
Analysis and Evaluation of Multiplayer Communication
Channels in Browser Games

Author: Jan Discart
Promotor: Prof. dr. Wim Lamotte
Co-promotor: Prof. dr. Peter Quax

A thesis presented for the degree of
Master in computer science

Expertise Centre for Digital Media
Hasselt University

Belgium
2013 - 2014

Abstract

Many games that are released today come with some form of multiplayer.
For some genre of games, it is only the multiplayer aspect that matters.
Games for the web browser have been present for a long time, but multi-
player has always been noticeably absent. With the web browser evolving
in becoming an even more versatile and powerful platform for all kinds of
multimedia, it is not unthinkable that developers may soon target the web
browser as a platform to release their game on. However, little research is
done in the potency of the web browser as a platform for playing multiplayer
games.

In this thesis, an overview of all possible connection options for multi-
player games in the web browser is composed. These connection options are
analysed and evaluated in their properties that are relevant in the context
of multiplayer gaming, to determine their applicability for various genres
of games that can be played online. They are tested in a series of several
round-trip tests in a simple client-server architecture, to measure their re-
source usage of the system and network, as well as their behaviour when
operating under sub-optimal network conditions.

By matching the connections to the requirements of several genres of
multiplayer games, it is concluded that the web browser is ready to support
even the more demanding games, at least on the network side of things.
However, a trade-off that will often have to be made is the one between
optimizing bandwidth usage, or latency reduction.

Abstract (Dutch)

Veel games die vandaag de dag uitgebracht worden bevatten steeds meer de
mogelijkheid om het spel ook in multiplayer te spelen. Voor sommige genres
van games is de multiplayer zelfs het meest belangrijke onderdeel van het
spel. Games spelen in de web browser kon al zeer lange tijd, maar multi-
player is een opvallende afwezigheid in veel games. Nu de web browser meer
en meer evolueert naar een krachtiger en flexibeler platform voor allerlei
soorten van multimedia, is het niet meer ondenkbaar dat game ontwikke-
laars binnenkort ook de web browser zullen zien als een mogelijk platform
om hun spel op te lanceren. Er is echter nog weinig onderzoek gedaan naar
de potentie van de web browser als platform dat gebruikt kan worden voor
het spelen van multiplayer games.

In deze thesis wordt een overzicht opgesteld van de verbindingsopties die
mogelijk gebruikt zouden kunnnen worden voor multiplayer gaming in de
web browser. Deze verbindingsopties worden geanalyseerd en geëvalueerd
in hun eigenschappen met betrekking tot multiplayer gaming, om zo hun
bruikbaarheid te toetsen aan de noden van de verschillende games. Ze wor-
den op de proef gesteld in een reeks van testen in een eenvoudige client-
server architectuur, waarbij hun gebruik van systeem en netwerk resources
wordt gemeten, alsook hun gedrag wanneer ze worden blootgesteld aan sub-
optimale netwerk omstandigheden.

Door het vergelijken van eigenschappen van de verbindingen aan de be-
hoeften van verschillende genres van multiplayer games, wordt geconclu-
deerd dat de web browser klaar is om zelfs de meer veeleisende multiplayer
games te ondersteunen, of toch aan de netwerk zijde. Er moet echter wel
steeds een trade-off gemaakt worden tussen het optimaal gebruik maken van
de netwerk bandbreedte, of het verminderen van de latency.

2

Contents

1 Introduction 11

1.1 Evolution of Multiplayer Gaming 11

1.1.1 From Local to LAN and the Internet 12

1.1.2 From Terminal to Simulation Clients 13

1.2 The Web Browser as Gaming Platform 14

1.2.1 The Early Browser Games 14

1.2.2 Plug-in Games . 15

1.2.3 Browser-native Games 15

1.2.4 Beyond HTML5 . 16

1.3 This Thesis . 17

1.4 Approach . 18

2 Connection Building Blocks 19

2.1 Real-Time Communication 19

2.1.1 Reliable versus Unreliable 20

2.1.2 Ordered versus Unordered 22

2.1.3 Transport Protocols and Their Characteristics 23

2.2 HTTP-based Techniques . 26

2.2.1 HTTP Polling . 26

2.2.2 Long Polling . 27

2.2.3 HTTP Streaming . 27

2.2.4 BOSH . 29

2.3 WebSockets . 29

2.3.1 WebSocket Protocol 30

2.3.2 WebSocket API . 31

2.4 WebRTC . 32

2.4.1 Protocols and Services 32

2.4.2 Protocol Stacks . 35

2.4.3 Signaling . 35

2.4.4 The Peer Connection API 36

2.5 Plug-ins . 39

2.5.1 Java Applets . 40

2.5.2 Adobe Flash . 40

3

2.5.3 Microsoft Silverlight 41

2.5.4 Unity Webplayer . 41

2.5.5 Custom Plug-ins . 42

3 Optimization Strategies 43

3.1 Reducing Latency . 43

3.1.1 Latency Improvements on the Web 43

3.1.2 Latency Improvements in Games 48

3.1.3 Discussion . 52

3.2 Optimizing Bandwidth Utilization 54

3.2.1 Bandwidth Optimization on the Web 55

3.2.2 Bandwidth Optimization in Games 58

3.2.3 Discussion . 62

3.3 Browser-based Multiplayer Games 64

4 Network Setup and Test Cases 67

4.1 Exploring Browser-based Multiplayer Options 67

4.1.1 Expectations . 69

4.2 Evaluating the Connections 69

4.2.1 Network Setup . 70

4.2.2 Test Cases . 70

4.3 Simulation Procedure . 73

5 Results and Analysis 75

5.1 Processing Overhead and Delay 75

5.1.1 Round-trip Times . 76

5.1.2 CPU Time . 81

5.2 Protocol Overhead and Bandwidth Usage 82

5.2.1 Data Packet Size . 83

5.2.2 Total Overhead . 84

5.2.3 Bandwidth Usage . 88

5.3 Effects of Packet Loss . 90

5.3.1 Packet Loss . 90

5.3.2 Wide Area Network Emulation 91

5.4 Summary . 92

5.4.1 WebSockets . 92

5.4.2 WebRTC . 93

5.4.3 Unity Webplayer . 94

6 Choosing the Best Connection 95

6.1 Applying the Connections in Multiplayer Games 95

6.1.1 Shooter and Racing Games 95

6.1.2 Action and Role-playing Games 97

6.1.3 Puzzle and Strategy Games 98

4

6.2 Using the Connections on Different Devices 99
6.2.1 Laptop and Desktop Systems 100
6.2.2 Mobile Systems . 100
6.2.3 Server Systems . 100

6.3 The Unity Webplayer Plug-in as a Communication Channel . 101

7 Conclusion 103

8 Acknowledgements 105

Appendices 107

A Implementation Details 109
A.1 Devices Setup . 109
A.2 Server-side Setup . 109

A.2.1 WebSocket Module . 112
A.2.2 WebRTC Module . 113
A.2.3 Native Module . 114

A.3 Client-side Setup . 115
A.3.1 Web Application . 115

A.4 Encountered Implementation Problems 121

B Result Details 125
B.1 Processing Overhead and Delay 125
B.2 Protocol Overhead and Bandwidth Usage 128
B.3 Effects of Packet Loss . 130

C Nederlandse Samenvatting 131
C.1 Introductie . 131

C.1.1 Doel van deze Thesis 131
C.1.2 Aanpak . 133

C.2 Eigenschappen van een Verbinding 133
C.2.1 WebSockets . 133
C.2.2 WebRTC . 133
C.2.3 Unity Webplayer . 134

C.3 Optimalisatie Technieken . 134
C.3.1 Optimalisatie van Latency 134
C.3.2 Gebruik van Bandbreedte Inperken 135

C.4 Setup en Testen . 137
C.4.1 CPU Gebruik . 137
C.4.2 Bandbreedte Gebruik 138
C.4.3 Sub-optimale Netwerkomstandigheden 138

C.5 Conclusie . 138

5

6

List of Figures

1.1 Split-screen multiplayer . 12

1.2 Bananabread screenshot . 17

2.1 HTTP polling sequence . 27

2.2 Long polling sequence . 28

2.3 HTTP Streaming sequence 28

2.4 Data channel protocol stack 36

3.1 Progressive image rendering 48

3.2 ALVIC-NG architecture. 51

4.1 Network setup. 70

5.1 Round-trip times for all connections. 77

5.2 Round-trip times for browser-native connections. 78

5.3 Comparison of WebRTC connections between browsers. . . . 78

5.4 Round-trip time-lapse of the first 200 samples in Firefox. . . . 79

5.5 Round-trip times measured inside Unity versus browser-native. 80

5.6 Packets processed per second. 81

5.7 Comparison of average CPU resources consumed. 82

5.8 Comparison of total packet sizes. 85

5.9 Comparison of header overhead percentage to total packet
size. 85

5.10 Total operational overhead percentage for a payload of 100
bytes in Chrome. 86

5.11 Total operational overhead percentage for a payload of 100
bytes in Firefox. 87

5.12 Comparison of bandwidth usage between browsers. 89

5.13 The effect of packet loss on each connection. 91

5.14 Round-trip time-lapse for the first 200 samples in a busy net-
work. 92

5.15 Round-trip times for all connections in a busy network. . . . 93

6.1 Possible decision tree for choosing a connection. 99

7

6.2 Using the Unity Webplayer as a fall-back connection in a full-
mesh WebRTC peer-to-peer setup. 102

A.1 Client-side web application 116

8

List of Tables

2.1 Transport protocol overview. 26

3.1 Overview of latency reduction strategies 54
3.2 Overview of bandiwdth optimization strategies 64

B.1 Quantile round-trip values for Chrome. 125
B.2 Quantile round-trip values for Firefox. 125
B.3 Quantile round-trip values for Chrome. 126
B.4 Quantile round-trip values for Firefox. 126
B.5 Packets per second comparison for Chrome. 126
B.6 Packets per second comparison for Firefox. 126
B.7 Avarage CPU time comparison. 127
B.8 Avarage CPU time comparison. 127
B.9 Total connection overhead analysis. 128
B.10 Total connection overhead percentage with respect to the pay-

load size. 129
B.11 Bandwidth usage comparison for Chrome. 129
B.12 Bandwidth usage comparison for Firefox. 130
B.13 Quantile round-trip values for Chrome in a busy network. . . 130
B.14 Quantile round-trip values for Firefox in a busy network. . . . 130

9

10

Chapter 1

Introduction

A web browser may possibly be one of the most widely used pieces of software
of all time. It is the visual interface to the greatest source of information:
the Internet and the World Wide Web. In today’s lives, the web browser
is used for a multitude of things. It is now common to listen to music on
the web, watch videos, or perform work-related tasks. It has long surpassed
its original purpose, which is to easily search and consume information. It
took not long though, before playing games would also be a part of what
was expected one could do in a web browser.

Over the years, web browsers have slowly evolved and adjusted to their
new tasks, but with HTML5 to be the next set of web standards and other
brave initiatives, development of web applications may shift into a higher
gear. Web applications may achieve a higher level of quality and sophistica-
tion, while giving rise to new possibilities. One of these new possibilities, is
playing multiplayer games as one would play them on his gaming console.

This chapter continues with an overview of how multiplayer games have
evolved over the last decade, followed by what technologies would enable
multiplayer gaming in the web browser. This chapter concludes with what
one can expect to find further in this thesis.

1.1 Evolution of Multiplayer Gaming

The multiplayer games that are played today have come a long way. The
internet was not always as accessible as it is now, and the systems on which
games are played have not always been this powerful. However, playing
games with others was possible ever since the very first games were avail-
able. Pong, for example, is one of the very first games ever created, featuring
multiplayer!

This section will give a more general overview of how multiplayer games

11

Figure 1.1: Split-screen multiplayer
Playing with 4 players on the same screen in ModNation Racers.

Source: whatculture.com

have evolved through the years, and how they became the games they are
now.

1.1.1 From Local to LAN and the Internet

The first multiplayer games were played locally, in the same room and on the
same screen. This is also commonly referred to as split-screen multiplayer
when each player has his own view on the screen. Local multiplayer is an
easy form of multiplayer to manage the game state, because all necessary
information of each player is available locally on that system. It is, however,
becoming a rare form of multiplayer, due to the increasing complexity of
games in terms of visual presentation and game logic, making it difficult for
one system to process and display multiple views at once. Some older ex-
amples of games that offer local or split-screen multiplayer are Crash Team
Racing, Halo, and Worms. More recent examples of local multiplayer games
are Rayman Origins and ModNation Racers.

When personal computers became a common thing in the household,
and could be connected to a network, multiplayer over local area networks
(LAN) could be played. Typically, one player in a LAN environment, hosts
a game and other players can connect to this host when they want to join
the game. This marked the birth of LAN parties were players come together
physically, with each player bringing his / her own system and connect them
to each other. With multiplayer over LAN, communication between these
systems is needed to keep the game state consistent over all players in the
game. This communication implies that a certain latency and overhead is

12

whatculture.com

created. However, in a proper LAN environment, this communication is
usually very fast and very reliable (data errors seldom occur), which makes
even naive or inefficient multiplayer algorithms perform good enough. Ex-
amples of popular LAN games are Age of Empires, Starcraft and Unreal
Tournament.

With the Internet, it becomes possible for players to play games together
without requiring them to be physically together. This benefit for the players
is, however, a concern for the game developer, because the Internet is a very
heterogeneous and unpredictable entity that needs to be taken into account.
The Internet introduces delays and overhead that are of a few magnitudes
higher compared to games over LAN. Not every player on the Internet has
the same connection quality, and not every multiplayer game has the same
requirements of the player’s connection. Some games require a broadband
connection with low latencies and overhead but can tolerate some loss or
out-of-order arrival, while other games can cope with some latency but need
reliability. The Internet also introduced the problem of scalability. Because
the barrier of physical presence is removed, many potential players can play
the same game, resulting in games where hundreds of players can join into
the same virtual world at the same time. Most multiplayer games are played
over the Internet today in every genre available. Popular multiplayer games
over the Internet include World of Warcraft, the Call of Duty and Battlefield
franchises, Starcraft II, Need for Speed and many more.

1.1.2 From Terminal to Simulation Clients

The design of a multiplayer game must also specify how much responsibility
a client is given in managing the game state. A client system can be designed
to be a ’dumb terminal’ system that simply sends the player’s input to a
central game server, and visualizes the current game state. The game state
is updated by incoming updates from the server. Here, the client system
doesn’t perform any game processing, but only visualizes the results. So
its only responsibilities are sending input and rendering. The client system
can therefore be a very cheap machine in terms of CPU processing power,
and in some cases also in GPU processing power when the server sends fully
rendered images! It requires, on the other hand, a powerful game server
because it takes full responsibility for everything else, and must perform all
tasks that could otherwise have been distributed over all participating client
machines. The terminal game client is similar to the terminal applications
found to remotely access other systems, e.g. remote desktop applications.
One of the most famous multiplayer games that employs the terminal ap-
proach is Second Life [67]. Clients regularly receive new, detailed game state
updates that can even contain information about how a character is moving
its arms and legs.

13

On the other end of the spectrum, a client system can perform a full
simulation of every action going on in the virtual world. The client system
receives small updates from the game server or other clients, recomputes its
local game state and renders the result. Such an approach puts more load
on the client, but relieves the server. Depending on the complexity of the
game, a player may need a powerful machine in terms of CPU and GPU
processing power as well as a larger pool of memory. Although the load
on the client machine is increased significantly compared to the terminal
approach, it can give a higher interactive experience because much, if not
all, of the game data is available on the client. An action of the player can
be computed directly by the player’s machine and present a rendered result.
The action is also sent to the other clients, who will also compute those
results and apply it to their game state.

Most multiplayer games developed now deploy the client as simulation
systems. Because computing power and memory are still increasing and be-
coming cheaper each year, client machines have become powerful enough to
take on these tasks. However, a server is still often used as an authoritative
entity that validates the game updates so that cheaters can be countered.

1.2 The Web Browser as Gaming Platform

The web browser has long surpassed its original purpose and is now used
to do all sorts of things. It already has quite a bit of history being used
for games. This section will dig a little deeper in what kinds of games were
played in the web browser throughout the years.

1.2.1 The Early Browser Games

The first browser-based multiplayer games were text-based and image-based
games that were (are) played over Internet fora. They are very similar to
traditional pen-and-paper games where a scenario is written out and play-
ers play the game by writing down their actions in turn. The browser did
not need to provide any special functionality to make such games playable.
Playing them could be done on a regular Internet forum, through standard
web pages. Neopets for example, was a popular multiplayer game that is
played using mainly text and images.

14

1.2.2 Plug-in Games

However, from the moment that a game developer wanted to create a game
that involved real-time visuals and animation, the browser alone proved to
be inadequate. Web browsers were not designed to render real-time graph-
ics. A web developer could then resort to plug-ins such as Java Applets
or Adobe Flash to create their real-time games. This spawned web sites
that offered a variety of games built with plug-ins. One such popular web
sites is Newgrounds, offering games and interactive videos. Compared to
the numerous single player games, multiplayer games can be considered a
rarity. The Java Applet and Adobe Flash plug-ins impose some restrictions
on network capabilities that make many multiplayer games hard to develop.
Nonetheless, two notable examples of plug-in-based multiplayer games exist.

• RuneScape is a full 3D Massively Multiplayer Online Role Playing
Game (MMORPG) developed using Java Applets.

• Tibia is also an MMORPG, but is a top-down 2D game. This game
is developed using Adobe Flash.

With the Unity Webplayer plug-in, games for browsers had another
surge. The Unity development suite is specifically designed to create 3D
games, and allows them to be exported to many platforms, including the
web. Some games even have their own plug-in. Quake Live, for example, is
a 3D first-person shooter that was designed to run specifically in the web
browser and used its own plug-in design.

1.2.3 Browser-native Games

A major drawback for using plug-ins, is that a developer or a player, is
dependent on the plug-in developer to make it available for certain operating
systems and web browsers. This means that users of smaller or less popular
browsers and platforms are left out.

The lack of standardization and this dependency on third-party devel-
opers led to the development of several HTML5 technologies, to decrease
the use of plug-ins for games and other interactive content such as audio,
video and chat. Standardization also forces developers of web browsers to
implement those technologies or they risk losing market share to those that
do. A few of the most exciting additions of HTML5 to the browser for game
development are WebGL, WebWorkers and WebSockets.

• WebGL: rendering of fancy 3D graphics and applying shaders. Using
WebGL in its pure form can be daunting for new developers. Many
wrappers around WebGL exist to ease development, e.g. Three.js.

15

• WebWorkers: offloading of computational-heavy tasks to the back-
ground, so that the user interface can remain responsive. WebWorkers
allow for basic multi-threaded applications. Communication between
WebWorkers and the main user interface thread is done using message
passing.

• WebSockets: a persistent connection that allows full duplex and bidi-
rectional communication between client and server.

For browser games in general, each of these new additions are very wel-
come, but for multiplayer, WebSockets are especially important. A game
developer targeting web browsers had very little options in communicating
data between clients. Latency and efficiency where a major problem in that
department. More details on WebSockets are given in chapter 2.

Just as with plug-ins, several web sites popped up that offer small
and simple games, developed entirely with HTML5 technologies. Several
HTML5 game development frameworks have also emerged to kick-start its
usage. At the time of this writing, however, no major titles are available
in HTML5 yet. This could change when large and widely used game de-
velopment kits such as Unity and Unreal Engine also support exporting a
game to HTML5. A noteworthy, and recurring, game title that is available
in HTML5, is Runescape. This game offers an HTML5-only client next to
its Java Applet client.

1.2.4 Beyond HTML5

WebSockets are a good step forwards for making multiplayer games possible
in the browser without using plug-ins. However, some real-time applica-
tions and games would benefit more from having a connection directly to
the other client, either because of security or privacy reasons, or to reduce
the latency introduced by relaying a message over a server.

WebRTC is an open source and experimental project by Google that
aims to set up peer connections between clients for real-time communica-
tion. WebRTC is, at the time of this writing, implemented by the Google
Chrome, Mozilla Firefox and Opera browsers, but it can also be implemented
in other applications. This allows web browsers to communicate with other
applications and systems. More details about WebRTC are found in chapter
2.

Because WebRTC is still an experimental project, its not widely used yet.
However, the Mozilla Developer Network released an open source multiplayer
shooter game, called Bananabread, using WebGL for rendering and WebRTC
for exchanging game updates. Figure 1.2 shows a screenshot of the game.

16

Figure 1.2: Bananabread screenshot
A multiplayer shooter game using WebGL and WebRTC.

Source: developer.mozilla.org

1.3 This Thesis

When consulting a list of popular HTML5 game development frameworks
[11], a common absent feature is support for networking, and thus multi-
player. Now that, with HTML5 WebSockets and the WebRTC experiment,
more options are available for game developers to create multiplayer games
for the web browser, one must be able to compare these options to make
the right decision for their game. This thesis aims to provide an overview
of the current options for multiplayer, analyse them in their features and
shortcomings, and evaluate them in their performance and behaviour.

This is then brought in the context of developing multiplayer games. Of
course, not every type of multiplayer game has the same requirements in
regards to networking, so the nature of a game is also taken into account.
To summarize this thesis’ contributions:

• Analysis of the connection options available for multiplayer browser
games

• Evaluation of these connections in their features and shortcomings

• Measurement of their performance in the context of multiplayer browser
games

17

developer.mozilla.org

• Discussion of their applicability for different genres of multiplayer
games

To summarize, this thesis is a comparative study of the communication
channels for browser-based multiplayer game development. The thesis aims
to help game developers that are seeking solutions to implement a multi-
player aspect for their browser-game, by providing them an overview of the
characteristics and performance of these connections, and in what genre of
games they are optimally applied.

One can expect to find answers to the following research questions in
this thesis:

• What communication channels are available for multiplayer data ex-
change?

• Which of these connections performs the best for a certain genre of
game?

• Can any type of multiplayer game now also be developed and played
in the web browser?

1.4 Approach

The remainder of this text starts of with chapter 2 that will provide some
more background information about relevant technologies and associated
terms. Chapter 3 will discuss the related work and research that has been
done in the fields of optimizing multiplayer and web experiences. This chap-
ter will also discuss any similarities and differences found in the fields of
multiplayer development for native platforms and web development. Chap-
ter 4 will provide a high-level overview of how the different connections will
be tested. More in-depth details about the implementation and software
used are found in appendix A. The results of the different tests are shown
and analysed in chapter 5, followed by a discussion of the results in chapter
6. Finally, a conclusion is drawn and the research questions and expecta-
tions are revisited to see whether multiplayer game development for the web
browser is now possible for all types of games.

18

Chapter 2

Connection Building Blocks

This chapter will dig deeper into the different relevant technologies and terms
used further in this thesis. Firstly, real-time communication in general is dis-
cussed, where it is used and why it is important for today’s web applications
and multiplayer games. A short overview of relevant transport protocols is
also given to see how real-time communication is made possible. Finally,
details about WebSockets, WebRTC and plug-ins are highlighted to better
understand their internals and behaviour. Older HTTP techniques are also
shallowly explored due to their early contribution of making a dynamic web.

2.1 Real-Time Communication

The term real-time is widely used by many applications that require some
form of fast or responsive communication, as it is experienced by the user.
The type of application has a great influence on what is considered to be
real-time. Streaming a video over the internet can be considered real-time
communication when the user clicks the ”play”-button and the video starts
playing a few hundred milliseconds later. The user should not have wait for
a long period of time before playback starts, or experience any long play-
back hiccups. A general chat application is also said to be real-time, but
it can typically tolerate a few hundreds of milliseconds to a few seconds of
delay. The messages just need to arrive in a reasonable time frame, and in
the correct order. Multiplayer games themselves come in various flavours,
and each have their communication requirements to make it feel real-time.

A real-time communication protocol exists, aptly named Real-time Trans-
port Protocol (RTP), developed to facilitate real-time communication over
a network. Next to RTP, another protocol is used to send control informa-
tion about the real-time data, called RTP Control Protocol (RTCP). The
data carried by RTCP contains control and statistical information about the
data streams and the receiver’s connection, so that the sender may adjust

19

the stream accordingly. The RTP and RTCP protocols are, however, mainly
designed to stream audio and video content, and less for arbitrary data such
as positional information of a player’s avatar. This limits its applicability
for real-time multiplayer games, although real-time audio communication
can be found in an increasing number of multiplayer games.

Because real-time video and audio applications commonly have the same
requirements in how data is communicated, the RTP and RTCP protocols
are generally good candidates to build such an application. Due to the
variety in multiplayer games however, no single communication protocol is
perfect for every type of game. These communication requirements come
in the form of reliability of message delivery and message ordering. Often,
to stay within the timing and bandwidth limits, trade-offs have to be made
in reliability and ordering. They are further elaborated on in sections 2.1.1
and 2.1.2. Another note is that games, and other real-time applications
in general, can use more than one communication channel to transfer all
relevant data. For example in multiplayer games, there is often the option
to chat with other players while playing. In many cases, this chat traffic
will go over a separate channel while other game data goes over a different
channel with its specific requirements.

2.1.1 Reliable versus Unreliable

The reliability of a communication protocol defines how the protocol copes
with lost or delayed data. A reliable protocol will make sure that the re-
cipient will eventually get the data that was sent by the sender. When a
packet gets lost, or is held up somewhere in the network, the protocol will
take notice in some way and try to resend the data that is lost or delayed.
An unreliable protocol on the other hand, does not provide this guarantee,
and will not attempt to retransmit the data.

Although reliability of the communication channel is usually a desired
feature, it also implies that the channel must gain some knowledge about
whether the data is actually arriving or not at the other end. Usually this is
implemented using sequence numbers that are sent along with each packet.
Whenever a receiver receives a packet, it can know by looking at the sequence
number, which packets it has received yet, and which are late or dropped.
But up until now, only the receiver has this knowledge. To let the sender
know about late or lost packets, the receiver can send acknowledgements
(ACKs) to confirm an arrival. These ACKs can be sent separately or can
piggyback on a returning message. This system of ACKs also requires some
bytes on the way back of the communication channel.

Besides requiring some extra bytes, a reliable protocol can also cause
severe latencies. This usually happens when packets do get lost or run

20

very late. Many protocols don’t just keep sending data and, at the end of
the session, check which data didn’t make it. They usually operate through
some sliding window protocol [64] that limits the amount of unacknowledged
packets. When a packet does get lost or is severely late, then the sliding
window will eventually stop sliding forward, and the sender must wait with
sending new data. He must re-transmit the assumed-to-be-lost data until it
receives an ACK for that data. It is this system that can cause the severe
latencies. Note that, also ACKs can get lost or run late. So, although the
data did arrive at the other end, the sender may decide to send the data
again because it never received an ACK for that data. For certain real-time
applications, these latencies mean that new data is already out-of-date when
it finally reaches its destination!

For applications that can’t cope with these potential delays, or can’t
afford the extra overhead, an unreliable protocol can be used. The sender
then relies on the network to correctly deliver the packet, but no guarantees
are made. Unreliable protocols don’t need to have the protocol overhead of
sequence numbers and sending acknowledgements, as well as no sliding win-
dow protocol that may limit sending new data due to lost packets. However,
the sender can’t be sure that the receiver actually received all of its data.
When the receiver has some knowledge about the type of traffic he’s receiv-
ing, he can provide feedback to the sender to adjust the stream of packets.
This principle is applied by the RTCP protocol, in conjunction with RTP,
by providing statistical data to the sender.

Reliably sending data also means that data arrives error-free. Many
transport protocols also include the means for detecting errors introduced
during transmission of the data. This comes in the form of checksums.
Whenever the data does not match the calculated checksum provided in the
packet, one can conclude that somewhere in the network the data (or the
checksum) is altered. The protocol can then decide to attempt to repair the
packet, if the protocol also supports error correction, or discard the packet.
When discarding is chosen on a reliable protocol, the data is considered to
be lost, and a re-transmission will be initiated. For unreliable protocols, this
means that the data is lost.

Whether reliable or unreliable communication is used, usually depends
on the type of application or the type of game, and in what network environ-
ment it is designed to operate in. When the real-time application is designed
for LAN environments, then, a reliable communication protocol is certainly
an option. Such links are usually very fast and stable, but if a packet does
get lost or corrupted, it can be detected and retransmitted rapidly. When
moving on to less predictable network environments such as MAN or WAN,
then the nature of the application has a bigger influence on what protocol

21

should be used. When the relevance of data has a very short time span, or
when losing data is not as big of an issue compared to stalling it, then an
unreliable protocol should be considered.

2.1.2 Ordered versus Unordered

Packets sent by the sender don’t necessarily all take the same path to the
receiver. Networks can react to congestion by altering their routing tables
so that incoming packets may take a different turn. This may cause packets
sent earlier get stuck in traffic, while packets sent later may have already
arrived at the receiver. The choice of protocol also has an influence on how
it handles out-of-order packet arrivals.

Ordered communication protocols guarantee that the order in which
packets are sent, is also preserved when the application at the receiver
receives this data. Although packets may still arrive out-of-order at the
receiver, even if an ordered protocol is used, the protocol can enforce that
data is being delivered in-order to the application-level above. One way to
do this is by buffering the data and wait for earlier data to arrive so that
data is ensured to be delivered in-order. This implies again that the pro-
tocol, just as with reliable communication, works with sequence numbers
or timestamps because it must know how to order the incoming packets.
However, reliability is not necessary for in-order delivery. For example, dur-
ing a real-time video conversation, video frames arriving out-of-order can be
buffered for a little while. When earlier video frames don’t arrive on time
for playback, they can be skipped. Then, the frames that did arrive on time,
are played in their correct order when their playback time has arrived. If an
out-of-date video frame does eventually arrive, it can be simply discarded
because it is no longer relevant.

Enforcing both reliability and in-order delivery can cause latencies at
the receiver-side, even if a large part of the data has already been received.
When an early packet gets lost or is late, but later data is already received,
then this data must wait to be delivered to the application until this early
packet finally arrives.

For unordered communication, things are much simpler: data can be
just delivered to the application as soon as it arrives. This also means that
they don’t require a sequence number present in the packet, saving some
bytes of overhead. The application however, must be able to cope with the
potential out-of-order delivery of data.

Ordered message delivery is often a desired feature for multiplayer games
because in many cases, the order in which player actions are executed has

22

an influence on the outcome of those actions. For example, take a shooter
game where the player shoots at another player and jumps in the air. If the
player shot first and jumped afterwards, then the bullet flies low and hits the
target. Consider that each action, shooting and jumping, is sent to another
player but arrive in a reversed order, then the player jumps first and shoots
afterwards. This may result in the bullet flying over the target. (TODO:
The latency compensation technique [6], developed at Valve Corporation
and applied in several shooter games, can overcome this by ”looking back
in time” to see whether an out-of-order action was valid or not.)

2.1.3 Transport Protocols and Their Characteristics

The above described communication principles of reliability and ordering are
commonly used to compare several communication protocols. For real-time
communication applications, they are one of the most important aspects for
(not) choosing a certain communication protocol. In this section, some com-
mon transport protocols are briefly introduced with their takes on reliability
and ordering. Table 2.1 displays a brief summary of the different protocols

TCP

The Transport Control Protocol (TCP) is probably the most widely used
protocol for transporting data over the internet. It is used in a variety of
networking applications including: web browsing, sending email, chatting,
and file transfer. TCP is a connection-oriented protocol. This means that
both endpoints on the network inform and agree with each other that they
are willing to send / receive data from each other. Once this agreement is
made, the TCP connection is open and data can flow over the connection.
This flowing of data could almost be interpreted literally. TCP sends data
as a continuous stream of bytes that arrive in a reliable and ordered way.
The application can then read the data from this stream. A drawback from
this streaming approach is that it does not provide message boundaries.
This has to be resolved on application-level by sending message delimiters
or length prefixes along with each message. These extra delimiters or length
prefixes also increase bandwidth usage with a few bytes. Attempts have
been made to remove the strict ordering imposed by TCP. [40]

TCP also has a checksum field that is used to check the data for ac-
cidental errors that might have been introduced somewhere along the way
due to a bad signal or faulty router. When the checksum does not match,
the data is discarded and regarded as lost. A new copy of the data is then
expected to arrive soon when the sender detects that no ACK for the data
is received.

23

A TCP socket on a machine can also be configured to use Nagle’s al-
gorithm. This algorithm stalls small amounts of data for a little while to
see if more data becomes available to fill up the TCP buffer for efficient
transmission. This is very similar to update aggregation discussed in sec-
tion 3.2.2. For multiplayer games, Nagle’s algorithm is usually not desired
when sending many, but small, update packets. The algorithm will stall the
updates for a while, which increases the latency for the updates that are
stalled first.

UDP

With everything that TCP offers, the User Datagram Protocol (UDP) does
not. It can be considered to be the opposite transport protocol of TCP
in many ways. First of all, UDP doesn’t require a connection setup and
agreement step like TCP. All two endpoints must do is set up an UDP
socket and listen on them for incoming data. Because no agreement is
made between two endpoints, one can send to and receive data from anyone
addressing the socket appropriately.

Secondly, UDP is a message-oriented protocol. In contrast to TCP where
no clear distinction is made between separate messages due to its streaming
nature, UDP makes the distinction between messages very clear. Sending
one message through an UDP socket at the sender will result in one message
received at the receiver, if the packet is not lost somewhere along the way.
Messages over UDP are sent unreliably and unordered. The UDP header
does not have any notion of a sequence number. The UDP header is also
very lightweight compared the TCP header.

UDP does have a checksum field to detect errors that might have slipped
into the packet data. However, checking the checksum and data for errors
is optional in IPv4. Then the checksum is filled with all zeroes. In IPv6, the
checksum is mandatory. So although UDP is unreliable in delivery, it does
provide the means to check for reliability in transmission.

Even though UDP on its own does not provide reliability or ordering, it
is often chosen as a protocol to build custom protocols with, due to it being
so lightweight. These custom protocols can then implement a mechanism
to achieve ordering and / or reliability in their own way, with custom re-
ordering and re-transmission rules. For example RTP, mentioned earlier,
is not a transport protocol and thus is implemented in conjunction with a
transport protocol. Usually, UDP is chosen for the job.

24

SCTP

The Stream Control Transmission Protocol (SCTP) is the youngest protocol
of the three transport protocols highlighted in this section. SCTP is a
protocol that borrows a lot of features form TCP but takes the message-
oriented approach from UDP. Just like TCP, it requires a connection to be
negotiated between two endpoints. In this negotiation, SCTP also discusses
how many streams will be used. The protocol allows to multiplex multiple
streams of data in a single SCTP connection. In contrast, for each stream
of data in TCP, a separate connection is required or one must implement
support for multiple streams on a higher level than TCP. Although the
term stream is used here, it does not have the same interpretation as in
TCP, because SCTP works with message boundaries.

The basic design of SCTP makes it a reliable protocol with the option
to send messages either ordered or unordered. Whether a message is
delivered in-order or out-of-order can be toggled using a bit-flag in the header
associated with the message. An extension for SCTP is defined that also
allows the protocol to transport data unreliably [59]. To be more precise,
this extension adds partial reliability to SCTP. This means that the user /
developer can configure how long, or how many attempts can be made to
retransmit a lost packet. If these values are set to 0, then packets are sent
truly unreliable.

However, only the sender knows about this unreliability for a piece of
data. When the receiver notices that some data is missing, it will let the
sender know through selective acknowledgements (SACKs). These SACKs
contain a series of sequence numbers that have been received, and gaps of
sequence numbers that haven’t been received. When the sender receives a
SACK and notices that data is missing, it will check whether this data was
configured to be sent reliably or not. If it was configured to be reliable, or
partially reliable, then the data is sent again. Otherwise, a new packet is
generated to let the receiver know that it can forget about the data. The
receiver can ’forget’ about this data by advancing its transmission sequence
number (TSN) that corresponds to the value received in the packet gener-
ated by the sender.

In the main SCTP header, a 32-bit checksum field is used to check for
transmission errors. This checksum is twice as large as in UDP and TCP.

Supporting all these features has a toll on the overhead created for the
data. Due to the multiplexing feature, many sub-headers are introduced
on top of the main header that require several more bytes for each chunk
of data in a stream. Currently, SCTP also faces the problem that it is
not supported natively on all major operating systems. Most notably, the
Windows operating system does not have native support [8], making it hard

25

for SCTP to really take off as a widely used protocol.

Reliability Ordering Error-free

TCP Yes Yes Yes

UDP No / On higher level No / On higher level Optional (IPv4) / Yes (Ipv6)

SCTP Configurable Configurable Yes

Table 2.1: Transport protocol overview.

2.2 HTTP-based Techniques

The HTTP-based techniques discussed here are a collective of techniques
used to create dynamic content for web pages by (ab)using HTTP con-
nections. These techniques are relevant in the current context because they
can be considered to be the predecessors for real-time communication on the
web. They are also still relevant due to legacy reasons: old web browsers are
still widely used that don’t support newer techniques, e.g. Internet Explorer
6. Now that the web is rapidly evolving towards more rich and interactive
content, they quickly show their inefficiencies.

Many of these techniques are known under the umbrella-term Comet [62].
Initially, they were used to let the server push new data to the browser to
update the content of the web page without having to reload the entire page.
Later, the other direction, from client to server, became possible.

2.2.1 HTTP Polling

HTTP polling is the most primitive of the HTTP-based techniques. If the
web page contains some dynamic content, the browser would create an
HTTP request to the server and ask whether it had some new informa-
tion available, hence the name of the technique. For each such a request,
a new HTTP connection is set up. When the server had some new infor-
mation, it would immediately send it over this connection. However, more
often than not, the server doesn’t have any new information and thus an
empty response is sent back. When a response was received, empty or not,
the connection would be closed and cleared. These polling requests could
be initiated periodically or based on an event, e.g. a user pressing a button.

Its immediately clear that polling like this wastes a lot of effort and band-
width when no new information is available, considering the entire HTTP
connection setup and release process. Figure 2.1 shows a possible sequence
of polling events using the HTTP polling scheme.

26

Figure 2.1: HTTP polling sequence
Source: http://www.leggetter.co.uk

2.2.2 Long Polling

To prevent the server from immediately returning an empty response, the
HTTP connection can be held open for a limited period of time: long polling.
Whenever, during this time period, some new information becomes available,
the server then responds with this information, completes the request and
closes the connection, after which a new one is immediately set up again.
However, the connection here too is not held open indefinitely. When the
connection almost reaches its timeout, then an empty response is sent back.

This achieves some efficiency improvement in terms of bandwidth and
latency compared to regular HTTP polling. However, long polling increases
the workload of the server with processes that are busy waiting. Figure 2.2
displays a sequence of long polling connections and events.

2.2.3 HTTP Streaming

Above implementations did not make use of long-lived HTTP connections
that were introduced in HTTP version 1.1. Such a connection is only time
bound, not both time bound and data bound as is the case with long polling.
This allows the server to stream some data to the client for a period of time.
After the time period expires, the connection is closed. How fast this con-
nection is closed depends on the implementation. Usually it is the server
that initiates this shut-down process. For example, the Apache 2.2 web
server already closes this connection after a default value of 5 seconds! [22]

There are a couple of reasons why this connection isn’t just kept open.
Firstly, all incoming data over a long-lived connection is accumulated and

27

http://www.leggetter.co.uk

Figure 2.2: Long polling sequence
Source: http://www.leggetter.co.uk

stored in the browser for the remainder of the connection duration. Stream-
ing lots of data over a single very long-lived connection may result in mem-
ory problems at the client. Secondly is the support in browsers. Not every
browser supports the necessary function calls to set up or maintain a long-
lived connection. Finally, there is the increase in resource usage on the
server-side, which is the same remark as with long polling. Maintaining
a large amount of long-lived HTTP connections increases CPU and mem-
ory usage due to the server being occupied with processes that are busy
waiting. [1] Figure 2.3 illustrates the HTTP streaming process.

Figure 2.3: HTTP Streaming sequence
Source: http://www.leggetter.co.uk

28

http://www.leggetter.co.uk
http://www.leggetter.co.uk

2.2.4 BOSH

Bidirectional-stream over synchronous HTTP (BOSH) takes long polling a
step further by adding a second connection that is used to send data over to
the server. This achieves a bidirectional communication system. Initially,
BOSH sets up the first connection as a long polling connection. Whenever
the client has some data to send, the second connection is set up and made
ready for transmission. When the server detects that this second channel
is being opened, he sends an empty response back on the first channel and
closes it. From the moment the data is received at the server on this second
channel, the server will then use this channel as its long polling connection.
The two long polling connections effectively switch roles. This process re-
peats itself whenever the client has some data to send. [44]

Although BOSH keeps the problems associated with long-lived HTTP
connections at bay, it again has to set up a new connection every time new
data at the client or server becomes available. For data streams containing
only small amounts of information, or that are latency sensitive, this system
still falls short. The connection setup time whenever the client wishes to
send data can take up considerable time, while the communication overhead
can overshadow the data actually sent. A better solution would be to have a
persistent, bidirectional and full-duplex connection between client and server
as is done in native implementations.

2.3 WebSockets

Before WebSockets were widely used, communication with the server to up-
date content or providing the server with new information was a difficult
process requiring many resources from the client, server and network. A
WebSocket connection can establish a persistent, full-duplex bidirectional
communication channel between client and server.

Another advantage over previous methods, is that WebSockets are stan-
dardized and are supported by all recent versions of popular and unpopular
browsers. However, even though WebSockets are widely supported, they
don’t make the HTTP-based techniques obsolete. Many older versions of
popular browsers don’t support WebSockets, but still have a large market
share in usage. Another reason is that some older proxies don’t recognize
the WebSocket connection set up process, and drop the packet or return
the wrong result. In those cases, HTTP-based techniques are still used as a
fallback mechanism.

WebSockets consists of two separate parts: the WebSocket protocol and
WebSocket API. Each of them is further detailed below.

29

2.3.1 WebSocket Protocol

The WebSocket protocol is a very thin layer laid on top of the regular
TCP protocol (minimum 2 bytes, maximum 13 bytes), but unlike TCP’s
stream-based behaviour, the WebSocket protocol header is used to make it
a message-based protocol. Using TCP as the underlying protocol, implies
that a WebSocket also behaves like TCP, meaning that data is sent reliably
and ordered using TCP’s retransmission and sequencing mechanisms. The
data is also delivered error-free using TCP’s checksum field.

A WebSocket’s header can vary in size depending on the length of the
payload. If a payload is less than 126 bytes, only 7 bits are used for the
payload length header field. If the payload equals or is larger than 126 bytes,
some extra bytes are padded to the end of the header which extends this
payload length header field. This field can be further extended, to a maxi-
mum of 8 bytes, to carry very large messages.

The WebSocket connection is always initiated by the client. When a
client wishes to create a WebSocket connection, he sends out an HTTP up-
grade request to the server. The server interprets this request as a request
to change the protocol used for communication. In this case, the WebSocket
protocol. This upgrade request also contains extra information about which
version of the protocol to use as well as the appropriate handshake values.
Once the server responded positively to the request, the connection is ready
for data transmission. A server can respond negatively, for example, when
it does not support the requested WebSocket version, or WebSockets in gen-
eral. An example of the content of an HTTP upgrade request sent to the
server is shown below.

1 GET /chat HTTP /1.1

2 Host: server.example.com

3 Upgrade: websocket

4 Connection: Upgrade

5 ...

6 Sec -WebSocket -Version: 25

Listing 2.1: WebSocket HTTP upgrade request

Once the connection is established, data can flow from both client and
server, without the limitations of HTTP-based techniques discussed earlier.
Whenever data goes from the client to the server, the WebSocket speci-
fication dictates that a client masks his data using a new, unpredictable,
masking key for each packet. Unmasked data should not be accepted by a
server. A server on the other hand is expected to send unmasked frames to
the client. Because the initial packet of the WebSocket connection set up
process is interpreted as HTTP, faulty proxies may keep interpreting sub-
sequent data on that connection as HTTP data, and return cached results

30

instead of passing it through to the server. [19] Masking the data does not
provide any security to eavesdroppers or altering of data by third parties,
because the key to unmask the data is present in the packet itself.

The protocol also defines some values that indicate the type of the pay-
load being transported. Besides control, ping or pong packet types, the
text frame and binary frame codes define how the other side must inter-
pret the data. These values are specifically designed for the JavaScript API
that either allows to send data as a string, or as a blob of binary data.

2.3.2 WebSocket API

The WebSocket API highlighted here is the one that is exposed in the
browser, at client-side. The API is very limited in functionality, and allows
no customization of the WebSocket protocol and underlying TCP connec-
tion settings, e.g. toggling on / off Nagle’s algorithm. That said, the API is
simple in usage and clearly formulated. Only very few steps are necessary
to start sending data between the client and server. These steps are listed
below, as well as a JavaScript code fragment to illustrate the process. Next
to sending and receiving data, the web developer can check on the status of
the WebSocket.

1. Create WebSocket with the server address

2. Wait for the WebSocket to open

3. Start sending and receiving data

1 var websocket = new WebSocket("ws:// server.example.com");

2
3 websocket.onopen = function () {

4 console.log("WebSocket is open.");

5 websocket.send("Hello server");

6 };

7
8 websocket.onmessage = function(event) {

9 if (typeof event.data === "string") {

10 console.log("Received string message from server: " + event

.data);

11 } else {

12 console.log("Received blob message from server.");

13 }

14 };

Listing 2.2: WebSocket connection setup example

31

2.4 WebRTC

WebRTC is a collection of technologies and APIs for the web browser to set
up peer-to-peer connections and use them for real-time applications. The
APIs include access to a user’s webcam and microphone to create video
and audio conversation applications on the web. Besides audio and video,
channels for regular data can also be established to create a wide range
of real-time data-based applications, including multiplayer games and file-
sharing. These regular data channels can be configured in reliability and
ordering. But it doesn’t have to stop at purely web applications. WebRTC
could also be used to connect the browser to other kinds of clients, such as
native clients implementing WebRTC, but also SIP [55] or Jingle [36] clients,
or even a regular phone. If the appropriate servers and / or gateways are
placed in the network, such applications could be built.

WebRTC removes the client-server architectural barrier that has been in
place since the beginning of the web. This gives more freedom in creating ap-
plications that require more than the client-server model. But even though
WebRTC works through peer connections, does not mean that client-server
can’t be used. A server incorporating WebRTC connectivity options can
act as just another peer. This allows for more complex architectures, mix-
ing client-server and peer-to-peer.

To achieve all of these features and functionality, a large stack of tech-
nologies and protocols are used to support it on as many browsers and plat-
forms as possible. Currently, WebRTC is still in an experimental phase and
is only supported by a limited number of web browsers, including Google
Chrome (incl. on Android), Mozilla Firefox and Opera.

The technologies and techniques behind WebRTC are further detailed in
the following sections. Much of this information is gathered from a book by
Johnston and Burnett. [29]

2.4.1 Protocols and Services

WebRTC uses a large amount of protocols to establish a peer connection and
to support that connection. Some protocols have been introduced already in
section 2.1.3. These are not further explained, except for their contribution
in the relevant areas of WebRTC. One major difference between the protocols
from section 2.1.3 and those introduced here, is that these are not transport
protocols, but rather session, security, or application-level protocols.

STUN

Session Traversal Utilities for NAT (STUN) is a service used for discovering
a user’s public address whenever he’s behind a home- or company-router that

32

implements Network Address Translation (NAT). A server running a STUN
service will simply reply to requests with the public address information
found in that request’s IP header. Sending such a reply back will let the user
know which public IP address he has, and which port has been opened on the
outer-most router of the user’s network. It’s important to note that a user
may be behind several NAT routers, but only the address and port number
of the outer-most router of the network will be known. These STUN request-
responses create NAT bindings in the router(s) as they travel through the
network. As long as these bindings are available, addressing the outer-most
router from outside the network with the correct port address should cascade
the data through the network to the correct system.

TURN

Traversal Using Relay around NAT (TURN) is a service that incorporates
STUN, and also offers a relay function for media streams. This media relay
function is necessary when peers can’t connect to each other directly. This
can happen when a firewall or router is configured very restrictively in letting
certain types of traffic pass, e.g. UDP traffic. Then, a peer can opt to use
a server that offers the TURN service which will accept the incoming data
streams from the user and relay it to the correct receiver. Using a TURN
server essentially goes back to a client-server architecture. The advantage
here however, is that a TURN server can be a different device than the web
server, which doesn’t overload the web server with media streams.

ICE

From the moment users are about to establish a connection with each other,
they must know on which address and port number they can reach each
other. The Interactive Connectivity Establishment (ICE) is a process that
will try to discover as many reachability options for the user. ICE tries
to gather several pairs of address and port numbers on which the user is
reachable for the other peer. First, it queries the own system’s NIC for the
assigned IP address and a free port number. Next, STUN and TURN servers
are queried to detect whether the user is behind a router implementing NAT,
and which public IP address and port number are associated with the user.
If the user is behind NAT, then querying a STUN or TURN server will add
an entry in the NAT table for the user, creating a small ’hole’.

Once the available options are gathered, they are sent to the other user.
The remote user also performs these same actions. Upon receiving the gath-
ered address-port pairs from the remote user, ICE will start hole punching
a connection through NAT to reach the remote user using his address-port
information. If a connection is established, it is important to keep probing
the other user regularly, to prevent NAT from closing the hole again if no

33

activity is detected. If no direct connection could be established, then a
TURN server could be used for relaying the data.

SDP

The Session Description Protocol (SDP) is a protocol that defines a format
to describe a real-time communication session for a user. Such a session
description contains information about the contact information of partici-
pants, which type of media sent (audio, video, text), which codecs are used,
which protocol is used, ...

A session description in WebRTC is sent between users to announce their
type of output and what format will be used. Then the receiver can prepare
itself and allocate the necessary resources on the system.

SRTP

The Secure Real-time Transport Protocol (SRTP) is a secure variant of RTP.
Although the name of the protocol suggests it is a transport protocol, it
is considered an application-level protocol that is still dependent on true
transport protocols such as TCP or UDP to get the data delivered to the
correct application on the receiving end. RTP is a protocol that defines a
standardized packet format to deliver audio and video data in a streaming-
based manner to its receivers. RTP can be extended with profiles, of which
SRTP is one of them. The SRTP profile provides encryption on the audio
and video data, as well as message authentication, integrity protection an
replay protection.

RTP also has a sister-protocol, RTCP, that provides statistical infor-
mation about the data arriving at the receiver(s). This allows the sender
to adjust its streaming behaviour according to the reported information.
To also protect this feedback information, the Secure RTP Control Protocol
(SRTCP) is defined, providing the same protection as in SRTP.

Because RTP is mainly defined for real-time audio and video, it is used
in WebRTC to transport the audio and video streams. Using SRTP instead
of RTP protects the data from alteration and eavesdropping by third parties
in the network.

DTLS

Transport Layer Security (TLS), known as the successor to Secure Sockets
Layer (SSL), is a thin layer on top of the transport protocol that provides
protection against eavesdropping on the data being sent over a connection.
It provides confidentiality and authentication services by using encryption
and certificates to secure the line. Datagram TLS (DTLS) is a version of

34

TLS designed to specifically run on UDP. DTLS is set up by WebRTC for
every type of communication channel. For audio and video, DTLS is used
to generate and manage the security keys for SRTP, while for the regular
data channels, DTLS is part of the protocol stack. This makes all data sent
by WebRTC secure by default, making it hard for eavesdropping on the
conversations going on.

2.4.2 Protocol Stacks

The two main protocol stacks used for sending data are highlighted here.
For audio and video, the same protocol stack is used, while for arbitrary
data, a different stack is used.

For audio and video transmission, either an SRTP/TCP or SRTP/UDP
stack is used. WebRTC prefers the latter stack due to UDP’s properties.
But if no connection can be established using UDP because of a restrictive
firewall or NAT, then a TCP connection can be tried. SRTP is always used
to secure the audio and video content transported.

For data, only one stack is used. Here, two transport protocols are used
on top of each other. UDP is used as the base transport layer because
almost every operating system with a network stack supports UDP. The
second transport protocol is SCTP, running at the top. SCTP is difficult
to use as the base transport layer because of its lack of native support in
some operating systems. The browser implements SCTP at the application-
level for its support of multiplexing several streams of data. This allows a
developer to create several data streams and multiplex them over a single
WebRTC connection, as well as configuration of reliability and ordering for
individual streams of data. In between UDP and SCTP, a DTLS layer
secures all of the data transported by SCTP. Figure 2.4 shows the protocol
stack used for data channels.

2.4.3 Signaling

An important part of WebRTC is how the session description that contains
configuration information for connection establishment, is communicated
with the other peer. The communication channel over which this informa-
tion is exchanged is referred to as the signaling channel. The WebRTC
specification, however, does not specify what kind of communication chan-
nel this should be. This is left for the developer to decide on how he wishes
to approach this. This can almost be any form of communication available,
and even very primitive ones:

• A dedicated communication channel (WebSocket, HTTP-based con-
nection, ...) to a server bringing several peers together, or

35

Figure 2.4: Data channel protocol stack
Source: WebRTC: APIs and RTCWEB Protocols of the HTML5

Real-Time Web [29]

• An already existing WebRTC data channel to renegotiate a connection,
or

• An e-mail or a text-based chat application to copy-paste the session
description, or

• Communicating the session description by phone, or

• Any other form of communication one can think of.

Although sending the session description is a signaling channel’s most im-
portant task, it also serves to identify and authenticate peers to each other,
control the media session in progress, and to resolve glare resolution when
both peers try to change the session in progress at the same time. Whenever
security and privacy-sensitive data will be exchanged over the WebRTC ses-
sion, it is the developer’s responsibility to make sure the signaling channel is
also secured to protect session description data. Intercepting and decoding
the data sent over the signaling channel may allow a third party to eaves-
drop or perform malicious actions.

2.4.4 The Peer Connection API

Once peers are aware of one another, a peer connection can be set up be-
tween them. The connection set up requires several more steps compared
to WebSockets, due to the variability in the connection configuration. This
also makes the API more extensive compared to the one for WebSockets.
The steps one must take depend on who is the caller and who is the callee.
They are summed up briefly below, followed by a code example to set up a
regular data channel connection as seen from the caller-side.

36

For the peer initiating the call, assuming the signaling channel is already
up and running:

1. Create a peer connection object configured with STUN and TURN
server addresses for querying the public address of the system.

2. Locally allocate resources for the media streams the caller wishes to
send out. This includes one or more audio, video and data channels.

3. Create a session description offer for the callee, and set this description
as the local description.

4. Send the gathered ICE candidates (results from querying STUN and
TURN servers) and the local session description to the callee over the
signaling channel.

5. Receive ICE candidates from the callee and its answered session de-
scription. Set the received session description as the remote session
description.

6. Allocate resources for receiving the streams the callee is planning on
sending out.

7. Wait for the connections to open up.

8. Start sending and receiving data.

For the peer waiting to receive the call, assuming the signaling channel is
already up and running:

1. Wait for a session description offer from the caller and its gathered
ICE candidates.

2. Create a peer connection object configured with STUN and TURN
server addresses for querying the public address of the system.

3. Locally allocate resources for the media streams the caller wishes to
send out. This includes one or more audio, video and data channels.

4. Apply the session description from the caller as the remote description
and allocate resources for the incoming media streams.

5. Create a session description answer for the caller, set this description
as the local description.

6. Send the gathered ICE candidates and the session description answer
to the caller over the signaling channel.

7. Wait for the connections to open up.

8. Start sending and receiving data.

37

The following piece of JavaScript code is a short example of a client that
wishes to setup a reliable data channel with another peer. For the callee, the
code is very similar, only that the callee must wait for an incoming session
description and that some actions are done in a different order, as described
above in the enumerations.

1
2 // It is assumed here that the signaling channel is available

and open , e.g. a WebSocket connection

3 var signalingChannel;

4
5 var peerConnection = new RTCPeerConnection(

6 { iceServers: [{url : "stun:stunserver.example.com :19302"}]

},

7 { optional: [] }

8);

9
10 peerConnection.onicecandidate = function(event) {

11 var candidate = event.candidate;

12 signalingChannel.send(JSON.stringify ({

13 "type" : "ice",

14 "sdp" : {

15 ’candidate ’ : candidate.candidate ,

16 ’sdpMid ’ : candidate.sdpMid ,

17 ’sdpMLineIndex ’ : candidate.sdpMLineIndex

18 }

19 }));

20 };

21
22 var sendOffer = function(offer) {

23 signalingChannel.send(JSON.stringify ({

24 "type" : offer.type ,

25 "sdp" : offer.sdp

26 }));

27 };

28
29 var setLocalDescription = function(desc) {

30 peerConnection.setLocalDescription(new RTCSessionDescription(

desc), sendOffer(desc));

31 };

32
33 var createOffer = function () {

34 peerConnection.createOffer(setLocalDescription);

35 };

36
37 var createReliableDataChannel = function () {

38
39 var reliableConfig = {

40 "ordered": true ,

41 "maxRetransmits": 10

42 }

43

38

44 var channel = peerConnection.createDataChannel(label ,

reliableConfig);

45
46 channel.onopen = function () {

47 channel.send("Hello peer");

48 };

49
50 channel.onmessage = function(event) {

51 if (typeof event.data === "string") {

52 console.log("Received string message from other peer: " +

event.data);

53 } else {

54 console.log("Received blob message from other peer.");

55 }

56 };

57
58 createOffer ();

59 };

60
61 var setRemoteDescription = function(desc) {

62 peerConnection.setRemoteDescription(new RTCSessionDescription

(desc));

63 };

64
65 signalingChannel.onmessage = function(event) {

66 var data = JSON.parse(event.data);

67 if (data.type === "answer") {

68 setRemoteDescription(data);

69 } else if (data.type === "ice") {

70 var candidate = new RTCIceCandidate(data.sdp.candidate);

71 peerConnection.addIceCandidate(candidate);

72 }

73 };

74
75 createReliableDataChannel ();

Listing 2.3: WebRTC data channel connection setup example

2.5 Plug-ins

Browser plug-ins, sometimes also called extensions or add-ons, are containers
where small programs loaded by the browser can run in a closed environment.
Plug-ins can provide a fixed set of functionality, such as a media player to
play videos encoded with a special codec, or a virus scanner. Others provide
a entire programming environment that allow to develop an application that
will run inside the plug-in container of the browser.

Plug-ins usually perform tasks that are difficult to achieve in regular
JavaScript code, such as image manipulation, 3D animations or games.
However, with HTML5, some of these tasks become much more manage-

39

able to do with JavaScript, and plug-ins start to see a drop in their usage.
For example, YouTube used the Adobe Flash Player plug-in to display their
videos on their web site, but is now gradually being replaced by HTML5
video. Nonetheless, plug-ins are still a major part of the web, and are worth
introducing them here.

To run a plug-in application in the browser, it is usually also required to
have a program installed on the client machine that is able to execute the
plug-in application next to the browser. This program is often the target of
exploits and malicious attacks to bypass the browser’s security restrictions.

The plug-ins introduced below are all plug-ins that offer a programming
environment and give access to sockets or some other way to send and receive
data from a network.

2.5.1 Java Applets

A Java applet is small application written in Java that can be run in the
browser. In requires the Java Virtual Machine to be installed on the client
machine to run. Almost all off the Java functionality can be directly used
in the applet, with the exception of access to the file system and network.

Access to the file system and network are, however, not completely off-
access. The applet must get signed by a trusted certificate organisation that
identifies the developer as a trusted entity. After it is signed, the developer
can get access to a client’s file system and network. This allows a developer
to create regular TCP and UDP sockets to send and receive data.

2.5.2 Adobe Flash

Adobe Flash, formerly known as Macromedia Flash and Shockwave Flash,
is probably the most commonly used plug-in on the web. It is used for
many web applications, including animations, games and other rich internet
applications. It is available for almost any operating system (including mo-
bile ones) and web browser. One notable exception though, is Apple’s iOS,
which actively blocks the Flash player.

Flash applications are created in Adobe’s own ActionScript language.
The Flash plug-in has networking capabilities, but only through a TCP
socket, or a higher-level ActionScript construct. So for raw data transfer,
one can use the TCP socket. A reference UDP socket is not available for the
Flash player. This somewhat limits Flash’s applicability to certain real-time
applications. The higher-level ActionScript constructs can provide access to
real-time streaming of video and audio using their proprietary protocol, but

40

arbitrary data channels are not available.

Flash also does not allow to just connect to any domain. Whenever a
connection is set up, it requires that the remote domain has a socket policy
server running that notifies the Flash player that it will accept or reject the
data.

2.5.3 Microsoft Silverlight

Microsoft Silverlight is a plug-in that is similar to Adobe Flash in terms of
features. It aims to provide an easy platform for streaming media, but later
also expanded to also include rich media content, animations and graph-
ics. Microsoft officially supports Silverlight for the Windows and Max OSX
operating systems, and several major web browsers. A free-software imple-
mentation of Silverlight, Moonlight, also made it available on the Linux and
FreeBSD operating systems. Moonlight development, however, got dropped
due to a lack of interest from developers. Support for mobile systems is also
rather limited.

Developing for Silverlight is done using Microsoft’s .NET framework,
where several connection options are available, including TCP and UDP
sockets, and also HTTP-based connections. But, just like with Flash and
Java, several security restrictions are set in place. Silverlight too, requires a
policy file to be retrieved from the domain to which data is being sent. UDP
connections can be created from which data can be sent, but only multicast
traffic can be received. Receiving unicast UDP traffic is not allowed.

2.5.4 Unity Webplayer

The Unity Webplayer from Unity Technologies is a plug-in designed specif-
ically for games and highly interactive web applications. It is officially sup-
ported on the Windows and Mac OSX operating systems. Through the use
of third-party support, it is also available on Linux. All major browsers are
supported, except for mobile ones. The Unity development toolkit allows
to export an application directly for mobile devices however, but the Unity
Webplayer is limited to desktop systems only.

Developing a Unity Webplayer application is done in the Unity devel-
opment toolkit, using one of the supported programming languages. A de-
veloper can use Mono, an open-source implementation of Microsoft’s .NET
framework. This means that, just as with Silverlight, regular sockets can
be instantiated. In contrast to Silverlight, the Unity Webplayer does not
restrict UDP sockets to only receive data from multicast sessions. In this
regard, it is the plug-in with the least restrictions to networking, which

41

makes it a good option for real-time data. It does, however, also require a
socket policy file to be retrieved from the domain to which packets will be
sent.

2.5.5 Custom Plug-ins

Many web browsers offer an external application interface that can be used
to communicate with the browser from another application. This interface
can be used to create a custom plug-in. Some frameworks exist that are
tailored to created a custom plug-in, such as Firebreath. The Qt framework
also has options to be used as a plug-in in the browser.

Creating a custom plug-in can be done when the developer believes the
browser does not expose enough functionality. He can then extend it by
creating his own. The challenge in developing a custom plug-in is found
in supporting it for many the browsers and platforms available. Not every
browser exposes the same interface. Nonetheless, some take on this chal-
lenge, and create a their own. The browser game Quake Live, was played
using a custom developed plug-in. At the time of this writing, the mainte-
nance of this plug-in is discontinued and converted to a stand-alone client
application.

42

Chapter 3

Optimization Strategies

This chapter explores earlier and related research in both game and web
development in bringing a better networking experience to clients. In both
the fields of web and game development, several strategies exist to counter
common problems. Here, a closer look is given to how latency can be re-
duced, how bandwidth is optimized, and analyse protocol overhead induced
by commonly used protocols on the web and in game development. For
each topic, similarities can be found in the strategies employed. These are
discussed at the end of each topic.

Not every strategy can be clearly put into a specific topic of either latency
reduction or bandwidth optimization. Some strategies will achieve both.

3.1 Reducing Latency

Every multiplayer game that is played, or every web page that is requested,
has to deal with latency. This is due to the fact that every signal sent
over the network is limited by several factors: the signal speed (speed of
light), the load of intermediate nodes (routers, switches, proxy servers, ...),
connection bandwidth, and processing latency.

Although the speed of a signal cannot be immediately be improved upon,
other factors can be. Trivial solutions, however, such as increasing process-
ing power and memory size of intermediate nodes, or increasing the band-
width of a link are usually not within a developer’s reach. Both the web and
game development communities have their ways of improving on the issue
of latency.

3.1.1 Latency Improvements on the Web

Improving the latency experienced by web users may have a serious impact.
Some even talk about the war on latency. For commercial web services,

43

especially web shops and search engines, latency can have a tremendous
impact on the behaviour of customers. A higher latency can cause less
purchases or less search queries, cascading to less revenue [32].

Caching

When a user requests a web resource, it is downloaded from a web server.
On the way from the server to the user, the downloaded web page may
be stored on intermediate nodes such as proxies or ISP routers. Whenever
a request for the same page arrives next at such a node, it may already
send the web resource to the user without contacting the original server
first. This same system can also be applied in the user’s web browser: the
web browser saves a local copy of the page, and whenever the user requests
the page again, it can be loaded directly from disk instead of the network.
Disk access is faster, even on consumer-grade systems. The cache used by
browsers is frequently used when the user presses the ”back”-button to view
a recently viewed web page.

Caching may result in serving the user an outdated web page. To over-
come this, several mechanisms exist to invalidate the cached content, e.g.
an update is posted by the user, or an expiration date. This forces a request
to fetch the latest version of the page at the server again. Thus, caching can
reduce latency when it is fetched from a node closer to the user.

This is interesting for web pages containing fixed, static content, and
dynamic content fetched through asynchronous means. Here, the static
content isn’t changed often and can be cached for a very long time at the
user or intermediate node. The dynamic content is then always fetched
directly from the server. This reduces perceived latency by quickly showing
the static content and later filling it up with the dynamic content. Total
latency here is not necessarily reduced because the dynamic content may
still take considerable time to load.

Content Distribution Networks

Content Distribution Networks (CDN) are a set of geographically distributed
servers around the world, to provide web content to users in a fast and effi-
cient way. A web developer may host its content on a server (his own or at a
web hosting service), generally called the origin server. A user may then load
the web content from this origin server but, depending on the user’s physical
location, these loading times may be fast or slow. To overcome this, the web
developer may also may host this same content on a CDN. Users issuing a
page request for a website that is registered with a CDN can be redirected
to one of the CDN servers hosting the page. The server-selection process in

44

redirecting the user usually takes into account the load of the CDN servers
and the physical location of the user, determined through the user’s IP ad-
dress. The user’s client will fetch the content from the designated server.
In a study by Krishnamurthy et al. [33], resource retrieval was found to be
significantly faster compared to retrieval from origin servers. They also con-
cluded that the results improved when more servers were used by the CDNs.

CDNs can also counter distributed denial-of-service (DDOS) attacks.
When one server goes down because of high server load, another server
that is not overloaded, is selected to serve the content, resulting in a high
availability of the content.

Pre-fetching

A requested web page usually contains some links to other pages, for exam-
ple links to: the home page, a contact page, frequently asked questions, ...
When the web developer can anticipate which links are likely to be clicked
next, the web browser can be instructed to pre-fetch these pages. These
pre-fetched web pages are cached by the browser and can be displayed im-
mediately when the user clicks on one of the pre-fetched links.

Pre-fetching only reduces the perceived latency by the user because it is
already present when the user needs it. But the actual retrieval of web re-
sources still experiences the network latency. This technique’s performance
is thus heavily dependent on the prediction algorithm used by the web de-
veloper to correctly select the next links the user might click on. Predictions
can be based on patterns found in the clicking behaviour of users. In gen-
eral, predictive pre-fetching significantly reduces perceived latency [42] [18].

To reduce the latency to zero for the entire website, one could argue to
pre-fetch every link referenced in a page. But this causes waste of bandwidth
and other resources on the network when the user is not interested in the
pre-fetched links. The pre-fetching algorithm should intelligently balance
between reducing latency and bandwidth usage.

Next Generation Protocols

HTTP is the foundation of data communication on the web. However, the
current version of HTTP (1.1) is an old protocol, and was not designed for
the rich internet it is today. For every web resource that is to be downloaded,
a separate request is send. Compared to version 1.0 of the HTTP protocol,
version 1.1 allows the requests to be pipelined, resulting in lower latencies.
Still, HTTP 1.1 suffers from head-of-line blocking because the requests are

45

expected to be handled in the order they are received. Due to its wide usage
however, HTTP cannot be just disposed of.

To overcome the limitations of HTTP 1.1, the next version of HTTP
is being developed: 2.0. Currently, SPDY [27] is being considered as the
starting point for HTTP 2.0. SPDY is a project started by Google to speed
up the internet by reducing latency, hence its name. The latency reduction
is partly achieved by eliminating the head-of-line blocking through removing
the FIFO restrictions for the incoming requests. SPDY is not designed to
replace HTTP 1.1. Rather, it complements it by manipulating its traffic,
through modifying how HTTP traffic is send over the transmission medium,
e.g. compression of the HTTP headers using gzip.

Google themselves tested SPDY and show a significant improvement
over HTTP [27]. However, this gain is only achieved in certain network
environments such as wired, high bandwidth or 802.11 WiFi networks. In
other environments, e.g. 3G cellular, or web pages with resources scattered
over many domains, SPDY performs on par with HTTP, or can actually
hurt performance of loading web pages [17] [66] [15].

New Communication Techniques

To use dynamic content on web pages, a web developer had to use polling
techniques, such as HTTP Polling, Long Polling and BOSH. These tech-
niques all used regular HTTP connections to request the server for new or
updated information. Each time a request was made, a new HTTP con-
nection had to be opened, and it was closed when the server responded
with or without new information. Each connection results in a relatively
high bandwidth usage and high protocol overhead. Especially when only
small amounts of information were needed. Another limitation was that the
server could never initiate an update when it had new information available.
BOSH provides a mechanism to circumvent this limitation, but still relies
on the client to set up the initial connection. Polling techniques have a high
protocol overhead and long connection set up time.

To create real-time applications on the web, a faster and persistent con-
nection that allows data to flow freely between client and server is needed.
The WebSocket JavaScript API and WebSocket protocol provide exactly
that. A client must still initiate the connection, but once it is established
it stays open for both to use and is closed by either the client or the server.
Compared to polling and its many variants, WebSockets require very lit-
tle overhead, and are much faster in transmitting data. Much research has
been done in comparing WebSockets with polling techniques, concluding
that WebSockets are faster and more efficient. WebSockets also reduce CPU

46

and memory usage at the server, reducing processing delays. [51] [3] [34] [47]

Compression

Although compression is mainly used as bandwidth optimization technique,
for some compressed web resources, the latency perceived by the user is im-
proved although real latency is not necessarily reduced.

Perceived latency is the waiting time a user is conscious about. When
this waiting time becomes too long, a user can become annoyed or frus-
trated and leave. This can be an issue when a web page contains large
web resources that take considerable time to download. Common large web
resources include images and video. The most primitive way of displaying
them is to only show them when they are fully downloaded and available on
the user’s system. This, however, does not help in reducing the perceived
latency the user experiences because he still has to wait the entire download
time. In this case, the perceived latency is equal to the total latency. In
order to reduce the perceived latency, one should provide a visual cue to the
user to let him know that something is going on.

For images, this can be done in the form of progressive image rendering.
When the first bytes of the requested image start to arrive, the web browser
can already start to visualize this data. Simple progressive as-received image
rendering will start to display the image data from top to bottom. Here,
the user sees that an image is being loaded, but has little information how
large the final image will be. Interlacing can tackle this last problem [41].
An interlaced encoded image allows to quickly display a poor quality result,
but in full image size. As more data keeps flowing in, more details are added
to the image until all image data is received, resulting in the original image.
However, compression efficiency is decreased when encoding an image with
interlacing support. This increases file size, and may result in a higher, to-
tal latency due to more data being sent over the network, but perceptive
latency is greatly reduced! Figure 3.1 illustrates both visualization methods.

For video, a similar tactic is available through multi-layered approaches.
One such implementation is called Scalable Video Encoding [56]. The video
is encoded as a base layer and several enhancement layers. These layers are
also commonly called streams. The base layer contains a low resolution /
low detail / low frame-rate version of the original video. When the user
requests the video, the base layer is sent first and can be played as soon
as the first bytes have arrived. When the connection to the user allows
it, more enhancement layers can be requested to upgrade the video to its
original quality level in terms of resolution, frame rate and details. For
video, it is also common to already display a frame of the video on the web

47

Figure 3.1: Progressive image rendering
Left: as-received. Center: interlaced. Right: final image.

Source: blog.codinghorror.com

page location where the video is played. This gives an indication of which
video will be played.

3.1.2 Latency Improvements in Games

Latency can make or break a game. For slow-paced games, latency is not
directly an issue. But for fast-paced, highly competitive multiplayer games,
it can be a game-breaking one. High latencies can cause player frustration
and can lead to less people playing the game. When people quit a game
due to high latencies, a lower revenue is incurred when the game runs on a
subscription based model or has a micro-transaction store.

Geographic Server Placement

When an online multiplayer game gets popular among players around the
world, only one location for the game servers is not optimal for many players
living far away from this location. The signal might take considerable time
to get to the server, giving a disadvantage to these players and a possible
cause for frustration when the signal has to go through several routers.

Many popular online games overcome this problem by placing multiple
game servers across the world. These servers are usually placed in regions
with a high concentration of players: the east- and west-coasts of North
America, western Europe and China [10].

This geographic server placement also helps in spreading the load over
multiple servers. However, because players are connected to different server
regions, they often cannot play together beyond these regions. This is fre-
quently observed in MMOs where players from Europe cannot play with
players from North America. Some games allow the player to connect to a
server region of choice, but usually also then show an indication of the la-
tency to be expected when connecting to that server. This makes the player

48

blog.codinghorror.com

aware of the potential delay consequences when selecting such a server.

Sharding

A shard is an authoritative server, or cluster of servers, that hosts a copy of
the virtual game world. This hosting of multiple copies of the world is called
sharding, and is mostly applied in MMOs that offer a persistent world. In
many games, shards are also known as realms or worlds. Players can con-
nect to such a shard and then interact with other players connected to the
same shard. Players on different shards, however, are seldom allowed to play
together.

Sharding causes players to be spread across the several copies, resulting
in servers that are load balanced, unless many players decide to connect to
the same shard. Therefore, shards have a limit on the number of simultane-
ous players, forcing players to pick less busy servers. This guarantees that
servers will have an upper bound on their load.

One notable exception of an MMO not using sharding is EVE Online.
This game only has one instance of the game running on a server cluster.
Players are spread across the virtual world, but some events may cause a
heavy load on the server-side system, causing some locations to become
unavailable when too many players are present.

Custom Protocols

Each game has its requirements regarding reliability and ordering of trans-
mitting its game data. Some games simply use TCP for all of their commu-
nications. Other games implement custom protocols, usually built on top of
UDP because it is the least restrictive and has low protocol overhead. Wu et
al. [70] show an overview of popular MMOs and their primary communica-
tion protocols used. A custom protocol allows to tailor to a specific quality
of service: when no reliability of data is needed, then it makes little sense
in using an reliable communication channel which might slow down traffic
when a packet gets lost and needs to be re-transmitted.

Open Game Protocol [60] is an example of a general game protocol run-
ning on top of UDP, providing real-time communication specifically designed
for games.

Network Architectures

The simplest network architecture for multiplayer gaming is the client-server
architecture. But the simple single server architecture will quickly run into

49

scalability issues when increasing the amount of simultaneous players con-
nected. The central server, or the network leading up to the central server,
will then become a bottleneck in processing the updates, resulting in in-
creased latencies. To overcome this, other network architectures and topolo-
gies can spread the load over multiple servers, or even players.

To keep the client-server architecture scalable when more players join,
several of the techniques discussed above (and discussed further below) can
be used together, e.g. sharding, geographic server placement and update
filtering. Often, this is not enough and the architecture between multiple
servers needs to be considered to optimally distribute the load. Clusters of
servers can be used and put in a certain topology e.g. a star, full mesh or
hierarchical.

ALVIC-NG is a client-server architecture designed to handle large amounts
of players simultaneously by dynamically sub-dividing the virtual game
world (see section 3.2.2), developed by Quax et al. [49] Each back-end game
server takes up responsibility for managing part of the game world. When
the server experiences high load, the game region is split up and divided
among more servers. Regions can also be merged during calm periods. This
is controlled by the region management system. However, clients do not
directly connect to one of these game servers directly. Rather, they connect
to a proxy server, hiding the underlying connection switching when travel-
ling between regions or when they get split / merged. The proxies servers
can also act as a sort of update cache, reducing latency by not querying the
game servers for the latest information. Figure 3.2 shows an overview of the
ALVIC-NG architecture.

However, complex server architectures can increase latency compared to
the simple single-server architecture due to increased server management
overhead and architecture abstraction through proxies.

A central server is not always necessary to run a multiplayer game, and
peer-to-peer solutions can be viable. In a peer-to-peer setup, players send
their game updates directly to each other through a potentially much shorter
/ faster path. Due to the absence of a central game server, management
of the game state is now distributed over the participating peers, or one
peer takes full responsibility over the entire game state. The latter case
essentially boils down to a client-server setup again where one peer acts as
both the server and a client. In the former case however, the distributed
game state needs to be cooperatively managed and can create architectural
and communication overhead. A peer-to-peer middleware implementation
for Quake II is demonstrated by Reina et al. [52]

Most pure peer-to-peer multiplayer implementations are used in games
where short and temporary tournaments are played, e.g. in shooters, strat-
egy or racing games. This is because online games featuring a persistent

50

Figure 3.2: ALVIC-NG architecture.

world cannot rely on players being online all the time keeping the world
available.

Hybrid models exist, client-server and peer-to-peer, that try to provide
the best of both worlds. Some players are designated by the server as super
nodes with which other players can communicate non-critical state changing
updates. These players are trusted players by the game and have a good
quality connection. State changing updates by players are however directly
communicated with the central server. [28]

Player Response Cues

Some multiplayer online games can tolerate several hundreds of milliseconds
of latency and can achieve this without affecting the user’s gameplay expe-
rience. However, this latency can certainly become noticeable when simply
making the player wait for its requested actions to happen. This perceived
latency can become a frustration and make the game feel sluggish. Here,
cues to the player’s actions can help in eliminating this perceived latency
by letting the player know its input is registered by the game. This is, for
example, frequently observed in RTS or RPG games. In the case of an RTS
game, the selected troops for example, will say some phrase when they are
requested to move to another location or when an attack is initiated. For
RPGs, the player’s avatar abilities usually have some activation time with
a corresponding build-up animation. Displaying such an animation, or con-
firmation phrase eliminates perceived latency, assures him that his input is
registered, while at the same time creating some headroom for the update

51

to be processed at the game server or other peers.

On the other hand, the responsiveness of a game and perceived latency
are also subjective matters. Much research has been done to how latency
influences the scores of a player in online game sessions, as well as how the
players experience this impairment. People react differently on different val-
ues of latency in different types of games. Players also tend to underestimate
their tolerance towards latency. [57] [43] [14] [50]

3.1.3 Discussion

Unsurprisingly, some similarities can be found in how the issue of latency is
handled by the web and game development communities.

A first common divider is found in reducing the physical distance to the
clients. Content distribution networks act as a large scale caching mecha-
nism, placing copies of popular web resources close to the user, while on the
other end, game servers are placed in densely populated geographic regions
hosting the virtual game worlds. However, although servers are brought
closer to the user, there is a big difference in how each maintains their data.
CDNs act as mirrors for the original content residing on an origin server.
Updates made to the content on the origin server eventually is also reflected
on the CDNs. This is not necessarily the case for the game servers spread
over the world. Although all game servers serve the same game, different
players are connected to them, influencing the game state on that server, i.e.
completing events or player economies. This especially noticeable in MMOs
with a persistent world.

Another difference between CDNs and game servers is that web content
hosted on a CDN is more volatile. A CDN server usually only serves popular
web resources for that area. Whenever it starts to receive many requests for
a certain resource, it may fetch it from the origin server and host it. This
also means that unpopular content will eventually get replaced with more
popular content. Game servers on the other hand, have dedicated resources
to keep the game online for that geographic region, until the game is shut
down.

A second method in closing the physical distance gap is done by us-
ing peer-to-peer technology. The web mainly operates through client-server
connections, but some applications better lend themselves through direct
communication between users, i.e. audio and video conversations. Privacy
reasons also play a role in why such applications are best run over peer-to-
peer instead of a client-server architecture. A user is never sure the server
may record and store a copy of the conversation. It does, however, remain
to be seen how quickly WebRTC is adopted by all major browser developers,
as well as how well it can adapt to current and new trends in peer-to-peer

52

communications. This can be problematic due to a web browser’s adherence
to web standards. Peer-to-peer for multiplayer games has been around for a
long time. Several architectures have been developed to support large-scale
worlds, but many face the issue of game security: player cheating [31] [7] [26].
This is a problem that arises due to managing the game on a machine that
is not under the developer’s control. Players may tamper with the system,
giving them an unfair advantage over other players. This is part of what
makes the client-server architecture still a very attractive choice for games.

Every networking application benefits from using an appropriate com-
munications protocol that suites the application’s needs. So an important
factor to reduce latency is to optimize the protocols used for the application.
For multiplayer games running natively on a machine, this isn’t a problem.
Several protocols exist that can be used as is and that have proven them-
selves in various scenarios. Or, a custom one can be built on top of an
already existing one, which is frequently done with UDP. For applications
running in a web browser, the options are limited and more restricted. Here
too, web standards play a role, but also security issues. WebSockets are
a big improvement over the older polling connections in terms of latency
and bandwidth efficiency, but still lack flexibility to customize the underly-
ing connection, e.g. enabling or disabling Nagle’s algorithm. The WebRTC
datachannel API allows limited customization for handling lost packets and
packet ordering. However, using typed arrays in JavaScript (discussed in
section 3.2.1), one could build semi-custom protocols on top of WebSockets
or WebRTC datachannel by working on byte level.

For both web and game development, reducing the perceived latency by
the user is also a very important factor. Giving the user a cue that some-
thing is going on helps in bringing a fluid experience. However, how this
is handled differs between the two communities. On the web, the encoding
format for video and images determines whether such cues can be given or
not. Also, such a cue can only be given when a certain amount of informa-
tion about the web resource has been received, e.g. the size of the image. In
games, this happens the other way around, a cue is given when user input is
registered, but the actual data still has to be sent. In some cases, reducing
the perceived latency, the tolerance for the actual latency may increase. For
images on the web, the gradual increase in image quality may distract the
user that it is actually taking a longer time to load the image, than waiting
for a blank canvas to instantly fill in a slightly less time. The same is true
for certain games: giving the user feedback on his input, distracts him from
the delay that it may take a bit more time to process his actions on all
participating clients. For video however, there is a clear upper-bound when
the latency becomes noticeable, namely when the buffer runs out of frames
to play.

53

Table 3.1 gives a quick overview of how each community tackles the
problem of latency.

On the web In games

Reducing physical
distance

Caching and CDNs Servers in populated re-
gions and peer-to-peer

Protocol optimiza-
tion

WebSockets and We-
bRTC, limited cus-
tomization, standard-
ization

Using proven protocols
or build custom proto-
cols

Perceived latency Visual cues after first
data is received, de-
pends on encoding

Cue after user action,
depends on type of
game

Table 3.1: Overview of latency reduction strategies

3.2 Optimizing Bandwidth Utilization

Bandwidth in networking is defined as the amount of data per second a
link between two systems can carry. However, although this link can be
a limiting factor, intermediate devices can also form a bottleneck when too
much data flows over the cables. When sending data over a network, it passes
intermediate nodes that buffer and route the data to its destination. A high
bandwidth utilization results in packets being queued at the intermediate
nodes or maybe even dropped when the queue runs out of memory to buffer
the packet. Queueing increases latency due to the node not being able to
process packets fast enough. When a packet gets dropped, a re-transmit is
triggered by the sender which increases latency, or the information is lost
forever, depending on the transmission protocol.

Here too, intermediate nodes and links are not accessible to a developer
to alter their specifications to meet the application requirements. Even if
one had access, not every change would have the desired and / or expected
effect, e.g. delays become more excessive when a router is equipped with an
excessive amount of memory. This effect is called bufferbloating [16].

Optimizing the bandwidth utilization aims to reduce packet size or the
amount of packets being sent, so that packets can be processed faster and
reduce their chances of getting dropped. As a side-result, this also achieves
some latency improvements by reducing queueing times and reducing the
amount retransmissions.

54

3.2.1 Bandwidth Optimization on the Web

Even though a high bandwidth utilization does not necessarily mean that
the user will have a bad web experience, it is a good idea to maximize
efficiency of the used bandwidth of a link. Usually, costs are incurred on
the amount of bytes that come and leave the web server. This becomes
especially important when the web service is popular among many users.
Optimizing the usage of a connection reduces the amount of useless data,
such as protocol overhead or redundancy.

Compression

Compression reduces the amount of space a certain piece of data needs.
When the server can compress the data requested by the client, and the
client has the corresponding de-compression algorithm, less bandwidth can
be used by sending the compressed web resource to the client. On the web,
on the fly compression between client and server is mostly applied on text
files such as HTTP pages, CSS and JavaScript using gzip. Especially HTML
(and other XML-like variants) can be compressed very fast and efficiently
due to redundancy in tags. SDPY, mentioned in section 3.1.1, applies gzip
compression on the HTTP headers, greatly reducing protocol overhead.

Image and video files are rarely stored in a raw format on the server for
display within the browser. They are usually already heavily compressed in
one of the supported formats and are transmitted as such.

Another form of compression that can be applied on text files, and more
specifically on source code, is minification. Minification of a source file re-
moves all unnecessary white space characters and comments. More advanced
minification can also parse the file and rename variables and functions to
shorter versions or even a single character. Its important to note that, al-
though the source code is altered, its functionality remains intact. It does
have a negative effect on readability of the code for human reader. Minifi-
cation on the web is usually applied on JavaScript scripts [23].

Compression can be executed as lossless or lossy. De-compression of a
lossless compressed file will yield that exact same file again. Text files are
usually compressed lossless to not alter the text after decompression. Im-
ages and videos can also be compressed lossless, e.g. PNG for images is
lossless. However, when bandwidth is limited, or no exact reconstruction of
data is needed, lossy compression can be used for images and video. Lossy
compression loses a part of the original data which results in much lower file
sizes than the original file or lossless compression. Lossy compressed images
and video will have reduced quality and detail compared to the original.
Supported lossy image formats by most web browsers are JPEG and GIF.
Google seeks to introduce a new image format for the web: WebP [24]. They

55

claim its compression is superior compared to the older JPEG compression
with equal quality settings [25]. Mozilla on the other hand, aims to further
improve JPEG compression. They developed a new encoder that is com-
patible with older decoders, and show that their implementation improves
upon the old JPEG in every quality metric used in the study [12]. The
new Mozilla encoder also outperformed the WebP format in some quality
metrics. WebM [46] is a new lossy video codec supported by recent web
browsers.

To further optimize bandwidth for users with different connection speeds,
interlaced images and multi-layer videos can be sent. For a user with a slow
connection, only the base-layer is sent which allows to visualize a lower
resolution / frame-rate / detail result. When a connection is fast, more
layers can be sent to enhance the base layer, improving resolution, frame-
rate and details of the image or video.

Aggregation of Resources

A web page may contain many resources, i.e. JavaScript script, CSS files,
icons, images, ... For each such resource referenced by the web page, the
browser must download each file separately. Each file triggers a request to
the server, setting up a new HTTP connection for relatively small portions
of data. This causes a high protocol overhead.

To speed up the loading times and to optimize bandwidth utilization,
web resources can be aggregated into larger resources. Individual JavaScript
scripts can be put together in one large JavaScript file. Icons used by the
web page may be put together in one larger set of icons, which the web page
then ”cuts out” when needed.

Aggregation of web resources optimizes bandwidth utilization and la-
tency by removing protocol overhead for the otherwise many small file re-
quests.

Typed Arrays

The primary data type for sending data through WebSockets, WebRTC and
XHR, is to use strings. This is easy, but not transparent when transmitting
numeric data. Indeed, the length of the payload depends on the value of the
number. For example, when the number 1000 is converted to a string, it
will contain four characters, while the number 999.9999 will contain eight
characters when converted to a string. With every character encoded as
UTF-16 means the former will have a payload length of 8 bytes, while the
latter has a payload length of 16 bytes. Both numbers are, however inter-

56

nally represented as 64 bit floats.

Typed arrays are a data view on a raw buffer of bytes, allowing to assign
and interpret parts of the buffer as a certain numeric type, e.g. unsigned
integers, 32 bit floats. WebSockets, WebRTC data channels and XHR can
be configured to send these type of buffers directly. This way, numeric data
is sent transparently with the desired amount of precision. Knowledge of the
numbers being transmitted can result in a significant reduction in bandwidth
utilization [35] [2].

Caching

Caching, discussed above for reducing latency, also causes a reduction in
bandwidth usage. When the user requests a page, and it is already in its
own browser cache (and the page hasn’t expired yet), it can be just loaded
from the user’s disk resulting in no bandwidth usage at all! If the user does
have to fetch the web page from an external source, it might have been
cached at some intermediate node. This then saves bandwidth further down
the line to the original content.

Using the example of the web page with static and dynamic content
again, bandwidth utilization can be optimized by only requesting the dy-
namic content, because the static content is rarely updated.

Advanced Protocols and APIs

A web page can have dynamic content which is updated through incoming
updates from the server. To receive these updates, the browser must com-
municate with the server. However, the browser is limited in communication
options between client and server. Polling techniques, as described earlier,
require a new connection to be set up over HTTP for each update. When
these updates are frequent and / or small in size, the HTTP protocol over-
head contributes largely to the bandwidth usage. Bandwidth is also wasted
when no new information is available, because the client always is the ini-
tiator of the update process.

To eliminate this overhead and optimize bandwidth usage, other pro-
tocols and APIs can be used instead of polling, e.g. HTML5 WebSockets
and WebRTC. Both WebRTC and WebSockets allow to set up a persistent,
bidirectional connection. The connection only needs to be set up once for
the current session, after which data can flow freely between clients and /
or server.

For each message sent over a WebSocket connection, hundreds of bytes
of overhead are saved compared to a polling technique. A WebSocket header

57

only adds, at most, 13 bytes of header data. Rakhunde [51] compared Web-
Sockets and HTTP requests in theoretical operation, concluding that Web-
Sockets are far more efficient in every aspect.

A WebSocket connection still uses ping-and-pong frames to keep the
connection alive when no data is sent between client and server [20]. For
WebRTC, keep alive packets are also sent as to prevent NAT at intermediate
routers to close the connection [54]. These keep-alive mechanisms send a
small packet in certain time intervals (typically a few seconds). When data
is transmitted frequently over a connection, no keep-alive message is needed,
because each end knows it recently received some data from the other end.
But when the data flow is sparse or non-existent, the keep-alive messages
waste bandwidth, although very little.

3.2.2 Bandwidth Optimization in Games

Reducing bandwidth utilization in games has the same remark as for web
development: inefficient use of bandwidth can cause high waste of network
resources, especially when the game has many players. However, in contrast
to web resources, game updates are usually much smaller in size. This causes
However, game updates are usually much smaller size compared to the data
transmitted on the web. So many of the techniques discussed here focus
on reducing the protocol overhead, because is it quickly is the dominating
factor for the size of update messages.

Compression

Even if protocol overhead is the main contributor to the used bandwidth,
its still interesting to see if the payload can be made smaller. To reduce the
size of the payload each data packet carries, the game developer can shrink
the size of the payload by compressing its contents. As with compression
for web development, lossy or lossless compression can be performed. With
lossy compression, part of the data is lost and cannot be reconstructed at
the receiver side, e.g. loss of precision of coordinates due to rounding off
values. With lossless compression, the other end can completely reconstruct
the data as it originally was.

Besides lossy and lossless compression, the data can be compressed inter-
nally or externally. With external compression, the data to be compressed is
considered in relation to the data previously sent. For example the Protocol
Independent Compression Algorithm by Van Hook et al. [65] periodically
sends a reference state, on which subsequent updates can be based on. The
following updates can be based on this reference state, by taking the differ-
ence between the current game state and the last reference state that was

58

sent. A state containing these difference values, called a delta state, usually
has much smaller values in magnitude than the values in a full game state.
These lower values could be represented by less bytes, and thus saving band-
width. An update packet containing a reference state carries an important
payload. Such an update should be sent reliably, or the updates derived
from that state are worthless.

Internal compression, on the other hand, considers only the current data,
and tries to compress the data based on redundancy found within the cur-
rent data. For example,Run Length Encoding is a compression scheme that
efficiently compresses long sequences of the same values.

Input versus Game Data

In most multiplayer games, the player only manages one central entity such
as his avatar or a racing car. This central entity is usually also the only
source that triggers the need to send updates. Updates then usually contain
information about this entity’s position, actions, ... However, in real-time
strategy games, the player has control over a larger set of characters or
troops. One could send out updates for each individual unit, but this will
quickly result in a large amount of updates when the player has a large army
and decides to take action with it.

When controlling a large set of entities, instead of sending updates for
each entity, the user’s input can be used as the subject for updates. The
user’s input is encoded and sent over the network where his input is remotely
applied. Such an input update then, will most likely contain information of
the following form: where has the user clicked, which entities are involved
and what action should they perform. Multiplayer games using input as
update mechanism must take care however that each input action is played
back at each client in exactly the same way, and that games stay in sync.
Slight deviations in applying the input may result in great game inconsis-
tencies later on in the game. This is because input deviations are harder
to correct later in the game than, for example, a player’s character position
which can be nudged back. Otherwise, one could better have sent the in-
formation about the entities in the first place! A commonly used, high-level
protocol to achieve this, is the lock-step protocol [61].

Update Aggregation

Game updates can be grouped together and be send as one, larger update.
Aggregated updates optimize bandwidth utilization by saving on protocol
overhead, compared to sending each update on its own.

The game can enforce that a minimum amount of update data is present

59

before it is sent. This guarantees that no bandwidth is wasted on pro-
tocol overhead for small updates. Such an absolute enforcement however,
increases latency, and may potentially hold up an update forever, if no new
update data becomes available. This minimum payload aggregation is useful
for games that generate frequent updates, but can tolerate some latency, i.e.
a few hundred milliseconds.

To overcome large latency values when updates become less frequent, a
maximum delay timer can be put in place. When the timer runs out, the
gathered updates are sent, regardless whether enough data was present to
efficiently aggregate or not.

The potentially large delay time is more an issue at client-side, than
server-side. At client-side, usually only one central entity (the user’s char-
acter) is managed that triggers the need to send out an update. A game
server, however, is a central meeting- and distribution point for game data.
Therefore, the server can aggregate data much faster than clients.

Prediction Algorithms

Another way to reduce the amount of packets sent, is to predict and simu-
late what other clients are doing based on previously received game updates.
Whenever a client receives an update about another client, it predicts its
actions based on the information in the update.

Predicting the actions of another client does not necessarily mean these
actions are also actually happening at the other client. This implies that
inconsistencies can creep into the managed game state on clients. Clients will
therefore also run a simulation of themselves to keep track of the deviation
between the real client and the remote predictions of this client. Whenever
a large deviation is (about to be) detected, a new update is send out to
nudge the remote predictions closer to the real state.

A well known navigational prediction algorithm is Dead Reckoning or
Ded Reckoning. Here, clients predict the position, movement and orienta-
tion of remote clients through the incoming updates containing information
about the current position, velocity, acceleration, rotation... When receiving
an update, a client will first converge its prediction to the state described in
the update, followed by the prediction process.

Another prediction algorithm used in online games, is Lag Compensa-
tion [6] and refers to compensating latency of player actions through pre-
diction. The client and game server will both simulate the player actions.
Whenever, a player sends an update, the server will validate that update by
looking back at previously received updates, checking whether the actions
are possible. Meanwhile, the client predicts its actions by assuming the

60

server accepts the update, until it receives the acknowledgement from the
server. The Lag Compensation algorithm thus uses prediction while waiting
for confirmation, keeping the feeling of a fluent game experience.

Using such an algorithm allows to send updates less frequently, saving
bandwidth. But the game must be able to tolerate and compensate for
(small) inconsistencies in game state. This compensation will come at the
cost of more CPU cycles, depending on the complexity of the convergence
and prediction algorithms.

Update Filtering

A player in the virtual world does not always need to have detailed informa-
tion about actions or events happening in the distance, or even on another
map. The update information sent to a client from another host or game
server can be filtered based on the player’s location in the game world. An-
other term for this filtering of updates is interest management.

One way to filter updates for a client based on its location can be achieved
by spatially subdividing the game world in discrete zones [37] [38] [48]. This
is called zoning. A player in a zone will only receive detailed and / or fre-
quent updates from players or other entities in that zone. Spatial subdivision
of the world can be applied explicitly by splitting the game world in maps
or levels by, e.g. a loading screen as a boundary between zones. When the
game consists of one large environment, or the individual levels are large,
spatial subdivision can be applied implicitly through an overlay network of
zones such as a rectangular grid, hexagonal grid, Vonoroi diagram, hierar-
chical tree structure, free-form, ... With implicit zones, a client may start
to receive more detailed / frequent update information when standing near
a boundary between zones, as to not cause any jerkiness in the audio-visual
representation when crossing borders. The size of a zone does not need to
be fixed. When many entities reside within a zone, its size could shrink to
offload entities to nearby zones.

Another way of filtering updates is by considering the players and other
entities as a starting point for filtering instead of the game world. The aura-
focus-nimbus model developed by Benford and Fahlén [5], defines the levels
of awareness and interaction with others in the surrounding environment,
also called the area of interest (AoI). Players and other entities such as in-
teractive objects, are coupled with each their own aura, focus and nimbus.
Whenever two auras collide, possible interactions can take place. The focus
and nimbus further determine the direction of data flow of the interaction.
The focus determines that what the player is aware of, while the nimbus de-
termines what is aware of the player. This means that whenever the player

61

has something in his focus, he is interested in receiving updates from that
entity. And whenever something is within the nimbus of the player, that
entity is interested in receiving updates from the player. More than one
aura-focus-nimbus can be associated with each entity, for example, one set
for audio and one for vision. The aura-focus-nimbus model can be made
arbitrarily complex by providing more levels of detailed update channels, or
complex forms of representing the the aura, focus and nimbus, e.g. a cone
for vision and a sphere for audio. The model can also be designed to let the
player configure how much information he wishes to receive by, for instance,
configuring certain settings in the game’s options menu.

Filtering of updates can be done through a publisher-subscriber system.
Whenever a player enters a new zone, or auras collide, the player’s client
can subscribe to certain update channels (publishers). Several subscription
mechanisms exist, such as multicast groups on networking level, or subscrip-
tion management servers on application level. In both cases however, extra
bandwidth is used, or computational complexity is increased, to notify the
system about (un-)subscribing to certain update channels. On the other
hand, bandwidth is saved by not sending updates to the players that aren’t
subscribed to channels that don’t interest them. Generally, bandwidth saved
by not sending game updates is far outweighed by the subscribing messages.

Note that, zoning and the AoI models can be used together, i.e. zoning as
a coarse-grained filter and the AoI as a more fine-grained update mechanism.
For example, Marx showed in his implementation that using AoI can help in
managing dynamic bandwidth scalability [39]. In a study by Boulanger et
al. [9], various interest management techniques are tested, including region-
based and AoI techniques. Their results show that, indeed, the AoI model
provides a very fine-grained update filtering for players greatly reducing sent
updates, but at the cost of a very high server CPU utilization. Region-based
filtering techniques are shown to be more coarse-grained (especially square
regions) letting more updates pass, but requiring less CPU time.

3.2.3 Discussion

The parallels between web and game development for bandwidth optimiza-
tion are more clear than is the case for latency reduction.

Both on the web and in games, the amount of bytes a certain piece of
information requires can greatly be reduced through compression. Compres-
sion on the web is either performed on the fly when the resource is requested
(and possibly cached afterwards), e.g. on HTML files. Or, it has already
been done offline and stored on disk so that it can be send immediately, as
is done with images and video. Typed arrays can also be considered as form

62

of compressing data that would otherwise be send as a plain string or blob.
Compression in games is a continuous process that cannot be performed
offline. Updates generated by players are unpredictable and thus cannot be
compressed offline, unless some pre-defined or recorded action sequences are
used. Sending input data instead of actual game data can also be considered
compression, since the same result can be reproduced at the remote ends
without sending an update for each individual entity.

With aggregation, bandwidth optimization is achieved by reducing the
number of packets sent over the network. And here, it has a somewhat sim-
ilar story to compression. Web resources are usually aggregated offline, e.g.
icons placed in one large image or JavaScript scripts that are concatenated
into one larger script. While for games, aggregation happens at run-time.
Although aggregation reduces the amount of packets sent, thereby elimi-
nating the protocol overhead for each packet, it has a different effect on
latency on the web than it has in games. Aggregating web resources into
larger files causes less requests to be sent, speeding up the loading process
because many HTTP connections are eliminated. However, aggregation has
the tendency to increase the latency because it must wait for enough data
to efficiently aggregate. This latency-increasing effect is especially present
on the client-side where update events are less frequent than at server-side.

Optimizing the communications protocol can also save bandwidth in
both cases, but this is the same story as discussed earlier for protocol op-
timization for latency. Web browsers must adhere to standards and cannot
just offer any protocol for the web developer to choose from, while a game
developer can. But SDPY and WebSockets a offer great improvement com-
pared to plain HTTP. For game developers, one must be careful in picking
or developing a protocol who’s headers are larger than the actual data sent,
because typically, a game update will not contain more than a hundred bytes.

A final, but less obvious, similarity is found between caching on the web,
and delta states in games. With caching, a copy of the static content is
saved on the user’s system. Whenever the page is loaded from the cache,
dynamic content can still be loaded from the server. Together they form the
final, and up-to-date web page. Reference and delta states, discussed in the
section about compression, perform a comparable function. The reference
state can be considered the static content that doesn’t change much (rela-
tively) and is cached at the client. Delta states then can be considered the
dynamic content, that are updated frequently and build further upon the
reference state to form the final game state.

A quick overview of the discussed similarities is shown in Table 3.2.

63

On the web In games

Reducing payload
data

At run-time and offline
compression, typed ar-
rays

At run-time compres-
sion, input data versus
actual game data

Reducing packets Aggregate web re-
sources, reduces latency

Aggregate game up-
dates, can increase
latency at client-side

Protocol optimiza-
tion

SPDY and WebSockets
are more compact than
plain HTTP

Protocol headers can
quickly become large
compared to the actual
update

Incremental Static and long-lasting
content with frequently
updated dynamic con-
tent

A reference state with
subsequent delta states

Table 3.2: Overview of bandiwdth optimization strategies

3.3 Browser-based Multiplayer Games

With the latency reduction and bandwidth optimization techniques anal-
ysed and discussed above, it is interesting to see how these techniques can
be combined to created a browser-based multiplayer game.

When a multiplayer browser game is published, it will most likely be
distributed over the web like a regular web page that a user can visit. To
distribute the game efficiently, CDNs can be used. This also relieves the
origin server from many download connections when the games becomes
popular. To speed up this download process and save bandwidth at the
same time, support for SPDY (HTTP 2.0) can help, especially when many
resources need to be downloaded, e.g. 3D meshes and textures.

Many of these resources can be served compressed. Textures can be
accepted in common compression formats (.png and .jpeg). Textures could
also be aggregated to reduce the amount of requests. 3D meshes can be
compressed in a certain format, but this depends on the game engine used
that is capable of decoding the file. For audio files, such as sound effects or
background music, the file format depends on the browser used. Not every
browser supports the same audio codecs [63].

While downloading the game with all its resources in one go is an option,
but this will likely cause a long downloading time. To further speed this up,
resources could be downloaded in a dynamic manner, based on a player’s
location in the world and what is or should visible to him. This is similar
to the area-of-interest update filtering model.

64

Once the game (or a playable part of the game) has been downloaded,
connections can be made to a game server to start the multiplayer game.
WebSockets, WebRTC and certain plug-ins allow to connect to different
domains than the domain from which the game was downloaded. Servers
can thus be placed in several locations, and the user can connect to one near
him to get low latencies. The servers can be used to host the game or to let
players find each other to set up peer-to-peer connections.

Depending on the desired network architecture, one or more connection
options are available. For client-server, the options are plenty. WebSockets
and plug-ins are generally capable of transferring arbitrary data between a
client and server. WebRTC, although designed as a peer-to-peer API, can
also be used in a client-server architecture by letting the server act as just
another peer. For peer-to-peer gameplay however, only one option is im-
mediately available: WebRTC. Although plug-in APIs generally offer more
freedom in building a custom connection, the browser or plug-in developer
usually restricts how those connections can ultimately be used. For exam-
ple, a Java applet needs to be certified and signed before it is able to listen
on a socket. The Adobe Flash player supports peer-to-peer but only for au-
dio and video, not for arbitrary data. The Unity Webplayer, as well as the
Adobe Flash player, require a socket policy server running on the domain
to which they wish to send data. This would mean that, for peer-to-peer to
be possible from such a plug-in, each peer would need to be running such
a policy server next to its browser. Both of them are also restricted from
listening on incoming connections, which makes them ill-suited for a peer-
to-peer setup. The Adobe Flash player also has the extra restriction that it
can only use TCP sockets, whereas the Unity Webplayer can use both TCP
and UDP sockets.

Now that connections are set up, game updates can start to flow. Many
of the bandwidth reduction techniques that are used for games in general
and not restricted to native platforms, can also be used in browser-based
multiplayer games: reference and delta states, prediction algorithms, update
aggregation, and update filtering. When a lot of numeric data is sent, then
typed arrays can also reduce the amount of space required when working
with large numbers. If the type of game allows it, then input data can be
sent instead of game data.

65

66

Chapter 4

Network Setup and Test
Cases

Knowing the requirements that different genres of multiplyer games demand
from a connection, and how they attempt to optimize its usage, its time to
devise a series of tests that will evaluate several browser connection options.

This chapter starts with presenting the different connections that will
get tested, followed by how they will get evaluated and which properties
will be measured. This chapter ends with the procedure that is followed
while testing each connection using a set of parameters.

4.1 Exploring Browser-based Multiplayer Options

As is detailed in the discussions in previous chapters, to build a multiplayer
game with a web browser as the target platform, a heavy burden rests upon
the shoulders of the communication channels and their associated restric-
tions. Choosing a communication protocol has implications on the network-
ing architecture which in turn influences performance and scalability. It is
therefore of great importance to choose the best communication option for
the occasion. This thesis will analyse the following communication options
for developing a browser-based multiplayer game:

• WebSockets and secure WebSockets,

• WebRTC data channels, and

• Plug-in sockets

Here, the Unity Webplayer is chosen to represent the plug-in camp due
to it being the least restrictive plug-in for networking. A short introduction
of the Unity Webplayer plug-in has already been given in section 2.5.4. The

67

plug-in provides the developer with reference TCP and UDP sockets that
can connect to any server domain that has a socket policy server running.
Other plug-ins only provide a reference TCP socket and limit the usage of
the UDP socket. Another option would be to develop a custom plug-in using
frameworks such Qt or Firebreath. But developing a custom plug-in requires
a high amount of support and development for all browser - platform com-
binations, and is also something that is not applied frequently in the game
industry.

Because WebRTC has mandatory encryption for its data channels, the
Secure WebSocket option is taken into the equation to better compare these
browser-native channels. WebSockets only provide a reliable and ordered
communication channel, so not much can be configured here. WebRTC on
the other hand, allows to configure the reliability and ordering of messages
for each individual data channel. So to compare WebRTC with WebSockets
and the Unity Webplayer’s TCP and UDP channels, it is configured with
a ’reliable’ and ’unreliable’ channel. The reliable one has the same charac-
teristics as a standard TCP connection: reliable and in-order delivery. To
compare it with Unity’s UDP socket, the unreliable channel of WebRTC is
configured to match those characteristics: unreliable and out-of-order deliv-
ery. WebRTC also allows to configure the data channels as a mix of the two,
for example, in-order but unreliable, or reliable but out-of-order.

The older HTTP-based communication techniques are not further ex-
amined here. Many previous research has already been done in comparing
them with WebSockets. This research concluded that they perform far from
optimal in many aspects compared to WebSockets, which makes them not
really relevant for this thesis.

For each of these communication channels, several factors will be anal-
ysed to determine which one of them fits the best for certain types of mul-
tiplayer games. These factors include:

• Operational network overhead: how much bandwidth does the com-
munication channel require from the network to operate, including
side-mechanisms such as acknowledgements and keep-alive packets?

• Operational machine overhead: how much CPU resources does such a
channel require from the host machine?

• Protocol behaviour: how does the communication protocol react to
packet loss, delay and jitter?

• Browser choice: does the choice in web browser have an effect on the
results?

68

Combining the answers from the above questions ultimately leads to
creating a profile for each communication channel. This channel profile can
then be compared to the requirements of several online multiplayer games,
and can be used as a guideline to select the best connection for the job.

4.1.1 Expectations

Based on the discussions above and background information for each of the
communication channels in chapter 2, some rough expectations about their
profiles can already be formulated and are shown below.

• WebSockets and WebRTC require some overhead on top of the under-
lying protocols, it is expected that the plug-in solution will require less
bandwidth due to its access to basic socket implementations.

• WebRTC implements the DTLS security layer into its communication
channels. It is expected that this will lead to a small extra processing
overhead and some extra CPU time compared to WebSockets.

• Whenever a message is sent or received while using the plug-in solu-
tion, the communication between browser and plug-in can significantly
increase measured latency.

• The plug-in solution runs in its own instance next to the browser. It
is expected that communicating over the plug-in solution will require
more CPU time than WebSockets and WebRTC.

• Web browsers must comply to communication standards. It is then ex-
pected that, in terms of bandwidth consumption, the choice of browser
will have little effect for WebSockets and WebRTC.

• Because the plug-in solution is loosely coupled with the browser then,
whichever browser is selected, it is expected that there will be no
difference in bandwidth consumption for the plug-in.

4.2 Evaluating the Connections

To evaluate these different connection options, a simple client-server setup
and a series of test cases are used to monitor their performance. These test
cases will mostly consist of measuring the round-trip times of the packets
sent out by different connections. In these test cases, the network traffic
is also captured for further analysis. More in-depth details about the net-
work setup and the implementation of the these test cases can be found in
appendix A.

69

Figure 4.1: Network setup.

4.2.1 Network Setup

In the simple client-server architecture, only three devices are present: the
client, the server, and a router that connects the client and server and is
a gateway to the Internet. Figure 4.1 shows the simple network architec-
ture. This setup is inspired by research performed by Laine and Säilä. [34]
They analysed the possibilities for XMPP on the web over WebSockets and
HTTP-based techniques.

The server runs an echo application that is able to send and receive
packets from all of the different connections. This echo application uses the
light-weight Node.js server framework to easily bring all the different con-
nections under the same roof on the server-side.

On the client, two popular and readily available browsers are used:
Google Chrome and Mozilla Firefox. Both of the browsers support Web-
Sockets, can ’talk’ to each other using a WebRTC peer connection, and
allow the Unity Webplayer to be executed.

4.2.2 Test Cases

All connections are subjected to a series of tests that will analyse a specific
characteristic. Three broad categories of characteristics are analysed: CPU
performance, bandwidth usage, and reaction to varying network conditions.
To measure the results of each characteristic of the connection, several pa-
rameters are played with between tests. The most important parameters

70

are payload size and packet send rate.

One will notice that some values for these parameters will recur often
in the different tests. For the payload size parameter, three values will be
encountered: 100 bytes, 1,000 bytes and 10,000 bytes. The first value,
100 bytes, can be considered as the upper limit of the size that a typical
game update will carry in a real game. This value will vary per game, or
even per update, and will usually be somewhat lower, e.g. 65 or 80 bytes.
The value of 100 bytes is chosen as a value that is easy to work with in
combination with the larger values, while still low enough to characterize a
stream of game updates. The larger values of 1,000 and 10,000 are purely
academic values, used to magnify the effects exhibited by the connections,
and to make the comparison more clear.

The commonly encountered packet send rate values are: 1, 10, 30 and
60 packets per second. The send rate of only 1 packet per second is not
a send rate that will be commonly observed in a real game, but it allows
to analyse certain effects of overhead very well. The other send rates more
closely resemble real send rates encountered in games. Sending 10 packets
per second could correspond to an intensive strategy game, or a role-playing
game while in combat. 30 and 60 packets per second is sending a packet
almost every frame, which corresponds to the update rate of fast-paced
games such as shooters and racing games. All of these send rate values
allow to discuss the connections for the different types of games.

CPU Usage

The test cases that focus on measuring the CPU resources used by a connec-
tion, will take place in the small client-server network in optimal network
conditions. This allows the packets to flow rapidly between the systems,
without much competing traffic. One sub-test in this test case will let each
connection be exposed to the same network conditions, send packets at
the same send rates and generate packets with the same payload size. This
makes each connection process the same amount of data in the same amount
of time. By keeping all these parameters the same, with the exception of the
connection used, one can compare the round-trip times of the connections
to get an idea of their load on the CPU.

The second sub-test of this test case lets the client and server play ’ping-
pong’ with each other. By measuring the time it takes for a connection
to send a packet back and forth for a fixed amount of times, then one can
directly relate this to the load a connection imposes on the CPU. Here too,
all parameters are kept the same, with the exception of the connection used.

71

Bandwidth Usage

For measuring the bandwidth usage of a connection, packet traces are anal-
ysed for each of the connections under different send rates and payload sizes.
Part of this analysis is also observing the overhead created by each of the
connections. In a first analysis of the packet traces, the overhead directly
attached to the actual payload is measured. This gives an impression of the
direct overhead a fixed amount of payload has associated with it.

Next, the operation overhead is analysed by also including other pack-
ets that generated by the connection, but don’t carry any actual game data.
This operational overhead can be related to the game data sent, for example,
an acknowledgement packet. Or, it can be unrelated traffic such as keep-
alive packets to check if the other end is still online. Different payload sizes
and send rates are used to determine their effect on the overhead created.

The last analysis in this type of test case is to measure the actual band-
width used by a connection. This is done by accumulating the amount of
bytes sent over a connection over a certain amount of time. Using the results
of bandwidth usage to compare the connections can give the developer an
intuitive idea of how this overhead translates in a load for the network.

Varying Network Conditions

The last test cases are based on sub-optimal network conditions. Artificial
packet loss, delay and delay jitter are introduced to observe a connection’s
response to these factors, and to get a idea on how they perform in more
realistic conditions. The round-trip times are measured here again. They
can perfectly reflect how a connection reacts to loss and delay. The first
sub-test will focus only on the effects of packets loss. Although the general
behaviour for unreliable / out-of-order and reliable / in-order connections
are well known, they are performed to detect any noticeable differences be-
tween similar connections, e.g. a reliably configured WebRTC connection
that retransmits a lost packet faster than its TCP colleagues.

The second sub-test performed is one that combines all conditions at
once: packet loss, delay and delay jitter. These results can show a developer
the to-be-expected effect of a connection when things eventually go wrong.
With the round-trip times and additional traffic traces on both the client
and the server, one can follow-up exactly where a packet went, and how the
connection decided to react to it.

72

4.3 Simulation Procedure

In the first and last test cases where round-trip times are measured, a strict
procedure is used to setup and test each connection. If not every connection
is tested in the same conditions, then some results may turn in favour of a
certain connection and may lead to wrong conclusions. The entire simula-
tion procedure is listed in pseudo code at the end of this section.

Before any tests are carried out, the different values for the parameters
that will be used are decided upon. These include the earlier mentioned pa-
rameters of payload size and packet send rate, but also how long such a test
should take, which browser is used and whether the network traffic should be
monitored or not. In the test cases where more realistic network parameters
are involved, they are configured too at this point. It is important to note
that each test scenario only tests one connection at a time, and not several
connections simultaneously. Otherwise, some connections my influence the
behaviour or results of others.

With a given set of parameters, each test scenario is executed in sequence
for each connection. First, the Node.js server application is started with the
desired connection ready to accept any incoming connections. Then, the
client is signalled that the server is running and it can start the desired
web browser. The browser is directed to the web page that the Node.js
server is offering and starts setting up the necessary connection. Now, the
browser and Node.js start exchanging data packets and the browser will
record timestamps for each packet it sends and receives. They will keep
exchanging packets until a stop condition is fulfilled, e.g. a fixed amount
of packets have been sent back-and-forth, or time has run out. At the end,
the browser will send his recorded timestamps to Node.js, which in turn
calculates the round-trip times and saves them to a file on disk.

After the results of this test scenario are saved to disk, the Node.js server
application and the web browser are completely shut down again. So no
previous state, that could have been created by earlier connections, lingers
around on the systems. After both have been closed, the next instance of a
test scenario is initiated, until all of the connections have gone through all
sets of parameters. Each test case is also repeated multiple times to even out
irregularities that may still occur in the network or one of the end devices,
e.g. the system was performing some garbage collection, or the CPU was
handling another system routine.

1 decide on parameter sets

2
3 for (number of iterations of this test case) {

73

4
5 foreach (set of parameters) {

6
7 foreach (connection in connections) {

8
9 start Node.js with current parameters and connection

10 start web browser and connect to Node.js

11
12 start sending packets and record timestamps

13
14 while (not done sending) {

15 wait

16 }

17
18 send timestamps to Node.js

19 calculate round -trip times and save to disk

20
21 close web browser

22 close Node.js

23 }

24
25 }

26
27 }

Listing 4.1: Simulation procedure pseudo code

74

Chapter 5

Results and Analysis

With the tests, described in chapter 4, conducted on each of the connection
options, their results can now be analysed. This chapter will go over each
test case separately and will analyse the results in depth. First, the results of
the processing overhead on the CPU are analysed, followed by the protocol
overhead on the network and bandwidth usage. The last test results analysed
are those from the tests involving packet loss and varying network conditions.
This chapter concludes with a summary of the results for each connection.

5.1 Processing Overhead and Delay

The first set of test cases are focussed on measuring the processing overhead
for each of the connection types. Here, this is done by measuring the round-
trip times for packets that are sent by the client and receiving its echo from
the server. The round-trip results reflect, besides its travelling time over
the network, how long it takes for a system to process an update. They
allow to establish a relative ordering of the connections in terms of their
delay due to system processing. Next to the round-trip times, the time the
browser actively requires the CPU is monitored. A connection that is more
processing-intensive will require more time from the CPU.

Two types of tests are performed here to gather the round-trip times.
The first type of test will generate and send packets at a fixed rate, regardless
of whether the echo of the previously sent packet has been received yet. The
client will do this for a certain period of time. This can be compared to a
game loop that sends out an update every nth frame. The second type of
test is a ’ping-pong’-like test where the client does wait for the echo to be
received before sending the next packet. In this test, the time to ping-pong
a fixed amount of messages is measured.

In essence, both these type of tests measure the same thing, but allow
to quickly display the results in a different way, as will be shown below.

75

Each of the experiments performed in this section are conducted under
optimal network conditions: high bandwidth, low latency, low jitter and low
packet loss. No artificial delays and / or packet loss is introduced at one of
the systems.

Each test case in the round-trip simulations is also repeated 10 times
per connection to even out possible irregularities that may arise, e.g. the
browser or Node.js that was busy doing garbage collection. Although only
10 repetitions are performed per test per connection, each test alone will
generate thousands of samples that are spread over time. This should give
enough statistical confidence about the data.

5.1.1 Round-trip Times

For the first type of test, the constant send-rate test, two different payload
sizes are used to measure the round-trip times: 100 bytes and 1,000 bytes.
The first payload size is an approximation of actual game data being sent.
The second payload size is expected to enlarge the differences between con-
nections: a larger packet may take more time / processing power to encode
and decode. An even larger packet size (10,000 bytes) was also considered,
but communicating such a large payload between browser and the Unity
Webplayer would make the plug-in unresponsive, and eventually crash.

The results shown are those for packet sizes of 1,000 bytes. At the end,
a comparison of the effects of different packet sizes is shown. The packets
are sent at a rate of 30 per second for 60 seconds.

Figure 5.1 displays box plots of the measured round-trip times for all con-
nections in Chrome and Firefox. The figure shows that the observed round-
trip times for Unity, both reliable and unreliable and in both browsers, are
of a magnitude higher than those of the browser-native connections. The
of values for the Unity Webplayer are also much more spread out over a
larger range, while the values for the browser-native connections are more
concentrated. This suggests that the WebSocket and WebRTC connections
offer a much more stable round-trip time than the Unity connections.

Of course, because the Unity Webplayer is designed to run full games
at a certain frame-rate instead of just passing through data, these results
were to be expected. The Unity Webplayer runs at a certain frame-rate,
typically 60Hz. Whenever the browser wishes to send a packet to the server
over the Unity Webplayer, the packet is placed in a queue. There, it must
wait for Unity’s event loop in the main thread to reach the code where it
accepts a message from the browser. Only then, the packet is processed
and put on the network. This also applies when a packet from the network

76

arrives at the Unity Webplayer. The packet can be read from the network
by a separate thread and process it already. But to pass it through to the
browser, it must again wait for the event loop in the main thread to read
the message buffer and call an external function to the browser. This issue
could be resolved if Unity allowed other threads that would run at a higher
rate to perform these functions. Unfortunately, this is not allowed by Unity
at the time of this writing.

For a packet to achieve a low round-trip time over the Unity Webplayer,
it must be ’lucky’ to be put in the queue just before the event loop checks the
queue. Otherwise, the packet must wait at most one whole cycle of the event
loop, which might be several dozens of milliseconds. A very ’unlucky’ packet
may be held up for a maximum of 33.333 milliseconds! This is assuming the
event loop runs at 60Hz. Slower event loops can further increase this value.

Figure 5.1: Round-trip times for all connections.
Left: Results for Chrome. Right: Results for Firefox.

X-axis: connection name. Y-axis: round-trip time in milliseconds.

Due to the large values of the Unity Webplayer, the results for the
browser-native connections are difficult to analyse visually. Therefore, they
are displayed again separately in figure 5.2. The figure shows a more clear
image of the differences in round-trip times for WebSockets and WebRTC, as
well as their stronger concentration on around the median. For both Firefox
and Chrome, WebSockets achieve the better round-trip times. This can be
due to several factors, including WebRTC being more taxing on the CPU
due to the DTLS layer. Indeed, the server also decodes and re-encodes the
packet when it is sent back. The larger packet size (results for packet sizes
are shown in section 5.2) can also be a factor that may have an influence.
However, in the results of packets with a payload size of only 100 bytes,
WebRTC performs a little better, but still isn’t brought down to the level
of WebSockets with a payload of 1,000 bytes.

Another observation is that there is hardly any difference between re-
liability or ordering in both the WebRTC and Unity Webplayer channels.

77

Of course, because these tests are performed in optimal network conditions
with (nearly) no packet loss, the channels that have reliable and ordered
characteristics don’t exhibit any delays yet.

A subtle difference is found between browsers when comparing the round-
trip times for the WebRTC connections. Firefox performs slightly better in
the handling of WebRTC traffic compared to Chrome. Figure 5.3 shows the
difference for both the WebRTC connections. This difference could stem
from an implementation difference of the WebRTC functionality, or because
of the difference in browser architecture. Other connections don’t show a
significant difference in round-trip times between browsers.

Figure 5.2: Round-trip times for browser-native connections.
Left: results for Chrome. Right: results for Firefox.

X-asix: connection name. Y-axis: round-trip time in milliseconds.

Figure 5.3: Comparison of WebRTC connections between browsers.
Left: WebRTC - reliable. Right: WebRTC - unreliable.

X-asix: connection name. Y-axis: round-trip time in milliseconds.

Because box plots don’t show the round-trip measurements over time,
figure 5.4 shows a limited time-lapse of the first 200 samples in Chrome. This

78

figure also gives a good overview of the behaviour of the Unity Webplayer.
The sawtooth-pattern strengthens the earlier statement about its slow event
loop. The timestamps that the Unity Webplayer stores whenever a packet
must pass through can also further illustrate this. Figure 5.5 displays the
same 200 samples, but the measured round-trip times for the plug-in at
JavaScript-side are replaced with the round-trip times measured gathered
by the Webplayer itself. Comparing these two figures, it is clear that the
Unity Webplayer puts a large delay on a packet when it is sent from the
browser’s JavaScript-side.

In this last figure, another observation is that the first packet sent over a
Unity Webplayer connection is put on hold. The Unity Webplayer will first
ask a socket policy file from the server. Only if the server responds with the
correct parameters will the Unity Webplayer start sending packets over that
connection. It does this for every connection it sets up. So the first packet
sent will always experience a greater delay.

The raw results that were used to create the box plot figures can be
viewed in tables B.3 and B.4 for Chrome and Firefox respectively. The re-
sults for payload sizes of 100 bytes can also be viewed there. They are found
in tables B.1 and B.2.

Figure 5.4: Round-trip time-lapse of the first 200 samples in Firefox.

79

Figure 5.5: Round-trip times measured inside Unity versus browser-native.

As mentioned in the beginning of this section, these results can also
be presented in a different form. Displaying the results as the amount of
packets that get processed each second gives another intuitive feel for the
performance of a certain connection.

In this test, the Unity Webplayer is left out of the results. The test is
executed by only sending the next packet when the echo of the previous
one has arrived. This puts the Unity Webplayer is a serious disadvantage,
and performing this test with the Unity Webplayer would give results that
could lead to wrong conclusions. For example, even though it can take up to
dozens of milliseconds before the update finally reaches the browser again,
does not mean that the CPU was busy processing the update. This would
give the impression that the plug-in has a significant CPU overhead. An-
other mistake would be to say that Unity was only capable of handling one
message per frame. On the contrary, it can accept and process multiple
messages per frame, each being processed and passed through sequentially
in separate function calls.

Temporarily removing the Unity Webplayer from the equation allows to
use larger payload sizes than in the previous test. Besides the earlier payload
sizes of 100 and 1,000 bytes, a payload size of 10,000 bytes is tested as well

80

to measure the effect of a larger payload size. Figure 5.6 presents the result
for a payload size of 1,000 bytes. A comparison of the values for all packet
sizes can be found in tables B.5 and B.6 for Chrome and Firefox respectively.

The results, again, speak in favour of the WebSocket connections. Web-
Sockets, even the secure version, can handle roughly 60% more packets with
a payload of 1,000 bytes. The gap becomes smaller for packets with a lower
payload because the time a packet is travelling over the network starts to
overshadow the actual processing time, but it is still very clear. The re-
sults also show a deviation between the two browsers. Firefox seems to be
able to process WebRTC packets faster, consistently. For WebSockets, both
browsers perform on par with each other.

Figure 5.6: Packets processed per second.
Left: Round-trip rate of Chrome. Right: Round-trip rate of Firefox.

X-asix: connection name. Y-axis: packets per second.

5.1.2 CPU Time

During the first type of round-trip test cases, each connection has to pro-
cess the same amount of packets in a fixed amount of time. This makes the
ideal test case for comparing CPU resources consumed by the web browsers
while using a certain connection. The CPU resources used by the browser
are queried by the client-side management application at the end of a test
instance. The management application can ask the operating system how
long a process, or a group of processes, has actively used the CPU.

Figure 5.7 and tables B.7 and B.8 display the average CPU times con-
sumed by a browser using a certain connection. Here too, the Unity Web-
player stands out by consuming a large portion of CPU time compared to
the browser-native connections. Especially for Chrome, the plug-in con-
sumes a large amount of CPU time. Unity’s event loop will keep consuming
resources at a constant rate (60Hz), even if no packets need processing. The

81

large difference between Chrome and Firefox could be due to the architec-
tural difference between the two browsers. In Chrome, the tab running the
JavaScript code and the plug-in instance of the Unity Webplayer each run
in a separate process. This means that, for each message sent and received,
they must perform inter-process communication, which might attribute to
part of the CPU overhead.

Comparing the browser-native connections again, then the same trend
is visible here too: WebSockets consume slightly less CPU time than both
WebRTC connections. Here, encoding and decoding of the messages due to
the DTLS security layer in WebRTC can cause the increased CPU usage.
Another reason might be code optimization. Since WebRTC is still an ex-
perimental technology at the time of this writing, its integration in the core
of the browser may not be optimal yet. However, on Firefox, the difference
between WebRTC and WebSockets is much less compared to those from
Chrome. In general, it is hard to say, based on these results, that Web-
Sockets perform significantly better than WebRTC on the CPU usage front,
especially compared to the round-trip results above. The browser may be
doing other tasks that overshadow the processing of encoding and decoding
packets.

Figure 5.7: Comparison of average CPU resources consumed.
Left: Time consumed by Chrome. Right: Time consumed by Firefox.

X-asix: connection name. Y-axis: CPU time in seconds.

5.2 Protocol Overhead and Bandwidth Usage

This section will analyse the overhead that is introduced by the connections
and their protocols when the packet is put on the network. This also includes
any overhead created by other mechanisms that support the connection.

First, the overhead that is directly attached to an actual data packet
is investigated. This is the overhead that is generated for each packet sent

82

out. Next, the operational overhead is analysed by also including any other
packets or data generated by the connection that is not attached to the ap-
plication data. Lastly, bandwidth usage is measured.

Analysing the overhead created by the connections is done using traffic
captures made with Wireshark. And here too, scenarios are run with differ-
ent packet sizes to see whether payload size has an effect on the behaviour
of the protocol. The two payload sizes tested are, again, 100 and 1,000

bytes. To analyse the operational overhead, different packet send-rates are
also used to analyse whether this has any absorption effect on some packets,
e.g. ACKs that get absorbed into subsequent packets.

Note that, all packets sent over the network also include the Ethernet
and IPv4 headers that are mandatory for all packets sent over a network
that involves the Internet and many other networks. Their header sizes are
also incorporated into the overhead analysis.

5.2.1 Data Packet Size

By knowing how much actual payload data is generated per packet in a test
case allows to analyse the overhead introduced per packet by the connection.
The network traffic captured by Wireshark allows to quickly view the total
packet size of a packet containing game data.

Comparing the packet sizes and analysing the overhead introduced by
the protocols in figure 5.8, one can see that the WebRTC connections pro-
duce the largest packet overhead of all connections. The overhead for both
the reliable and unreliable channel is exactly the same. This is because the
SCTP protocol uses the same packet structure for both reliable and unre-
liable transmission. Only when a packet is detected to be lost will there
a difference in how data is handled depending on its configured reliability.
More details about this procedure are found in section 2.1.3. Figure 5.9
shows the header overhead expressed as percentages of the total packet size.

For the tests with a payload size of 100 bytes, the overhead even exceeds
the actual amount of data: 100 bytes of data versus 131 bytes of overhead.
This high overhead does not come as a surprise. The protocol stack for
WebRTC data channels is quite large: SCTP / DTLS / UDP. More infor-
mation about this protocol stack can be found in section 2.4.2. Note that,
these result, are only valid for WebRTC data channels. For audio and video
communication over WebRTC, a different protocol stack is used, and other
parameters are involved such as the audio and video codes that compress
the stream.

WebSockets and the Unity Webplayer’s reliable connection nearly pro-
duce the same results, but WebSockets create a small amount of extra over-

83

head. This is due the thin WebSocket protocol layer on top of the underlying
TCP connection. The WebSocket header size is also dependent on the size of
the payload. When the payload size exceeds a certain amount (125 bytes),
then the WebSocket protocol needs a few extra bytes to enlarge the ’payload
length’ header field. For a payload of 100 bytes, the overhead produced is 60
bytes, while for a payload of 1,000 bytes, the overhead becomes 62 bytes.
For the TCP connection in the Unity Webplayer’s reliable connection, the
overhead stays put at 54 bytes.

The size of the WebSocket protocol header also depends on whether
the data is coming from the client, or from the server. Data sent by the
client is masked, which requires 4 extra bytes for the masking key inside the
WebSocket header. Data coming from the server is not masked and does not
need this value. The WebSocket protocol specification even dictates that no
data sent by the server should be masked. [21] The WebSocket results shown
in the figure 5.8 are masked results. More information about the masking
key and the length header fields in the WebSocket protocol are found in
section 2.3.1.

Although not displayed in figures 5.8 and 5.9, the Secure WebSocket con-
nection performs differently between browsers. The value displayed is the
one observed in the traces of Chrome: 189 bytes. However, the results for
Firefox have a slightly higher packets size: 203 bytes. This is due a differ-
ence in how Chrome and Firefox encrypt their data over TLS. For Firefox,
these packets also stay at a fixed size of 203 bytes. No difference is found
between packets coming from client or server, even though the masking key
is included in the packets coming from the client. For Chrome, the packets
coming from the clients do differ in size than those coming from the server.
The packets size of 189 bytes includes the masking key. Those coming from
the server are 185 bytes. Decrypting and inspecting the payload using the
self-signed certificate, reveals that both carry the same WebSocket informa-
tion as with the non-secure WebSocket connection. The difference between
Chrome and Firefox in the Secure WebSocket connection will be made vi-
sually clear in the next couple of tests.

The lowest overhead for a packet is observed for the Unity Webplayer’s
UDP connection, with an overhead of only 42 bytes, regardless of payload
size. This low overhead is achieved due to UDP not having sequence numbers
or flags that indicate an acknowledgement or fragmentation of the data,
keeping it light-weight.

5.2.2 Total Overhead

The total overhead created by a communication channel can be found by
analysing the Wireshark traces and searching for patterns over a period of
time. The search is also broadened by performing the test with different

84

Figure 5.8: Comparison of total packet sizes.
Left: 100 bytes payload. Right: 1,000 bytes payload.

X-asix: connection name. Y-axis: packet size in bytes.

Figure 5.9: Comparison of header overhead percentage to total packet size.

Left: 100 bytes payload. Right: 1,000 bytes payload.
X-asix: connection name. Y-axis: header overhead percentage with respect

to total packet size.

sending rates to see whether certain effects, such as packet absorption when
sending packets at a higher rate, are observed.

Four send-rates are analysed: 1, 10, 30 and 60 packets per second. The
first send rate is merely chosen as a baseline to see every aspect of the con-
nection in action separately. The send-rate of 10 packets per second could be
considered as the send-rate experienced during multiplayer strategy games.
They are usually limited by the number of events a player can generate per
second, and thus can run at a slower rate than a typical rendering rate.
A send rate of 30 or 60 packets per second would correspond to sending
a packet almost every frame. Such a high send rate is frequently applied
in fast paced multiplayer games such as shooters where the timeliness and
frequency of updates is important.

85

In figures 5.10 and 5.11, an overview of the results is shown. The val-
ues are also available in table B.10. Table B.9 also gives the raw numbers
that are found analysing the packet traces. Each connection is analysed
separately in more detail below.

Figure 5.10: Total operational overhead percentage for a payload of 100
bytes in Chrome.

WebSockets

As was mentioned in the analysis above of the WebSocket packet sizes, its
header size depends on whether the packet is sent from the client or from
the server. An extra operational overhead for WebSockets is found in the
acknowledgements sent when sending at a rather slow rate. An ACK packet
is sent from the client to the server, ˜50 milliseconds after receiving the echo
packet back from the server. The ACK packet has a size of 60 bytes. It
is, however, not seen any longer when sending at a higher rate: 30 and 60

packets per second absorb this ACK packet in the next packet sent out by
the client. In this network environment, one would need to start sending
packets at a rate a little higher than 20 packets per second to start this
ACK absorption process.

Even though the ACK packet gets absorbed at higher send rates, does
not increase the overhead of each packet carrying actual game data. This is
because the acknowledgement fields for TCP are mandatory in its header.
At these higher send rates, the traffic becomes a pure data stream without
any other side-mechanisms further adding to the overhead.

86

Figure 5.11: Total operational overhead percentage for a payload of 100
bytes in Firefox.

WebRTC

The overhead for a WebRTC packet is already found to be fairly large com-
pared to small payloads. An additional overhead is found in its selective
acknowledgement (SACK) mechanism. Whether the stream is configured to
be reliable or unreliable, SACKs are always exchanged between end-points.
A SACK piggybacking on a packet, in this case, adds a 16 byte overhead.
This SACK can grow in size when more streams are multiplexed over the
same SCTP connection. A standalone SACK in this test is measured to be
135 bytes. At slow send rates (1 packet per second) this standalone SACK
is sent out by the client after ˜200 milliseconds it received its echo back from
the server. So in this case, one needs to send a little faster than 5 packets
per second to let the SACKs piggyback on the data packets.

The send rates of 10 packets per second and more don’t exhibit this
standalone SACK any more. They are then carried along with the other
data.

One other, very noticeable, mechanism that is present in the WebRTC
channels, is the STUN traffic. Once a WebRTC connection has been set
up, it requires STUN to check liveliness and consent from to other peer to
keep sending data. However, the observed behaviour is browser-dependent.
This specification [45] describes that STUN packets should be sent every ˜5
seconds.

When Firefox is used, this traffic is almost absent. It is possible that

87

Mozilla followed the SIP specification that also uses STUN for the same
purposes, and sends them every 25 - 29 seconds. Such an infrequent check
might be a too slow rate to detect that the other client is not available any
more. Chrome, on the other hand, sends out STUN requests very aggres-
sively. Roughly every ˜500 milliseconds. Unfortunately, the Node.js We-
bRTC module uses the Chrome implementation for WebRTC, which makes
it behave identically in this regard.

This implementation difference between browsers for the STUN traffic
has a large impact on the operational overhead of WebRTC. Every STUN
request-response procedure costs around 260 bytes. Observing this for the
traces in Chrome, 1048 bytes are sent every second: two requests from
Chrome, and two from the server. In Firefox, the STUN traffic is domi-
nated by the requests from the server, resulting in 504 bytes per second
originating from the server, and approximately 10 bytes per second from
STUN traffic originating from Firefox (assuming a STUN request is sent
every 25 seconds). This difference will also be made visually clear in the
analysis of the bandwidth usage.

This currently means that, even for Firefox, WebRTC has a very large
operational overhead for small payloads and slow send rates, which is clearly
visible from the figures. Increasing the payload and / or send rate spreads
this overhead over the packets.

Unity Webplayer

The Unity Webplayer houses two sockets of which the characteristics are
well known. The TCP connection of the Unity Webplayer has the same
operational overhead that is described earlier for WebSockets. It has the
separate ACK packet of 60 bytes that is observed when the send rate is
slow, which is sent approximately ˜50 milliseconds after the echo has been
received. The ACK packet is absorbed when using the send rates of 30 or
60 packets per second.

The plain UDP stream is the most pure data stream one can observe in
these packet traces. Each packet sent over the connection has the same size.
The only overhead observed is that of the headers that are carried with the
payload. This also means that, whichever send rate or packet size is chosen,
the packet overhead stays the same for each set of parameters.

5.2.3 Bandwidth Usage

The same Wireshark traces that were used to analyse the total protocol
overhead, are here also used for determining the bandwidth utilization of
a connection under a certain send rate. The elements that are identified

88

as part of the total overhead are applied in Wireshark filters to distil the
bandwidth usage of a connection. The bandwidth usages for the same four
send rates, 1, 10, 30 and 60, are analysed. The bandwidth usage analysed
here is for a payload of 100 bytes.

Figure 5.12 shows a comparison of the bandwidth consumed by all of
the connections under different send rates, and for each browser. Tables
B.11 and B.12 show all of the numeric data for the four send rates. In both
graphs, one can see that WebRTC consumes the most bandwidth. This is
a consequence of the large overhead that is created by STUN. However, as
was mentioned in the analysis of the total protocol overhead, this STUN
overhead, can be diminished by sending packets at a higher rate. This effect
is observed by looking at the relative height of the WebRTC connections
compared to other connections in the two graphs. Still, WebRTC will re-
main the connection that consumes the most bandwidth, at equal payload
size, due to the many headers that are wrapped around the data.

A second observation is the large difference between Chrome and Firefox
when they send data over a WebRTC connection at 1 packet per second.
This is attributed to the implementation difference of STUN traffic gener-
ation between the browsers. The difference in height is purely the absence
of Firefox’ STUN traffic. If both browsers (and by extension the Node.js
WebRTC module) would have implemented this according to the current
specification, WebRTC’s bandwidth usage would lie closer to the other con-
nections.

Figure 5.12: Comparison of bandwidth usage between browsers.
Left: 1 packet per second. Right: 60 packets per second.

X-asix: connection name. Y-axis: bandwidth usage in bytes per second.

89

5.3 Effects of Packet Loss

In all of the previous test cases, ideal network conditions were assumed. In
this section, packet loss, delay and jitter are introduced to observe how each
connection reacts to these two different situations. Running tests in ideal
network conditions helps in analysing certain properties of a connection or
underlying protocol, but more often than not, a real-time multiplayer game
will be played in a network that will exhibit higher latencies, jitter and
packet loss. How the connection will behave when it encounters such situa-
tions can have a high impact on the playability of a game.

Two types of test cases are performed. In the first type of test, only the
effect of packet loss is monitored to gain insight about how a connection
responds to loss and what consequences this has for subsequent packets. In
the second type of test cases, a more realistic network environment is emu-
lated by introducing delay, jitter and packet loss all at once. In both cases,
the round-trip times are measured again. Just as with the earlier round-trip
tests, these too are executed 10 times to gain more confidence about the
results.

5.3.1 Packet Loss

In the tests for packet loss, the server is configured to randomly drop 5% of
its incoming and outgoing traffic. Initial tests were performed with a fixed,
nth packet that would get dropped from the stream. However, this would
lead to repeating patterns that were unwanted for analysing data. For ex-
ample, every WebSocket stream would get a packet dropped, as well as its
retransmission, resulting in very high peaks for the WebSocket connections.

Figure 5.13 gives a time-lapse overview of the first 200 round-trip samples
captured for each connection at a send rate of 10 packets per second. Dealing
with such a relatively high chance of getting a packet dropped, the send
rates of 30 and 60 packets per second could not be dealt with by the Unity
Webplayer plug-in when using an asynchronous implementation. This is
caused by the large amount of threads that are created and are busy waiting
for their packet to be put on the network.

The spikes in the figure are caused by the ordered nature of the TCP
connections, and due to the ordered configuration of the WebRTC channel.
This is the expected behaviour of these channels. Because they need to
deliver data in-order, subsequent packets have to wait for their lost prede-
cessor to be retransmitted and be delivered. Another observation is that the
retransmission of the WebRTC channel occurs much faster than the TCP-
based channels, even though both use a comparable retransmission trigger

90

mechanism: either a timer runs out, or a few consecutive (S)ACKs notify
the sender that data is lost.

The Unity Webplayer and WebRTC - unreliable connections don’t show
any spikes because they just forego retransmitting. The WebRTC unreliable
connection does know about data being lost and will notify the sender about
it. But the sender will, in its turn, tell the receiver to just forget about it
by advancing its transmission sequence number. More information about
WebRTC’s unreliable transmission can be found in section 2.1.3.

Figure 5.13: The effect of packet loss on each connection.

5.3.2 Wide Area Network Emulation

A rather busy network environment is emulated in this test case. The traffic
shaper on the server-side is configured to emulate a network with a one-way
delay of ˜50 milliseconds and 5 milliseconds of jitter that is applied from a
normal distribution, with a 1% chance of getting dropped. Packets are sent
at a rate of 10 per second.

A time-lapse of the first 200 packets is shown in figure 5.14. These re-
sults are fairly similar to the results shown with only packet loss, except for
the extra jitter and an upward shift due to the added delay. This jitter is
extra noticeable on Unity’s TCP connection. This is due to the event-loop
that introduces some jitter on its own, which is sometimes accumulated with
the jitter introduced by the network. On other times, this event-loop jitter
cancels out the network jitter. This accumulation is also present for its UDP

91

channel, but it is less noticeable.

In this time-lapse figure, the UDP connection of the Unity Webplayer
also seems to ’blend in’ with the WebRTC - unreliable connection. This is
also illustrated by the box plots that are shown in figure 5.15. The quantile
values in tables B.13 and B.14 more or less confirm this observation. They
show that Unity’s UDP connection is still slightly higher. But the earlier
impressions in the section about the round-trip results are smoothed.

Figure 5.14: Round-trip time-lapse for the first 200 samples in a busy net-
work.

5.4 Summary

This section summarizes the results observed for each connection, before
discussing them further in the context of multiplayer games on the web.

5.4.1 WebSockets

The WebSocket connection is the most lightweight connection. It is the least
CPU-intensive connection available for the browser and achieves the highest
send rate. For typical game updates, the WebSocket connection will only
add 2 to 6 bytes of overhead compared to a reference TCP socket, which
also makes it a low-profile connection in terms of overhead. When send-
ing packets fast enough (more than 20 packets per second), then the ACK

92

Figure 5.15: Round-trip times for all connections in a busy network.

overhead is also eliminated. One has the option to encrypt the communi-
cation by using the Secure WebSocket connection. This adds a little extra
overhead on both the network and CPU. The network overhead for the Se-
cure WebSocket connection is dependent on which browser is used. Chrome
produces slightly smaller encrypted packets than Firefox. Both WebSocket
connections also achieve the lowest delays when used in optimal network
conditions, but when packets get dropped, their underlying TCP connec-
tion can cause latency spikes due to the ordered and reliable characteristic.

5.4.2 WebRTC

The WebRTC connections are generally less efficient than WebSockets: they
add more overhead (header and operational) and are more taxing on the
CPU. This is due to many protocol layers and mandatory encryption of the
WebRTC data channels. There is no difference between the reliable or unre-
liable channels in terms of CPU and network overhead, unless packets start
to get lost. WebRTC’s selective ACK mechanism will always add some over-
head, regardless of reliability configuration. The overhead of these SACKs
can be minimized by sending packets fast enough. The choice of web browser
currently has a large impact on operational overhead. Chrome will produce
an excessive amount of STUN traffic, while Firefox is very absent on this
aspect. WebRTC does make up for this overhead by providing flexibility in
configuring reliability and ordering of the connection, and multiplexing data
channels over a single peer connection.

93

5.4.3 Unity Webplayer

The Unity Webplayer plug-in is the most efficient connection option when
it comes to bandwidth usage. It offers a high degree of control over how
the data is sent over the connection because it is not restricted by what
the web browser exposes to the developer. One can use standard TCP
and UDP sockets. The UDP socket has the lowest and most transparent
operational overhead. However, this comes at the price of the highest CPU
usage due to its slow internal event loop. This high CPU usage is very large
for Chrome compared to Firefox. This is due to architectural differences
between browsers and how they execute plug-in programs. Communicating
data over the Unity Webplayer introduces a high amount of latency and
jitter in optimal network conditions, also because of its internal event loop.
This effect of latency and jitter, however, is less present when using the
connection in a more busy network environment. This is especially true
for its UDP connection, which performs similar to WebRTC’s unreliable
configuration in terms of latency.

94

Chapter 6

Choosing the Best
Connection

Having analysed the results for each connection in the previous chapter,
one can discuss their applicability to support multiplayer games for the web
browser. One will notice that, compared to a game developer targeting na-
tive platforms, the web-game developer is still more restricted in various
aspects. The web-game developer will have to make difficult trade-offs.

The different connection options are discussed in their applicability for
various types of games, and how they can be used in combination with la-
tency and bandwidth optimization techniques discussed in chapter 3. They
are also discussed in the context of the devices on which these games can be
played.

6.1 Applying the Connections in Multiplayer Games

The primary topic to discuss is, of course, how well a connection can fit in a
certain type of multiplayer game. Some broad categories of games that are
frequently played online are discussed in the context of their requirements
for game update transmission. The various types of games are broadly
categorised in terms of their sensitivity to latency and packet loss. For
each such category, one or several connections are recommended to be used
for such a type of game. Figure 6.1 shows a possible decision tree that a
web-game developer can use to choose a connection for his game.

6.1.1 Shooter and Racing Games

A widely played and very competitive genre of multiplayer games are shooter
games, whether they are played in first-person or third-person. Its main

95

requirements are a very low latency and a high update rate. Players usually
run around fast and in different directions while shooting multiple times per
second. This gives game data a very short relevant time-frame. Although
reliability and ordering are always a wanted feature, they can pose a big
issue when part of the game updates gets delayed or lost. Reliability and
ordering are thus replaced by frequently sending updates to conceal these
potentially lost or late updates and to prevent data from being stalled.

Racing games have similar requirements to shooter games: a low latency
and frequent updates. The low latency is needed to make the vehicle feel re-
sponsive and to timely synchronize the position of the vehicles of all players.
Frequent updates are necessary to correct the vehicle’s position, direction,
speed and acceleration, e.g. to avoid crashing into a tree or oncoming traffic.

Looking at these requirements, one can see that either the Unity Web-
player or an unreliably configured WebRTC data channel matches these
requirements. In these scenarios, one would need to make the trade-off
between bandwidth and latency. The WebRTC connection is a fast connec-
tion, but it produces a very high overhead. Especially for these games, where
packets are already very small, the WebRTC overhead will quickly reach val-
ues between 200% and 300%. The rest of WebRTC’s operational overhead is
spread over the many game updates, but this will be largely implementation-
dependent, e.g. the frequency of STUN requests. The Unity Webplayer’s
UDP connection on the other hand, produces very little overhead but intro-
duces latency and jitter that depends on Unity’s internal event loop. This
jitter however, mostly blends in with the latency and jitter of the network.
The increase in latency is still slightly present. This means that, if the devel-
oper decides that one can cope with the extra bandwidth, then the WebRTC
connection is the preferred choice of communication. But if latency can be
minimized by, for example, placing enough servers in good locations, then
the latency increase of the Unity Webplayer can be less of an issue, and thus
Unity’s UDP connection can be used and much network resources are saved.

The bandwidth usage can be further mitigated by applying bandwidth
optimization techniques such as dead-reckoning for positional prediction,
and delta-updates to reduce the size of updates. Dead-reckoning will reduce
the amount of updates sent, and is especially effective when the character
or vehicle keeps going in a straight line. Delta-updates will reduce total
bandwidth consumption by packing the numbers in less bytes. This does,
however, increase the relative overhead because the overhead remains fixed
for the amount of data being transported. For the delta-update technique,
an additional reliable channel should also be used to periodically send a ref-
erence state. This could be any of the three reliable connections available.
When a WebRTC connection is chosen, one must also be aware that creating
such delta-updates is best done using JavaScript’s Typed Arrays. Update

96

filtering is also able to reduce the amount of packets received from other
clients. Since these types of games are focussed on what is directly in sight,
updates from what is happening behind the player or around the corner are
not necessarily needed.

If a client-server architecture is used, then the developer must also choose
optimal locations for the servers to minimize latency. When not taking
place in a persistent online world, most of these games also allow to be
implemented in a peer-to-peer architecture. For peer-to-peer, the only (im-
mediate) solution is to implement the game using a WebRTC connection.
But, as will be suggested and discussed later, the Unity Webplayer could
still be of use in this scenario.

6.1.2 Action and Role-playing Games

Action and role-playing games, including massively multiplayer games, can
have a somewhat slower pace than the shooter games described above. The
avatar that the player has under his control can move around, but its exact
position is usually of less importance than in fast-paced games. The actions
this avatar can execute usually also have some kind of build-up or activation
time before any effect is applied on other players. This makes that these
games are a bit more tolerant to latency, and that reliable transport proto-
cols are an option.

This means that all possible options are on the table, and much depends
on more specific requirements of the game. One need not choose, however,
between either a reliable or unreliable channel. Both types can be used,
a dual channel approach. If, for example, the game boasts free-movement
combat, then maybe the best option is to choose an unreliable channel for
just the positional information and look at the arguments given above to
make a choice. Then, a reliable channel could be used for the avatar’s other
actions such as swinging a sword or casting a spell. Otherwise, a reliable
channel for all game updates can be chosen.

The choice of a reliable channel is faced with the same trade-off that
had to be made for fast-paced games: latency or bandwidth efficiency. The
WebSocket connection performs the fastest of all connections and uses the
least CPU power, but adds a slightly higher protocol overhead compared to
the standard TCP socket in Unity. The developer must also be aware that,
if the game is played in an HTTPS web page, then only a Secure WebSocket
can be used. The browser does not allow to ’downgrade’ the security of the
page, even if it’s not needed. This would mean that the overhead becomes
a bit larger, and shifts the favour, here too, to the Unity Webplayer. If

97

security is desired, then a Secure WebSocket is the better option, unless a
custom security mechanism will be developed.

The bandwidth and latency optimization techniques are also of great
importance here. Aggregation of updates may be possible, e.g. packing a
positional update and ability activation in the same update packet. Ap-
plying update filtering by making use of zones in the world can reduce the
amount of packets the client receives. The other strategies discussed above
can be applied here as well: dead reckoning, delta-updates and good server
placement.

Here, the WebRTC connection should not be considered due to its high
overhead, unless a peer-to-peer architecture is involved, or one would de-
cide on using the multi-channel approach. Remember that WebRTC can
multiplex multiple data channels over one peer connection, which optimizes
overhead efficiency and bandwidth usage. Multiplexing more than one chan-
nel lowers the relative protocol overhead, and may eventually put it on par
with the WebSocket and Unity connections if one manages to send enough
data through the channels. The WebRTC data channels are also secured by
default.

6.1.3 Puzzle and Strategy Games

Many game genres are somewhat slower-paced than the games described
above, but therefore not less competitive. Common slow-paced games are
strategy and puzzle games. The update pattern for strategy games and puz-
zle games, is based on the player’s input rather than the entities he controls.
This means that updates are only, almost exclusively, needed when the user
triggers some event by giving input, e.g. by pressing a button. However,
each update should be sent reliably because they contain information ex-
plicitly requested by the player. Allowing such an update to get lost may
confuse the player and cause frustration. These games also have a relatively
high tolerance towards latency, as long as the player is given some feedback
about his actions, which improves perceived latency.

Since latency is less of an issue here, one can focus on the bandwidth
efficiency and processing power. If the game is to be played in a peer-to-peer
architecture, then a (partially) reliable WebRTC connection is the way to
go. In a traditional client-server setup, the WebSocket and Unity connec-
tions are the two best possible options. However, unlike in the discussion
above, where Unity’s TCP connection could be used, in this situation, send-
ing updates will be relatively infrequent. This means that Unity will mostly
be sitting idle and consuming CPU resources, waiting for a packet to pro-
cess. Especially for battery-powered devices, this is not desirable. In this
case, the standard WebSocket connection is the preferred solution. And

98

Figure 6.1: Possible decision tree for choosing a connection.

even the Secure WebSocket solution would still be justified. Also, because
the frequency of the updates is far lower compared to other game genres and
dependent on user input, these extra bytes will only contribute marginally
to the total amount of bytes used during a game session.

Optimizing bandwidth and latency for input-driven games is harder be-
cause sending input is, on its own, already an optimization. However, update
filtering can be applied here too. If, for example playing a real-time strategy
game with fog of war, receiving detailed updates about players that are not
yet visible should not be necessary. Nonetheless, good server placement is
important here too.

6.2 Using the Connections on Different Devices

Another important factor to take into account is the target platform of the
game and the infrastructure behind the connections to support the game.
Indeed, the web browsers on mobile devices may be a potential target plat-

99

form, and one must keep in mind its limitation when using a connection on
such a device. But this discussion is not limited to client devices alone. The
server-side also plays an important role in keeping the game online and can
also face some limitations.

6.2.1 Laptop and Desktop Systems

Devices such as laptops and desktops are relatively powerful devices and
are usually connected to a decent wired or wireless home network. In such
cases, most players will hardly care if a connection uses a few extra bytes
per connection, or that the connection uses a little extra CPU resources.

6.2.2 Mobile Systems

Mobile devices such as smartphones and tablets have become a large group
of devices that also have access to the web. Their browsers too support
HTML5 technologies, and some even WebRTC. And although they can con-
nect to Wi-Fi networks at home or work, they are often connected to less
stable, mobile networks as well, such as 3G and 4G wireless networks. Not
only do these networks have a higher latency and packet loss, they also have
a higher financial cost associated per byte that is transmitted. Addition-
ally, mobile devices are battery-powered and are usually less powerful on
the CPU-front. This makes choosing the right connection option especially
important.

Using the Unity plug-in has a higher CPU cost, while WebRTC has a
higher bandwidth cost. So when possible, WebSockets would seem to be the
obvious choice. However, because the mobile networks exhibit a lot more
packet loss, one should carefully analyse the latency limits for the playability
of the game and then decide on a connection to go with.

The choice of a browser here may also be of great influence. Firefox
uses more CPU resources for the browser-native connections compared to
Chrome, but for the Unity plug-in, the opposite is observed. But this is a
choice that lies in the hands of the player, not the developer. He can only
make the player aware of the implications the choice of browser has on the
player’s device.

6.2.3 Server Systems

Not only the systems on which the game will be played are important. In
cases where a game server is involved, one must also keep in mind that the
server will be a central meeting point for all game data. If a connection
with a lot of overhead is chosen and many clients are connected, then the
server-side of the game may start to become a bottleneck. This is certainly

100

true when many Chrome WebRTC clients would be used to play the game.
The server will then have to respond to a lot of STUN requests which adds
no value to the game. Additionally, costs associated with bandwidth would
also have a negative impact. Keeping the security of the connection in mind
is also important. The server must encode and decode each of the packets
it sends and receives, adding to the load.

A possible solution to this problem can be found in the ALVIC-NG
architecture discussed in section 3.1.2. Proxy servers at the edge of the
server-side can be made responsible for decoding and encoding of game data,
as well as responding to STUN requests in order to lift this effort from the
core server machines. The actual game update data can then travel on a
light-weight transport protocol within the server architectural system.

6.3 The Unity Webplayer Plug-in as a Communi-
cation Channel

When using the Unity Webplayer plug-in as the preferred choice of commu-
nication channel, then one can also discuss whether or not to just develop
the entire game for the plug-in. Unity’s biggest disadvantage as just a com-
munication channel stems from the additional latency introduced due to its
update loop when an update is communicated over the network. But this
disadvantage disappears the moment the game would run entirely inside the
plug-in. As could be seen from figure 5.5, the latency and jitter disappears
and performs equally well compared to the WebSocket connections. Its other
disadvantage is that its CPU usage is higher than the other communication
channels, but using the update loop to actually render the game as well,
optimizes its usage.

However, there are still good reasons why one would opt to use a plug-
in as just a communication channel. WebRTC is currently not supported
on all popular browsers, e.g. Internet Explorer. Previous versions of the
browsers that support WebRTC data channels now, may have only partial
support, or none at all. Then a plug-in could still be used as a fall-back
mechanism or as a secondary option, as is done in the socket.io WebSocket
implementation. In this case, the Unity Webplayer’s UDP connection can
then be used for unreliable and / or unordered communication if the game
requires it. The plug-in is supported in a much broader set of browsers and
their older versions. In some cases, Unity’s TCP connection is still preferred
above a WebSocket connection, i.e. when playing on a web page secured by
HTTPS. Although it are Unity’s capabilities that are tested in this thesis,
another plug-in may also provide a standard TCP socket, which may not
be limited by a frame rate and may consume less CPU resources. Adobe’s

101

Flash Player and Microsoft’s Silverlight, for example, provides such a TCP
socket.

This does not, however, solve the problem of a developer that wants
to deploy a peer-to-peer architecture. For players with older browsers that
would use the Unity Webplayer, a kind of proxy-relay server could be set up.
This server then acts as a WebRTC relay and traffic translator to commu-
nicate with the WebRTC peers. This is similar to the TURN relay servers
used for WebRTC when two peers can’t directly connect to each other. The
server could also intelligently filter out redundant updates coming from mul-
tiple peers containing the same information to save bandwidth. Such servers
would also need to be deployed on multiple locations so that players can con-
nect to a server that is located ’nearby’ for all peers. Of course, when all or
a large majority of the players falls back on the Unity Webplayer, then this
boils back down to a client-server architecture, with the difference that the
server just performs a relay and filtering function, and no authorization of
player actions. Figure 6.2 illustrates the idea.

Figure 6.2: Using the Unity Webplayer as a fall-back connection in a full-
mesh WebRTC peer-to-peer setup.

102

Chapter 7

Conclusion

In this thesis, the different communication options that can be used for
multiplayer games in the web browser have been analysed and evaluated.
WebSockets and its secure variant, Secure WebSockets, the new and experi-
mental WebRTC API, and the Unity Webplayer plug-in have been compared
in their capabilities to support different types of games that can be played
in multiplayer games.

All but two of the expectations that were formulated in chapter 4 were
met.

It was expected that both browsers would perform the same for the
browser-native connections because they follow the specifications for such
connections. However, there are differences between Chrome and Firefox for
the Secure WebSocket and WebRTC connections. They produce a different
overhead for each of them.

The expectation that the Unity Webplayer would have a significant la-
tency penalty is only somewhat fulfilled. In optimal network conditions, it
does produce a relatively high amount of extra latency and jitter. But in
a more realistic network setting, this latency and jitter more or less blends
in with the latency and jitter introduced by the network, making it behave
very similar to the standard WebRTC and WebSocket connections.

The following list enumerates each connection option with its associated
characteristics:

• The WebSocket and Secure WebSocket connections are the fastest con-
nections a browser can use, and additionally, require the least CPU
resources. The standard WebSocket only adds little overhead. The
secure variant adds some more overhead, but depends on the browser.
However. due to their underlying reliable and ordered transport pro-
tocol, they are not suited for fast-paced games.

103

• WebRTC’s biggest advantages are its support for peer-to-peer architec-
tures and very flexible API to configure the data channels. This comes
at the cost of the highest overhead, and a slightly higher CPU usage
compared to WebSockets. A part of this overhead is also browser-
dependent, but this may change over time when WebRTC moves on
to become a real web standard. WebRTC also has mandatory encryp-
tion.

• The Unity Webplayer plug-in has the most bandwidth-efficient com-
munication channels, but is the most CPU intensive connection. Its
feature of supporting a standard UDP socket is its biggest advantage.
It allows to easily build a custom protocol that can add support for
ordered and / or reliable delivery of game data if the game requires it.

With HTML5, a web-game developer already has the tools to create
fancy games, but now he can also add a multiplayer aspect to it. How-
ever, compared to a game developer for native platforms, more trade-offs
have to be made. The most prominent trade-off is that of latency versus
bandwidth. One cannot achieve optimal latency values without also adding
more overhead, and thus increasing bandwidth usage. When a game is more
latency-resistant, that is it doesn’t require frequent updates and a reliable
connection is used, then the CPU versus bandwidth usage will be the trade-
off to ponder about.

A big challenge that still lies ahead for game and browser developers,
is the support for all these technologies across all different browsers and
platform. With Mozilla Firefox and Google Chrome, and in the mean time
Opera as well, supporting the connection options analysed in this thesis, a
large target audience can already be addressed. However, not all browsers
have support for each technology yet, most noticeably WebRTC. A developer
can opt to use fall-back mechanisms for these players, or advise them to use
a different browser to play their game.

104

Chapter 8

Acknowledgements

After writing this thesis entirely from an aloof perspective, it would seem
distant and cold if this was the case for this chapter as well. So this is the
perfect place to get down and personal. First of all, I would like to thank my
promotor, Prof. dr. Wim Lamotte, not only for his patience with my lack of
communication, but also for his enthusiasm and passion during his lectures.
And most importantly, his detailed feedback on my works in progress. I
would also like to thank his team members, Prof. dr. Peter Quax and dr.
Jori Liesenborgs for their valuable tips and feedback during those rare mo-
ments we met.

I spent a large part of my time at LuGus Studios. They provided me
with a good amount of laughs and an enjoyable environment that made
this work possible. So a big thank you to the entire LuGus crew and the
numerous interns I had the pleasure to work with. However, I would like
to mention and thank Robin Marx in particular, for without his insightful
feedback, honest critique and strive for perfection, I would probably still be
dabbling in non-relevant topics and words.

The last group of people to whom I wish to express my gratitude, and
one that is a big cliché, are of course my friends and family. Their continuous
support and understanding throughout this period is of great value to me.
To my parents and brothers: thank you for providing such a warm and
lovely home. To my good friends: thank you for the, sometimes necessary,
reminders that there are other things in the world than to work on a thesis.
A particular thank you to Keke Kokelenberg, who had too much free time on
his hands and corrected some overlooked spelling and grammatical mistakes.

105

106

Appendices

107

Appendix A

Implementation Details

This chapter delves into more details about the simulation setup, the soft-
ware used, the programs developed specifically for this thesis, and some
noteworthy encountered implementation problems.

A.1 Devices Setup

Only three physical devices are directly used in all of the test cases:

• A client machine acting as a packet source,

• A server machine acting as a packet reflector,

• A router connecting the client and server machine, and serving as a
gateway to the internet.

They are placed inside a local network, and connected to each other
over wired 10/100/1000 Mbps connections. No wireless communication is
used inside the network to minimize interference and possible transmission
errors. The router is connected to the internet to reach a STUN server for
when a WebRTC connection is used. This is a fourth physical device outside
the local network, but other than obtaining the public address for WebRTC
connections, this STUN server is not used.

This network setup is heavily inspired by the setup used in a performance
evaluation of XMPP over web technologies, by Laine and Säilä. [34] A similar
setup is used by Dianotti et al, where they test and compare the throughput
of SCTP to that of TCP and UDP. [13]

A.2 Server-side Setup

The server-side of the project is stationed in a virtual machine running
Ubuntu 12.04 LTS 32bit, with 4GB of RAM and 4 dedicated cores running

109

at 2.2GHz. On the server, Node.js is used as the main server application,
and performs three functions:

• Serve the web pages that contains client-side code

• Management and coordination of the connected client and current test,
and

• Act as a reflector for incoming packets of the communication channel
being tested.

When the Node.js server application is started, it will start up several
connection modules. Each connection module manages one specific type
of connection, functioning on a separate port number. Some modules are
always initiated when the Node.js application starts, while others are only
initiated upon request. These modules are detailed further down in this
section. The following connection modules are available:

• An HTTP web server that serves the client-side simulation scripts and
accompanying web page. This connection module is always initiated
by the server.

• A WebSocket control server for managing clients and coordinating the
current test scenario. It is also used by the clients to send their results
to the server, so that it can gather and compile the scenario results.
This connection module is always initiated by the server.

• A WebSocket signaling server for exchanging WebRTC signaling infor-
mation. This module also contains the functionality to set up WebRTC
peer connections. It is only started when a WebRTC connection will
be used.

• A WebSocket connection server that is used for the actual WebSocket
testing. This connection module is only started when the WebSocket
connection will be used.

• A Secure WebSocket connection server that is used for the Secure
WebSocket testing scenarios. This connection module is only started
when the Secure WebSocket connection will be used. This module
also requires a certificate to secure and encrypt the connection. The
certificate used here is a self-signed OpenSSL certificate.

• A connection module with both regular TCP and UDP servers that
is used for the plug-in simulation. This connection module is only
started when the plug-in connection will be used.

110

Besides the Node.js server application, four other applications also run
on the server system. Firstly, a socket policy server application is used that
is addressed whenever a plug-in is used at client-side. This socket policy
server acknowledges the plug-in at the client that the server will accept the
incoming data. The returned socket policy file here allows connections from
all domains on all ports. In a production environment, these values should
be more restricted to only accept connections from trusted domains. The
piece of XML below shows the policy file returned. This socket policy server
is provided by installing the Unity development suite.

1 <?xml version =’1.0’?>

2 <cross -domain -policy >

3 <allow -access -from domain=""*"" to-ports=""*"" />

4 </cross -domain -policy >

Listing A.1: Socket policy file contents

Secondly, Wireshark or rather its console variant, Tshark, is used to
monitor incoming and outgoing network traffic. For certain test cases, traffic
is analysed to measure the effects of latency and packet loss, as well as to
analyse the protocol and operational overhead for each connection.

Next, tc, a traffic shaping program is started for test cases where the ef-
fects of packet loss, delay and delay jitter are examined. This traffic shaping
program is used only at server-side, but is applied on both incoming and
outgoing traffic. For incoming traffic, an intermediate functioning block is
created that buffers the traffic and where delay, jitter, and packet loss are
executed upon. For outgoing traffic, the normal network device is used.

Finally, a management application runs in the background, and can be
considered as the coordinator of the other applications, including the client-
side. When starting this management application, various parameters can
be configured. Based on these parameters, this application will create a
configuration file that describes all the different test scenarios that will be
executed. An example of a few test scenario descriptions is given below. For
each such a test scenario, it will reset the Node.js server application with the
required configuration and start capturing network traffic. It also signals a
client-side management application by letting it know when a test scenario
has finished executing so that it can clean up.

1 {

2 "connectionInfo": {

3 "ipAddr": "127.0.0.1",

4 "port": "8080"

5 },

6 "sessions": [

7 {

8 "simulationType": "interval",

9 "browser": "chrome",

111

10 "connection": "websocket",

11 "clients": 1,

12 "duration": 60,

13 "pps": 30,

14 "payloadSize": 1000,

15 "packetCount": 10000 ,

16 "sessionNr": 1,

17 "wireshark": false

18 },

19 {

20 "simulationType": "interval",

21 "browser": "chrome",

22 "connection": "webrtc - reliable",

23 "clients": 1,

24 "duration": 60,

25 "pps": 30,

26 "payloadSize": 1000,

27 "packetCount": 10000 ,

28 "sessionNr": 1,

29 "wireshark": false

30 },

31 ...

32 {

33 "simulationType": "pingpong",

34 "browser": "chrome",

35 "connection": "webrtc - unreliable",

36 "clients": 1,

37 "duration": 60,

38 "pps": 30,

39 "payloadSize": 1000,

40 "packetCount": 10000 ,

41 "sessionNr": 1,

42 "wireshark": false

43 },

44
45 ...

46]

47 }

Listing A.2: Test case configuration examples

A.2.1 WebSocket Module

WebSockets are not a standard part of Node.js. Therefore, a module that
implements WebSocket functionality is imported and coupled to the server
application. Several modules that offer a WebSocket implementation exist,
e.g. ws [58], socket.io [4] and WebSocket-Node [69].

In the current server application, the first listed implementation is cho-
sen: ws. At the time writing it is actively maintained and offers a reference
WebSocket interface as it is available in the web browser, as well as conform-
ing to the latest WebSocket standards. WebSocket-Node is also a reference

112

implementation but is not actively maintained any longer, and also per-
forms slightly worse according to benchmarks. [68] Socket.io is a popular
WebSocket module, but is not considered due to its different API inter-
face. It also adds another layer on top of the WebSocket header to support
’rooms’. This can have an influence on measurements of packet size as well
as on the processing delay. Socket.io also features many fallback mechanisms
such as a plug-in socket and an HTTP-based technique. This could lead to
an unwanted increase of load on clients.

The ws module for Node.js is also used to create the Secure WebSocket
connection module. Using Secure WebSockets requires certificates to secure
the connection. These certificates are self-signed by using OpenSSL.

Using the ws module allows to very easily set up a WebSocket server
and open a standard WebSocket connection with the client. The following
piece of JavaScript code illustrates how the WebSocket server is used in the
server application.

1 var WebSocketServer = require("ws").Server;

2 var wsServer = new WebSocketServer ({"port": 9003});

3
4 wsServer.on("connection", function (ws) {

5
6 ws.on("message", function (data) {

7 // Process incoming message

8 });

9 ws.on("close", function (code , message) {

10 // Process connection closing

11 });

12 ws.on("error", function (error) {

13 // Process error

14 });

15
16 });

17
18 console.log("WebSocket server started listening on port 9003");

Listing A.3: WebSocket server set up

A.2.2 WebRTC Module

WebRTC is also not natively supported by Node.js and requires a mod-
ule to be imported. The options for WebRTC implementations are limited
compared to WebSockets. The only available module for Node.js that has
support for all features of WebRTC is node-webrtc [30]. On its own, node-
webrtc only implements an interface for Node.js that equals the interface for
WebRTC in the web browser. However, during installation of the module,
it fetches and compiles the complete WebRTC source code that is used in

113

Google Chrome to build the WebRTC library. Afterwards, it is coupled to
the interface for Node.js, which allows Node.js to be used as a regular We-
bRTC peer. See section 2.4.4 for a code example on how a peer connection
is initiated.

In the server application, a separate standard WebSocket channel is used
to support the WebRTC connection and acts as the signaling channel. This
WebSocket uses the same ws Node.js module that is introduced above. In
a production environment, this signaling channel should be a secured one.
It carries sensitive information that is used to encrypt the WebRTC data
channels. Sending this data unsecured may allow a third party to eavesdrop
on the communication line. Once the WebRTC connection setup has been
completed, the signaling channel is closed because it is not further needed
in the current implementation.

A.2.3 Native Module

For communication with the plug-in at client-side, regular TCP and UDP
sockets are used at server-side. A TCP server as well as an UDP socket
are readily available in Node.js, so there is no need in importing separate
modules.

1 var dgram = require("dgram");

2 var net = require("net");

3
4 udpSocket = dgram.createSocket("udp4");

5 udpSocket.bind (9007 , "127.0.0.1");

6 udpSocket.on("message", function (message , rinfo) {

7 // Process incoming message

8 });

9
10 console.log("Native UDP server started listening on port 9007")

;

11
12 var tcpServer = net.createServer(function(socket) {

13
14 socket.on("data", function (message) {

15 // Process incoming message

16 });

17 socket.on("close", function(hadError) {

18 // Process connection closing

19 });

20 });

21
22 tcpServer.listen (9007 , "127.0.0.1", function (){

23 console.log("Native TCP server started listening on port 9007

");

114

24 });

Listing A.4: Native server set up

A.3 Client-side Setup

At client-side, all test cases are executed on a machine running Windows
8.1 64bit, with 8Gb of RAM and 4 dedicated cores running at 3.4Ghz. As
the client-side simulation application, readily available browsers are used:
Google Chrome (version 36) and Mozilla Firefox (version 31). Both these
browsers support the latest version of the WebSocket protocol, have inter-
operable support for WebRTC, and can run the Unity Webplayer plug-in.
Both browsers are also popular and have a large market share. The browser’s
main function during a test case is to send and receive packets at a certain
sending rate and collect timing information about them. The Opera browser
could’ve been taken into the equation as well but, at the start of this thesis,
it did not support WebRTC data channels yet.

At the client, some side-applications are used as well. Tshark is used to
monitor incoming and outgoing traffic during certain test cases. A client-
side management application runs in the background that is connected to
the server-side management application through a simple TCP connection.
The client-side management application will receive signals from the server
whenever a simulation starts and ends. When starting a test case, the
management application will open up the web browser and immediately
directs it to the web server. If a stop signal is received from the server, it
will close the browser. During a test case, it also monitors the CPU and
memory usage of the web browser.

A.3.1 Web Application

The web application is a single web page that is downloaded from the server
every time a tab is opened during a test case. The web page has a very
basic structure and limited user interface. Figure A.1 shows the user inter-
face. The user interface allows to set some parameters to rapidly create and
execute a certain test case. Only one tab needs to be configured with the de-
sired simulation parameters. Once the ’Start Simulation’ button is pressed,
the configuration is compiled and sent to the server, which will then spread
the configuration over the other connected clients. A table is also present in
which some quick results can be viewed for that client. This user interface
is hardly used during the execution of the test cases, it is for quickly testing
a set of parameters only.

115

The bulk of the work is done in a few JavaScript scripts behind the scene.
When the plug-in solution is used during a simulation, then a C# script is
used that drives the plug-in. The important scripts are detailed below.

Figure A.1: Client-side web application

Switch.js

The switch.js script is in essence a manager for the different types of con-
nections that can be used by the client. It manages, at most, five types of
connections: a WebSocket control channel, a WebSocket and Secure Web-
Socket data channel, a WebRTC peer connection, and the Unity Webplayer.
A control channel is always created by the script, but the other connection
types are optional. It features a very simple interface to quickly switch from
one connection to an other. The interface is shown in the code piece below.

Whenever a message has to be sent, it can be given to the script, and it
will take care that the correct connection is used. The interface, however,
only allows to send data, not receiving data. Upon initialization, connec-
tions are configured with a configuration object that contains a reference to
a callback function for when data is actually received on that connection.

1 Network.Switch = Class.extend ({

2 init: function(configuration) {

3 // Constructor

4 // Creates a list of connections based on the provided

configuration with callback references for receiving

data

5 },

6 setActiveConnection: function(id , label) {

7 // Switches to another connection with the provided ID, e.g

. "websocket", "securewebsocket", "webrtc", or "unity"

116

8 // The label parameter is used when a connection supports

multiple channels , e.g. "reliable", or "unreliable"

9 },

10 send: function(message) {

11 // Send a message over the currently active connection

12 },

13 sendControl: function(message) {

14 // Send a message over the control connection

15 },

16 open: function () {

17 // Returns a boolean indicating whether all connections are

open for communication

18 }

19 });

Listing A.5: Switch.js script object interface

Simulation.js

The simulation.js script is the main script used by each client running inside
the browser. Its main responsibilities are the initialization of other scripts
and objects such as switch.js, generating and processing of control and data
packets, as well as keeping track of the round-trip times.

When a client in the web browser requests the web application page,
the server will first modify the web page to set some boolean values that
indicate which connections are to be initialized by the client. When the
simulation.js script is downloaded and executed, it will use these values to
create a configuration object for the switch.js script, which will, in turn,
only set up the requested connections. This allows to limit the client and
server to only use the necessary connections and avoid clutter of the memory
space.

After initializing the switch.js script, it will create a WebWorker that is
used as a timer mechanism for generating packets at regular intervals. Why
this WebWorker is spawned, and no ordinary timeout mechanism is used, is
explained in section A.4.

When the script receives a signal from the switch.js script that all con-
nections have been opened, the simulation.js script will contact the server
over the control channel to request an ID and gather knowledge about other
connected clients. Hereafter, the script will go dormant, and only wake
whenever an event of interest happens, i.e. a button is pressed, a simulation
is started, a message is received, etc.

Whenever a test case is started, the script will start generating packets
in regular time intervals, depending on the send rate of the scenario pa-
rameters. Before the first packet is sent, however, the script will create a

117

packet skeleton structure that is used afterwards for each packet that is sent.
This skeleton structure contains the client ID to identify the source of the
packet, a sequence number, and a randomly generated payload that stays
fixed during the rest of the simulation.

Next, packets are generated using the skeleton structure and can be
sent immediately. Timestamps are generated using the performance.now()
function and stored for measuring the round-trip time when the reply is
received.

When the simulation ends, the timestamps are compiled in a control
packet and sent to the server. The server will save the results to disk for
later analysis.

1 var payload = "";

2 var randomSelection = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

3
4 // Generate the random payload - fixed portion of the payload

is 34 bytes

5 var randomSectionLength = Math.max(1, desiredPayloadSize - 34);

6 for (var i = 0; i < totalPayloadLength; ++i) {

7 payload = payload.concat(randomSelection.charAt(Math.floor(

Math.random () * randomSelection.length)));

8 }

9
10 // Skeleton object for the message

11 var skeletonPacket = {

12 id: currentID ,

13 nr: "00000",

14 data: payload

15 };

Listing A.6: Packet skeleton structure

1 // Send message

2 var message = JSON.stringify(data);

3 timestamps.push([performance.now(), null]);

4 networkSwitch.send(message);

5
6 ...

7
8 // Receive message

9 var timestamp = performance.now();

10 var data = JSON.parse(message);

11 var index = parseInt(data.nr);

12 timestamps[index][1] = timestamp;

Listing A.7: Sending and receiving packets with timestamping

NativeClient.cs

Whenever the plug-in is used as a communication channel, then the Native-
Client.cs script inside the Unity Webplayer is used. It is the only script

118

inside the plug-in, and manages a reference TCP and UDP socket over
which it can send and receive data. It also stores a set of timestamps for
each packet that is passed through.

On initialization, the NativeClient script will wait for the browser to com-
municate configuration details, e.g. server address information, preferred
communication channel (TCP or UDP), on message callback function, ...
Once this information has been received, the script will create the desired
connections and start listening for incoming messages from the browser and
network.

Whenever the browser wishes to send a message over the plug-in, the
SendData() function of the plug-in is called from the browser-side along
with the data to be sent. The NativeClient script will then extract the
client’s ID and the packet’s sequence number (these values are part of the
data to be sent in this implementation) to couple a timestamp to this data.
The data is then put on the network by using the preferred connection.
Sending data is done in an asynchronous way. This is to prevent other
messages that need processing from being held up until this packet is finally
put on the network.

Receiving data from the network is also done asynchronously. When the
NativeClient script has been configured by the browser, it will start listening
on the socket for incoming data in a separate thread. When data is received
on the socket, a callback function is executed that will process the incoming
data, and store a timestamp when a complete message has been received
(remember that the TCP socket uses stream-based communication). This
timestamp marks the arrival of the message in the plug-in. The callback
function will temporarily store the received data in a buffer.

Whenever Unity’s event loop arrives at its Update() function in the main
thread, it will process the complete messages stored in the buffer and pass
them through to the browser. This pass-through of messages can only be
done in the Unity Webplayer’s main thread because it does not allow other
threads to use these functions. When a message is passed to the browser, a
last timestamp for that message is stored, which marks the time the packet
is passed on to the browser.

Because a standard TCP socket is used inside the Unity Webplayer,
messages need to be delimited in some way due to TCP’s stream-oriented
nature. Luckily, the messages sent in this implementation are in a JSON
format and have a strict data structure. This makes it easy to find the end
of the message.

1 public class NativeClient : MonoBehaviour

2 {

119

3
4 private List <string > messageBuffer;

5 private UdpClient udpSocket;

6 private TcpClient tcpSocket;

7
8 protected void Update ()

9 {

10 if (messageBuffer.Count > 0)

11 {

12 // Extract messages from the buffer

13
14 ...

15
16 // Send to the browser

17 Application.ExternalCall(onMessageCallback , message);

18 }

19 }

20
21 public void Init(string nothing)

22 {

23 // Initialize TCP and UDP socket and other objects

24 udpSocket = new UdpClient ();

25 tcpSocket = new TcpClient ();

26
27 ...

28
29 // Start listening for incoming packets from the network

30 udpSocket.BeginReceive(new AsyncCallback(OnMessageUDP),

null);

31 tcpSocket.GetStream ().BeginRead(TCPBuffer , 0, 1024, new

AsyncCallback(OnMessageTCP), null);

32 }

33
34 public void SetServerAddress(string address)

35 {

36 // Configures the plug -in with the server address

37 }

38
39 public void SetServerPort(string port)

40 {

41 // Configures the plug -in with the server port

42 }

43
44 public void SetActiveChannel(string type)

45 {

46 // Configures the plug -in to use either the TCP or UDP

connection

47 }

48
49 public void OnMessage(string functionName)

50 {

51 // Configures the plug -in with the name of the callback

function in the browser

52 }

120

53
54 public void SendData(string message)

55 {

56 byte[] data = Encoding.UTF8.GetBytes(message);

57
58 switch (channel)

59 {

60 case Channel.RELIABLE:

61
62 tcpSocket.GetStream ().BeginWrite(data , 0, data.Length ,

new AsyncCallback(EndTCPSend), tcpSocket.GetStream

());

63 break;

64
65 case Channel.UNRELIABLE:

66
67 udpSocket.BeginSend(data , data.Length , new

AsyncCallback(EndUDPSend), udpSocket);

68 break;

69 }

70 }

71
72 private void EndTCPSend(IAsyncResult result)

73 {

74 tcpSocket.GetStream ().EndWrite(result);

75 }

76
77 private void EndUDPSend(IAsyncResult result)

78 {

79 udpSocket.EndSend(result);

80 }

81
82 private void OnMessageTCP(IAsyncResult result)

83 {

84 // Process incoming data on the TCP socket

85 // and put the data in a buffer

86 }

87
88 private void OnMessageUDP(IAsyncResult result)

89 {

90 // Process incoming data on the UDP socket

91 // and put the data in a buffer

92 }

93 }

Listing A.8: NativeClient.cs

A.4 Encountered Implementation Problems

Making the web application behave identically in each web browser is not
always a straightforward process. Some noteworthy problems were encoun-
tered during implementation that are either general browser behaviour, or

121

a browser-specific thing.

Limited Callbacks in Inactive Tabs

A problem encountered in both Google Chrome and Mozilla Firefox, is
that inactive tabs are limited in the amount of callbacks per second for
the setInterval() function. This function will call a provided function in
regular time intervals. The function in the web application is mainly used
to regulate the packet send rate for each tab in the web browser. However,
when a tab is not selected as the current active tab, then it is limited to
calling the callback function only once a second. This is implemented in
web browsers as an optimization feature to prevent inactive tabs from using
too much CPU time. This also means a client, represented by a tab in the
browser, would be limited to only sending one packet per second, severely
limiting simulation scenarios.

Firefox allows to modify the value that imposes this limit. By modify-
ing the dom.min_background_timeout_value value from 1000 to 1 (values
are in milliseconds) in the Firefox-specific about:config configuration page,
this limit is lowered from once per second, to once per millisecond. Chrome,
however, does not allow to adjust this setting, which begs the need for an-
other solution.

Using an HTML5 WebWorker, this problem is circumvented. Although
inactive tabs are only limited to call back a function once a second, Web-
Workers are not. Thus, in the final implementation, each client running in
a tab will spawn a WebWorker upon initialization. This WebWorker will
run the setInterval() function and send a message to the main thread
whenever a certain function should be called. The piece of JavaScript code
below shows the WebWorker code that is used to circumvent the callback
limit in both Firefox and Chrome.

1 var timerID;

2
3 self.addEventListener("message", function (event) {

4
5 switch (event.data.code) {

6 case "start":

7
8 timerID = setInterval(function () {

9 self.postMessage("send");

10 }, event.data.sendInterval);

11
12 break;

13
14 case "stop":

122

15 clearInterval(timerID);

16 break;

17 }

18
19 }, false);

Listing A.9: Callback limit omission using a WebWorker

Different Browser Architectures

Each time a test scenario is run, the client-side management application
will monitor the resources consumed by the browser. At first glance, Google
Chrome seemed to perform consistently and significantly better than Mozilla
Firefox. However, this was not taking into account the difference in archi-
tecture between browsers.

Firefox is a single process, multi-threaded browser. For each tab opened
in Firefox, at least one thread is spawned that manages this tab. A Web-
Worker is also handled in a separate thread. But since everything is happen-
ing in one process, it is easy to monitor Firefox’s resource usage. Chrome,
on the other hand, is a multi-process, multi-threaded browser. This means
that Chrome’s resource usage is spread across several processes. Chrome
uses one master process and several child processes. Whenever Chrome is
started, the master process will create a process for the visible window, a
management process, and a separate process for each tab opened. This was
not accounted for in the initial implementation.

Initially, only the resource usage for the Chrome master process was
monitored. Because this process is not performing the actual tasks that
are of interest, skewed results were obtained. By monitoring all processes
spawned by the Chrome master process, one can make a better and more
fair comparison between browsers.

Timing Inaccuracies

Many test scenarios depend on accurate measuring of a packet’s send time
and arrival time. Using an inaccurate measuring tool for this timing in low
latency environments can give wrong impressions about the used connection
and can lead to incorrect conclusions.

Initially, the JavaScript Date.now() function was used to measure the
round-trip time of a packet. However, Date.now() only has millisecond-
accuracy, and its returned values are not always the real amount of elapsed
milliseconds. Using this function can result in graphs showing high fluctua-
tions in round-trip times. [53]

123

The performance.now() function in JavaScript is a much more accu-
rate measurement tool than the previous function, giving sub-millisecond
accuracy. On Firefox, this function works without any further modifica-
tions to the settings of the browser. However, on Chrome for Windows,
performance.now() rounds its returned value to the nearest millisecond.
This would sometimes give very ’flat’ results, e.g. many sequential round-
trip times were exactly equal to 2 milliseconds, or sometimes even round-trip
times of 0 milliseconds. To resolve this, Chrome needs to be started with
the --enable-high-resolution-time CLI flag present in the start-up ar-
guments.

124

Appendix B

Result Details

This chapter displays the raw results that were obtained during several test
sessions on the different connections. Many of these tables also contain the
results on which many of the figures in chapter 5 are based on.

B.1 Processing Overhead and Delay

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 0.946 1.239 1.444 1.645 2.254

Secure WebSocket 0.923 1.500 1.715 1.920 2.550

WebRTC - reliable 1.522 2.208 2.436 2.667 3.354

WebRTC - unreliable 1.554 2.218 2.446 2.678 3.365

Unity - reliable 6.547 18.314 22.171 26.164 37.879

Unity - unreliable 6.772 18.510 22.379 26.340 37.870

Table B.1: Quantile round-trip values for Chrome.
Payload size of 100 bytes. Expressed in milliseconds.

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 0.862 1.208 1.412 1.611 2.209

Secure WebSocket 0.900 1.524 1.732 1.947 2.581

WebRTC - reliable 1.359 2.042 2.270 2.499 3.182

WebRTC - unreliable 1.373 2.052 2.277 2.508 3.191

Unity - reliable 6.932 18.516 22.487 26.243 37.020

Unity - unreliable 7.420 18.753 22.629 26.311 37.455

Table B.2: Quantile round-trip values for Firefox.
Payload size of 100 bytes. Expressed in milliseconds.

125

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 1.061 1.621 1.831 2.038 2.663

Secure WebSocket 1.359 1.941 2.171 2.403 3.095

WebRTC - reliable 2.111 2.854 3.091 3.350 4.094

WebRTC - unreliable 2.122 2.861 3.099 3.356 4.097

Unity - reliable 7.274 18.769 22.534 26.437 37.913

Unity - unreliable 7.891 19.198 22.895 26.742 36.949

Table B.3: Quantile round-trip values for Chrome.
Payload size of 1,000 bytes. Expressed in milliseconds.

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 0.970 1.579 1.791 1.998 2.625

Secure WebSocket 1.285 1.971 2.199 2.432 3.122

WebRTC - reliable 1.771 2.507 2.750 3.003 3.746

WebRTC - unreliable 1.783 2.523 2.759 3.017 3.757

Unity - reliable 7.848 19.062 22.900 26.539 37.086

Unity - unreliable 8.375 19.353 23.104 26.673 37.032

Table B.4: Quantile round-trip values for Firefox.
Payload size of 1,000 bytes. Expressed in milliseconds.

100 bytes 1,000 bytes 10,000 bytes

WebSocket 639.3 608.9 216.2

Secure WebSocket 609.1 563.8 207

WebRTC - reliable 440.8 366.3 88.9

WebRTC - unreliable 429.4 365.5 92.4

Table B.5: Packets per second comparison for Chrome.
Expressed in packets per second.

100 bytes 1,000 bytes 10,000 bytes

WebSocket 644.3 600.4 217.6

Secure WebSocket 599.1 554.3 195.1

WebRTC - reliable 520.8 403.7 119.9

WebRTC - unreliable 516.3 404.5 120.2

Table B.6: Packets per second comparison for Firefox.
Expressed in packets per second.

126

Google Chrome Mozilla Firefox

WebSocket 2,081.25 3,139.062

Secure WebSocket 2,335.938 3,145.312

WebRTC - reliable 2,945.312 3,262.5

WebRTC - unreliable 2,968.75 3,354.688

Unity - reliable 8,195.312 4,475

Unity - unreliable 8,873.438 4,514.062

Table B.7: Avarage CPU time comparison.
Payload size of 100 bytes. Expressed in milliseconds.

Google Chrome Mozilla Firefox

WebSocket 2,010.938 3,137.500

Secure WebSocket 2,471.875 3,189.062

WebRTC - reliable 3,251.562 3,410.938

WebRTC - unreliable 2,962.500 3,304.688

Unity - reliable 9,660.938 4,743.750

Unity - unreliable 9,664.062 4,465.625

Table B.8: Avarage CPU time comparison.
Payload size of 1,000 bytes. Expressed in milliseconds.

127

B.2 Protocol Overhead and Bandwidth Usage

Header ACK STUN

WebSockets 1pps 60(C) / 56(S) 60 NA

WebSockets 10pps 60(C) / 56(S) 60 NA

WebSockets 30pps 60(C) / 56(S) NA NA

WebSockets 60pps 60(C) / 56(S) NA NA

Secure WebSockets 1pps 89(C) / 85(S) 60 NA

Secure WebSockets 10pps 89(C) / 85(S) 60 NA

Secure WebSockets 30pps 89(C) / 85(S) NA NA

Secure WebSockets 60pps 89(C) / 85(S) NA NA

WebRTC - reliable 1pps 131 (147 incl. SACK) 135 1,048(C) / 514(F)

WebRTC - reliable 10pps 147 incl. SACK NA 104.8(C) / 51.4(F)

WebRTC - reliable 30pps 147 incl. SACK NA 34.9(C) / 17.1(F)

WebRTC - reliable 60pps 147 incl. SACK NA 17.5(C) / 8.5(F)

WebRTC - unreliable 1pps 131 (147 incl. SACK) 135 1,048(C) / 514(F)

WebRTC - unreliable 10pps 147 incl. SACK NA 104.8(C) / 51.4(F)

WebRTC - unreliable 30pps 147 incl. SACK NA 34.9(C) / 17.1(F)

WebRTC - unreliable 60pps 147 incl. SACK NA 17.5(C) / 8.5(F)

Unity - reliable 1pps 54 60 NA

Unity - reliable 10pps 54 60 NA

Unity - reliable 30pps 54 NA NA

Unity - reliable 60pps 54 NA NA

Unity - unreliable 1pps 42 NA NA

Unity - unreliable 10pps 42 NA NA

Unity - unreliable 30pps 42 NA NA

Unity - unreliable 60pps 42 NA NA

Table B.9: Total connection overhead analysis.
All values are expressed in bytes. The Header column shows the amount of
bytes used by the header directly attached to the data. For WebSockets,
the header size depends on whether the packet is sent from the client (C)
or from the server (S). For WebRTC, a SACK can be incorporated in the
same packet as the data. The ACK column shows the amount of bytes

that are registered for a separate (S)ACK packet that is sent for a request.
The STUN column shows the amount of overhead the STUN mechanism

produces per packet, per second and which browser is used: Chrome (C) or
Firefox (F).

128

100 bytes 1,000 bytes

WebSockets 1pps 88% 8.8%

WebSockets 10pps 88% 8.8%

WebSockets 30pps 58% 5.8%

WebSockets 60pps 58% 5.8%

Secure WebSockets 1pps 117%(C) / 133%(F) 11.7%(C) / 13.3%(F)

Secure WebSockets 10pps 117%(C) / 133%(F) 11.7%(C) / 13.3%(F)

Secure WebSockets 30pps 87%(C) / 103%(F) 8.7%(C) / 10.3%(F)

Secure WebSockets 60pps 87%(C) / 103%(F) 8.7%(C) / 10.3%(F)

WebRTC - reliable 1pps 730.5%(C) / 458.5%(F) 73%(C) / 45.9%(F)

WebRTC - reliable 10pps 199.4%(C) / 172.2%(F) 19.9%(C) / 17.2%(F)

WebRTC - reliable 30pps 164.4%(C) / 155.4%(F) 16.4%(C) / 15.5%(F)

WebRTC - reliable 60pps 155.8%(C) / 151.4%(F) 15.6%(C) / 15.1%(F)

WebRTC - ureliable 1pps 730.5%(C) / 458.5%(F) 73%(C) / 45.9%(F)

WebRTC - ureliable 10pps 199.4%(C) / 172.2%(F) 19.9%(C) / 17.2%(F)

WebRTC - ureliable 30pps 164.4%(C) / 155.4%(F) 16.4%(C) / 15.5%(F)

WebRTC - ureliable 60pps 155.8%(C) / 151.4%(F) 15.6%(C) / 15.1%(F)

Unity - reliable 1pps 84% 8.4%

Unity - reliable 10pps 84% 8.4%

Unity - reliable 30pps 54% 5.4%

Unity - reliable 60pps 54% 5.4%

Unity - unreliable 1pps 42% 4.2%

Unity - unreliable 10pps 42% 4.2%

Unity - unreliable 30pps 42% 4.2%

Unity - unreliable 60pps 4.2% 4.2%

Table B.10: Total connection overhead percentage with respect to the pay-
load size.

Expressed in percentage to actual data. Some values depend on which
browser is used: Chrome (C) or Firefox (F).

1 pps 10 pps 30 pps 60 pps

WebSocket 376.0 3,760.0 9,574.8 1,9724.4

Secure WebSocket 434.0 4,340.0 11,338.2 23,343.6

WebRTC - reliable 1627.8 6,084.3 15,749.6 31,920.5

WebRTC - unreliable 1634.2 6,130.3 16,132.5 31,972.9

Unity - reliable 373.4 3,685.4 9,363.0 19,230.6

Unity - unreliable 284.0 2,840.0 8,611.2 17,750.0

Table B.11: Bandwidth usage comparison for Chrome.
Payload size of 100 bytes. Expressed in bytes per second.

129

1 pps 10 pps 30 pps 60 pps

WebSocket 376.0 3,760.0 9,645.0 19,969.0

Secure WebSocket 466.0 4,660.0 12,337.2 25,610.0

WebRTC - reliable 1,091.8 5,481.1 15,596.3 31,733.8

WebRTC - unreliable 1,117.0 5,506.3 15,575.7 31,824.4

Unity - reliable 373.4 3685.4 9,368.4 19,274.6

Unity - unreliable 284.0 2,840.0 8,605.2 17,750.0

Table B.12: Bandwidth usage comparison for Firefox.
Payload size of 100 bytes. Expressed in bytes per second.

B.3 Effects of Packet Loss

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 34.16 98.36 119.22 262.31 505.70

Secure WebSocket 23.03 98.49 119.43 256.83 494.24

WebRTC - reliable 0.00 101.68 126.04 338.21 692.47

WebRTC - unreliable 42.54 84.81 101.74 116.68 164.46

Unity - reliable 60.09 150.13 196.65 399.76 773.04

Unity - unreliable 50.79 98.74 116.16 130.88 178.96

Table B.13: Quantile round-trip values for Chrome in a busy network.
Payload size of 100 bytes. Expressed in milliseconds.

Q1-(1.5*IQR) Q1 Q2 Q3 Q3+(1.5*IQR)

WebSocket 44.75 99.32 121.53 316.67 640.59

Secure WebSocket 35.27 98.88 123.57 313.51 634.78

WebRTC - reliable 1.71 99.14 119.25 310.90 627.20

WebRTC - unreliable 42.28 86.33 102.26 116.19 160.89

Unity - reliable 59.99 145.28 190.05 376.56 718.30

Unity - unreliable 47.71 95.58 114.52 130.23 177.58

Table B.14: Quantile round-trip values for Firefox in a busy network.
Payload size of 100 bytes. Expressed in milliseconds.

130

Appendix C

Nederlandse Samenvatting

C.1 Introductie

De web browser wordt steeds vaker gebruikt om andere dingen op te doen
dan waarvoor het oorspronkelijk ontworpen werd: informatie opzoeken. Nu
wordt het onder andere gebruikt om ook videos op te bekijken, muziek te
luisteren, en zelfs bedrijfs-gerelateerde taken. Het spelen van games kon dan
ook niet uitblijven. Echter, multiplayer games blijven verrassend genoeg uit.

Met de HTML5 standaard worden een aantal interessante technologiën
toegevoegd aan de browser zelf. Met WebGL kunnen 3D graphics gegenereerd
en weergegeven worden. WebWorkers zorgen voor een primitieve vorm van
multi-threading, en WebSockets laten toe om gemakkelijk data over het
netwerk te sturen tussen client en server.

Voorheen was het al mogelijk om games te spelen in de web browser door
middel van plug-ins. Deze breiden de functionaliteit uit van de browser met
een afgezonderde omgeving waarin applicaties kunnen worden uitgevoerd.
Één plug-in is specifiek gericht op het spelen van games in de web browser:
Unity Webplayer.

WebRTC is ook een belangrijk, nieuw communicatie kanaal voor de web
browser. WebRTC laat toe om peer-to-peer kanalen op te zetten met een
andere browser. Het is een project opgezet door Google in samenwerking
met Mozilla. Op dit moment van schrijven verkeert het nog in een exper-
imentele fase, maar wordt al wel ondersteund door verscheidene browsers,
waaronder Google Chrome, Mozilla Firefox en Opera.

C.1.1 Doel van deze Thesis

Omdat multiplayer games in de web browser nog uitblijven, is het interes-
sant om te kijken welke mogelijkheden er zijn voor een game ontwikkelaar

131

om game data te verzenden in een multiplayer game, en hoe deze mogelijkhe-
den zich tegenover elkaar verhouden. Een game ontwikkelaar heeft niet de
mogelijkheid om de technieken die beschikbaar zijn op een native platform
één-op-één over te nemen naar een game in de browser. Zijn mogelijkheden
zijn beperkt tot:

• WebSockets, en zijn beveiligde variant, Secure WebSockets,

• WebRTC data kanalen, en

• Een plug-in gebruiken die netwerktoegang biedt.

Als plug-in wordt gebruik gemaakt van de Unity Webplayer. Deze biedt
de mogelijkheid om ook TCP en UDP kanalen op te zetten, en laat toe om
deze ook goed te gebruiken. Andere plug-ins leggen strengere restricties op
op het gebruiken van zulke kanalen.

Omdat de Unity Webplayer zowel TCP als UDP kanalen aanbiedt, wor-
den twee gelijkaardige kanalen geconfigureerd voor WebRTC. Een betrouw-
baar kanaal zorgt er voor dat data gegarandeerd zal aankomen bij de ont-
vanger, en ook in de juiste volgorde. Deze is gebasseerd op het TCP kanaal
van Unity. Het onbetrouwebare kanaal lijkt dan weer op het UDP kanaal,
en geeft geen garanties van aflevering of volgorde. WebSockets bieden geen
mogelijkheid tot configuratie, en worden dus gebruikt zoals ze zijn.

Een oudere techniek, HTTP-gebasseerd data verzenden en ontvangen,
welke zeer inefficiënt werd bevonden in eerdere onderzoeken ten opzichte van
WebSockets, wordt niet opgenomen in dit onderzoek. WebSockets presteren
op elk mogelijk vlak significant beter dan deze oude techniek.

De web browsers die gebruikt worden in deze thesis ondersteunen al deze
mogelijkheden om data te versturen. Deze browsers zijn Mozilla Firefox en
Google Chrome.

De doelstellingen van deze thesis worden dan als volgt geformuleerd:

• Een overzicht geven van de verschillende verbindsopties en een analyse
van hun eigenschappen,

• Het evaluëren van deze eigenschappen in de context van multiplayer
games,

• Nagaan of er een verschil is bij het gebruiken van verschillende web
browsers, en

• Het aanbevelen van deze verbindingen tot bepaalde genres van multi-
player games.

132

C.1.2 Aanpak

De verschillende verbindingen worden eerst geanalyseerd op basis van hun
onderliggende transport protocollen voor het netwerk. Dit geeft al een eerste
idee van wat verwacht mag worden in sommige testen. Vervolgens wor-
den ze onderworpen aan verschillende testen waarvan de resultaten gebruikt
worden om een profiel van de verbinding op te stellen. Nadien worden de
verbindingen besproken in hun bruikbaarheid voor verschillende genres van
multiplayer games.

C.2 Eigenschappen van een Verbinding

Elke verbinding heeft een aantal eigenschappen die worden bepaald door de
technologiën die ze gebruiken om hun data te kunnen transporteren over een
netwerk.

C.2.1 WebSockets

WebSockets maken gebruik van TCP, en voegen daar nog een dun laagje aan
toe. Een WebSocket verbinding zal garanderen, door TCP, dat elk verzonden
bericht aan zal komen bij de correcte ontvanger, en dat de volgorde van de
verzending wordt gerespecteerd. Het dun laagje van WebSockets zelf maakt
het onderscheiden tussen de verschillende berichten gemakkelijker, wat niet
standaard aanwezig is in TCP.

Secure WebSockets maken ook gebruik van TCP, maar beveiligen de
data met nog een encryptielaag.

WebSockets kunnen enkel gebruikt worden om verbindingen tussen client
en server op te stellen.

C.2.2 WebRTC

WebRTC maakt gebruik van een grotere set van protocollen. Onderaan
wordt UDP gebruikt om de data te transporteren op het netwerk. Deze
is in principe onbetrouwbaar: het zal niet garanderen dat de data effec-
tief aankomt bij de ontvanger, en garandeerd ook geen afleverings volgorde.
Daar boven wordt ook een beveiligingslaag gebruikt zoals bij Secure Web-
Sockets. Ten slotte wordt SCTP gebruikt, welke toelaat om de tekortkomin-
gen van UDP te configureren op maat. Zo kan een WebRTC kanaal gecon-
figureerd worden om wel of niet te garanderen dat de data zal aankomen,
en wel of niet de data in de correcte volgorde afgeleverd zal worden.

WebRTC heeft de mogelijkheid om verbindingen tussen andere browsers,
of andere WebRTC gebasseerde applicaties op te stellen. Dit is een unieke
eigenschap van WebRTC ten opzichte van de andere verbindings mogelijkhe-
den.

133

C.2.3 Unity Webplayer

De Unity Webplayer is een plug-in die toelaat om applicaties die ontwikkeld
zijn in de Unity ontwikkelaars omgeving te draaien in de web browser. Ten
opzichte van andere plug-ins, laat de Unity Webplayer toe om zowel reguliere
TCP en UDP sockets te gebruiken. De Unity Webplayer kan echter niet
zomaar met eender welk systeem verbinding maken. Het vraagt om een
toelating van het andere systeem door middel van het opvragen van een
bepaald bestand. Indien dit niet aanwezig is, dan kan de Unity Webplayer
geen verbinding maken. Dit maakt het dus enkel geschikt voor client-server
opstellingen.

C.3 Optimalisatie Technieken

Voor games zijn de factoren latency en gebruik van bandbreedte van be-
lang om een optimale game ervaring te bieden. Zowel in de wereld van
game development als in de wereld van web development zijn er verschil-
lende strategiën die deze factoren optimaliseren.

Deze technieken kunnen gecombineerd worden om een goede en totale
ervaring aan te bieden op de web browser als game platform.

C.3.1 Optimalisatie van Latency

Voor het web worden vaak de volgende technieken gebruikt om de latency
te beperken:

• Caching: het tijdelijk opslaan van veel gevraagde web pagina’s en
andere bronnen op verschillende systemen in het netwerk of Internet.

• Content Distribution Networks: een doorgeslagen vorm van caching,
waar op grote schaal vele web bronnen worden bewaard om een request
snel te kunnen beantwoorden.

• Pre-fetching: trachten te voorspellen welke web pagina de gebruiker
als volgende zal aanklikken en deze al op voorhand inladen.

• Nieuwe protocollen: Het huidige web protocol, HTTP 1.1, is al een
tijdje in gebruik. Nieuwe protocollen worden ontworpen om de teko-
rtkomingen van het huidige protocol te verbeteren. Hierbij hoort ook
het verminderen van de latency.

• Compressie: sommige bestanden en bronnen kunnen sneller aangereikt
worden als ze minder ruimte innamen. Compressie kan bestanden
verkleinen op verschillende manieren om zo sneller een resultaat weer

134

te kunnen geven. Hierbij wordt voornamelijk gebruik gemaakt van de
latency zoals die wordt ervaren door de gebruiker.

Ook in multiplayer games bestaan verschillende technieken om de latency
in te perken:

• Optimale server plaatsing: meerdere servers worden verspreid over de
hele wereld geplaatst zodat spelers met een server dichtbij kunnen
verbinden waardoor het signaal niet te lang door het netwerk hoeft te
reizen.

• Sharding: meerdere kopiëen van dezelfde virtuele wereld aanbieden en
hosten op verschillende servers. Dit zorgt voor een spreiding van de
load zodat een server niet overbelast raakt.

• Custom protocols: een game ontwikkelaar voor een native platform
kan gebruik maken van alles wat dat platform te bieden heeft. In som-
mige gevallen kan hij er voor kiezen om een eigen protocol te ontwikke-
len dat beter aansluit bij de game om zo de latency te verminderen.

• Netwerk architectuur: de netwerk architectuur heeft een grote invloed
op welke weg de data doorheen het netwerk zal afleggen. In een client-
server architectuur moet alle data eerst langs de server. Hier kan de
server, of het netwerk bij de server, een bottleneck vormen. In peer-to-
peer architecturen kan data direct tussen spelers gaan, wat de latency
verbeterd. Er kunnen ook hybride architecturen opgesteld worden.

• Input response: sommige games kunnen wat meer tegen latency dan
andere. De games die beter tegen latency kunnen maken veelal gebruik
van feedback op de speler zijn input om hem gerust te stellen dat de
input geregistreerd is. Dit verminderd echter alleen de ervaren latency,
niet de latency die de update ondervindt.

C.3.2 Gebruik van Bandbreedte Inperken

De volgende technieken worden toegepast op het web om het bandbreedte
gebruik te verminderen:

• Compressie: zoals eerder vermeld, kunnen sommige web resources
kleiner gemaakt worden. Voor sommige bronnen kan dit resulteren
in een enorme verbetering. Denk hierbij aan video en afbeeldingen.
Maar ook tekst bestanden, zoals JavaScript code en HTML pagina’s
kunnen met de juiste technieken in bestandsgrootte enorm krimpen.

• Aggreatie van bronnen: als een web pagina veel verwijzingen heeft naar
bvb. afbeeldingen en iconen, dan wordt elke afbeelding en icoontje

135

apart gedownload. Met aggregatie worden deze bronnen samengevoegd
tot één groot bestand, waardoor minder bandbreedte verloren gaat aan
onnodige overhead.

• Typed arrays: in JavaScript is het de gewoonte om data als tekst door
te sturen over het netwerk. Dit kan zeer inefficiënt zijn. Typed arrays
bieden een buffer aan die op byte-niveau aangepast kan worden. Dit
kan zeer goed gebruikt worden voor numerische data.

• Caching: ook hier kan bandbreedte mee bespaard worden. Hoewel er
even veel data wordt opgevraagd als de data niet gecached zou zijn,
wordt er wel bandbreedte uitgespaard op het deel van het netwerk dat
zich achter de cache service bevindt. De data moet niet meer van de
originele bron komen.

• Geavanceerde protocols en APIs: dynamische web pagina’s kunnen
data opvragen en het resultaat weergeven zonder dat hiervoor de pag-
ina voor ververst dient te worden. Nieuwere protocols, zoals WebSock-
ets en WebRTC zorgen er voor dat dit veel efficiënter kan gebeuren
dan voorheen.

De meeste games verbruiken al relatief weinig bandbreedte ten opzichte
van ander data verkeer zoals audio en video conversaties, maar toch zijn er
verscheidene technieken om dit nog verder te optimaliseren:

• Compressie: ook bij games kan compressie gebruikt worden. Hi-
erbij kan voornamelijk numerische data met minder bytes worden
weergegeven door rekening te houden met wat er in de vorige up-
date verzonden is geweest. Hiermee kunnen delta-updates verstuurd
worden die het verschil vormen tussen een eerdere referentie staat, en
de huidige game staat.

• Input versus Game data: in sommige games is het beter om de input
te versturen dan alle veranderingen die gebeuren in het spel. Voor-
namelijk bij strategie games, die veel eenheden kunnen bevatten, zal
de input doorsturen in plaats van de acties per eenheid, een besparing
in bandbreedte opleveren.

• Update aggregatie: om de overhead per update te verminderen kunnen
updates tijdelijk opgehouden worden alvorens ze verzonden worden.
Er wordt dan even gewacht op een eventuele volgende update die dan
samen verzonden kunnen worden.

• Predicitie algoritmen: sommige games laten toe om de positie te voor-
spellen aan de hand van de data in de update. Zolang de positie van
de voorspelling niet te veel afwijkt van de werkelijke positie dient er

136

geen update uitgezonden te worden. Dit laat wel echter kleine in-
consistenties tussen spelers toe in het spel, maar spaart wel updates
uit.

• Update filtering: een speler heeft niet altijd even veel gedetailleerde
informatie nodig van dingen die zich achter hem, of in de verte af-
spelen. Dan kan er bandbreedte bespaard worden door zo’n updates
gewoonweg niet te verzenden naar de spelers die ze niet nodig hebben.

C.4 Setup en Testen

Elke verbinding zal onderworpen worden aan een reeks van testen die elk een
bepaald type van verbruik zullen meten. De twee voornaamste parameters
waarmee gespeeld wordt zijn de grootte van de data die verzonden wordt,
en de snelheid waarmee de pakketten verzonden worden. Door deze twee
parameters te laten variëren kan een relatieve vergelijking opgesteld worden
van de verschillende connecties. Deze testen worden uitgevoerd in een een-
voudige client-server netwerk opstelling.

Deze testen zijn voornamelijk gebasseerd op de round-trip tijden van de
pakketten. Een pakket wordt gegenereerd door de client en verzonden naar
de server. De server zal ditzelfde pakket gewoonweg terug naar de zender
sturen. De client zal de tijdsstippen bijhouden waarop het pakket werd
verzonden en ontvangen.

C.4.1 CPU Gebruik

De eerste test legt zich toe het CPU verbruik van een bepaalde verbinding
te meten. Door pakketten aan een constante snelheid te genereren voor
een bepaalde zijn met een bepaalde grootte, zal elke verbinding even veel
pakketten uitsturen. Dit laat gemakkelijk toe om het verschil in CPU ge-
bruik te vergelijken.

In deze test blijken de WebSocket en WebRTC kanalen goed te scoren.
Zij vertonen een laag verbruik van de CPU. WebSockets hebben hier nog een
klein voordeel ten opzichte van WebRTC. Ook de Secure WebSocket kanalen
presteren beter dan de WebRTC kanalen, ondanks ze beide van encryptie
zijn voorzien. De Unity Webplayer scoort hier het slechtste omwille van zijn
update loop die continu zijn werk doet, ondanks er geen pakketten zijn om
te verwerken. Uit deze tests blijkt ook dat de Unity Webplayer dankzij deze
update loop ook extra latency en latency jitter toevoegd.

137

C.4.2 Bandbreedte Gebruik

In de voorgaande reeks van testen werden door elke verbinding even veel
pakketten verstuurd. Dit laat ook toe om de verzonden pakketten te analy-
seren in hun overhead, zowel directe overhead die direct gekoppeld is aan de
data die verzonden wordt, maar ook operationele overhead die wordt gepro-
duceerd door de verbinding. Dit kunnen bijvoorbeeld bevestigings pakketten
zijn om aan te geven dat een bepaald pakket goed is aangekomen.

Waar de Unity Webplayer slecht scoorde in de vorige test, scoort hij
hier het beste. Door zijn minimalistische kanalen wordt er weinig overhead
geproduceerd. WebSockets presteren hier goed tweede door middel van het
dunne laagje dat het WebSocket protocol toevoegd aan de onderliggende
TCP connectie. WebRTC daarentegen, creëert een enorme hoeveelhied aan
overhead. Dit is deels te danken aan de vele lagen die gebruikt worden
om data te transporteren, maar ook aan de implementatie van WebRTC.
De grootste overhead is te vinden bij Google Chrome. Door een afwijkende
implementatie genereerd deze overdadig veel extra traffiek die snel de nuttige
hoeveelheid data overschaduwt.

C.4.3 Sub-optimale Netwerkomstandigheden

De vorige testen werden uitgevoerd in optimale netwerkomstandigheden
waarbij er geen artificiële packet loss en latency gëıntroduceerd werden. Hier
wordt wél gebruik gemaakt van packet loss, latency en latency jitter om het
gedrag waar te nemen van de verschillende verbindingen op deze parameters.

Hier vallen voornamelijk de betrouwbare connecties op. Deze zorgen
ervoor dat de data gegarandeerd wordt afgeleverd aan de ontvanger en in
de juiste volgorde. Deze verbindingen vertonen grote pieken wanneer ze
worden geconfronteerd met data die verloren is gegaan. De onbetrouwbare
kanalen zijn geconfigureerd om geen garanties te bieden. Deze vertonen
dan ook een relatief vlakke lijn wanneer de round-trip tijden worden afge-
drukt. Hier is opvallend dat de eerder waargenomen latency en jitter van
de Unity Webplayer zijn update loop, op gaat in de latency en jitter van
het netwerk. Hierdoor verschillen het onbetrouwebare WebRTC kanaal en
Unity Webplayer UDP kanaal nauwelijks van elkaar.

C.5 Conclusie

Game ontwikkelaars voor de web browser hebben nu de mogelijkheid om
ook een multiplayer aspect toe te voegen aan hun game. Voor elk genre
van games is er een oplossing beschikbaar die multiplayer mogelijk maken.
Echter, ten opzichte van een ontwikkelaar voor een native platform dient hij

138

nog wel een belangrijke trade-off the maken. Deze trade-off bestaat vooral
in het kiezen tussen optimaal gebruik van de bandbreedte, of optimale la-
tency waarden. Er is op dit moment van schrijven geen ideale of optimale
oplossing beschikbaar.

Games die gebruik willen maken van een peer-to-peer architectuur kun-
nen niet onder WebRTC uit. Maar voor client-server architecturen zijn er
veel meer opties:

• Voor games die een hoge update rate hebben zoals shooter games en
racing games, zijn vooral de onbetrouwbare kanalen geschikt. De on-
betrouwebare configuratie van WebRTC en de UDP connectie van de
Unity Webplayer bieden deze oplossing. Het WebRTC kanaal biedt de
beste latency waarden, terwijl de Unity UDP connectie het efficiënste
gebruik maakt van de bandbreedte.

• Action en role-playing games hebben een iets lagere update rate, en
hebben eigenlijk de optie om uit alle mogelijke verbindingen te kiezen.
Maar hier ook dezelfde trade-off. WebSockets hebben een wat hogere
band-breedte nodig dan de Unity TCP connectie. Maar deze laatste
verhoogt de latency. Het betrouwbare WebRTC kanaal kan hier niet
echt dienst doen omdat de WebSocket verbinding dit beter aanpakt.

• Tragere games zoals strategie en puzzel games worden meer aange-
dreven door de input van de spelers. Deze zal dus relatief weinig up-
dates genereren, en de games zijn over het algemeen redelijk resistent
tegen latency. Hierdoor kan best een betrouwbare verbindingsoptie
gekozen worden. Ondanks dat de Unity Webplayer hier een betere
bandbreedte efficiëncy zou halen, is het echter aangeraden om hier te
opteren voor de WebSocket verbinding. Deze zal minder energie ver-
bruiken, terwijl het bandbreedte gebruik slechts marginaal toeneemt.

139

140

Bibliography

[1] AjaxPatterns. Http streaming. http://ajaxpatterns.org/HTTP_

Streaming#Solution, Februari 2014.

[2] Alessandro Alinone. Optimizing Multiplayer 3D Game Syn-
chronization Over the Web. http://www.gamedev.net/page/

resources/_/technical/multiplayer-and-network-programming/

optimizing-multiplayer-3d-game-synchronization-over-the-web-r3446,
December 2013.

[3] Amir Almasi and Yohanes Kuma. Evaluation of WebSocket Communi-
cation in Enterprise Architecture. 2013.

[4] Automattic. socket.io. https://github.com/Automattic/socket.io,
2014.

[5] Steve Benford and Lennart Fahln. A spatial model of interaction in
large virtual environments. In Giorgio de Michelis, Carla Simone, and
Kjeld Schmidt, editors, Proceedings of the Third European Conference
on Computer-Supported Cooperative Work 1317 September 1993, Mi-
lan, Italy ECSCW 93, pages 109–124. Springer Netherlands, 1993.

[6] Yahn W. Bernier. Latency Compensating Methods in Client/Server
In-game Protocol Design and Optimization. https://developer.

valvesoftware.com/wiki/Latency_Compensating_Methods_in_

Client/Server_In-game_Protocol_Design_and_Optimization,
2001.

[7] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Mosci-
broda, Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donny-
brook: Enabling large-scale, high-speed, peer-to-peer games. In Pro-
ceedings of the ACM SIGCOMM 2008 Conference on Data Commu-
nication, SIGCOMM ’08, pages 389–400, New York, NY, USA, 2008.
ACM.

[8] Bluestop. SctpDrv: an SCTP driver for Microsoft Windows. http:

//www.bluestop.org/SctpDrv/, May 2012.

141

http://ajaxpatterns.org/HTTP_Streaming#Solution
http://ajaxpatterns.org/HTTP_Streaming#Solution
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/optimizing-multiplayer-3d-game-synchronization-over-the-web-r3446
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/optimizing-multiplayer-3d-game-synchronization-over-the-web-r3446
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/optimizing-multiplayer-3d-game-synchronization-over-the-web-r3446
https://github.com/Automattic/socket.io
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
http://www.bluestop.org/SctpDrv/
http://www.bluestop.org/SctpDrv/

[9] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Verbrugge. Compar-
ing interest management algorithms for massively multiplayer games. In
Proceedings of 5th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’06, New York, NY, USA, 2006. ACM.

[10] Wu chang Feng and Wu chi Feng. On the Geographic Distribution of
On-line Game Servers and Players. May 2003.

[11] Clay.io. HTML5 Game Engines. http://html5gameengine.com/.

[12] Mozilla Corporation. Lossy Compressed Image Formats Study.
http://people.mozilla.org/~josh/lossy_compressed_image_

study_july_2014/, July 2014.

[13] Alberto Dainotti, Salvatore Loreto, Antonio Pescap, and Giorgio Ven-
tre. Sctp performance evaluation over heterogeneous networks. Con-
currency and Computation: Practice and Experience, 19(8):1207–1218,
2007.

[14] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of factors
affecting players’ performance and perception in multiplayer games. In
Proceedings of 4th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’05, pages 1–7, New York, NY, USA,
2005. ACM.

[15] Y. Elkhatib, G. Tyson, and M. Welzl. Can spdy really make the web
faster? In Networking Conference, 2014 IFIP, pages 1–9, June 2014.

[16] Wikipedia The Free Encyclopedia. Bufferbloat. https://en.

wikipedia.org/wiki/Bufferbloat, May 2014.

[17] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ra-
makrishnan. Towards a spdy’ier mobile web? In Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’13, pages 303–314, New York, NY, USA, 2013.
ACM.

[18] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web prefetching be-
tween low-bandwidth clients and proxies: Potential and performance.
In Proceedings of the 1999 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, SIGMET-
RICS ’99, pages 178–187, New York, NY, USA, 1999. ACM.

[19] I. Fette and A. Melnikov. The WebSocket Protocol. http://tools.

ietf.org/html/rfc6455#section-10.3, December 2011.

[20] I. Fette and A. Melnikov. The WebSocket Protocol. http://tools.

ietf.org/html/rfc6455#section-5.5.2, December 2011.

142

http://html5gameengine.com/
http://people.mozilla.org/~josh/lossy_compressed_image_study_july_2014/
http://people.mozilla.org/~josh/lossy_compressed_image_study_july_2014/
https://en.wikipedia.org/wiki/Bufferbloat
https://en.wikipedia.org/wiki/Bufferbloat
http://tools.ietf.org/html/rfc6455#section-10.3
http://tools.ietf.org/html/rfc6455#section-10.3
http://tools.ietf.org/html/rfc6455#section-5.5.2
http://tools.ietf.org/html/rfc6455#section-5.5.2

[21] I. Fette and A. Melnikov. The WebSocket Protocol. http://tools.

ietf.org/html/rfc6455#section-5.1, December 2011.

[22] The Apache Software Foundation. Apache core features - keepalive-
timeout directive. https://httpd.apache.org/docs/2.2/mod/core.

html#keepalivetimeout.

[23] Inc. Google. Optimizing encoding and transfer size of
text-based assets. https://developers.google.com/web/

fundamentals/performance/optimizing-content-efficiency/

optimize-encoding-and-transfer#minification-preprocessing--context-specific-optimizations,
April 2014.

[24] Inc. Google. WebP. https://developers.google.com/speed/webp/

?csw=1, March 2014.

[25] Inc. Google. WebP Compression Study. https://developers.

google.com/speed/webp/docs/webp_study, March 2014.

[26] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned fed-
eration of game servers: A peer-to-peer approach to scalable multi-
player online games. In Proceedings of 3rd ACM SIGCOMM Workshop
on Network and System Support for Games, NetGames ’04, pages 116–
120, New York, NY, USA, 2004. ACM.

[27] Google Inc. SPDY: An experimental protocol for a faster web. http:

//www.chromium.org/spdy/spdy-whitepaper.

[28] Jared Jardine and Daniel Zappala. A Hybrid Architecture for Mas-
sively Multiplayer Online Games. http://netgames2008.cs.wpi.edu/
slides/jardine.pdf, 2008.

[29] Alan B. Johnston and Daniel C. Burnett. WebRTC: APIs and
RTCWEB Protocols of the HTML5 Real-Time Web. Digital Codex
LLC, USA, 2012.

[30] Alan K. node-webrtc. https://github.com/js-platform/

node-webrtc, March 2014.

[31] B. Knutsson, H. Lu, Wei Xu, and B. Hopkins. Peer-to-peer support
for massively multiplayer games. In INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, volume 1, pages –107, March 2004.

[32] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and RandalM.
Henne. Controlled experiments on the web: survey and practical guide.
Data Mining and Knowledge Discovery, 18(1):140–181, 2009.

143

http://tools.ietf.org/html/rfc6455#section-5.1
http://tools.ietf.org/html/rfc6455#section-5.1
https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer#minification-preprocessing--context-specific-optimizations
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer#minification-preprocessing--context-specific-optimizations
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer#minification-preprocessing--context-specific-optimizations
https://developers.google.com/speed/webp/?csw=1
https://developers.google.com/speed/webp/?csw=1
https://developers.google.com/speed/webp/docs/webp_study
https://developers.google.com/speed/webp/docs/webp_study
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
http://netgames2008.cs.wpi.edu/slides/jardine.pdf
http://netgames2008.cs.wpi.edu/slides/jardine.pdf
https://github.com/js-platform/node-webrtc
https://github.com/js-platform/node-webrtc

[33] Balachander Krishnamurthy, Craig Wills, and Yin Zhang. On the use
and performance of content distribution networks. In Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement, IMW ’01,
pages 169–182, New York, NY, USA, 2001. ACM.

[34] Markku Laine and Kalle Säilä. Performance evaluation of xmpp on the
web. Technical report, Aalto University Technical Report, 2012.

[35] Eric Li. Optimizing WebSockets Bandwidth. http://buildnewgames.
com/optimizing-websockets-bandwidth/, September 2012.

[36] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean
Egan, and Joe Hildebrand. XEP-0166: Jingle. http://xmpp.org/

extensions/xep-0166.html, December 2009.

[37] M.R. Macedomia, M.J. Zyda, D.R. Pratt, D.P. Brutzman, and
P. Barham. Exploiting reality with multicast groups: a network archi-
tecture for large-scale virtual environments. In Virtual Reality Annual
International Symposium, 1995. Proceedings., pages 2–10, Mar 1995.

[38] Michael R Macedonia. A network software architecture for large scale
virtual environments. PhD thesis, Monterey, California. Naval Post-
graduate School, 1995.

[39] Robin Marx, Peter Quax, and Wim Lamotte. Dynamic Bandwidth
Scalability in Large Scale Networked Virtual Environments, 2011.

[40] Michael F. Nowlan and Bryan Ford. Unordered Delivery in TLS-
Encrypted TCP Connections. 2009.

[41] Nuwen.net. Introduction to PNG. http://nuwen.net/png.html.

[42] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive
prefetching to improve world wide web latency. SIGCOMM Comput.
Commun. Rev., 26(3):22–36, July 1996.

[43] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-
time multiplayer games. In Proceedings of the 12th International Work-
shop on Network and Operating Systems Support for Digital Audio and
Video, NOSSDAV ’02, pages 23–29, New York, NY, USA, 2002. ACM.

[44] Ian Paterson, Dave Smith, Peter Saint-Andre, Jack Moffitt, Lance
Stout, and Winfried Tilanus. XEP-0124: Bidirectional-streams Over
Synchronous HTTP (BOSH). http://www.xmpp.org/extensions/

xep-0124.html#technique, April 2014.

[45] M. Perumal, D. Wing, R. Ravindranath, T. Reddy, and M. Thomson.
STUN Usage for Consent Freshness. http://tools.ietf.org/html/

144

http://buildnewgames.com/optimizing-websockets-bandwidth/
http://buildnewgames.com/optimizing-websockets-bandwidth/
http://xmpp.org/extensions/xep-0166.html
http://xmpp.org/extensions/xep-0166.html
http://nuwen.net/png.html
http://www.xmpp.org/extensions/xep-0124.html#technique
http://www.xmpp.org/extensions/xep-0124.html#technique
http://tools.ietf.org/html/draft-ietf-rtcweb-stun-consent-freshness-05#section-4.1
http://tools.ietf.org/html/draft-ietf-rtcweb-stun-consent-freshness-05#section-4.1

draft-ietf-rtcweb-stun-consent-freshness-05#section-4.1,
October 2009.

[46] The WebM Project. WebM: an open web media project. http://www.
webmproject.org/, 2014.

[47] D.G. Puranik, D.C. Feiock, and J.H. Hill. Real-time monitoring us-
ing ajax and websockets. In Engineering of Computer Based Systems
(ECBS), 2013 20th IEEE International Conference and Workshops on
the, pages 110–118, April 2013.

[48] James Purbrick and Chris Greenhalgh. Extending locales: Awareness
management in massive-3. 2014 IEEE Virtual Reality (VR), 0:287,
2000.

[49] Peter Quax, Bart Cornelissen, Jeroen Dierckx, Gert Vansichem, and
Wim Lamotte. Alvic-ng: state management and immersive communi-
cation for massively multiplayer online games and communities. Mul-
timedia Tools and Applications, 45(1-3):109–131, 2009.

[50] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny
De Vleeschauwer, and Natalie Degrande. Objective and subjec-
tive evaluation of the influence of small amounts of delay and jitter
on a recent first person shooter game. In Proceedings of 3rd ACM
SIGCOMM Workshop on Network and System Support for Games,
NetGames ’04, pages 152–156, New York, NY, USA, 2004. ACM.

[51] Shruto M. Rakhunde. Real Time Data Communication over Full Du-
plex Network Using Websocket. IOSR Journal of Computer Science,
2014.

[52] Giuseppe Reina, Ernst Biersack, and Christophe Diot. Quiver: A mid-
dleware for distributed gaming. In Proceedings of the 22Nd Interna-
tional Workshop on Network and Operating System Support for Digital
Audio and Video, NOSSDAV ’12, pages 27–32, New York, NY, USA,
2012. ACM.

[53] John Resig. Accuracy of JavaScript Time. http://ejohn.org/blog/

accuracy-of-javascript-time/, November 2008.

[54] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Proto-
col for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols. https://tools.ietf.org/html/rfc5245#page-65, April
2010.

[55] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Proto-
col. http://tools.ietf.org/html/rfc3261, June 2002.

145

http://tools.ietf.org/html/draft-ietf-rtcweb-stun-consent-freshness-05#section-4.1
http://tools.ietf.org/html/draft-ietf-rtcweb-stun-consent-freshness-05#section-4.1
http://www.webmproject.org/
http://www.webmproject.org/
http://ejohn.org/blog/accuracy-of-javascript-time/
http://ejohn.org/blog/accuracy-of-javascript-time/
https://tools.ietf.org/html/rfc5245#page-65
http://tools.ietf.org/html/rfc3261

[56] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video
coding extension of the h.264/avc standard. Circuits and Systems for
Video Technology, IEEE Transactions on, 17(9):1103–1120, Sept 2007.

[57] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Em-
manuel Agu. The effect of latency on user performance in warcraft iii.
In Proceedings of the 2Nd Workshop on Network and System Support
for Games, NetGames ’03, pages 3–14, New York, NY, USA, 2003.
ACM.

[58] Einar Otto Stangvik. ws. https://github.com/einaros/ws, 2014.

[59] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream
Control Transmission Protocol (SCTP) Partial Reliability Extension.
http://www.ietf.org/rfc/rfc3758.txt, May 2004.

[60] Timo Stripf and Tobias Oetzel. Open Game Protocol. http://www.

open-game-protocol.org/index.php.

[61] Wikipedia the Free Encyclopedia. Lockstep protocol. http://en.

wikipedia.org/wiki/Lockstep_protocol, April 2011.

[62] Wikipedia the Free Encyclopedia. Comet. https://en.wikipedia.

org/wiki/Comet_%28programming%29, August 2014.

[63] Wikipedia the Free Encyclopedia. HTML5 Audio. http://en.

wikipedia.org/wiki/HTML5_Audio, July 2014.

[64] Wikipedia the Free Encyclopedia. Sliding window protocol. http:

//en.wikipedia.org/wiki/Sliding_window_protocol, May 2014.

[65] Daniel J Van Hook, James O Calvin, and Duncan C Miller. A pro-
tocol independent compression algorithm (pica). Advanced Distributed
Simulation Project Memorandum 20PM–ADS–005, MIT Lincoln Lab-
oratories, Lexington, Massachusetts, 1994.

[66] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. How speedy is spdy. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementa-
tion, pages 387–399. USENIX Association, 2014.

[67] Second Life Wiki. Viewer Architecture. http://wiki.secondlife.

com/wiki/Viewer_Architecture, March 2011.

[68] Worlize. WebSocket Client Benchmark. http://worlize.github.io/
WebSocket-Node/benchmarks/.

[69] Worlize. WebSocket-Node. https://github.com/Worlize/

WebSocket-Node, 2013.

146

https://github.com/einaros/ws
http://www.ietf.org/rfc/rfc3758.txt
http://www.open-game-protocol.org/index.php
http://www.open-game-protocol.org/index.php
http://en.wikipedia.org/wiki/Lockstep_protocol
http://en.wikipedia.org/wiki/Lockstep_protocol
https://en.wikipedia.org/wiki/Comet_%28programming%29
https://en.wikipedia.org/wiki/Comet_%28programming%29
http://en.wikipedia.org/wiki/HTML5_Audio
http://en.wikipedia.org/wiki/HTML5_Audio
http://en.wikipedia.org/wiki/Sliding_window_protocol
http://en.wikipedia.org/wiki/Sliding_window_protocol
http://wiki.secondlife.com/wiki/Viewer_Architecture
http://wiki.secondlife.com/wiki/Viewer_Architecture
http://worlize.github.io/WebSocket-Node/benchmarks/
http://worlize.github.io/WebSocket-Node/benchmarks/
https://github.com/Worlize/WebSocket-Node
https://github.com/Worlize/WebSocket-Node

[70] Chen-Chi Wu, Kuan-Ta Chen, Chih-Ming Chen, Polly Huang, and
Chin-Laung Lei. On the challenge and design of transport protocols
for mmorpgs. Multimedia Tools and Applications, 45(1-3):7–32, 2009.

147

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Analysis and evaluation of multiplayer communication channels in browser

games

Richting: master in de informatica-multimedia

Jaar: 2014

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,

vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Voor akkoord,

Discart, Jan

Datum: 8/09/2014

