
CUP 2.0: High-Level Modeling of
Context-Sensitive Interactive Applications

Jan Van den Bergh and Karin Coninx

Hasselt University – transnationale Universiteit Limburg
Expertise Centre for Digital Media – Institute for BroadBand Technology

Wetenschapspark 2
3590 Diepenbeek

Belgium
{jan.vandenbergh,karin.coninx}@uhasselt.be

Abstract. The Unified Modeling Language is mainly being used to com-
municate about the design of a software system. In recent years, the lan-
guage is increasingly being used to specify models that can be used for
partial code generation. These efforts are mainly focussed on the gener-
ation of the application structure. It has been used to a lesser extend to
model the interaction with the user and the user interface. In this paper,
we introduce CUP 2.0, a Unified Modeling Language profile for high-
level modeling of context-sensitive interactive applications. The profile
was created to ease communication about the design of these applications
between human-computer interaction specialists and software engineers.
We further argue that the data provided by the models, suffices to (semi-)
automatically create interactive low-fidelity prototypes that can be used
for evaluation.

1 Introduction

1 With the advent of mobile computing, the interest in development support for
context-sensitive interactive applications has also increased. Indeed, the usage
of applications while the users are moving makes that the context in which
interactive applications is no longer a static given. The small form-factor of
most of these mobile devices makes that one should make optimal use of the
features of such a device and the context it is being used in. For example, in a
museum a digital mobile guide can automatically display information about the
art works closest to the user. Another factor is that users no longer use a single
computing device but they still want to use the same applications or services
on these different devices. Such applications can range from websites to word
processors or even games.

The design of such context-sensitive interactive applications is a complex task
that can benefit from the use of models at different levels of abstraction. The

1 The original article ia available at http://www.springerlink.com/content/

m84v342l8431793p/.

abstraction can be useful to reduce the complexity when designing the overall
interactive application and reduce the chance to get lost in low-level features,
such as the detailed layout of the user interface of the application on a certain
target platform.

In this work, we present CUP 2.0, a profile for the Unified Modeling Lan-
guage (UML) for modeling context-sensitive user interfaces that improves on an
earlier version [19]. The profile provides a set of stereotypes and the accompa-
nying tagged values that can be used to construct high-level models for these
context-sensitive applications. The models are based on the models that are used
in the model-based user interface design but are expressed using the UML. They
document the interaction of the user with the system, the data structures ac-
cessible through the user interface, the high-level structure of the user interface
and the deployment of a user interface to a certain platform.

The rest of this paper is structured as follows: after a short discussion of
some related work, we will give an overview of the models that are supported
by the introduced profile, followed by detailed discussions of each of the models.
Finally, we will provide a discussion of the profile and conclusions.

2 Related Work

The UML has already been used by several approaches to model the user in-
terfaces of interactive applications. Wisdom [13] is a UML profile for modeling
interactive applications that is targeted towards small organizations. It sup-
ports modeling of interactive applications using eight different models that are
expressed using the UML use case, class, activity and state diagrams. The di-
agrams are extended using a set of stereotypes. All models are also on a fairly
abstract level and the generation process to an abstract user interface descrip-
tion language (AUIML) from those models is provided. CanonSketch [1] is a tool
that supports the presentation model, one of the models of the Wisdom-notation,
and combines it with the Canonical Abstract Prototypes [3] (CAP)2 to provide
multilevel modeling and HTML for prototyping on a concrete level.

UMLi [5] extends the UML using the MOF-constructs to model user inter-
faces. The authors introduce two new diagram types. The presentation diagram,
specifying the user interface structure, is represented using a notation similar to
that of the deployment diagram (for the presentation model). An enhanced ver-
sion of the activity diagram is used to represent the behaviour. They extended
an open-source UML-modeling tool to support their notation.

Elkoutbi et al. [8] use annotated collaboration diagrams and class diagrams
to model form-based user interfaces. From these diagrams, they can generate
statechart diagrams. Based on these statecharts, complete functional prototypes
are generated. The approach is concentrating on form-based user interfaces for
a single user. The specifications that are used as input, however, have to be
rigorously defined to support the generation process.

2 The CAP notation uses nested rectangles and a set of icons to identify the type of
interaction objects contained in user interface.

MML [16] is a UML profile to model interactive multimedia applications.
They use the notation we proposed in earlier work [19] to define the abstract
user interface and link it with a multimedia specification, and state and activity
diagrams. A skeleton of the interactive multimedia application using SVG and
JavaScript can be generated from these models.

None of the above approaches, however, have dedicated support for modeling
context-sensitive user interfaces. Some model-based approaches that do not use
UML, however, have some support for modeling context-sensitive user interfaces.
Clerckx et al. [2] propose a method that starts from a hierarchical task model
from which they can generate a dialog model. This model can be annotated
with high-level user interface descriptions. These models are combined with a
context model to generate some concrete prototypes that can use simulated or
real context input. All models can be manipulated graphically and are serialized
to XML.

UsiXML [11] is a modeling language expressed using XML. It features support
for the specification of task models, abstract and concrete user interface models,
context models and model transformations. Tool support for various models is
provided, however there is no published tool support for context-sensitive user
interfaces.

3 Model Overview

The Context-Sensitive User interface Profile (CUP 2.0) is a UML 2.0 [14] profile
that provides stereotypes and corresponding tagged values to increase support
for the expression of the models, relevant to the high-level modeling of context-
sensitive user interfaces, in a limited number of diagrams. Figure 1 gives an
overview of the models that can be specified using the CUP 2.0 profile.

Fig. 1. Overview of the models supported by the UML profile CUP 2.0

The application model specifies the data structures and functionality that
can be accessed through the user interface. This includes the data structures
and functionality that is not part of the modeled application but that is used to
provide relevant information (context) to the application. The model is used by

Fig. 2. Example of user interface deployment model: A context-sensitive mobile mu-
seum guide.

both the system interaction model and the abstract user interface model to pro-
vide details of the data structures which are respectively used in the interaction
with the modeled application and in the user interface structure. The model is
discussed in more detail in section 4.

A second model is the system interaction model. This model corresponds to
the user task model, which is the core model in many model-based user inter-
face design approaches. It is an hierarchical specification of the user’s tasks and
user-observed tasks. In contrast to the most-used task model notation, the Con-
curTaskTrees notation [15], it does not use a tree-based notation but uses the
flow-based notation of the activity diagram. It does however support all temporal
operators that are supported by the ConcurTaskTrees notation and is enhanced
with support for context-sensitiveness. More details about this model can be
found in section 6.

The structure of the context-sensitive user interface is specified in the abstract
user interface model. A single model represents a user interface structure that
is shared in multiple contexts and on multiple platforms (see section 7). The
deployment of an abstract user interface to a certain platform or to a set of
platforms for distributed user interfaces can be specified in the user interface
deployment model. To accomplish this, the stereotype «contextualNode» can
be applied to a Node to specify the relation with a certain context of use as
specified in the context model. Figure 2 shows an example of a deployment of
the user interface to a PDA. Specific contexts of use can be specified in the
context model, which uses the classes defined in the application model. More
details of the context model are found in section 5.

4 Application Model

The application model is specified using a class diagram. The model contains all
classes of the application logic that are relevant for the user interface. In addition
to those classes, also the context information and the interfaces of the relevant
applications or services to get the relevant context information are included in

Fig. 3. Stereotypes of the UML profile CUP 2.0 relevant for the application model

Fig. 4. Example of application model: A context-sensitive mobile museum guide.

the model. The latter classes are respectively identified using the stereotypes
«context» and «contextCollector». The definition of a seperate stereotype
for the entities that gather context information is motivated by the fact that
frameworks and toolkits built to support the development of context-sensitive
applications use similar abstractions. Examples of such abstractions are con-
text widgets in the Context Toolkit [6], contextors [4] and information spaces
in ConFab [10]. A different name was chosen to be independent of the final
implementation.

Each Property of classes with the stereotype «context», can have a stereo-
type indicating how the modeled information is gathered since this information
can be important for the further design or eventual code generation. The two
stereotypes that are supported are «detected» for context information that is
delivered to the application directly from sensors or from any source after being
manipulated, merged or derived by some service or application. Profiled context
information is provided by an application or entered by a user and is indicated
by the stereotype «profiled». The difference is also clear from the tagged val-
ues of these stereotypes. While the values of profiled context information can be
gathered from a resource of a certain type (e.g. a URI referencing a file), the

Fig. 5. Stereotypes of the UML profile CUP 2.0 relevant for the context model

Fig. 6. Example of context model: A context-sensitive mobile museum guide.

detected context information is gathered from a context collector. The choice to
categorize context in profiled and detected was motivated by the implications
this difference has on the design of the application; an appropriate user inter-
face has to be defined to modify profiled context information, while detected
information requires mechanisms to detect the information and possibly appro-
priate feedback to the user when problems are encountered. This categorisation
of context is more extensively motivated in [19].

The stereotypes that can be applied in the application model are shown in
Figure 3, while Figure 4 shows an example application model. The example
shows a particial application model of a museum guide. It clearly shows that the
information that many relations exist between parts of the model that are part
of the context and those that are not. It also shows that the location of a user
is detected by a LocationDetector, while the location of the museum artifacts is
profiled.

5 Context Model

The context model specifies the different situations in which an application can
be used. For each context of use the context model contains a package with
the stereotype «contextOfUse». Such a package can only contain instances
of classes that have the stereotype «context» as specified in the application
model. As such the context model is more open than the context model used in
UsiXML [11], which uses instances of predefined classes to specify the contexts
of use.

Each instance specifies one value to which a parameter of the context of
use has to adhere. Ranges of values can be specified by specifying a minimum
and a maximum (using the corresponding stereotypes), or by listing the possible
values; when multiple instances of the same class are specified they represent
alternatives. To avoid ambiguity, when both a minimum and a maximum value
is provided, the involved instances should be linked. Figure 5 shows the stereo-
types that can be applied to the model elements, while Figure 6 shows a small

Task Category ConcurTaskTrees Contextual ConcurTaskTrees CUP

Abstract task /

User task
Contextual User Task /

Application task
Contextual Application task /

Interaction task
Contextual Interaction task /

Environment task /
Table 1. Icons of task categories in ConcurTaskTrees, Contextual ConcurTaskTrees
and CUP 2.0

example model, demonstrating the usage of the different stereotypes. The spec-
ified context of use is relevant for users that follow a dynamic tour through the
museum and have a PDA with a certain minimal resolution.

6 System Interaction Model

The system interaction model describes the interactions of the system with the
user and the environment in which it is executed. It can be used to describe the
tasks of both the users and the application as well as the relevant interaction
with the environment in more detail. The basis for the system interaction model
is the UML 2.0 activity diagram. In this model, all actions have to have the
stereotype «task» or a derived stereotype applied to them.

A task corresponds to an UML Action. The task goal can be expressed using
a local postcondition, if desired. Basic tasks – tasks that are not refined within
the model – belong to four different categories. These categories are based on
the categories of the Contextual ConcurTaskTrees [18] notation, an extension
of the earlier mentioned ConcurTaskTrees notation that allows for specification
of context influences. We defined four stereotypes with the appropriate tagged
values, that cover all task categories present in the Contextual ConcurTaskTrees
as can be seen in Table 1.

One notable difference is the elimination of the task category type abstract
task, which is a task that can be refined into tasks that belong to different
categories. Since there are a great number of ConcurTaskTrees models that do
not follow this definition and a change in semantics would only be confusing,
we decided to remove this task category and to use a generic stereotype «task»
instead. In practise, this has the consequence that CallBehaviourActions and
StructuredActivityNodes have to have the stereotype «task» and not one of the
derived stereotypes.

The four stereotypes that correspond to the remaining task categories are:

«userTask» A user task is a task that is performed by the user without di-
rect interaction with the application. A user task can however have indirect
impact on an application. E.g. A museum visitor might carry an electronic

Fig. 7. Stereotypes of the UML profile CUP 2.0 relevant for the system interaction
model

mobile guide while strolling, performing no direct interaction. The electronic
guide can however get updates about the position of the user through the
use of a positioning system in the museum. This can be modeled by applying
the stereotype to an AcceptEventAction and specifying an interface to the
positioning system in the tagged value contextSource. User tasks that are
applied to other types of Actions are optional and will not be used during
further specification of the system.

«applicationTask» An application task is a task performed entirely by the
application without user interaction. Examples of such tasks are showing in-
formation to a user or performing a computation. When an application task
has influence on the platform or the environment, the affected data structures
or systems can be indicated through the tagged value manipulatedObject. Ex-
amples of such influences are putting information in the system paste buffer
and triggering an external logger that has an influence on future application
execution.

«interactionTask» Direct user interaction with an application is modeled with
an interaction task. Like the previously mentioned tasks, an interaction task
can have effects on the environment which are indicated with tagged values.
The type of user interaction is indicated through the tagged value interac-
tionType.

«environmentTask» An environment task covers all actions that have an in-
fluence on the execution of the interactive application but are performed by
an entity other than the user and the application. An example of an envi-
ronment task is a car accident that happens on the route calculated by a
car navigation system. Similar to the user task, an environment task will be
modelled through an AcceptEventAction when it has an immediate effect on
the execution of the application, such as in the example of the car accident,
which triggers a recalculation of the route.

All stereotypes indicating task categories are derived from the stereotype
«task», which defines some tagged values that are shared by all task categories.
These tagged values are important to reduce the complexity of the diagrams:

the tagged value optional indicates whether or not a certain task is required
or not, while the tagged value repetition indicates the number of times a task
should be executed. The tagged values manipulatedObject and requiredContext
are only applicable to basic tasks and thus are required to be empty sets for
the stereotype «task». Figure 7 gives an overview of the stereotypes and their
tagged values.

Temporal operator Symbol Activity diagram constructs

Enabling >> and [] >> control and object flow

Disabling [> InterruptableActivityRegion with InterruptionEdge

Concurrency ||| and |[]| ForkNode and JoinNode with
control or object flows

Choice [] Decision and MergeNodes with control flows

OrderIndependent | = | same as concurrency but all tasks have
tagged value singleExecution set to true

Interruption | > concurrency with tagged value singleExecution set
to true for the interrupting task

Table 2. Temporal operators in ConcurTaskTrees and corresponding activity diagram
notation

If the tagged value singleExecution is set to true for a certain task, that task
interrupts all other tasks that are running in parallel until it is completed. This
has as consequence that when all actions following a ForkNode have this tagged
value set to true, they have to be carried out one after the other. This makes
that all temporal operators supported by the ConcurTaskTrees notation can be
expressed using the UML activity diagram when the stereotypes in Figure 7 are
applied as can be seen in Table 2.

An example of a system interaction model can be seen in Figure 8. The
example shows a partial specification of a mobile museum guide that offers dif-
ferent types of tours. The diagram gives only details about one type of tour:
the dynamic tour. This type of tour does not offer a specified trajectory to the
user, but shows the user’s position in the museum as well as information about
a nearby artwork if one is available. A user can ask more information about an
artifact. This additional information temporarily blocks all other information.
Note that this example is simplified for brevity and as such will not really result
in a user-friendly application.

Fig. 8. Example of system interaction model: A context-sensitive mobile museum guide.

7 Abstract User Interface Model

The abstract user interface model provides information about the structure of the
user interface independent of the platform it will ultimately be deployed on. This
means that we abstract from the concrete components and drastically reduce the
number of components, coming to a minimal set of kinds of user interface com-
ponents. The components are differentiated according to the functionality they
offer to the user. We identified four types of abstract user interface components:
input components, which allow users to enter or manipulate data, output compo-
nents, which provide data from the application to the user, action components,
which allow a user to trigger some functionality, and group components, which
group components into a hierarchical structure.

In the UML, we represent the abstract user interface model (AUIM) using
a class diagram. All classes in a AUIM need to have a stereotype identifying
a type of abstract user interface component. There are also restrictions on the
associations that can be specified between the classes, they need to indicate
containment or have one of the stereotypes discussed later in this section applied
to them. The definition of the stereotypes is shown in Figure 9. Only one of these
stereotypes can be applied to one class. There is one exception to this rule: a
group component can also be an input component, but in this case the input
component must be a selection over the contained user interface components.

Fig. 9. Stereotypes of the UML profile CUP 2.0 relevant for the abstract user interface
model

One should note that the classes with the stereotypes «inputComponent»
or «outputComponent» can each have multiple attributes that would each be
represented using a separate user interface component in a notation such as
the Canonical Abstract Prototypes [3]. Each of the attributes has the stereo-
type «uiData». The tagged value propertyInClass can be used in case there is
a reference to a property of a class. Additional meta-information, such as a la-
bel or more detailed information can be provided using the remaining tagged
values. All Operations related to an action component must have the stereo-
type «uiAction» that allows to specify information similar to the stereotype
«uiData» for each Property of an input component or output component.

The visibility specification for each Property and Operation with the stereo-
type «uiData» or «uiAction» is adapted to be more relevant to their meaning
in the model, but remains consistent with the UML specification:

public Public visibility means that the associated part of the user interface is
visible to not only the user of the application, but also other persons that
might see the user interface. This visibility is, for example, appropriate for
the part of a presentation application that shows slides.

protected Protected visibility means that the associated part of the user inter-
face is only visible to the user of the user interface. This might mean that
the value of an input component with protected visibility is hidden when
shown on a public display. An example of user interface components for
which this visibility is appropriate are the controls for moving through slides
in a presentation application.

package Parts of the user interface that have package visibility are only accessi-
ble to other parts of the user interface, but are not shown to the users of the
user interface. This visibility should be avoided in the abstract user interface
model.

private Private visibility is used for parts of the user interface whose contents
may not be seen by a user without being masked. An example of a user
interface component with private visibility is a password field.

We also defined some stereotypes for associations between abstract user in-
terface components to express relationships other than containment. These re-
lationships indicate constraints on the structure of the user interface which are
implied by the system interaction diagram and thus reduce the number of hidden
dependencies within the abstract user interface model. These relationships can
also be used to specify relationships between user interface components within
the model that are specified in different diagrams. At the same time they also
increase visibility. The reduction of hidden dependencies is important to effec-
tively support modification, a good visibility is also important for exploratory
design [9].

The first stereotype is «precede», which indicates that one user interface
component should be presented to a user before another user interface compo-
nent. The precedence can be spacial, temporal or both. The usage of this stereo-
type is limited to user interface components that are contained by the same
group component and can be used to establish an order in which the user inter-
face components are presented to the user. A second stereotype, «activate»,
can be applied to an association to indicate that a user interface component
activates another component. The activated components can be added to the
currently active components or can replace them. A third stereotype for associa-
tions is «update». Application of this stereotype to an association indicates that
the contents of the target user interface component is updated by the source
user interface component.

An example of an abstract user interface model is shown in Figure 10. The
depicted model corresponds to the part of the system interaction model that
shows the functionality offered in the case of a dynamic tour. The figure shows
three group components that the user can interact with. The first group com-
ponent contains one interaction component that allows the selection of a type
of tour. When the user selects a type of tour, a second group component is ac-
tivated and replaces the one that contains the interaction component, as can be
seen from the tagged values on the association. This group shows a map, the
current user position and, optionally3 some information about a nearby artwork
and, also optional, an option to show more information about the artwork. This
information is shown within a group component Extended Info, which replaces
the group component MapDisplay.

The abstract user interface description we use assigns one type of user interac-
tion to a component, similar to the approach taken for XForms [7], UMLi [5] and
Wisdom [13]. TERESA XML [12] also uses this approach but defines a deeper
hierarchy that contains special components for inputs of simple datatypes and
selections based on the number of options. UsiXML [11] only has one type of user
interface components having facets that are based on the type of interaction.

3 This can be derived from the multiplicity specified for the containment relations.

Fig. 10. Example of abstract user interface model: A context-sensitive mobile museum
guide.

CUP-profile XForms tags

groupComponent group
- contained number of elements of same type > 1 repeat
uiData in inputComponent,
- selectionType is none input
- max. selectionCount = 1 select1
- max. selectionCount > 1 select
uiData in outputComponent output
uiAction in actionComponent trigger or submission
Table 3. CUP 2.0 stereotyped Elements and XForms counterparts

8 Discussion

The profile can be useful for designers to have rather unambiguous and relatively
compact models of a context-sensitive interactive application. Nevertheless, the
ability to generate some parts of the models and ultimately generate code tem-
plates, can help the designer to be more productive. Therefore we explored the
possibilities for automation.

We have identified two main areas where transformations as specified in the
model-driven architecture [17] can be applied. The first is a model-to-model
transformation from the system interaction model to the abstract user interface
model. The second is the generation of high-level user interface descriptions from
the abstract user interface model. The user interface deployment model can be
used to add style to the different user interface skeletons and add some design
guidelines specifically for the target platform.

To test the feasability of the prototype generation, we choose XHTML +
XForms [7] as a target language and investigated how the prototype generation
could be established. The mapping of the elements in the abstract user interface
model to XForms tags is shown in Table 3. A «uiAction» is translated into a
submission if a value is specified for the tagged value operationInClass, and into a
trigger otherwise. In XForms each component can make references to separately
defined object structure in instances. This object structure as well as its XML-

Schema can be derived from the tagged value propertyInClass of the attributes
with a «uiData» stereotype. The fully-qualified name of its class can be used
to generate a meaningful hierarchy of xml-tags, while the datatype itself can be
used to define the types in XMLSchema.

The effects of the activation of components can be converted to bind tags
with the right relevant settings. Precedence relations between user interface
components are reflected in the order of the corresponding XForms controls
in the document. The update relationships can also be translated into bind-
tags with the right nodeset and optionally calculate attributes. Conversion of
application or context-driven updates to the user interface are more difficult
since they cannot be described declaratively in XForms.

9 Conclusion

Despite the fact that there is no dedicated support for multimedia applications,
as is offered by the MML (see section 2) and that tool support for the proposed
transformations is ongoing or planned as future work, we can conclude that the
revised UML profile, CUP 2.0, presented in this paper offers some benefits over
related approaches. The profile allows a detailed description of both the behavior
and structure of the user interface of context-sensitive interactive applications
using a limited amount of constructs of the UML using regular UML modeling
tools that allow metamodel extension through profiles.

The profile also allows a clear specification of all datatypes that are involved,
allowing to make optimal use of specifically designed user interface components
for complex datatypes on platforms where they are available. Finally, the fact
that all information is expressed in UML makes it easier to integrate the user
interface specification with the specification of the application core.

Acknowledgements This research was partly performed within the IWT project
Participate of Alcatel Bell. Part of the research at the Expertise Centre for Dig-
ital Media is funded by the European Regional Development Fund (ERDF), the
Flemish Government and the Flemish Interdisciplinary institute for Broadband
Technology (IBBT).

References

1. Pedro F. Campos and Nuno J. Nunes. CanonSketch: a User-Centered Tool for
Canonical Abstract Prototyping. In Proceedings of EHCI-DSVIS 2004, volume
3425 of LNCS, pages 146–163. Springer, 2005.

2. Tim Clerckx, Frederik Winters, and Karin Coninx. Tool support for designing
context-sensitive user interfaces using a model-based approach. In Proceedings
TaMoDia 2005, pages 11–18, Gdansk, Poland, September 26–27 2005.

3. Larry L. Constantine. Canonical Abstract Prototypes for Abstract Visual and
Interaction Design. In Proceedings of DSV-IS 2003, number 2844 in LNCS, pages
1 – 15, Funchal, Madeira Island, Portugal, June 11-13 2003. Springer.

4. J. Coutaz and G. Rey. Foundations for a Theory of Contextors. In CADUI, pages
13–34. Kluwer Academic Publishers, 2002.

5. Paulo Pinheiro da Silva and Norman W. Paton. User Interface Modelling in UMLi.
IEEE Software, 20(4):62–69, July–August 2003.

6. Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions. Human-Computer Interaction (HCI) Journal, 16(2-4):97–166, 2001.

7. Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman. XForms 1.0.
W3C, http://www.w3.org/TR/2003/REC-xforms-20031014/, 2003.

8. Mohammed Elkoutbi, Ismäıl Khriss, and Rudolf Keller. Automated Prototyping
of User Interfaces Based on UML Scenarios. Automated Software Engineering,
13(1):5–40, January 2006.

9. Thomas Green and Alan Blackwell. Cognitive Dimensions of Information Artifacts:
a Tutorial, 1.2 edition, October 1998.

10. Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiq-
uitous computing. In Proceedings of MobiSYS’04, pages 177 – 189. ACM Press,
2004.

11. Quentin Limbourg and Jean Vanderdonckt. Engineering Advanced Web Applica-
tions, chapter UsiXML: A User Interface Description Language Supporting Multi-
ple Levels of Independence. Rinton Press, December 2004.

12. Giulio Mori, Fabio Paternò, and Carmen Santoro. Design and Development of Mul-
tidevice User Interfaces through Multiple Logical Descriptions. IEEE Transactions
on Sofware Engineering, 30(8):507–520, August 2004.

13. Nuno Jardim Nunes. Object Modeling for User-Centered Development and User
Interface Design: The Wisdom Approach. PhD thesis, Univ. da Madeira, 2001.

14. Object Management Group. UML 2.0 Superstructure Specification, October 8 2004.
15. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.

Springer, 2000.
16. Andreas Pleuss. MML: A Language for Modeling Interactive Multimedia Applica-

tions. In Proceedings of Symposium on Multimedia, pages 465–473, December12–14
2005.

17. Kurt Stirewalt. MDA Guide Version 1.0.1. World Wide Web, http://www.omg.
org/docs/omg/03-06-01.pdf, 2003.

18. Jan Van den Bergh and Karin Coninx. Contextual ConcurTaskTrees: Integrating
Dynamic Contexts in Task Based Design. In Second IEEE Conference on Pervasive
Computing and Communications WORKSHOPS, pages 13–17, Orlando, FL, USA,
March 14–17 2004. IEEE Press.

19. Jan Van den Bergh and Karin Coninx. Towards Modeling Context-Sensitive In-
teractive Applications: the Context-Sensitive User Interface Profile (CUP). In
Proceedings of SoftVis ’05, pages 87–94, New York, NY, USA, 2005. ACM Press.

