their real shape better. Forgotten 

pixels are added again and pixels that should not be part of the shape get deleted again. 

This makes the borders of the shape sharper. 

 

 

 Shape recognition 7.2

 

Now that the image is completely converted to a useable binary image, it is possible to 

determine the borders of each shape with the function bwboundaries. This function is 

provided by the Digital Image Processing Toolbox. 

 

“B = bwboundaries(BW) traces the exterior boundaries of objects, as well as 

boundaries of holes inside these objects, in the binary image BW. bwboundaries also 

descends into the outermost objects (parents) and traces their children(objects 

completely enclosed by the parents). BW must be a binary image where nonzero 

pixels belong to an object and 0 pixels constitute the background. The following 

figure illustrates these components. 
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Figure 5: Parents and holes (adapted from [6]) 

bwboundaries returns B, a P-by-1 cell array, where P is the number of objects and 

holes. Each cell in the cell array contains a Q-by-2 matrix. Each row in the matrix 

contains the row and column coordinates of a boundary pixel. Q is the number of 

boundary pixels for the corresponding region.” [7] 

In this case, the holes need to be suppressed, since the objects do not contain any holes and 

they can affect the weighted center of the objects. 

Once the boundaries are determined, all the objects are recognized as regions. With the 

function regionprops, a list with the properties of these regions is returned.  

With these properties it is possible to determine whether the shape is a square, rectangle 

or circle and also what the coordinates of the center are. 

There are several ways of determining what shape the object has. According to the 

properties returned by regionprops. In this thesis, two different methods are examined. 

 

 

7.2.1 Bounding box and extent 

 

The first possible solution is to use the BoundingBox function. This function creates the 

smallest rectangle that contains the whole shape. It returns the coordinates of the left-top 

corner and the width and height of the shape. If the width and height are equal, then it is a 

square or circle. If not it is a rectangle.  

When the width and height is equal, the next test is to compare the area of the shape and 

the area of the bounding box. This can be done with the Extent function, provided by the 

Digital Image Toolbox. It returns a scalar between zero and one. If the returned value is 

one, the bounding box has the exact same shape as the region. This is in case of a square. In 

case of a circle, the extent has the next value: 
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This means that if the returned value is higher than 0,79,  it is a square, regarding that 

there are no other shapes in the field as rectangles, squares and circles. A safer border is 

that if the extent is higher than 0,95 it is a square.  

A big limitation of this method is that the standard BoundingBox function can only create a 

rectangle which is oriented horizontally or vertically. This is a problem because the shapes 

are oriented randomly. 

There is the possibility to create an advanced Bounding Box method, which uses the 

Orientation function to find the orientation of the rectangle. With this information it finds a 

Bounding Box that can also be rotated. Another solution would be to rotate the shapes in 

the image so that they are horizontal and then use the BoundingBox function. 

 

 

7.2.2 Compactness 

 

The incompactness of a 2D object is defined as the ratio between the square of the 

perimeter and the area. 

  
  

 
 

A circle is the most compact 2D figure that exists. This means that the value for c is the 

lowest. 

  
  

 
 

(     ) 

    
 

               
       

    
 

                   

With r the radius of the circle. 
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A square is the most compact figure of the quadrangles. It can be calculated as follows: 

  
  

 
 

(   ) 

  
 

               
     

  
 

                  

With a the length of the edge of the square. The result of this, is that all the rectangles end 

other quadrangles have an incompactness bigger than 16. 

 

 

 Conversion coordinates 7.3

 

The coordinates of the objects acquired by the image processing, described in the previous 

chapter, are not the Cartesian coordinates according to the origin of the robotic arm. The 

positions are expressed in pixels and not in millimeters. The coordinates should be 

converted to the robot coordinates in millimeters as follows: 

                   
                        

                    
 

                   
                         

                     
 

Next, the translation and rotation between the origin of the robot and the origin of the 

image should be compared. 

 As visible in Figure 6, the origin should be rotated 90° counter-clockwise and the y-axis 

should be inverted. 

 

Figure 6: Origin transformation 
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Next it should be translated 

                

                

With     en     the distance of the translation.     is ½ of the width of the image and     the 

height plus the offset between the origin of the robot and the image. 

 

 

 Applied to the test setup 7.4

 

7.4.1 Preprocessing 

 

For testing the image processing, a test setup was built where the webcam makes the 

following picture shown in Figure 7. 

 

Figure 7: Test setup 

 



 

34 
 

Next, the image gets cropped to the actual working field. The following code is used. 

c = imcrop(img, [302.5 180.5 227 191]); 

figure,imshow(c); 

The results are shown in Figure 8. 

 

 

Figure 8: Cropped image 

 

Note that the size of the working field is unimportant, since this is just a test setup. When 

used with the robot, the cropped image needs to have the correct dimensions measured in 

millimeters. 

This image should be converted to black and white. Since the contast of the fore- and 

background is high, it is possible to use the im2bw command without any extra parameters. 

The function uses the standard level of 0,5. 

Because the objects are darker then the background, the resulting image should be 

inverted, i.e. black becomes white and vice versa. 

bw = im2bw(c); 

bw = ~bw; 

 

To remove the remaining noise in the background, a median filter is applied. The structure 

element is a 5x5 matrix filled with ones.  

bw = medfilt2(bw,[5,5]); 
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Since the edges of the objects are blurred, also an imopen en imclose filter is applied. The 

result is that when a pixel of the border is missing or pixels around the border get 

respectively added or deleted, which results in a sharper image of the objects. 

SE = ones(3); %create a structure element of 3x3 filled with 

ones 

bw = imopen(bw,SE); 

bw = imclose(bw,SE); 

imshow(bw); 

 

These actions result in the image shown in Figure 9. 

 

 

Figure 9: Black and white image 

 

 

7.4.2 Shape recognition 

 

Due to the limitation of the standard BoundingBox property and the complexity of the 

advanced bounding box method with rotation possibilities, the shape recognition will be 

performed with the incompactness function. 
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The program will search for the boundaries first. It does this with the function 

bwboundaries. This function defines the white regions in the black background. The 

‘noholes’ argument in the function means that if the white objects contain black holes, they 

are ignored. Figure 10 shows the boundaries of the regions. 

[B,L] = bwboundaries(bw,'noholes'); 

 

 

Figure 10: Boundaries 

 

The width and height of the working field are set and the function calculateObjectProperties 

gets called. 

  

%Set field width and height in mm. 

width = 295;  

height = 350; 

  

%Function to find all the objects and their properties. 

props = calculateObjectProperties(L, bw, width, height); 

 

The function calculateObjectProperties first calls the resolution of the image. Then it puts 

the properties of the labels in the matrix properties. 

%get image resolution 

    [y, x] = size(bw); 

    properties = regionprops(L, 'all'); %Call all the 

properties of the objects 
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Next, the shape gets recognized. A while loop is used to go through the properties matrix. 

The compactness of every object gets calculated and, according to the result, the shape gets 

assigned. The position is also saved to the props matrix. 

     for k = 1:length(properties) 

        compactness(k) = properties(k).Perimeter^2 ... 

            / properties(k).Area;     %calculate compactness 

        

   if compactness(k)             %check if circle 

            props(k,1) = 1;           %1 means circle 

 

        elseif compactness(k) > 14 & ... 

                compactness(k) < 17   %check if square 

            props(k,1) = 2;           %2 means square 

 

        else                          %else rectangle  

            props(k,1)=3;             %3means rectangle 

        end  

  

props(k,2) = properties(k).Centroid(1);    %x-position 

props(k,3) = properties(k).Centroid(2);    %y-position 

     end  

 

Figure 11 shows the cropped image with the regions marked on their center. 

 X for rectangle; 

 □ for squares; 

 O for circles. 

 

Figure 11: Marked image 
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The coordinates of the positions need to be converted to coordinates in mm and according 

to the origin of the robot, as explained in chapter 7.3. 

 

     %convert pixels to mm 

     props(:,2) = width / x * props(:,2); 

     props(:,3) = height / y * props(:,3); 

  

     %translating to the correct origin  

     props(:,2) = props(:,2) - width/2; 

     props(:,3) = height + 150 - props(:,3); 

  

     %rotating and mirror axis and create the z-coordinates 

     props(:,[2,3]) = props(:,[3,2]); 

     props(:,3) = -props(:,3); 

 

The results are also displayed in the next matrix: 

props = 

 

    1.0000  399.1134   75.2201 

    3.0000  350.0660   25.9410 

    3.0000  431.0931   30.4635 

    2.0000  452.5810   -2.4149 

    3.0000  364.4579  -33.8775 

 

With the first column the property of the shape. This is 1 for a circle, 2 for a square and 3 

for a rectangle. The second and third column returns respectively the x- and y-coordinate 

in pixels from the center of the object. 
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8 Trajectory planning 

 

 Determining the z-coordinates 8.1

 

Since all the objects are placed on the working table, all the objects have a z-position of 

0mm. However, since the objects have a certain thickness, the z-position of the end-effector 

had to be thickness mm. 

 

 

 Determining other points of trajectory 8.2

 

Figure 12 shows the flowchart for the trajectory that the end-effector of the robotic arm 

has to follow. 

 

Figure 12: Flowchart trajectory 

From the home position, the end-effector of the robotic arm should move to exactly above 

the first object.  The coordinates from this point is (xi, yi, thickness + offset). Then it should 

go down to grab the object with coordinates (xi, yi, thickness). It should move up again, to 

the same point as before.  

 

Home position 

go above object 

pick up 

go up again 

to sorting point 

place object 

go up again 

go to home position 
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Subsequently it should move to exactly above the sorting point. The coordinates of this 

point depends on the shape of the object i. The z-coordinate again equals to thickness + 

offset. Next it goes down. The z-position now equals to amount * thickness with amount the 

number of objects that are already placed on the corresponding sorting point.  

The function calculateTrajectoryAndSpeed is the function that calculates the trajectory 

points.  

The documentation of the function is shown below. 

This function creates a 3x(n*6) matrix defining the trajectory  

with n the amount of objects. 

  Arguments: 

      props:       n x 3 matrix with in the first  

                   column the shape, second the x position  

                   and third y position in the robots origin       

      T1:          1x2 matrix with x and y position  

                   for circles 

      T2:          1x2 matrix with x and y position  

                   for squares 

      T3:          1x2 matrix with x and y position  

                   for rectangles 

      offset:      height (z value) to move above objects. 

      heightField: height of the surface with the shapes on top   

      thickness:   thickness of object in mm. 

  

   

  Return values:  

      path:        The (n*3) x 3 matrix that contains all the 

                   xyz-coordinates of the points of the                        

t                  trajectory. 

 

 

Basically, what this function does, is running a for-loop for each object. The next six points 

of the trajectory gets calculated for each object, according to Figure 12 

The complete code can be found in 17.1.3. 
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 Applied to the test setup 8.3

 

For the test setup, the matrix props from 7.4.2 is used. The offset is set to 100mm, the 

thickness of the objects is set to 1mm. 

The coordinates for the sorting points are as followed: 

 T1 = [150, 250] for circles; 

 T2 = [150, -250] for squares;   

 T3 = [150, 0] for rectangles    

The results of the trajectory with the test setup, discussed in 7.4, are plotted in Figure 13. A 

clearer overview can be found in the chapters 11 and 12with the simulations. 

 

Figure 13: Trajectory test setup 
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 Converting to joint coordinates 8.4

 

Until now , the trajectory only contains the x-, y- and z-coordinates. However for sending 

command to the robot, the six joint coordinates have to be known. The function 

createConformations performs this task.  The complete code can be found in attachment 

17.1.4.  

Converting to joint coordinates consists of two steps. First we need to have the orientation 

of the end effector in the Cartesian space. Then we use the inverse kinematics function, 

provided by the Mitsubishi Melfa Toolbox, to create the correct joint coordinates.  

 

 

8.4.1 Orientation 

 

Besides the Cartesian xyz-coordinates, the rotation of the end effector is also required. For 

this application it is best to keep the end effector vertical at all times. This means 

           

             

        

The   rotation is actually random. One option is to keep it 0 all the time, but it is also a good 

possibility to keep the 4th and the 6th joint 0 rad all the time, since the orientation of the 

shape while sorting does not matter. This keeps the 4th and the 6th joint unused and is also 

the option used further in this experiment. 

 

 

8.4.2 Inverse kinematics 

 

The Mitsubishi Melfa Toolbox provides a function to convert Cartesian coordinates to joint 

coordinates. This function is used and then the 4th and the 6th joint are overwritten by zero.  
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 Wrist downward singularity 8.5

 

Overwriting the values of the 4th and 6th joint does come with a problem. The robot is not 

capable of moving near its base while keeping with the end-effector horizontally. At some 

point it will not be able to move closer to the base due to the joint limits. This is known as 

the wrist downward singularity.  

The robot has to deal with a wrist singularity when √           .  

The value of 270mm is determined with the jog XYZ function in RT Toolbox2. When the 

arm goes from x = 400 to 150 and y remains 0, it reaches the singularity and stops moving 

at 260mm. When x goes up from 150 and  y =0, it reaches the singularity at 280mm. Every 

value between these two values is a good limit. 

The solution to the problem is to chang the value of the 4th and 6th joint by respectively 

180° and -180° when the objects are within the wrist singularity area. The reason that they 

are both overwritten is that when only the 4th joint value is overwritten, the object will 

rotate quickly when hanging on the arm. If the 6th joint is also overwritten, the end effector 

will keep its orientation during the movement. 

   if path(1,n)^2 + path(2,n)^2 < 235^2 %wrist singularity check 

       b(6) =  180; 

       b(4) = 180; 

   else 

       b(6) = 0; 

       b(4) = 0; 

   end 

 

The results are visible in Figure 14. 
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Figure 14: Wrist downward singularity: solution 
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9 Robot definition 

 

To be able to simulate the robot and to do some calculations such as direct and inverse 

kinematics with the Melfa Toolbox, the robot has to be defined. The toolbox provides a 

template file for defining the robot. The only extra data that is needed is the Denavit-

Hartenberg parameters and the joint limits. 

 

 

 Joint limits 9.1

 

The joint limits are given in the datasheet of the robot. 

 

Table 1: Joint limits (adapted from [1]) 

 

 

 Denavit-Hartenberg parameters 9.2

 

Figure 6 shows the joints of the robot in a stretched position. With this position and the 

shown origins of each different joint, the Denavit-Hartenberg parameters are determined.  

The parameter identification procedure requires a specific definition of reference 

frames attached to the links of the kinematic chain. Fig. 15 illustrates this definition. 

 

Figure 15: Denavit–Hartenberg parameters (adapted from [8]) 
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The procedure is formed by the following steps: 

1. 

Identify links and joints: Links are numbered from 0 (base) to n (end-effector). 

Joints are numbered from 1 to n. In this version of the procedure, joint i connects 

links i−1 and i. 

2. 

Define the reference frames for the internal links: Locate zi axis along the axis of 

joint i+1. The origin of the frame Oi is positioned along joint i+1 axis. If the z axes are 

parallel Oi is arbitrarily chosen. Otherwise, it is located in the intersection 

between zi and the common normal to zi−1 and zi. yi axis is chosen to compose a right-

hand frame. 

3. 

Define the reference frames for the extremities links: z0 is located along the axis of 

joint 1. x0 and y0are arbitrary. xn axis is normal to the joint n axis, while yn and zn are 

arbitrarily defined. 

4. 

Identify the D–H parameters for each link: a  i is the distance between zi−1 and zi. d  i is 

the distance between xi−1 and xi. α i  is the angle between zi−1 and zi measured along xi, 

while θ i  is the angle between xi−1 and xi, measured along zi. 

5. 

Determine the homogeneous transformation matrices for each joint. 

6. 

Determine the overall homogeneous transformation matrix by premultiplication of 

the individual joint transformation matrices. [9] 
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Figure 16: Determination DH parameters 
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Figure 16 shows this applied to the Melfa RV-2SD. The results are shown in Table 2: Joint 

limits 

i 1 2 3 4 5 6 
αi - π/2 0 - π/2 π/2 -π/2 0 
ai 0 230 50 0 0 0 
Θi 0 - π/2 - π/2 0 0 π 
di 295 0 0 270 0 70 
Table 2: Joint limits 

 

This data is entered in the template form of the robot definition. The complete robot 

definition can be found in attachment 17.1.4. 
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10 Communication 

 

To communicate with the robot, a serial connection is used.  

 

 Serial communication 10.1

 

Serial communication is defined as follows. 

In telecommunication and computer science, serial communication is the process of 

sending data one bit at a time, sequentially, over a communication channel or computer 

bus. This is in contrast to parallel communication, where several bits are sent as a 

whole, on a link with several parallel channels. [10] 

 

 

 Bi-direcional communication 10.2

 

According to the website Taltech, Bi-directional communication means that the device can 

send and receive data at the same time. In this case, there are separate lines for 

transmitting and receiving data. [11] 

This kind of communication is used in this application, because the robot responds on 

every command sent to it. For example the PC sends a command to get the current state of 

the robot. The robot responds with the current state. 

 

 RS-232 protocol 10.3

 

RS232 stands for “Recommended Standard 232”.  

“RS-232 is a standard communication protocol for linking computer and its 

peripheral devices to allow serial data exchange. In simple terms RS232 defines the 

voltage for the path used for data exchange between the devices. It specifies 

common voltage and signal level, common pin wire configuration and minimum, 

amount of control signals. “ [12] 

It is important that both the devices know the amount of data bits. The communication 

starts when the start bit is sent (low signal). This is visible in Figure 16. Then the actual 

data bits are sent and finally a stop bit, which is high. As long as the signal stays high the 

communication is paused. 

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Parallel_communication
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Figure 17: Serial communication (adapted from [13]) 

 

 

 Protocol for communication with robot 10.4

 

10.4.1 Transmit data 

 

Figure 18 shows the flowchart of the communication with the robot. 

 

Figure 18: Communication with robot (adapted from [14]) 
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10.4.1.1 Send ENQ 

 

The first step of the communication with the robot is sending the ENQ byte. This byte asks 

if the device, which in this case is the robot, if it is ready to receive data. It responds with 

ACK, which means it is ready. 

 

 

10.4.1.2 Command 

 

Next, the command is sent. The command is built to the R3 protocol. It looks as follows:  

<Robot No.>: The robot number to be operated is specified. (0, 1, 2 or 3) 

It is possible to omit it. Omitting it is 1. 

There are commands that influences all robots if 0 is specified. 

< Slot No >: The slot number to be operated is specified. (0, 1 - 33) 

…It is possible to omit it. Omitting it is 1… 

< Command >< Argument >: It differs in each command;” [15] 

 

Subsequently, the command is preceded by the ASCII character R 

It now looks like: 

R<Robot No.>;<Slot No>;<Command><Argument> 

Since the robot needs to know how long the data is going to be, the command is preceded 

by two hexadecimal numbers, which determine the amount of bits. For example, if the 

command is 12 characters long, the command is preceded by 0B. 

Next, we add D0 at the beginning of the command. 

It is also necessary to allow the robot if the command is sent correctly. To allow this, a  

NMEA checksum is performed and the result is added to the end of the command. This 

checksum is done by converting every ASCII character to its hexadecimal form. Next, the 

XOR logical function is applied to all the hexadecimal numbers. The result is another 

hexadecimal value. These two characters are added at the end of the command.  

To complete the command, it is preceded by STX and ended with ETX. This is to indicate 

the beginning and ending of the command. An overview is shown in Figure 19. 
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Figure 19: Command according to R3 protocol (adapted from [14]) 

 

 

10.4.1.3 Send EOT 

 

After a command, the EOT, or End Of Transmission command is sent to the robot. This 

indicates the end of the communication. 

 

 

10.4.1.4 Example 

 

As an example, the data to send to the COM port is given to turn on the servo motors of the 

robot. 

According to the R3 protocol, the command for opening the communication with the robot 

is SRVON. 

The robot and slot number are 1: 

 1;1SRVON 

Preceded by R: 

 R1;1;SRVON 

The amount of characters is 10. In hexadecimal digits this is 0A. 

 0AR1;1SRVON 

Preceded by D0: 

 D00AR1;1;SRVON 

Converting all the ASCII characters to its hexadecimal form: 

 44 30 30 41 52 31 3b 31 3b 53 52 56 4f 4e  



 

53 
 

Taking the XOR of all the characters: 

  

44 XOR 

30 74 

30 44 

41 5 

… 

 Figure 20: NMEA checksum 

 Eventually, the result is 01. The command becomes: 

 D00AR1;1;SRVON01 

Since the command has to start with STX and end with ETX, the command is converted to 

hexadecimal, since there are no physical ASCII characters for STX and ETX, but there are 

hexadecimal values. 

 44 30 30 41 52 31 3b 31 3b 53 52 56 4f 4e 30 31 

Now, add the STX and ETX: 

 02 44 30 30 41 52 31 3b 31 3b 53 52 56 4f 4e 30 31 03 

This is the command send to the robot after the command ENQ and before the command 

EOT is sent. These commands are respectively 05 and 04 in hexadecimal. 

Concluded: 

 05 02 44 30 30 41 52 31 3b 31 3b 53 52 56 4f 4e 30 31 03 04 

 

 

10.4.1.5 Transform commands in Matlab 

 

Since it is time consuming to do all these steps manually, a function is created to do these 

steps automatically, given the original command with its argument. First R, the robot no. 

and the slot no. are added. 

command = strcat('R1;1;',command); %add R1;1; to command 
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Next the length of the command is added in hexadecimal value and the result is preceded 

with D0. 

front = dec2hex(numel(command)); %precede with length 

command 

if length(front) ==1 

    front = strcat('0',front); %hexadecimal part needs 2 

digits 

end 

command = strcat('D0',front,command); %preceed with D0 

  

Finally, the NMEA checksum is performed and added. 

command1 = strcat('$',command,'*'); %Needed for NMEA 

checksum 

command = strcat(command,nmeachecksum(command1)); %add 

checksum at end 

 

 

 

10.4.2 Receive data 

 

The received data looks as follows: 

“QoK<Answer> 

or 

QeR<Error No.> 

< Answer >: It differs in each command… 

< Error No.>: It replies the error number when the command 

cannot be executed.“ [15] 
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11 Simulation in Mitsubishi Melfa Toolbox 

 

 Workflow communication 11.1

 

Figure 21 shows the workflow of the communication that is used to simulate the 

movements of the robot. Note that there is no program written into the controller. Only the 

joint coordinates of the next point of the trajectory is sent together with a command to 

perform this movement directly. 

 

 

Figure 21: Flowchart simulation Mitsubishi Melfa Toolbox 

                 

 

11.1.1 Open connection 

 

To open the connection, the function mmOpenVirt is sent to the virtual robot. This 

command creates the virtual robot and opens the communication with it. The commands 

are sent in the same way as with a real robot, but never get sent to the real serial port.  

 

 

  

Open connection 

Turn on control 

Turn on servo 

Set parameters 

Check if servo is on 

Perform movements 

Close connection 
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11.1.2 Turn on control 

 

Turning on the control of the robot enables the computer to set parameters and to make 

the robot move. To do this, the command ‘CNTLON’ must be send through the serial 

connection.  The function mmCntlOn from the Melfa Toolbox performs this task.  It sends 

‘EXECCNTLON’ to the robot and receives an answer. The ‘EXEC’ is necessary, because the 

command has to be executed directly and is not saved into a program which is executed 

later.  It also checks if there is an error with sending and receiving the command. 

 

 

11.1.3 Turn on servo 

 

To enable the robot to move, the servos must be turned on. This is done with the command 

‘SRVON’. The function mmServoOn performs this task. Besides the command, the function is 

identical to the mmCntlOn. 

 

 

11.1.4 Set speed 

 

The desired speed is set while the robot is turning the servos on, since this takes a while. 

The jog speed can be set with the command OVRD n, where n means the relative speed 

according to its maximum value. The toolbox provides a function called mmJogSpeed to do 

this.  

 What the functions also does, is checking if the entered speeds or accelerations are valid.  If 

the entered value for the speed (or acceleration) is invalid, the command does not get 

executed and the function returns an error. 

 

 

11.1.5 Check if the servo is on 

 

The function mmWaitForServoOn validates that the servos are on. The command DSTATE is 

sent to the robot. It replies with the stop state of the robot. 
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“[Function] 

The stop state is read. 

[Format] 

DSTATE 

[Answer] 

QoK<Run sts.><Stop sts.><Error no.>;<Step no.>;<Mech no.> 

<Run sts.> Run status by 2 HEX number fixation 

00000000B 0 / 1 

_______1 Cycle / Repeat 

______1_ Cycle stop ON / OFF 

_____1__ MLOCK OFF / ON 

____1___ Auto / Teach 

___1____ Running of Teach mode 

__1_____ Servo OFF / ON 

_1______ STOP / RUN 

1_______ Operation disable / enable 

<Stop sts.> Stop status by 2 HEX number fixation 

00000000B 

_______1 EMG STOP 

______1_ STOP 

_____1__ WAIT 

____1___ STOP signal ON / OFF 

___1____ Program select enable 

__1_____ (reserve) 

_1______ Pseudo input 

<Error no.> Error number. (0:No error) 

<Step no.> Execution step number “ [15] 
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By checking the sixth bit of the run state byte, the function confirms that the servo is on or 

not. However, after three seconds, the function will return an error, because it takes too 

long to get the response.   

 

 

11.1.6 Perform movements 

 

Now the robot is ready to perform its movements. The command mmMovSafe has three 

tasks.  

First it checks if the movement that should be performed is valid.  If not, it returns an error.  

Next, the movement string is created. This string is the command that is sent to the robot 

through the communication line. The command exists of two parts. The first part is to send 

the coordinates to the robot together with the coordinate system. There are three kinds of 

coordinate systems. 

 ‘J’ for joint coordinates; 

 ‘P’ for XYZ coordinates; 

 'X' for XYZ coordinates and the rotation in joint coordinates. 

The second part of the command is ‘MOV‘, followed by ‘J’, ‘P’ or ‘X’, depending on the type of 

coordinates. 

These commands are preceded by EXEC, for the same reason as before. 

Finally the function calls the current state of the robot. It checks if the robot returns an 

error and displays this error.  

With each performed movement there should also be an alert when the movement is 

finished, so the robot does not perform the next command before the robot has reached the 

desired position. The function mmWaitForStop performs this task. It sends the command to 

get the state of the robot and keeps doing this every n seconds (n is an optional parameter, 

standard value is 0,5 s) until the bit for STOP/RUN is 0, until an error occurs or until the 

adjustable maximum time is reached.  
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11.1.7 Close connection 

 

With the function mmClose the connection gets closed. It sends the command CLOSE 

through the com port. 

 

 

11.1.8 Applied to test setup 

 

The code used for the function to communicate between the PC and the robot is as follows: 

function executeProgram_RV2SD(conformations,speed, wait) 

 

First the connection with the robot RV2-SD gets opened. In case a virtual simulation is 

started mmOpenVirt is used. Otherwise the normal command mmOpen is used. 

 

%open connection 

robot1 = mmOpenVirt('RV2SD'); 

 

Next, the command is sent to give Matlab permission to send commands to the robot. 

  

%Turn on control 

mmCntlOn(robot1); 

 

Subsequently, the servo motors get turned on. 

  

%turn on servomotor 

mmSrvOn(robot1); 

 

Next, a for-loop iterates through all conformations, i.e. move to the consecutive points of 

the trajectory. With each move, the speed is entered and next the move gets executed. The 

parameter ‘conformations’ is a cell matrix. Each element contains a 6x1 matrix with the 

next point of the trajectory, expressed in joint coordinates.  

The ‘r’ returned from the mmWaitForServoOn function is 1 when an error is returned and 

zero if not. When an error occurs, the connection gets shut down with the mmClose 

function. 

‘r1’ and ‘r2’ have a similar meaning. The connection gets closed when one of the two is 

high.  
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[~ amount] = size(conformations); 

  

%iterate through each conformation 

for j=1:amount 

  %move in jog coordinates 

  mmSetJogSpeed(robot1, speed(j)); 

 

 

  

  [~, r1] = mmMovSafe(robot1, 'J', conformations{j} ); 

   

  %wait until finished 

  [r2] = mmWaitForStop(robot1); 

   

  %quit if error 

  if ( r1 || r2 ) 

      mmClose(robot1); 

      error('Robot is in error state.'); 

  end 

end 

  

When all the moves are performed, the communication line gets closed. 

%all done, close communication 

mmClose(robot1); 

 

 

 Results 11.2

 

In the simulation it is visible that the trajectory is followed correctly. The test setup 

discussed earlier is executed and in Table 3: Simulations test setup in chapter 13 the 

results of the simulation are visible. 
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12 Simulation with RT Toolbox2 

 

 Communication workflow 12.1

 

RT Toolbox2 does not allow the option to communicate with Matlab or with external 

cameras. Therefore, another method should be used to enable the virtual robot to perform 

the trajectory. Instead of sending each movement as a different command, the complete 

program will be written to the controller of the virtual robot and afterwards the program 

will be ran in the RT Toolbox2 software.  

The program that will be written to the controller will be created by Matlab, so that all the 

previous steps concerning the image acquisition, image processing and trajectory planning 

will remain the same. Figure 22 shows an overview of the method. 

 

 

Figure 22: Simulation with RT Toolbox2 

  

Write 
program 

Send program 
to controller 

Run program 

 

Matlab 

RT Toolbx2 
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12.1.1 Write program 

 

For the (virtual) robot to be able to perform the complete trajectory by running a program, 

the program must contain: 

1. Defining all the points 

2. The order of the points 

At the beginning of the program the speed will be set. The program also has to end with the 

command end. 

All the commands are preceded with its line number. 

Concluded, the program has to look like this: 

1 J1=(j1,j2,j3,j4,j5,j6,j7,j8) 

2 J2=(j1,j2,j3,j4,j5,j6,j7,j8) 

... 

n+1 MOV J1 

n+2 MOV J2 

 ... 

2*n+1 END 

 

With j1,j2,… the joint coordinates of the corresponding point of the trajectory.  

The file for a program is a .prg file. However, its content is just text. By letting Matlab write 

strings to a .prg file, it is possible to write a program in Matlab that can be opened and sent 

to the robot with RT Toolbox2. 

The first step is to make an array where all the lines can be saved in string format 

stringArray = cell(amount*2+3,1); 

 

Next, the first line is entered to set the speed 

stringArray{1} = sprintf('1 Ovrd 25'); 

 

A for-loop is started which goes through all the points of the trajectory. For each element 

the lines for describing and defining the corresponding point of the trajectory are written 

in the array. 
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for n = 1:amount 

    b = conformations{n}; 

    tmp = ... 

     

 

 

sprintf('J%d=(%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,0.000,0.00

0)'... 

        ,n, b(1), b(2), b(3), b(4), b(5), b(6)); 

    stringArray{n + 1} = tmp; 

    tmp = sprintf('%d Mov J%d', n, n); 

    stringArray{n+amount + 1} = tmp; 

end 

 

Finally the end command is entered in the array. 

stringArray{amount*2 + 2} = sprintf('%d end',amount*2+3); 

 

Now the complete program is written to the array. This array should now be converted to 

the .prg file. For doing this, the file gets opened first. 

fid = fopen('...\TSTSETUP.prg','wt'); 

 

Newt we write each line. 

for (i=1:amount*2 + 3) 

        fprintf(fid, '%s\n',my_cell{i}); 

end  

 

Finally the file gets closed again. 

fclose(fid); 

 

The complete program can be found in attachment 17.1.7. 

 

 

12.1.2 Send program to controller 

 

After the program is written by Matlab, it is possible to open this program in the RT 

Toolbox2. Next this whole program is sent to the virtual robot of the RV-2SD, which 

matches the exact same specifications of the real robot. If the robot is now possible to 

perform the trajectory, it is certain that the actual robot will also be able to perform it, and 

that no joint limits will be reached.  
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  Results 12.2

 

The program is started and in Table 3: Simulations test setup in chapter 13 the results are 

shown together with the trajectory and the results of the Mitsubishi Melfa Toolbox 

Simulation.   



 

65 
 

13 Results simulations 

 

Obj. 
Nr. 

To object Down & up To SP Down & up 

1 
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2 
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3 

    

    

    

Table 3: Simulations test setup 

 

  



 

68 
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14 Robot  

 

According to the manual of the Mitsbishi Melfa Toolbox, the communication can be 

performed the same way as the simulation done in chapter 11. The only difference would 

be to change mmOpenVirt to mmOpen in the program found in attachment 17.1.6. However, 

the toolbox only supports the robots Mitsubishi Melfa RV6S and RV6SDL. The 

communication with the Melfa RV2SD works differently than described in chapter 11 with 

these robots. Also, in the R3 protocols command list, there is nothing listed to perform 

direct movements. As a result, a new way to perform the movements of the trajectory had 

to be found.  

The solution used in this project is similar to the method used to perform the simulation 

with the RT Toolbox2.: First, write all the lines of the program to the controller’s memory. 

Next, the command to run the robot will be sent.  

 

 

 Add serial port to Matlab 14.1

 

Before the serial port can be used by Matlab for sending commands, it needs to be opened 

and set up the same way as the robot. Therefore the following properties of the serial port 

must be set to the settings shown in Table 4: Settings serial communication 

Baud rate 9600 
Terminator Carriage return 

Databits 8 
Stopbits 2 

Parity even 
Table 4: Settings serial communication 

These are the settings that are needed to communicate with this specific robot. 

After this step it is possible for the robot to understand the commands sent through the 

serial port.  

Next, the COM1 port should be opened, so Matlab gets permission to the serial port from 

the PC.  

s=serial('COM1') 

set(s, 'BaudRate', 9600); 

set(s, 'Parity', 'even'); 

set(s, 'DataBits', 8); 

set(s, 'StopBits', 2); 

set(s, 'Terminator', 'CR'); 

  

fopen(s); 
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 Workflow communication robot 14.2

 

The workflow to communicate with the robot, according to the used method is described in 

Table 5: Serial commands for communication 

  Action Command Explanation 

1. Open connection OPEN=TOOLBOX Establishing connection between PC 
and robot 

2. Turn on control CNTLON Give the PC permission to write in 
controller 

3. Load program LOAD=TRAN Load a program on the controller 
4. Write program EDATA<line content> Write a line into the program 
5. Save program SAVE Save and close the program 
6. Turn servo on SRVON Turn the servo of the robot on 
7. Run the program RUNTRAN;1 Run the program. The 1 is to tell the 

robot to only perform the program 
once 

Table 5: Serial commands for communication 

 

In step 4, the line content is the same as in chapter 12 for the simulation with RT Toolbox2.  

Each command is sent to the serial port as follows:  

data = char2hex(command); %convert to hex 

  

data = hex2dec(data); %convert to decimal 

fwrite(s,uint8(data)); %write to serial port 

 

The function char2hex not only converts all the characters to their hexadecimal equivalent, 

but it also adds the ENQ and STX command at the beginning and ETX and EOT command at 

the end.  

The command should also be converted to decimal values, because Matlab is not able to 

send pure hexadecimal commands. 

At the end of the program the serial port gets closed again as follows: 

fclose(s); 
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 Results 14.3

 

The results of sending the trajectory to the robot are shown in Table 6. 

Obj. Nr. To object Down & up To SP Down & up 

1 

    

2 

    

3 

    



 

72 
 

4 

    

Home 

 

   

Table 6: Results robot 
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15 Conclusions 

 

With the described method it is possible to do a vision-based control of the robot with 

Matlab. The robot recognizes the shapes picks them up and sort them out. The robot is able 

to grasp near the base thanks to the solution for the wrist singularity, without letting the 

end-effector, holding the objects, making sudden and useless rotating movements which 

can cause the object to fall.  

 

 

 Communication with robot via serial connection 15.1

 

With the established communication between Matlab and the robot, described in chapter 

14 it is possible to do vision-based control of the robot with Matlab. All the commands have 

to be according to the R3-protocol for the robot to be able to understand them. The 

commands needs some additions for letting the robot know the length of the command and 

for the robot to be able to do an error check thanks to the checksum. 

Every command has to start with a STX and end with an ETX command. Before the 

communication can start, an ENQ command has to be sent and after the transmission the 

EOT command must be sent.  

When all these requirements are fulfilled, Matlab can control the robot. 

 

 

 Shape recognition 15.2

 

The shape recognition was possible thanks to the property incompactness. With this 

method circles, squares and rectangles can be distinguished. However, if more kind of 

shapes has to be sorted, this method needs some additional steps to be able to work. 
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 Wrist singularity 15.3

  

When the robot needs to go near its base, the robot has to pass a wrist singularity border. 

By setting joint coordinates J4 and J6 to zero when the end effector is further away than 

this border and by setting them to respectively 180 and -180 degrees, when closer than 

this border, the robot can work without any problems of the wrist singularity. 

 

 

 Further works 15.4

 

A problem with the described control of the robot with Matlab is that it writes the complete 

program at the start of the cycle. This results in a long time to send the trajectory to the 

robot.  

A faster approach would be to send only the next move to the controller of the robot. By 

doing so, the next movement can be calculated while the robot performs its current move. 

Another advantage of this method would be that moving objects can also be picked up.   
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17 Attachments 

 

 Matlab code 17.1

 

17.1.1 Main program code 

 

clear all 
close all 
% % read in image 
vid = videoinput('winvideo', 1, 'YUY2_640x480'); %connect the camera 
set(vid, 'ReturnedColorSpace', 'rgb');  
img = getsnapshot(vid); %saves the picture 
% img = imread('C:\Users\wim\Pictures\Camera-album\afbeelding029.jpg'); 
img = imrotate(img,180); 

  
c = imcrop(img,[150.5 20.5 315 385]); 
figure,imshow(c); 

  
bw = im2bw(c, graythresh(rgb2gray(c))); 
bw = ~bw; 
bw = medfilt2(bw,[5,5]); 
SE = ones(3); %create a structure element of 3x3 filled with ones 
bw = imopen(bw,SE); 
bw = imclose(bw,SE); 
% imshow(bw); 
[B,L] = bwboundaries(bw,'noholes'); 

  
%Set field width and height in mm. 
width = 295;  
height = 350; 

  
%Function to find all the objects and their properties. 
[props, propsOld] = calculateObjectProperties(L, bw, width, height); 

  
%Function to mark the borders in red in the black and white image. 
plotBorders(B,bw); 
markImage(c, B, propsOld); 

  

  
%Set the height off the working area and thickness. 
thickness = 1; 
heightTable = 5; 

  
%Set the height above the objects. 
offset = 100; 

  
%set the coordinates of the sorting points 
T1 = [150, 250];   %Circles 
T2 = [150, -250];  %Squares 
T3 = [150, 0];     %Rectangles 

  
%Calculate the trajectory, the speed  for each movement and 
%whether it should be a linear movement or joint movement. 
path = ... 
    calculateTrajectory(props, T1, T2, T3, offset, heightTable, thickness); 
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%Function to plot the Trajectory. 
% plotTrajectory(T1, T2, T3, path,props, heightTable); 

  
%load the robot 
robot = mmRobot_RV2SD; 

  
%make the matrix with the path in the correct matrix format 
conformations = createConformations(path); 

  
length = size(conformations); 
length = length(2); 

  
%Create program for the simulation with RT Toolbox2 
createRtProgram(conformations, length); 

  
%start the Mitsubishi Melfa Toolbox simulation 
simulation(conformations); 

  
%send all the commands to the robot 
s = Serial_TRAN(length(2), conformations); 
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17.1.2 Determine properties of objects code 

 

function [props, propsOld] = calculateObjectProperties(L, bw, width, height) 

     
    %get image resolution 
    [y, x] = size(bw); 
    properties = regionprops(L, 'all'); %Call all the properties of the 

objects 

  
    for k = 1:length(properties) 
        compactness(k) = properties(k).Perimeter^2 ... 
            / properties(k).Area;                  %calculate compactness 
        if compactness(k) < 14                     %check if circle 
            props(k,1) = 1;                        %1 means cirlce 
        elseif compactness(k) > 14 & ... 
                compactness(k) < 15.5                %check if square 
            props(k,1) = 2;                        %2 means square 
        else                                       %else it is a rectangle 
            props(k,1)=3;                          %3means rectangle 
        end  

  
        props(k,2) = properties(k).Centroid(1);    %save x-position 
        props(k,3) = properties(k).Centroid(2);    %save y-position 
    end 

     
    propsOld = props; 

     
    %convert pixels to mm 
    props(:,2) = width / x * props(:,2); 
    props(:,3) = height / y * props(:,3); 

  
    %translating to the correct origin  
    props(:,2) = props(:,2) - width/2; 
    props(:,3) = height + 155 - props(:,3); 

  
    %rotating and mirror axis 
    props(:,[2,3]) = props(:,[3,2]); 
    props(:,3) = -props(:,3); 
    props; 
end 
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17.1.3 Trajectory planning code 

 

function path =... 
    calculateTrajectory(props, ... 
    T1, T2, T3, offset, heightField, thickness) 
% This function creates a 3x(n*6) matrix defining the trajectory  
% with n the amount of objects. 
% Arguments: 
%     props:       n x 3 matrix with in the first  
%                  column the shape, second the x position  
%                  and third y position in the robots origin       
%     T1:          1x2 matrix with x and y position  
%                  for circles 
%     T2:          1x2 matrix with x and y position  
%                  for squares 
%     T3:          1x2 matrix with x and y position  
%                  for rectangles 
%     offset:      height (z value) to move above objects. 
%     heightField: height of the surface with the shapes on top   
%     thickness:   thickness of object in mm. 
% 
%  
% Return values:  
%     path:        The (n*3) x 3 matrix that contains all the 
%                  xyz-coordinates of the points of the trajectory. 

  
[s ~] = size(props); 

  
%amount of each kind of objects that are picked up 
squares = 0; 
rectangles = 0; 
circles = 0; 

  
%working field is lower than top of objects. 
heightField = heightField + thickness;  

  
    for i = 1:s 
        path(1 + 6*(i-1),:) = [props(i,2) props(i,3)... 
            heightField + offset]; %to object 

  
        path(2 + 6*(i-1),:) = [props(i,2) props(i,3)... 
            heightField]; %grab 

  
        path(3 + 6*(i-1),:) = [props(i,2) props(i,3)... 
            heightField + offset]; %up 

  
        %to designated place 
        if props(i,1) == 1  
            path(4 + 6*(i-1), :) = [T1(1) T1(2)... 
                heightField + offset]; 

  
        elseif props(i,1) == 2 
            path(4 + 6*(i-1), :) = [T2(1) T2(2)... 
                heightField + offset]; 

  
        elseif props(i,1) == 3 
            path(4 + 6*(i-1), :) = [T3(1) T3(2)... 
                heightField + offset];    
        end 
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        %down 
        if props(i,1) == 1  
            path(5 + 6*(i-1), :) = [T1(1) T1(2)... 
                heightField + thickness*circles]; 
            circles = circles +1; 

  
        elseif props(i,1) == 2 
            path(5 + 6*(i-1), :) = [T2(1) T2(2)... 
                heightField + thickness*squares]; 
            squares = squares + 1; 
        elseif props(i,1) == 3 
            path(5 + 6*(i-1), :) = [T3(1) T3(2)... 
                heightField + thickness*rectangles]; 
            rectangles = rectangles + 1; 
        end      

  
        %back up  

         
        if props(i,1) == 1  
            path(6 + 6*(i-1), :) = [T1(1) T1(2)... 
                heightField + offset]; 
        elseif props(i,1) == 2 
            path(6 + 6*(i-1), :) = [T2(1) T2(2)... 
                heightField + offset]; 
        elseif props(i,1) == 3 
            path(6 + 6*(i-1), :) = [T3(1) T3(2)... 
                heightField + offset]; 
        end 
    end 
    path(6*s + 1,:) = [T3(1) T3(2) heightField + offset]; 
end 
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17.1.4 Robot definition code 

 

classdef mmRobot_RV2SD  < mmRobotDef 
%MMROBOT_RV-2SDB Robot specification: Mitsubishi RV-2SDB 
%  
% MITSUBISHI MELFA TOOLBOX v1.4 
% (C) Martin Meloun 
%  
% Mitsubishi Melfa Toolbox is free software: you can redistribute it and/or 

modify 
% it under the terms of the GNU Lesser General Public License as published by 
% the Free Software Foundation, either version 3 of the License, or 
% (at your option) any later version. 
%  
% Mitsubishi Melfa Toolbox is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU Lesser General Public License for more details. 
%  
% You should have received a copy of the GNU Leser General Public License 
% along with Mitsubishi Melfa Toolbox. If not, see 

<http://www.gnu.org/licenses/>. 
%  
% Author:                  Revision:     Date:                    Reason: 
% Martin Meloun                    3     4.8.2011 16:08:25        Corrected 

joint 6 theta parameter 
% Martin Meloun                    2     12.10.2010 16:10:32      Corrected 

DH notation 
% Martin Meloun                    1     25.5.2010 15:28:05       Initial 

revision 

  
methods 

  
  function robot = mmRobot_RV2SD() 

  
    % Name 
    % ----------------------------------------------------------------------- 
    robot.name = 'RV-2SD'; 
    robot.description = 'Mitsubishi Melfa RV-2SD'; 
    robot.series = 'Melfa V'; 
    robot.pincode = 0; 

  
    % Properties 
    % ----------------------------------------------------------------------- 

  
    robot.DOF = 6; 
    robot.joints = 'RRRRRR'; 

                                         
    robot.denavitHartenberg = [ -pi/2,     0, -pi/2,  pi/2, -pi/2,  0; %alpha  
                                    0,   230,    50,     0,     0,  0; %a 
                                    0, -pi/2, -pi/2,     0,     0, pi; %theta 
                                  295,     0,     0,   270,     0, 70];%d 

  
    robot.denavitHartenbergParameters = [ 0, 0, 0, 0, 0, 0;  %alpha  
                                          0, 0, 0, 0, 0, 0;  %a 
                                          1, 1, 1, 1, 1, 1;  %theta 
                                          0, 0, 0, 0, 0, 0]; %d 

                                         
    robot.base = eye(4); 
    robot.tool = eye(4); 
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    robot.jointLimits = [-240, -120, 0, -200, -120, -360;  %minimums 
                          240, 120,  160,  200,  120,  360]; %maximums 
    robot.A76 = mtxTranslate([0; 0; robot.denavitHartenberg(4,6)]); 
    robot.ikt = @mmIkt_RV6S_Series; 
    robot.testKinematics = @mmTestKinematics_RV6S_Series; 
    robot.getflags = @mmGetFlags_RV6S_Series; 

  
    % PC Control 
    % ----------------------------------------------------------------------- 

  
    robot.com = [];                                
    robot.comtype = 'Serial'; 
    robot.portname = 'COM9'; 
    robot.controller = 'CR1DA-771'; 
    robot.robotNo = 1; 
    robot.slotNo = 1;  
    robot.comprops = mmComprops_Serial(9600, 8, 'even', 2, 'on', 'on', 'CR'); 
    robot.topVariableSign = '>'; 

  
    % Debugging 
    robot.verbose = 0; 
    robot.thrError = 0; 

  
    % HardHome 
    % ----------------------------------------------------------------------- 

  
    robot.hhflag = 2;      

  
    % Userdata 
    % ----------------------------------------------------------------------- 

  
    robot.userdata = []; 

     
    % Security (none - base definition) 
    % ----------------------------------------------------------------------- 

  
    robot.safetyData = []; 
    robot.secureMovement = 0; 
    robot.secureSpeed = 0; 
    robot.secureAccel = 0; 

     
  end 

   
end 

  
end 
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17.1.5 Code to create conformations 

 

function conformations = createConformations(path) 
    path = path'; % 
    robot = mmRobot_RV2SD; 
    amount = size(path, 2); 
    conformations = cell(1, amount); 

     
    for n=1:amount 
        %take the inverse kinematics of all the positions of trajectory 
        conformations{n} =  mmIkt(robot,[path(:,n); 0; 180;  0]); 
        b = conformations{n}; 
        if path(1,n)^2 + path(2,n)^2 < 235^2 %wrist singularity check 
            b(6) =  -180; 
            b(4) = 180; 
        else 
            b(6) = 0; 
            b(4) = 0; 
        end 
        s = size(b); 
        if s(2) > 1 %more solutions, take the first one 
           b = b(:,1); 
           %Save the joint positions in cell with strings 
        end 
        conformations{n} = b; 
    end 
end 
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17.1.6 Mitsubishi Melfa Toolbox Simulation code 

 

function simulation(conformations) 

  
%open connection 
robot1 = mmOpenVirt('RV2SD'); 

  
%Turn on control 
r = mmCntlOn(robot1); 

  
%turn on servomotor 
r = mmSrvOn(robot1); 

  

   
%wait until the servomotor is on 
r = mmWaitForServoOn(robot1); 

  
amount = size(conformations); 
%check for error 
if (r) 
mmClose(robot1); 
error('Failed to turn on servo motors.'); 
end 

   
%iterate through each conformation 
for j=1:amount(2) 
  %move in jog coordinates 
  mmSetJogSpeed(robot1, 25); 

   
  [~, r1] = mmMovSafe(robot1, 'J', conformations{j}); 

   
  %wait until finished 
  [r2] = mmWaitForStop(robot1); 

   
  %quit if error 
  if ( r1 || r2 ) 
      mmClose(robot1); 
      error('Robot is in error state.'); 
  end 
end 

  
%all done, close communication 
mmClose(robot1); 
end 
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17.1.7 Code to create program for RT Toolbox2 Simulation 

 

function createRtProgram(conformations, amount) 

  
stringArray = cell(amount*2+3,1); 
stringArray{1} = sprintf('1 Ovrd 25'); 

  
for n = 1:amount 
    b = conformations{n}; 
    tmp = ... 
    sprintf('J%d=(%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,0.000,0.000)'... 
        ,n, b(1), b(2), b(3), b(4), b(5), b(6)); 
    stringArray{n + 1} = tmp; 
    tmp = sprintf('%d Mov J%d', n, n); 
    stringArray{n+amount+1} = tmp; 
end 

  
stringArray{amount*2 + 2} = sprintf('%d end',amount*2+3); 

  
%open RT2 program 
    fid = fopen('C:\Users\wim\Documents\School\Masterproef\fotos 

testopstelling\RTT2\Test setup\test setup\Program\TSTSETUP.prg','wt'); 

     
%write code in it 
    for (i=1:amount*2 + 3) 
            fprintf(fid, '%s\n',stringArray{i}); 
    end  

     
%close it again 
fclose(fid); 

  
end 
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17.1.8 Communication with robot 

 

function s = Serial_TRAN(length, conformations) 
% Script runs TRAN.PRG program in the control unit 
% Uses Command Creator functions 

  
s=serial('COM1') 
set(s, 'BaudRate', 9600); 
set(s, 'Parity', 'even'); 
set(s, 'DataBits', 8); 
set(s, 'StopBits', 2); 
set(s, 'Terminator', 'CR'); 

  
fopen(s); 

  
sendCommand(s,'OPEN=USERTOOL'); 

  
sendCommand(s,'CNTLON'); 

  
sendCommand(s,'LOAD=TRAN'); 

  
command = 'EDATA1 OVRD 20'; 
sendCommand(s,command); 

  
for i = 2:length+1 %length+2:length*2+1 
    b = conformations{i-1}; 
    command = sprintf('EDATA%d 

J%d=(%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f,0.000,0.000)', i,i-1, b(1), b(2), 

b(3), b(4), b(5), b(6)); 
    sendCommand(s,command); 
end 

  
for i = length+2:length*2+1 
    command = sprintf('EDATA%d MOV J%d',i,i-length-1); 
    sendCommand(s,command); 
end 

  
command = sprintf('EDATA%d END',length*2 + 2); 
sendCommand(s,command); 

  
sendCommand(s,'SAVE'); 

  
sendCommand(s,'SRVON'); 

  
sendCommand(s,'RUNTRAN;1'); 

  
fclose(s); 
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17.1.9 Function to send commands 

 

function sendCommand(s,command) 

  
command = strcat('R1;1;',command); %add R1;1; to command 

  
front = dec2hex(numel(command)); %preceed with length command 
if length(front) ==1 
    front = strcat('0',front); %hexadecimal part needs 2 digits 
end 

  
command = strcat('D0',front,command); %preceed with D0 

  
command1 = strcat('$',command,'*'); %Needed for NMEA checksum 
command = strcat(command,nmeachecksum(command1)); %add checksum at end 

  
data = char2hex(command); %convert to hex 

  
data = hex2dec(data); %convert to decimal 
fwrite(s,uint8(data)); %write to serial port 

  
end  
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17.1.10 Function to convert ASCI characters to hex 

 

function hex = char2hex(string) 
characters = {';';'A';'B';'C';'D';'E';'F';'G';'H';'I';'J';'K';'L';'M';... 
    'N';'O';'P';'Q';'R';'S';'T';'U';'V';'W';'X';'Y';'Z';'0';'1';'2';'3';... 
    '4';'5';'6';'7';'8';'9';'=';'(';')';'.';'-';',';' '}; 

  
hexvalues = {'3B';'41';'42';'43';'44';'45';'46';'47';'48';'49';'4A';... 
    '4B';'4C';'4D';'4E';'4F';'50';'51';'52';'53';'54';'55';'56';'57';... 
    '58';'59';'5A';'30';'31';'32';'33';'34';'35';'36';'37';'38';'39';... 
    '3D';'28';'29';'2E';'2D';'2C';'20'}; 

  
hex = cell(length(string)+2,1); 
hex{1} = '05'; 
hex{2} = '02'; 
hex{length(string) + 3} = '03'; 
hex{length(string) + 4} = '04'; 
for i=1:length(string) 
    for j = 1:length(characters) 
        a = sprintf(string(i)); 
        b = sprintf(characters{j}); 
        if strcmp(a,b) 
            hex{i+2} = hexvalues{j}; 
        end 
    end 
end 
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