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Abstract

Background: Examining the relationship between a chemical structure
and its biological function is of great importance for drug discovery. Re-
searchers traditionally focused on the molecular structures in the context
of interactions with targets in order to better understand the mechanisms
of drug action. The invention of microarray has been of great help in this
direction of research. So far studies have been conducted to introduce tran-
scriptomic data into functional investigation but little effort has been made
in looking at the relationship between structural fingerprints of compounds
with defined intracellular functions.

Objective: In this article, we present BF-Rank an R package dedicated
to biclustering of microarray data analysis. The main features of this pack-
age are the possibilities to use different algorithms to obtain biclusters and
finally rank them based on similarity of the compounds in each bicluster.
Moreover, ten different measures of similarity, calculated from the finger-
print information of the compounds can be implemented by this package.
Finally, numerous graphics are also available with various options.

Methods: Factor Analysis for Bicluster Acquisition (FABIA), ISA and
Plaid model where implemented in this package to identify biclusters. Mea-
sures of similarity of binary data such as Tanimoto, Ochiai, Gower & Leg-
endre and Czekanowski were also implemented in this package to measure
similarity between compounds. In addition, these measures of similarity
were used to cluster compounds based on their fingerprints. For a practical
application of this study, we present how this package can be used to rank
biclusters and finally identify differentially expressed genes using SAM and
LIMMA.

Index Terms : Biclustering, microarray data analysis, structural finger-
print, differential expression, False Discovery Rate (FDR), Microarray, Mul-
tiple testing.
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1 Introduction

1.1 Background

Examining the relationship between a chemical structure and its biological function is
of great priority for drug discovery. It has been reported that for every drug that was
pulled from the market because of ADME/T (absorption, distribution, metabolism, elim-
ination and toxicity) difficulties, 10 remained on the market with potential for drug-drug
interactions, and for every one of those on the market there were another 10 to 50 that
failed before they made it to the market place. Hence, intense interest has been focused
in the development of computer based (in silico) methods to predict toxicity, efficacy, and
adverse effect of drug candidates[1].

Past researches realized almost 150 years ago that relation exists between the physiologi-
cal action of a substance and its chemical composition and constitution[1]. The challenge
facing Chemists and Bioinformaticians today is how to accurately predict the biological
activities of chemical compounds. This has been a mind-boggling situation but the in-
vention of microarray has been of great help in this direction of research. So far studies
have been conducted to introduce transcriptomic data into functional investigation but
little effort has been made in looking at the relationship between structural fingerprints
of compounds with defined intracellular functions. Researchers traditionally focused on
the molecular structures in the context of interactions with targets in order to better
understand the mechanisms of drug action. Questions often demanded are; which set of
genes are associated with a condition (tumor) ? and which tumor class does a particular
sample belongs ?.

Microarray technology is often used to measure expression levels associated with thou-
sands of genes in a single experiment. The expression level recorded by the microarray is
a characterization of the intracellular activities of chemical compounds and their mech-
anisms of action. The interesting issue about the data set from microarray is that the
number of samples (conditions) are far smaller than the number of covariates (genes). As
such, special statistical methodologies (like clustering) for microarray data together with
some data mining technologies have been brought together to automatically tackle these
large data sets. They do provide interesting results when applied to relatively ”small”
data sets, typically containing tens of experimental conditions and at most several hun-
dred genes, but are of limited use for the analysis of large data sets [2]. In particular, a
well-recognized drawback of commonly used clustering algorithms is the fact that they
assign each gene to a single cluster, while in fact genes that participate in several func-
tions should be included in multiple clusters. Moreover, genes are analyzed based on their
expression under all experimental conditions in clustering methods. This is problematic,
because cellular processes are usually affected only by a small subset of these conditions,
such that most conditions do not contribute relevant information but rather increase the
level of background noise in the data. Thus we need a further look at statistical methods
that takes all of these draw backs into account. This calls for an extensive need for dimen-
sional reduction methods like biclustering. Biclustering simultaneously cluster both the
rows and columns in a matrix based on the definition of ’similarity’. There are a handful
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of biclustering algorithms and they all differ in only how similarity is defined. Three of the
most efficient biclustring algorithms; Factor Analysis For Bicluster Acquisition (FABIA),
Plaid model and Iterative Signature Algorithm (ISA) were used in this report. Even
though many studies have been conducted on biclustering methods, little effort has been
made in associating this with the fingerprints of compounds found in biclusters. We found
it interesting to carry out such a study by designing a package that will identify biclusters
and rank them based on the fingerprints of the compounds.

1.2 Objectives

A gene expression data set (label B) and corresponding fingerprints data set were used
in this project. In order to address the research interest, the following scientific ques-
tions were posed: Can we confidently rank biclusters based on the fingerprints of the
compounds? It is possible to select a reasonable number of genes that are differentially
expressed between two clusters of compounds predetermined by their fingerprints? To
answer these scientific questions, the objectives of the study were formulated to first of all
find biclusters base on the gene expression and device a method that can be used to rank
them based on the fingerprints of the compounds using different measures of similarity.
In addition, we are to cluster the compounds in say k groups based on their fingerprints
information using different measures of association and finally use different statistical
methods to identify top T genes that are differentially expressed between a chosen group
and the others.

The remainder of this paper is organized as follows. Details of the data set used in this
report is given in section 2. We present our methodology implemented in the BFRank
package in section 3. We begin section 4 with a brief description of the clustering methods
while section 5 presents how the package can be used. We draw conclusion in section 6,
present our list of references in section 7 and attach the the manual of the package in
section 8.
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2 Data structure

A gene expression data (label B) and its corresponding fingerprint data set (label F ) were
used in this project. The expression data was got by applying 96 different compounds
to cultured specimens and the expression levels of the genes measured. This resulted in
an expression data of 7103 genes (rows) and 96 compounds (columns). Each chemical on
the other hand has its fingerprint information which has a binary value (0 or 1) if the
compound has a particular characteristic or not, there were in total 354 characteristics
for each compound. figure 1 demonstrate how the fingerprints of a compound are repre-
sented from its chemical structure. The fingerprint information was organized in a data
set where the fingerprints represent the rows and the columns, the compounds. The data
structures are represented physically as shown by equations 1 and 2.

Figure 1: Representation of molecular fingerprint [14].

B =







g1,1 g1,2 . . . g1,96
...

...
...

...
g7103,1 g7103,2 . . . g7103,96






(1)

F =







fp1,1 fp1,2 . . . fp1,96
...

...
...

...
fp354,1 fp354,2 . . . fp354,96






(2)

gij stands for the ith gene in the jth compound while fpij represents the ith chemacal
structure in the jth compound.
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3 Ranking Based on Fingerprints

3.1 Biclustering

Biclustering, co-clustering, or two-mode clustering is a data mining technique which allows
simultaneous clustering of the rows and columns of a matrix. Given a set of m rows in
n columns (i.e. m * n matrix), the biclustering algorithm generates biclusters, a subset
of rows which exhibit similar behavior across a subset of columns, or vice versa. There
are many biclustering algorithms existing and what is peculiar about these algorithms is
the way biclusters are defined. These definitions fall basically into three main groups as
shown in figure 2 :

• Bicluster with constant values (a),

• Bicluster with constant values on rows (b) or columns (c),

• Bicluster with coherent values (d, e).

Figure 2: Types of Biclusters [10].

Three different biclustering algorithms were used in this study: Plaid Model, ISA (Itera-
tive Signature Algorithm) and FABIA (Factor Analysis for Bicluster Acquisition).

3.1.1 FABIA Model

Factor Analysis for Bicluster Acquisition (FABIA) is a model-based technique for bi-
clustering. It is based on a multiplicative model which accounts for linear dependencies
between gene expression and condition, and also captures heavy-tail distributions as ob-
served in real-world transcriptomic data. The model can be describe as follows.
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It is a mathematical fact that two vectors are similar if one is a multiple of the other,
that is the angle between them is zero or as realization of random variables their corre-
lation coefficient is one. It is clear that such a linear dependency on subsets of rows and
columns can be represented as an outer product λzT of two vectors λ and z. The vector λ
corresponds to a prototype column vector that contains zeros for genes not participating
in the bicluster, whereas z is a vector of factors with which the prototype column vector
is scaled for each sample; clearly z contains zeros for samples not participating in the
bicluster. Vectors containing many zeros or values close to zero are called sparse vectors
[13]. Figure 3 visualizes this representation by sparse vectors schematically.
The overall model for p biclusters and additive noise is:

X =

p
∑

i=1

λiZ
T
i +Υ = ΛZ +Υ (3)

Where Υ ∈ Rn∗l is additive noise and λi ∈ Rn and zi ∈ Rl are the sparse prototype vector
and the sparse vector of factors of the ith bicluster, respectively. The second formulation
above holds if λi ∈ Rl is the sparse prototype matrix containing the prototype vectors λi

as columns and Z ∈ Rp∗l is the sparse factor matrix containing the transposed factors ZT
i

as rows.

3.1.2 Plaid model

Plaid model clustering does not suffer from the drawbacks of conventional clustering tech-
niques such as preventing overlapping biclusters, thus making it a particularly attractive
method for clustering microarray data. As a biclustering method, each gene cluster is as-
sociated with a sample cluster over which the genes are co-regulated, allowing for limited
co-regulation. The biclusters represent unusual patterns of expression, so that uninterest-

Figure 3: The outer product λZT of two sparse vectors results in a matrix with a bicluster.

Note that the non-zero entries in the vectors are adjacent to each other for visualization

purposes only [13].
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ing expression profiles are not clustered. Genes involved in more than one active biological
process can be accommodated through overlapping biclusters.
The plaid models for biclustering fit layers κ to the model

aij = (µ0 + αik + βjk) +
κ

∑

k=1

(µk + αik + βjk)ρikκjk + ǫij (4)

using ordinary least squares (OLS), where αij is the value in the data matrix B corre-
sponding to the row i and column j, µ, α, and β represent mean, row and column effects
and ρ and κ identify if a row or column is member of the layer, respectively [12].

3.1.3 Iterative Signature Algorithm (ISA)

The iterative signature algorithm for bicluster is based on what is known as the tran-
scription module (TM). In the context of gene expression data these modules consist of
subsets of genes that exhibit a coherent expression profile only over a subset of microar-
ray experiments. Genes and arrays may be attributed to multiple modules and the level
of required coherence can be varied resulting in different ”resolutions” of the modular
mapping. The degree of coherence is determined by a pair of threshold parameters for
the genes and conditions. The gene threshold contains the gene set, while the condition
threshold contains the condition set. The goal of ISA algorithm is to search for modules
incorporated in the data. Since the ISA does not rely on the computation of correlation
matrices, it is extremely fast even for very large datasets [2].

3.1.4 Diagnostic of Biclusters

The Bicluster Diagnostics plots (BcDiag) package is a visualization technique, for profiling
and summarizing Bicluster data, particularly for gene expression level data. Target data
matrix is the bicluster genes (rows) and conditions (columns) versus clustered genes or
conditions. Line plot were used to visualize the biclusters where genes or conditions in a
bicluster are grouped and separated from the others.

After obtaining the biclusters from the expression matrix using the above algorithms,
their corresponding fingerprint matrices were got for each bicluster. This gives an m′ ∗ n′
matrix say, where m′ = 354 and n′ corresponds to the number of compounds per bicluster.
Based on these binary matrices, similarity between compounds from the same bicluster
were calculated using 10 different measures of association.

3.2 Chemical structure similarity measure

The binary feature vector is one of the most common representations of patterns and
measuring similarity and distance measures play an important role in many statistical
problems such as clustering, classification, etc. Numerous binary similarity and distance
measures have been proposed in various fields. Some measures have been identified as the
same mathematically. We present ten different similarity methods that are included in
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this package. These similarity coefficients are only applicable for a binary variable, and
ranges from 0 to +1 (where +1 is the highest similarity).

Assuming there are two chemicals A and B say, with a = n11 the number of structure
features in both chemical A and B, b = n10 the number of structure features in chemical
A but not in B, c = n01 the number of structure features in chemical B but not in A
and d = n00 the number of structure features neither in A nor in B. Then the following
similarity measures can be defined: [11]

1. Jaccard index (1901):
S3 coefficient of Gower & Legendre s1 = a/(a+ b+ c)

2. Sockal & Michener index (1958):
S4 coefficient of Gower & Legendre s2 = (a+ d)/(a+ b+ c+ d)

3. Sockal & Sneath(1963):
S5 coefficient of Gower & Legendre s3 = a/(a+ 2(b+ c))

4. Rogers & Tanimoto (1960):
S6 coefficient of Gower & Legendre s4 = (a+ d)/(a+ 2(b+ c) + d)

5. Czekanowski (1913) or Sorensen (1948):
S7 coefficient of Gower & Legendre s5 = 2a/(2a+ b+ c)

6. S9 index of Gower & Legendre (1986):
s6 = (a− (b+ c) + d)/(a+ b+ c+ d)

7. Ochiai (1957):
S12 coefficient of Gower & Legendre s7 = a/

√

(a+ b)(a+ c)

8. Sockal & Sneath (1963):
S13 coefficient of Gower & Legendre s8 = ad/

√

(a+ b)(a+ c)(d+ b)(d+ c)

9. Phi of Pearson:
S14 coefficient of Gower & Legendre s9 = (ad− bc)/

√

(a+ b)(a+ c)(d+ b)(d+ c)

10. S2 coefficient of Gower & Legendre:
s10 = a/(a+ b+ c+ d)

The more common features A and B shares, the greater each of these coefficients and on
this account the more similar they are. Finally, a symmetric similarity matrix of say u′∗u′
was generated, where every grid contains a coefficient indicating the similarity score of the
two chemicals. The magnitude of u′ depends on the number of compounds in the given
bicluster. Based on this symmetric matrix of each biclusters, they can then be ranked
by looking at informal measures like their cumulative distribution function, densities and
heat maps. The more similar the compounds from a bicluster are, the lower the rank of
the bicluster will be.

8



3.3 Ranking

The goal of this package was not only limited at looking for biclusters but to further
rank the biclusters based on their fingerprint information. To achieve this, we found it
important to judge from the cumulative distribution of each of the similarity matrices.

3.3.1 Cumulative Distribution Function CDF

The CDF describes the probability that a real-valued random variable X with a given
probability distribution will be found at a value less than or equal to x. It can be expressed
analytically as the integral of its probability density function fX as follows:

FX(x) =

∫ x

−∞

fX(t)dt

It can also be represented by: FX(x) = P (X ≤ x), where the right-hand side represents
the probability that the random variable X takes on a value less than or equal to x. After
obtaining the similarity scores for all the different biclusters, their CDF were derived and
a cut off limit for x was then used to get their probabilies. The biclusters were then ranked
starting from the one that gave the highest probability. High probability is an intuition
that the compounds are more similar. We did not narrow our attention in looking only
at the CDF but also considered the density and heat map for each similarity matrix.

9
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4 Cluster Analysis and Differential Expression

This section is quite different from the earlier sections. We start by first clustering the
compounds (in F data) using hierarchical clustering algorithm and based on the ten
different measures of association defined in section 2.4.2. In the second part, we select a
cluster of interest (selecting of this cluster is subjective and depends on the researcher)
and find the top N differential expressed genes using LIMMA and SAM.

4.1 Cluster Analysis

Each similarity score si was converted to distance di using the equation di =
√
1− si

[11].
The distance matrices together with hierarchical clustering can then be used to cluster
the compounds in to k clusters for each of the methods mentioned above. k is to be
specified by the user. Out of these ten different methods, a consistent cluster of size 20
compounds identified by all the ten methods was isolated and denoted as group A while
the rest of the compounds were grouped as group B. The next step of the analysis was to
identify and report the top N differential expressed genes between group A and B using
different statistical methods.

4.2 Differential Expression

Let µAi and µBi, for i ∈ (1, 2, ..., 1354) be the mean expressions for gene i in cluster A
and B respectively. In order to distinguish genes that differ between both groups, we test
the following null hypothesis for each gene:

H0i : µAi = µBi versus H1i : µAi 6= µBi (5)

The statistical techniques used to justify our hypothesis are presented below.

4.2.1 Independent filtering

With high-dimensional data, variable-by-variable statistical testing is often used to select
variables whose behavior differs across conditions. Such an approach requires adjustment
for multiple testing, which can result in low statistical power. A two-stage approach that
first filters variables by a criterion independent of the test statistic, and tests only variables
which pass the filter, can provide higher power. In an application to microarray data, it
was found that gene-by-gene filtering by overall variance followed by a t-test increased
the number of discoveries by 50% [4].

This two-stage approach, the use of which need not be restricted to gene expression
applications, assesses each variable on the basis of both a filter statistic (U I) and a test
statistic (U II). Both statistics are required to exceed their respective cutoffs. Filtering
can be specific or non specific. Specific filtering is based on a statistical comparison
like t-test, ANOVA, Cox Model, while non specific filtering does not. Nonspecific filter
statistics (U I) include, for example, the overall variance and overall mean computed
across all arrays, ignoring class label. Advantages of this dimension reduction is that the

11



clustering algorithms run faster, reduce the problems with multiple testing by restricting
attention to active genes, and increase statistical power. Another obvious advantage is
clarity of interpretation: the biological meaning of a cluster or gene pathway is more easily
discerned if the results of an analysis do not include irrelevant and distracting genes. Non
specific filtering was implemented thus:

Select gi for which variance(gi) > δ, i ∈ (1, 2, ..., 7103), where δ = overall variance
computed across all arrays, ignoring class label. It is of interest to note that most pre-
processing methods return expression estimates on the log-scale so before applying non-
specific filtering, expression level estimates need to be un-logged.

4.2.2 Independent t-test

Unlike the fold change, the t-test takes in to account the variance of each gene. It provides
a standardized estimate of differential expression according to the following formula:

t∗ =
x̄1 − x̄2

σ̂pool

√

1
n1

+ 1
n2

(6)

Where

σ̂2
pool =

(n1 − 1)σ̂2
1 + (n2 − 1)σ̂2

2

n1 + n2 − 2
(7)

where σ̂2
i and ni are the variance and number of replicates for the ith group, respectively.

σ̂2
pool is the weighted average of the two groups gene-specific variance. The associated

probability under the null hypothesis is calculated by reference to the t distribution with
n1 + n2 − 2 degrees of freedom. Thus for a significance level α, we reject H0 if t∗ >
t(n1 + n2 − 2) [7].

4.2.3 Moderated t-test (LIMMA)

The moderated t-test use an Empirical Bayes method to estimate error associated with
differential expression and use a statistical test identical in form to the independent t-
statistic shown in equation 6. It uses a posterior variance σ̂2, in place of the pooled
variance, σ2

pool, in the t-test. Using Bayes rule, the posterior variance, σ̂2, for each gene
becomes a combination of the observed gene-specific error and an estimate obtained from
the prior distribution according to the following formula.

σ̃2 =
(dg)σ̂

2
g + (do)σ̂

2
o

dg + do
(8)

Where dg are the degrees of freedom and σ̂2
g are the gene specific variances obtained from

the experimental data. do and σ̂2
o are the prior degrees of freedom and variance estimates

respectively. We are now going to look at how LIMMA estimate the parameters do and
σ̂2
o .
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LIMMA t-statistic

LIMMA is a general linear model that is more easily applied to microarray data. This
method is based on a model where the variances of the residuals vary from gene to gene
and are assumed to be drawn from a chi-square distribution.
The linear model is as follows:

E(Yg = xag) (9)

where Yg is the expression summary values for each gene across all arrays, X is a design
matrix of full column rank and ag is the coefficient vector. The contrasts of coefficients
that are of interest for a particular gene g are defined as Bg = CTag. Although this
approach is able to analyse any number of contrasts, we examine two sample comparisons
only so Bg can be defined as the log fold change.
The contrast estimators, Bg, are assumed to be normal and the residual variances, s2g,
are assumed to follow a scaled chi-square distribution. Under this hierarchical model the
posterior variance, s̃2g, takes the form:

s̃2g =
(dg)s

2
g + (do)s

2
o

dg + do
(10)

Where do and so are the prior degrees of freedom and variance and dg and sg are the
experimental degrees of freedom and the sample variance for a particular gene g, respec-
tively. Because we examine only two sample comparisons (A and B), dg will always be
equal to n − 2 where n is the total number of replicates. The two prior parameters, do
and so, can be interpreted as the degrees of freedom and variance of the prior distribution
respectively. The prior parameters are estimated by fitting the logged sample variances
to a scaled F distribution.

The moderated t-statistic is defined by:

t̃ =
B̂

s̃g

√

1

n1

+
1

n2

(11)

The associated probability of the moderated t-statistic for the two sample case under the
null hypothesis is calculated by reference to the t-distribution with do + dg degrees of
freedom [7].

4.2.4 Significance Analysis of Microarrays (SAM)

In a microarray setting, resampling methods are often used in making inference. The main
motivation is to avoid inference based on the asymptotic distribution of the test statistics,
which, within the microarray setting, can be problematic because of either typically small
sample sizes or because of departure from the assumption about the distribution of the
response. Also, in some cases the asymptotic distribution of the test statistic may be
unknown [9].
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SAM is a resampling-based procedure, which uses permutations to approximate the null
distribution of the test statistics. Thus, the choice of the test statistic does not have an
effect on the SAM procedure. SAM accomplishes its task in three main steps: (1) the
adjusted test statistic, (2) approximation of the distribution of the test statistic based on
permutations, and (3) the control of the FDR.

The t-test statistic is modified in the SAM procedure as follows:

T ∗ =
x̄1 − x̄2

σ̂pool

√

1
n1

+ 1
n2

+ s0

The constant s0 is called the fudge factor and it is estimated as the percentile of the gene-
wise standard errors that minimizes the coefficient of variation of the SAM test statistics.
This modification is used to overcome bias for genes with expression difference (Between
clusters variability) close to zero, which have large values of the test statistics due to small
within clusters variances. Supposed the observed value of the test statistic is

T SAM
0 =











T 0
1

T 0
2
...
T 0
m











If B permutations are made, the SAM matrix of statistics will be

T SAM =











T ∗11 T ∗12 . . . T ∗1B
T ∗21 T ∗22 . . . T ∗2B
...

...
...

...
T ∗m1 T ∗m2 . . . T ∗mB











Where 1, 2, ...,m rows are the genes and 1, 2, ..., B columns are the permutations. Once
this matrix is obtained, the columns are sorted and the mean of each row is computed to
yield the expected statistics

T SAM =











T̄1

T̄2
...
T̄m











To call a gene significant, the difference between the observed and expected values of the
test statistic needs to be larger than a certain cut-off value λ. That is

|T 0
i − T̄i| > λ for i ∈ (1, ...,m)

For a grid of λ values, the corresponding number of significant genes can be listed; at the
same time, the number of false positives arising from any permutation matrix T SAM is
estimated. Under the null hypotheses, we expect that no differentially expressed genes
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are present for each permutation. Consequently the median or 90 percentile number of
false positives corresponding to λ can be obtained from permutation matrix. In this way,
the FDR can be calculated for each value of λ and an acceptable value of λ can be chosen
to control the FDR at the desired level [3]. The SAM Procedure also controls for false
discovery rate (FDR) once the permutation matrix is obtained. Apart from automati-
cally controlling for multiple testing, SAM has the strength that the null distribution is
generated for all the genes at once by permuting the group labels, so that the correlation
between test statistics of all the genes is preserved [3].

4.2.5 Controlling the FDR for multiple testing

The prevalent issue related to gene expression profiling is the adjustment for the large
number of comparisons that need to be made. Multiple testing procedures controlling
for the Family-wise Error Rate (FWER), that is the probability to reject erroneously at
least one true null hypothesis, such as Bonferroni or Holm procedure, are conservative and
lead to a small number of rejections. Thus recently intensive research on False Discovery
Rate has been conducted, in which the FDR is defined as the expected proportion of false
rejections among all rejections. Controlling the FDR has gained its popularity in the
microarray setting. Compared with multiple testing procedures that control the FWER,
the FDR procedures are less stringent and lead to a larger number of rejections [3]. In
this paper, Benjamini and Hochberg (1995) step-up procedure for controlling the FDR
was considered.

Benjamini and Hochberg procedure (BH)

Consider the case in which m hypotheses, from which m0 are true null hypotheses and m1

are false null hypotheses, need to be tested. Let V be the number of true null hypotheses
that we wrongly reject and R be the total number of rejected hypotheses. Benjamini and
Hochberg (1995), define the FDR as the expected proportion of false rejection among the
rejected hypotheses, FDR = E(Q) where Q = V/R when R > 0 and Q = 0 otherwise [9].
The BH procedure controls FDR as follows.

Let P(1) ≤ P(2) ≤ ... ≤ P(m) be the ordered p-values and let H(1), H(2), ..., H(m) be the
corresponding hypotheses. The procedure rejects H(1), H(2), ..., H(l) where l is the largest

value of i, for which P(i) ≤
i

m
α. The adjusted p-values are then given by

p̃i = mink=i,...,m[min(
m

i
p(i), 1)] (12)

Thus, the null hypothesis H(i) is rejected if p̃i ≤ α.
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5 Application and Results

We begin this section by presenting an overview of the methods in the BF-Rank package,
and lastly, we show some examples of how to use this package on the data sets found in
it to achieve what we mentioned in sections 3 and 4.

5.1 Description of the Package BFRank

This package was built by using some methods from other packages while some where
designed from scratch. The goal was not only to help us identify biclusters but to rank
them based on the fingerprints of the compounds. Similar studies have been conducted to
study the association between fingerprint of compounds and gene expression of samples
treated with the same compounds, for example Li et al (2011) [1] considered only Tanimoto
coefficient as a measure of association. Furthermore most packages in biclustering are so
specific for some particular group of algorithms. We found it interesting to come up with
a package that considers different measures of association and biclustering algorithms.
The main dependencies of this package include; isa2, biclust, ade4, BcDiag, fabia, and
heatmap.plus. We describe some of the methods below.

5.2 How to use the BF-Rank Package

In using this package we need to download and install it from CRAN together with all the
dependencies. To illustrate some of the results that can be got from BFRank, we use the
two examplary data sets found in the package called expressionMatrixB and fingerprintsB.
Before getting to a practical application of the functions in this package, we presents a
summmary of all the functions in table 1 on page 18.

Loading the data set

> library(BFRank)

> data(expressionMatrixB)

> data(fingerprintsB)

The functions to begin with after loading the data set is any of the ComInBic functions.
The choice depending if the user needs to obtain biclusters based on FABIA, Plaid model
or ISA. Each of these functions has as parameters two data sets; the expression data and
the fingerprints data. These algorithms starts by obtaining biclusters from the expression
data, after this is done, the corresponding fingerprint data is then extracted for com-
pounds in each bicluster. It then returns a list structure where each element in the list is
the fingerprint data set for compounds in that bicluster.
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Functions Description

ComInBicPlaid Obtained biclusters using the Plaid model and returns the
fingerprints data only for compounds in biclusters.

ComInBicFabia Obtained biclusters using the FABIA model and returns the
fingerprints data only for compounds in biclusters.

ComInBicIsa Obtained biclusters using the ISA model and returns the
fingerprints data only for compounds in biclusters.

Similarity Produce the similarity matrix from the fingerprint matrix
returned by any of the above ComInBic functions. Ten
different methods of defining simmilarity are implemented
in this function.

SimDiag Delete duplicate values from the symmetric similarity matrix
and returns just the lower off diagonal elements of it.

Denplot Create a density plot of each of the similarity matrices.

heat map Create a heat map of each of the similarity matrices.

cumdc Produces a cumulative distribution plot for each similarity
matrix on the same figure.

linePlotBic Takes an expression matrix and bicluster results got from
any of the ComInBic functions and provides profile plots
for biclustered and clustered data parallely.

ClustCpd Cluster compounds based on their fingerprints using
hierarchical clustering and ward linkage method. Ten different
methods of similarity or distance can be used to
cluster the compounds.

filterCvPoverA Takes a gene expression matrix and threshold to be used for
filtering and returns only the genes that satisfy the filter.
Filtering is based on coefficient of variation (CV= sd/mean)
and pOverA (used in the genefilter package).

Table 1: Summary of functions in BFRank
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ComInBicFabia function

• Description

This function takes an expression set and its fingerprint data set and apply the fabia
algorithm to obtain 5 biclusters using the default parameters. It further extracts
and returns the fingerprint data for each bicluster obtained. This function uses the
code implemented in the fabia package to obtain biclusters.

• Usage

> help(ComInBicFabia)

> r = ComInBicFabia(expressionMatrixB,fingerprintsB)

> FpLstCpds = r$FpLstCpdsF # A list where each element in it is the

# fingerprint data (binary) for each bicluster.

> bres = r$bresF # The bicluster result of class factorization.

ComInBicPlaid function

• Description

Takes an expression set and its fingerprint data set. Biclusters are extracted using
the default Plaid model fit.model = m + a + b and the corresponding fingerprint
data for each bicluster is returned. This function uses the code implemented in the
biclust package to obtain biclusters.

• Usage

> help(ComInBicPlaid)

> r = ComInBicPlaid(expressionMatrixB,fingerprintsB)

> FpLstCpds = r$FpLstCpdsP # A list where each element in it is the

# fingerprint data (binary) for each bicluster.

> bres = r$bresP # The bicluster result which is an object of class biclust.

> length(FpLstCpds) # number of biclusters found

> colnames(FpLstCpds[[1]]) # names of compounds in bicluster 1

> head(FpLstCpds[[1]])

ComInBicIsa function

• Description

This function obtained biclusters using the Iterative Signature Algorithm (Isa) and
rerturn the corresponding fingerprints data set of compounds in the biclusters. This
function uses the code implemented in the isa2 package to obtain biclusters.

• Usage
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> help(ComInBicIsa)

> r = ComInBicIsa(expressionMatrixB,fingerprintsB)

> FpLstCpds = r$FpLstCpdsI # A list where each element in it is the

# fingerprint data (binary) for each bicluster.

> bres = r$bresI # The bicluster result which is an object of class biclust.

In order to rank these biclusters found, we need to determine how similar the compounds
are based on the fingerprints information. The function named similarity does this.

Similarity and SimDiag functions

• Description

Takes a list of datasets returned by any of the ComInBic functions and returns
a similarity matrix based on the method specified, method = 4 ⇒ Tanimoto and
method = 1⇒ Jaccard index, see section 3.2 on page 7 for the definition of various
methods of similarity measures.

• Usage

> help(Similarity)

> simtan <- Similarity(mat = FpLstCpds, method = 4)

> View(simtan[[1]]) # similarity matrix for the first bicluster.

The simtan matrix is symmetric along the diagonal so we can select just the lower
diagonal section of this matrix using the SimDiag function.

> help(SimDiag)

> diag <- SimDiag(simtan)

Two functions were implemented to have a view of the similarity values. These are the
Denplot and heat map functions which are used to get the densities and heat map of the
similarity scores respectively.

Denplot and heat map functions

• Description

Denplot: Takes a list of similarity scores returns by the SimDiag function and pro-
duces a density plot for each bicluster. This plot shows how similar the compounds
in a bicluster are based on their fingerprints.
heat map: Takes a list of similarity matrices returns by the Similarity function
and draws a heat map of each of them.

• Usage

> help(Denplot)

> par(mfrow = c(3, 2))

> Denplot(diag)

> heat_map(simtan)
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Both the density plots and heat maps can give us a visual view on how we can rank the
biclusters, but this is just an exploratory tool so we cannot do ranking at this stage but
need to go further to look at the CDF for each of the data sets. Only at this stage that
ranking can then be done.

cumdc function

• Description

Takes a list of similarity scores returns by the SimDiag function and produces a
cumulative distribution plot for each bicluster so that comparison and ranking can
be done.

• Usage

> help(cumdc)

> par(mfrow = c(1, 1))

> cumdc(diag)

linePlotBic function

• Description

Takes an expression matrix and bicluster results got from ComInBic function and
provides profile plots for biclusterd and clusterd data parallely. This function uses
the original code from the BcDiag package.

• Usage

> help(linePlotBic)

> linePlotBic(expressionMatrixB, bres, mname=’fabia’)

> linePlotBic(expressionMatrixB, bres, mname=’isa2’)

ClustCpd function

• Description

The ClustCpd functions provide a convenient way to cluster compounds based on
their fingerprints using hierarchical clustering and ward linkage method. The ten
different methods of similarity in section 3.2 were converted to distance and used
to cluster the compounds.

• Usage

> help(ClustCpd)

> par(mfrow = c(1, 1))

> ClustCpd(fingerprintsB, method = 4, k = 8)

> title("Cluster Dendrogram-Rogers & Tanimoto")

> # Changing the value of k changes the method used to calculate

> # ditance during clustering.
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filterCvPoverA function

• Description

This function takes a gene expression matrix and threshold to be used for filtering
and returns only the gens that satisfy the filter. Two conditions are applied to
each gene; Coefficient of variation (CV= sd/mean) and A filter function to filter
according to the proportion of elements larger than A (pOverA). Original codes
were got from genefilter package.

• Usage

> help(filterCvPoverA)

> res = filterCvPover(eset=expressionMatrixB ,P=0.10,A=100,a=0.2,b=10)

> small.eset = res$small.eset # reduced expression data to be used for

# differential expression.

> res$propSelGenes # proportion of genes that do pass the filter.

5.3 Results

This section provides the results obtained from the analysis of the two datasets named
expresionMatrixB and fingerprintsB found in this package. The first subsection presents
the biclusters found using FABIA and how they are ranked based on two different methods.
In the second section we present the result of clustering and differential expression using
SAM and LIMMA.

5.3.1 Ranking of biclusters

Table 2 list the number of compounds found in each of the 5 biclusters. Some compounds
occurred in more than one bicluster since FABIA allows for overlapping of biclusters.

Bicluster 1 2 3 4 5
Number of compounds 14 13 15 12 22

Table 2: Number of compounds per bicluster
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Figure 4: Profile plot for genes in biclusters

Figure 5: Profile plot for conditions in biclusters
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The line plot of the genes and conditions in the biclusters are presented by figure 5 and
4. Genes in biclusters appears to have a lower profile than those not in any bicluster, but
this is not the same with the compounds (conditions).

The similarity scores for each of the biclusters in table 2 were got using Tanimoto coeffi-
cient and Jaccard index in order to compare the different measures of similarity. Figure
6 and 7 presents the densities of the similarity scores for each bicluster based on these
mentioned methods. The densities are quite different. The shape of the density (bell
shape) can ring a bell on how similar the compounds are in terms of their fingerprints.
From figure 7 on page 25 the compounds in bicluster 3 and 5 seem to be more similar
than the others, but this will need to be confirmed by the cumulative distribution curve.
The heat map (not shown) also reflects this same order of ranking.

Figure 6: Density of similarity scores based on Jaccard index
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Figure 7: Density of similarity scores based on Tanimoto coefficient.

The ranking of the biclusters was done based on the cumulative distribution of the sim-
ilarity scores. Figure 8 and figure 9 present the cumulative distribution curve based on
Tanimoto and Jaccard index respectively. Both methods do rank the biclusters in the
same order with the 5th as the first.
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Figure 8: Cumulative distribution curve based on Tanimoto coefficient, BC 5 appears to

be the first followed by 3.

Figure 9: Cumulative distribution curve based on Jaccard index, BC 5 appears to be the

first but no clear separation between the others.

In the next section, we present some of the results obtained from clustering and differential
expression.
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5.3.2 Clustering and differential expression

The results unveiled in this section were got from functions in the BFRank package and
others from LIMMA and SAM. This part of the analysis commence by clustering the com-
pounds based on their fingerprints using the 10 different methods displayed in section 3.2.
It is the duty of the researcher to select the groups from these clusters for which differential
expressed genes are to be identified. Figure 10 and 11 illustrate the dendrogram when the
fingerprints data was clustered based on Jaccard and Tanimoto respectively as measure of
distance. Eight clusters were demanded with one of them denoted as A while the rest as B.

Figure 10: Cluster dendrogram based on Jaccard index. The selected cluster denoted as A

contains 20 compounds and it is the 2nd cluster from the left while B has 76 compounds.
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Figure 11: Cluster dendrogram based on Tanimoto coefficient. The result is the same as

that of figure 10, the cluster A appears to be the 6th cluster from the left.

Independent filtering was done before applying LIMMA and SAM. The function filter-
CvPoverA in the BFRank package was used with the options P = 0.10, A = 100, a = 0.2,
b = 10 to filter out genes. 5.87% that is 417 out of 7103 of the genes was retained for
downstream analysis.

Table 3 shows the top ten most significant genes at a significance level of 5% after ad-
justing for multiplicity by BH procedure. Figure 12 presents the gene profile of the top 3
genes from table 3, the first 20 conditions from group A have a higher mean expression
value than the other thus confirming the fact that they are differentially expressed.
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ID adj.P.Val
Gene2587 2.379226e-10
Gene3604 5.324615e-07
Gene5187 5.567387e-07
Gene5340 5.567387e-07
Gene2538 5.857870e-07
Gene3106 2.323584e-06
Gene1232 2.323584e-06
Gene4873 7.002015e-06
Gene2668 1.051423e-05
Gene2586 2.327600e-05

Table 3: Top 10 significant genes between groups A and B using LIMMA.

Figure 12: Profile plot of top 3 based on LIMMA test statistic.

Analysis by SAM reported 202 up regulated genes and 176 down regulated genes at 5%
FDR and δ = 0.5. Table 4 unveiled both up and down top 10 regulated genes. Figure
13 is a SAM plot that shows the up and down regulated genes for various values of δ and
FDR.
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Up regulated Down regulated
Gene199 Gene153
Gene332 Gene315
Gene408 Gene164
Gene54 Gene224
Gene380 Gene220
Gene73 Gene297
Gene400 Gene381
Gene367 Gene150
Gene411 Gene207
Gene172 Gene100

Table 4: Top 10 up and down regulated genes by SAM.

Figure 13: SAM plot for various values of δ and FDR.
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6 Discussion and Conclusion

Bicluster analysis is specifically developed to identify which subsets of attributes are as-
sociated with which subsets of samples. One peculiar property of biclusters analysis is
that an attribute or sample can be part of more than one bicluster or of no bicluster.
The BFRank package presented in this report implements FABIA, Plaid model and ISA
algorithms in obtaining biclusters from a data set based on their default parameters. The
package also contains methods than can calculate the similarity scores, density plot, heat
map and cumulative distribution of the similarity scores of compounds in biclusters. In
addition, ten different methods can be implemented in calculating similarity scores. These
measures of similarity can then be used to cluster the compounds with the help of this
package.

In the application of this package to the data set, we were able to identify five biclusters
using fabia model and rank them based on two different measures of similarity (Tani-
moto and Jaccard). Both methods could rank the 5th bicluster as the first based on the
cumulative distributions of the similarity scores. This means that in terms of their fin-
gerprints, the compounds in bicluster five share more of their chemical structures than
the compounds in other biclusters. Both Tanimoto and Jaccard distance measures gave
the same dendrogram when used with a hierarchical clustering algorithm to cluster the
compounds, but this must not always be the case with the other similarity measures.

With respect to differential expressed genes, we were able to identify the top ten differen-
tial expressed genes using SAM and LIMMA, but both procedures did not result in the
same list of top differentially expressed genes. Out of 7103 genes, just 417 were retained
for downstream analysis after independent filtering was applied. According to the result
of SAM, we had 202 up regulated genes and 176 down regulated genes. All these analysis
were done at 5% significance level with BH correction for multiplicity.

There are several steps in our method that can be varied depending on the requirements.
We used hierarchical clustering to cluster the compounds in the case of identifying dif-
ferentially expressed genes, but different clustering methods could also be used. With
respect to obtaining biclusters, the default models were used which could not be the best
case in all situations. Irrespective of some minor limitations of our method, we were able
to explore the function-structure relationship of compounds, which will lead to a better
and more thorough understanding of drug actions in vivo.
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8 Appendix

BFRank user manual

The user manual of this package is presented in this section. This is an extra document
added to this report so the numbering system will not be consistent with that of the main
report.
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2 BFRank-package

BFRank-package Ranking of biclusters based on fingerprints.

Description

The main functions ComInBicPlaid, ComInBicIsa and ComInBicFabia provides the Plaid model,

ISA and FABIA model respectively in obtaining biclusters in two dimensional data. In addition, the

package provides methods for comparing the similarity between compounds in a bicluster based

on their fingerprints, visualisation and diagnostic of biclusters using line plots, and clustering of

compounds base on their fingerprints using ten different specified distance measure of association

(Tanimoto, Jacardin, etc).

Details

Package: BFRank

Type: Package

Version: 1.0

Date: 2013-08-26

License: GPL-3

In using this package we start with any of the functions ComInBicPlaid, ComInBicFabia or Com-

InBicIsa that takes an expression matrix and its fingerprints matrix as parameters and returns a list

where each element in the list corresponds to the fingerprints matrix of only compounds in the same

bicluster. This can them be followed by the "Similarity" and "Simdiag" functions to obtain the
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See Also

ComInBicPlaid, ComInBicFabia, Similarity, ClustCpd

Examples

## Not run:

set.seed = (1234)

r = ComInBicPlaid(expressionMatrixB,fingerprintsB)

FpLstCpds = r$FpLstCpdsP # list with each element a matrix of
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#fingerprint of only compounds in the same bicluster.

bres = r$bresP

# Object of class biclust as returned by the biclust package.

head(FpLstCpds[[1]])

simtan = Similarity(mat=FpLstCpds,method=4)

# Similarity based on Tanimoto

#coefficient.

View(simtan[[1]])

diag = SimDiag(simtan)

linePlotBic(expressionMatrixB,bres)

cumdc(diag)

## End(Not run)

ClustCpd Clustering

Description

Takes a matrix of fingerprints of compounds and cluster the compounds based on their fingerprints

using hierarchical clustering with ward linkage method.

Usage

ClustCpd(mydata, method, k)

Arguments

mydata matrix with rows as fingerprints and columns as compounds.

method method used for distance measure.

k cut off limit for number of clusters required, can be any number in 2:n where n

is the number of compounds.

Details

Ten different measures of distance can be used to cluster the compounds. These methods are :"Jac-

card index"," Sockal & Michener","Sockal & Sneath", "Rogers & Tanimoto","Czekanowski","S9,Gower

& Legendre"," Ochiai", "S13,Sockal & Sneath"," Phi of Pearson" and "S2,Gower & Legendre" and

codded as 1:10. method = 1 means Jaccard index and same for the rest.

Value

A dendrogram showing how the compounds are clustered.
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Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Daniel C, Stephane D: Computation of Distance Matrices for Binary Data. R Documentation,

http://pbil.univ-lyon1.fr/ADE-4/ade4-html/dist.binary.html, accessed on 20/08/13.

ComInBicFabia Compounds in bicluster using FABIA.

Description

This function takes an expression set and its fingerprint data set and apply the fabia algorithm to

obtain 5 biclusters using the default parameters. It further extract the fingerprint data for each

bicluster obtained.

Usage

ComInBicFabia(EsetF, FpF)

Arguments

EsetF The gene expression set.

FpF The fingerprint data.

Value

A list of length two, the first object in the list is a list of size 5 containing the fingerprint data of the

compounds belonging to the same bicluster. The second object is of type standardization containing

the bicluster result as reported by the fabia package.

FpLstCpdsF: List of fingerprint data for compounds in bicluster.

bresF: Bicluster result of class standardization.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Sepp Hochreiter: FABIA: Factor Analysis for Bicluster Acquisition- Manual for the R package

, Institute of Bioinformatics, Johannes Kepler University Linz,Altenberger Str. 69, 4040 Linz,

Austria.

See Also

ComInBicPlaid, ComInBicIsa, Similarity
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ComInBicIsa Compounds in bicluster using ISA.

Description

Takes an expression set and its fingerprint data set and extract biclusters using the Iterative Signature

Algorithm (ISA).

Usage

ComInBicIsa(EsetI, FpI)

Arguments

EsetI The expression set.

FpI The fingerprint data.

Value

A list of length 2, the first object in the list is a list of size equal to the number of biclusters found.

Each of the data sets in the list contain the fingerprint data of the compounds belonging to the same

bicluster. The second object is of type biclust containing the bicluster result.

FpLstCpdsI: List of fingerprint data for compounds in bicluster.

bresI: Bicluster result.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Sven B, Jan I, and Naama B: Iterative signature algorithm for the analysis of large-scale gene ex-

pression data. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100,

Israel.

See Also

ComInBicPlaid, ComInBicFabia, Similarity
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ComInBicPlaid Compounds in bicluster using plaid model.

Description

Takes an expression set and its fingerprint data set. Biclusters are extracted using the default model

fit.model = ~m + a + b, and the corresponding fingerprint data for each bicluster is returned.

Usage

ComInBicPlaid(EsetP, FpP)

Arguments

EsetP The expression set and.

FpP The fingerprint data.

Value

A list of length 2, the first object in the list is a list of size equal to the number of biclusters found.

Each of the data sets in the list contain the fingerprint data of the compounds belonging to the same

bicluster. The second object is of type biclust containing the bicluster result.

FpLstCpdsP: List of fingerprint data for compounds in bicluster.

bresP: Bicluster result of class biclust.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Heather T, Trevor B, Wojtek K: Improved biclustering of microarray data demonstrated through

systematic performance tests, Computational Statistics and Data Analysis, Department of Mathe-

matical Sciences, University of Exeter, Laver Building, 48 (2005).

See Also

ComInBicFabia, ComInBicIsa, Similarity.
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cumdc Cumulative distribution function

Description

Takes a list of similarity scores returns by the SimDiag function and produces a cumulative distri-

bution plot for each bicluster so that ranking can be done by visual inspection.

Usage

cumdc(LstTot)

Arguments

LstTot Object returned by the SimDiag function. This is a list and each element in the

list is a numeric vector corresponding to the lower off diagonal of the similarity

matrix.

Value

Cumulative distribution plot for all the biclusters on the same figure.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

See Also

Similarity, SimDiag.

Denplot Density plot

Description

Takes a list of similarity scores returns by the SimDiag function and produces a density plot for each

bicluster. This plot shows how similar the compounds in a bicluster are based on their fingerprints.

Usage

Denplot(LstTot)

Arguments

LstTot Object returned by the SimDiag function. This is a list and each element in the

list is a numeric vector corresponding to the lower diagonal of the similarity

matrix.
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Value

The density plot of each similarity matrix. This plot reflects how similar the compounds in a biclus-

ter are based on their fingerprints.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

See Also

SimDiag, Similarity.

expressionMatrixB Gene Expression Data Example

Description

This micro-array data contains 1000 genes and 96 compounds. Each array was got from cell line

treated with a single compound. Due to confidentiality, this is only part of the real data set that has

7103 genes and 96 compounds.

Usage

data(expressionMatrixB)

Format

A double matrix with 1000 genes (row) on the following 96 compounds (columns).

Cpd1 Array from compound 1

Cpd2 Array from compound 2

... And so on

Cpd96 Array from compound 96

Examples

data(expressionMatrixB)

dim(expressionMatrixB)

colnames(expressionMatrixB)

head(expressionMatrixB)
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filterCvPoverA Filtering based on CV and pOverA

Description

Takes an expression matrix of compounds and threshold of to be used for filtering and returns only

the genes that satisfy the filter.

Usage

filterCvPoverA(eset, P, A, a, b)

Arguments

eset matrix with rows as genes and columns as compounds. This matrix should be

of log transformed scale as that got from an expression set.

P The proportion that need to exceed A for TRUE to be returned.

A The value to be exceeded.

a minimum required value for CV.

b maximum required value for CV.

Details

Two conditions are applied to each gene; pOverA and coefficient of variation (CV= sd/mean)

Value

A list with two components:

small.eset: Selected expression set.

propSelGenes: Proportion of genes retained.

Author(s)

Silenou Bernard, Martin Otava <martin.otava@uhasselt.be>

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Richard B, Robert G, and Wolfgang H: Independent filtering increases detection power for high-

throughput experiments. European Bioinformatics Institute. Cambridge CB10 1SD, United King-

dom.
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fingerprintsB Fingerprints Data Example

Description

This fingerprints data contains 354 chemical structure characteristics and 96 compounds. It is a

binary data with value 1 if the given compound have a particular characteristic and 0 otherwise.

Usage

data(fingerprintsB)

Format

A double matrix with 354 characteristics (row) on the following 96 compounds (columns).

Cpd1 Characteristics for compound 1

Cpd2 Characteristics for compound 2

... And so on

Cpd96 Characteristics for compound 96

Examples

data(fingerprintsB)

dim(fingerprintsB)

View(head(fingerprintsB))

heat_map Heat Map

Description

Takes a list of similarity matrices and draws a heat map of each.

Usage

heat_map(simList)

Arguments

simList List of similarity matrices returned by the similarity function.

Value

Heat map of each similarity matrix.
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Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

See Also

Similarity.

linePlotBic Line plot for Biclusters

Description

Takes an expression matrix and bicluster results got from any of the "ComInBic" functions and

provides profile plots for biclusterd and clusterd data parallely.

Usage

linePlotBic(dset, bres, mname)

Arguments

dset Expression matrix

bres Object returned by any of the "ComInBic" functions.

mname Method name used to get biclusters, can be either ’biclust’, ’isa2’ or ’fabia’.

Details

This function uses the original code from the BcDiag package.

Value

A parallel line plot for compounds and genes in and out of biclusters.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

See Also

ComInBicFabia, ComInBicIsa, ComInBicPlaid.
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SimDiag Extract the lower off diagonal of the similarity matrix

Description

Takes a list of datasets returned by the Similarity function. Since the similarity function is symmet-

rical, it extract just one section of the off diagonal values.

Usage

SimDiag(simMat)

Arguments

simMat List object returned by the similarity function.

Details

Since the similarity matrix is symmetrical along the diagonal, there is no need to use all the values

for downstream analysis, so we delete duplicates.

Value

A list of length n equal to the number of biclusters generated. Each element in the list is a vector

corresponding to the lower off diagonal elements of the similarity matrix.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

See Also

ComInBicPlaid, ComInBicIsa, Similarity

Similarity Similarity matrix

Description

Takes a list of datasets returned by any of the ComInBic functions and returns a list where each

element is a similarity matrix of the compounds in the given data set. Ten different methods of

measuring similarity can be specified.

Usage

Similarity(mat, method)
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Arguments

method Method used for distance measure, take values in 1:10.

mat Object returned by ComInBicIsa, ComInBicIsaFabia or ComInBicPlaid func-

tion.

Details

Ten different measures of similarity can be used to compare the compounds. These methods are

:Jaccard index, Sockal and Michener, Sockal and Sneath, Rogers and Tanimoto, Czekanowski,

S9,Gower and Legendre, Ochiai, S13,Sockal and Sneath, Phi of Pearson and S2, Gower and Leg-

endre and codded as 1:10. method equal 1 means Jaccard index and same for the rest.

Value

A list of length equal to the number of biclusters. Each element in the list is a matrix of similarity

scores.

Author(s)

Silenou Bernard, Martin Otava

Maintainers: Silenou Bernard <silenoubernard@yahoo.com>, Martin Otava <martin.otava@uhasselt.be>

References

Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients.

Journal of Classification, 3, 5-48.

Daniel C, Stephane D: Computation of Distance Matrices for Binary Data. R Documentation,

http://pbil.univ-lyon1.fr/ADE-4/ade4-html/dist.binary.html, accessed on 20/08/13.

See Also

ComInBicFabia, ComInBicIsa.
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