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Abstract

As multiple sclerosis is known to cause atrophy and deformation in the brain, it also
influences the shape and size of the corpus callosum. Longitudinal studies try to quan-
tify these changes using medical image analysis techniques for measuring and analyzing
the shape and size of a corpus callosum cross-sechtion embedded in a specially selected
measurement plane. In this thesis, a framework has been implemented that automati-
cally identifies and extracts the plane that contains the minimal cross-sectional area of
the corpus callosum from a given MRI volume. The framework relies on deformable im-
age registration for the segmentation and area calculation of the cross-section area of
the corpus callosum embedded in a plane. Therefore, we used the free-form deformation
transformation model, using B-splines, to chararacterize deformations based on a grid of
control points. Computations that take place on a per-pixel basis have been transfered
to the coarse grid of control points, leading to potential computational gains. To further
improve the results of the registration process, a hierarchical multiresolution method is
used that will increasingly refine the grid of control points. The whole registration process
has also been accelerated by making use of the parallelization capabilities of a GPU. The
registration process as well as the framework that uses deformable registration to identify
and extract the plane containing the corpus callosum of minimal cross-sectional area, have
been properly evaluated using synthetic and medical data.
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Nederlandse Samenvatting

1 Multiple Sclerose

Multiple sclerose (MS) is een ontstekingsaandoening aan het centrale zenuwstelsel, waar er
schade kan worden berokkend aan het myeline en aan axonen, maar het kan ook algemene
atrofie en vervorming van de hersenen veroorzaken. Initieel is de ontsteking tijdelijk en zal
de myelineschade worden hersteld, maar bij een patiënt die lijdt aan MS zal dit herstel na
verloop van tijd afnemen. Het afnemen van myeline kan na verloop van tijd ervoor zorgen
dat een patiënt zijn motorische functies verliest, maar ook zijn visuele en sensorische
vaardigheden kunnen worden aangetast. Dit zijn maar enkele symptomen, maar ze zijn
de meest opvallende.

Een Amerikaanse organisatie, genaamd “United States National Multiple Sclerosis So-
ciety”, heeft vier klinische categorieën beschreven waarin een patiënt met MS kan worden
geclassificeerd:

1. Relapsing-remitting MS (RRMS), waarin een patiënt lijdt aan onvoorspelbare aan-
vallen van MS, maar ook tijden van remissie kent;

2. Secondary progressive MS (SPMS), waar de patiënt eerst begint met RRMS, maar
na een tijdje er geen sprake meer is van remissie;

3. Primary progressive MS (PPMS), wat wordt gekarakteriseerd door een geleidelijke
afname van vaardigheden vanaf het begin, maar zonder, of met minimale, periodes
van remissie;

4. Progressive relapsing MS (PRMS), wat een geleidelijke degeneratie veroorzaakt,
gelijkend op PPMS, maar met af en toe een bijkomende MS aanval.

Hoewel de meest fundamentele aspecten van MS goed zijn beschreven in de medische
literatuur, geeft het gebruik van medische beelden ons nog steeds nieuwe inzichten in
de ontwikkeling van MS en hoe MS reageert op eventuele behandelingen. De medische
beelden die meestal hiervoor worden gebruikt, zijn MRI’s, ook wel magnetische resonantie
beelden genoemd.
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1.1 Corpus Callosum

Aangezien multiple sclerose atrofie in de hersenen kan veroorzaken, kan het dus ook atrofie
veroorzaken in het corpus callosum. Het corpus callosum, wat “tough body” betekent
in het Engels als men dit zou vertalen vanuit het Latijn, is de grootste bundeling van
zenuwvezels in het hele zenuwstelsel. Het verbindt de twee hersenhelften en zorgt voor de
uitwisseling van informatie tussen deze twee helften. Het corpus callosum is een uiterst
vezelrijke structuur in de hersenen en er wordt verondersteld dat het corpus callosum
minder gevoelig is voor vochtverlies. Door deze eigenschap, kan het corpus callosum
beschouwd worden als een meer geschikte maatstaaf voor het analyseren van neurologische
degeneratie en atrofie dan bijvoorbeeld het louter beschouwen van het hersenvolume, dat
immers wel gevoelig is voor vochtverlies. Longitudinale studies proberen de verandering
in volume en vorm van het corpus callosum te kwantificeren door gebruik te maken van
medische analysetechnieken. Deze technieken analyseren en waarnemen veranderingen in
vorm en volume door het oppervlakte van de dwarsdoorsnede van het corpus callosum te
berekenen, meestal gebruikmakend van het mid-sagittaal vlak (MSP).

1.2 Minimale CC Oppervlakte Vlak Extractie

De meeste technieken die gehanteerd worden voor het vinden van het MSP, zijn ofwel op
symmetrie ofwel op kenmerken gebaseerd. Technieken gebaseerd op symmetrie, stellen
dat de hersenen bilaterale symmetrie vertonen. Het MSP wordt dan ook geselecteerd
door deze symmetrie te maximaliseren. Kenmerkengebaseerde technieken, daarentegen,
definiëren het MSP als het vlak dat het meeste overeenkomt met de interhemisferische
fissuur. De zonet beschreven methodes hangen af van het juist identificeren van dit
mid-sagitaal vlak. Als dit vlak niet optimaal werd gekozen, zal de berekening van het
oppervlakte van de dwarsdoorsnede van het corpus callosum immers foutief zijn. Ook
negeert het gebruik van het MSP vlak, op welke manier deze ook werd bekomen, de
karakteristieken van het corpus callosum.

Ishaq probeerde de tekortkomingen van deze methodes te verhelpen door een nieuwe,
geautomatiseerde techniek te hanteren [21]. Deze geautomatiseerde techniek zoekt naar
een vlak met minimale dwarsdoorsnede oppervlakte van het corpus callosum en deze
verzekert dat de oppervlakte van de dwarsdoorsnede correct wordt berekend.

2 Medische Beeldregistratie

Het zoeken naar dit vlak met minimale dwarsdoorsnede oppervlakte van het corpus callo-
sum wordt verwezenlijkt door gebruik te maken van medische beeldregistratie. Medische
beelden worden gebruikt voor het stellen van een diagnose, het plannen van een behan-
deling, het vaststellen van de progressie van een ziekte en het kan een chirurg helpen bij
het uitoefenen van een chirurgische ingreep. Computertomografie (CT) en magnetische
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resonantie beelden (MRI) van een hoofd worden vaak gebruikt voor het stellen van een
diagnose alsook als hulpmiddel voor het plannen van een chirurgische ingreep, omdat deze
twee modaliteiten complementaire informatie bevatten over botstructuur en over zachte
weefsels. Traditioneel zullen beide beelden langs elkaar worden gelegd op een lichtbak.
Het bestuderen van deze beelden vereist van de chirurg dat hij in zijn hoofd een mapping
maakt van welke punten van het ene beeld overeenkomen met punten van het andere
beeld. Dit is geen triviale taak en dit kan enkel correct gebeuren als de chirurg in kwestie
veel ervaring heeft met dit probleem. De onzekerheid die gepaard gaat met de mentale
mapping van punten, kan onzekerheid scheppen bij het stellen van een diagnose of bij het
maken van een chirurgische planning.

Medische beeldregistratie zal deze beelden aligneren met behulp van een computer.
Een belangrijk voordeel is dat een computer meer accuraat kan werken dan een mens,
alsook kan het voor eventuele visualisatie zorgen van de twee gealigneerde beelden. Beeld-
registratie is dus een proces dat de juiste geometrische vervorming probeert te achterhalen
zodat twee beelden precies met elkaar kunnen worden gealigneerd. In deze thesis zal de
volgende terminologie worden gehanteerd: het beeld dat niet wordt vervormd tijdens het
proces, heet het referentiebeeld of het statische beeld. Het tweede beeld, dat stapsgewijs
wordt vervormd zodat het kan worden gealigneerd met het eerste beeld, wordt vaak het
zwevende beeld of het template beeld genoemd.

Elke beeldregistratie techniek die er maar bestaat, bevat de volgende drie componen-
ten:

1. een transformatiemodel, ook wel vervormingsmodel genoemd, die bepaalt hoe
een beeld vervormd kan worden naar een ander beeld;

2. een maat van overeenkomst, die de overeenkomst tussen het referentie beeld en
het zwevende beeld meet;

3. een optimalisatietechniek, die de meest optimale transformatie parameters pro-
beert te achterhalen in functie van de maat van overeenkomst.

Elk van de zonet opgesomde componenten kan op een verschillende manier worden
gëımplementeerd. Overheen de jaren zijn er verschillende algoritmen ontworpen. Voor
een overzicht kan de lezer terecht bij Sectie 4. De ontworpen beeldregistratie algoritmen
kunnen worden geclassificeerd volgens verschillende criteria, die nu zullen worden bespro-
ken. De meeste criteria bespreken hoe twee beelden met elkaar worden vergeleken of hoe
het zwevende beeld wordt vervormd om meer te gelijken op het referentiebeeld.

2.1 Mono-modale en Multi-modale Applicaties

Medische beelden kunnen worden bekomen in verschillende modaliteiten. Enkele van deze
modaliteiten zijn de volgende: computertomografie (CT), röntgen (ook bekend als X-ray),
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magnetische resonantie (MRI), positronemissietomografie (PET), echografie, tomoscinti-
grafie (ook bekend als Single Photon Emission Tomography, oftewel SPECT), enzovoorts.
Elk type van modaliteit heeft een specifiek domein waarin het het beste gebruikt kan
worden. MRI’s en CT scans, bijvoorbeeld, zijn anatomische beelden van hoge resolutie,
maar ze bevatten weinig fysiologische informatie. PET en SPECT beelden, daarentegen,
bevatten veel fysiologische informatie, maar kunnen weinig anatomische informatie bie-
den. Het combineren van beelden van verschillende modaliteiten kan ervoor zorgen dat
het resulterende beeld van hoge resolutie is en dat zowel fysiologische als anatomische
informatie bevat.

Applicaties voor beeldregistratie die gebruik maken van medische beelden kunnen in
twee categorieën worden opgedeeld: mono-modale applicaties, waar de applicatie beelden
registreert die tot eenzelfde modaliteit behoren, en multi-modale applicaties, waar de af-
beeldingen die worden geregistreerd vanuit verschillende modaliteiten afkomstig zijn. Het
framework dat werd ontworpen voor deze thesis registreert beelden afkomstig van een-
zelfde MRI volume, dus kan het worden geclassificeerd onder mono-modale applicaties.

2.2 Kenmerkgebaseerde en Voxelgebaseerde Maten van Over-
eenkomst

Een maat van overeenkomst wordt gebruikt door beeldregistratie applicaties om een be-
paalde graad van overeenkomst tussen twee beelden vast te stellen. Hier kan men twee
soorten van maatstaven onderscheiden, namelijk kenmerkgebaseerde en voxelgebaseerde
maatstaven. Kenmerkgebaseerde registratie applicaties maken gebruik van punten, lijnen
of oppervlaktes als kenmerken van een beeld en proberen de afstand tussen de overeenkom-
stige kenmerken van twee beelden te minimaliseren. Zulke registratie applicaties kunnen
voor zowel mono-modale als multi-modale problemen worden gehanteerd, maar ze verei-
sen wel een kenmerkenextractiefase, in de vorm van segmentatie of landmark-detectie, die
niet triviaal is. Als er fouten worden gëıntroduceerd tijdens de kenmerken extractie fase,
zal dit de correctheid van de registratie averechts bëınvloeden.

Zulke fouten kunnen worden vermeden door berekeningen te maken met de beeldin-
tensiteiten in plaats van gebruik te maken van kenmerken van een beeld. Deze maatstaven
worden ook voxelgebaseerde maten van overeenkomst genoemd en ze berekenen de graad
van overeenkomstige informatie van beeldintensiteiten. Deze methodes zijn relatief sim-
pel voor mono-modale applicaties, maar ze zijn echter meer complex voor multi-modale
applicaties. In het laatste decennium zijn voxelgebaseerde maten van overeenkomst de
vaste keuze geworden voor het meten van overeenkomst, meerendeel omdat ze accuraat en
robuust zijn. Er zijn verschillende soorten maten van overeenkomst. Enkele van hen wor-
den besproken in Sectie 2.3.2, zoals kleinste kwadraten (KK), mutuele informatie (MI) en
kruiscorrelatie (KC). KK en KC worden merendeel gebruikt in mono-modale applicaties,
terwijl MI daarentegen voor zowel mono-modale als multi-modale applicaties gebruikt kan



ix

worden. Aangezien het ontworpen framework een mono-modaal probleem probeert op te
lossen, wordt “kleinste kwadraten” als maat voor overeenkomst gebruikt.

2.3 Rigide en Niet-Rigide Transformatiemodellen

Het transformatiemodel bepaalt hoe een beeld vervormd kan worden naar een ander beeld.
Het meest simpele model gaat ervan uit dat de transformatie zich rigide of affien gedraagt.
Rigide transformatie compenseert enkel de algemene verschillen in rotatie en translatie.
Affiene transformatie beschouwt ook nog eens schaalveranderingen en afschuivingen als
extra mogelijkheden van vervorming. Dergelijke aannames zorgen ervoor dat de beeld-
registratie beelden aligneert waarvan de inhoud als rigide kan worden beschouwd. De
schedel, alsook andere botstructuren, vervormen niet in een gezond lichaam en kunnen
dus als rigide worden beschouwd. Maar het menselijke lichaam bestaat ook uit zachte
weefselstructuren, die niet als rigide objecten kunnen worden beschouwd. Dit zorgt er-
voor dat de meeste beeldregistratie applicaties rekening moeten houden met niet-rigide
transformaties om tot een correcte registratie te komen.

Bij niet-rigide beeldregistratie zal er naar een veld van translatievectoren gezocht wor-
den die elke voxel van het zwevende beeld mapt met de overeenkomstige voxel in het re-
ferentiebeeld. Dit veld wordt ook het vervormingsveld genoemd. Iedere individuele voxel
ondergaat een translatie zodat de lokale vervorming tussen twee beelden kan worden ge-
compenseerd. Terwijl het affiene transformatiemodel enkel 12 vrijheidsgraden gebruikt,
zijn er veel meer vrijheidsgraden nodig bij een niet-rigide transformatie om zo het ver-
vormingsveld voldoende te voorzien van flexibiliteit om lokale vervormingen te kunnen
verwezenlijken.

Het is belangrijk om op te merken dat niet alle vervormingen fysiek mogelijk of accep-
tabel zijn en dat de beeldintensiteiteninformatie onvoldoende gedetailleerd kan zijn om
een éénduidig vervormingsveld op te stellen. Daarom kan er gebruik gemaakt worden van
een regularisatiemethode. Deze garandeert dat het vervormingsveld lokaal consistent is
en dat de transformatie met gelijke maten verloopt. Zulke eigenschappen van geleidelijke
vervorming kunnen op verschillende manieren aan een registratiealgoritme worden opge-
legd. Een voorbeeld is het vrije-vorm vervormingsmodel, dat inherent voor geleidelijke
vervorming zorgt. Deze kan nog gekoppeld worden aan een regularisatiemethode die niet-
acceptabele vervormingen zal afstraffen en ervoor zorgt dat meer gunstige vervormingen
worden gekozen.

Gegeven dat het corpus callosum een weefselstructuur is die in een patiënt met MS
vervormd kan worden door atrofie, moet een beeldregistratiemethode rekening houden
met niet-rigide transformaties. Deze thesis opteert dan ook voor het gebruik van het
vrije-vorm vervormingsmodel, wat een niet-rigide transformatiemodel is.
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2.3.1 Vrije-Vorm Vervormingsmodel

De oorsprong van vrije-vorm vervorming is terug te voeren naar het domein van com-
putergesteund ontwerpen (in het Engels heet dit computer-aided design), maar het kan
ook worden gebruikt bij medische beeldanalyse. Deze thesis maakt gebruik van een vrije-
vorm vervormingsmodel dat is gebaseerd op B-splines. Het basisidee achter dit model
is dat een object vervormd kan worden door de manipulatie van een mesh van controle
punten. De resulterende transformatie van controle punten bepaalt de vervorming van
het 3-D, of 2-D, object dat men wilde behandelen en produceert een geleidelijke, en een
C2 continue, vervorming. In vergelijking met thin-plate splines en elastic-body splines,
zijn B-splines lokaal gecontroleerd, waardoor ze computationeel gezien efficiënt berekend
kunnen worden, ook al zijn er veel controle punten in gebruik. Meer specifiek: de kubi-
sche B-splines zorgen ervoor dat een controlepunt enkel de transformatie van zijn lokale
omgeving bëınvloedt.

2.4 Dimensionaliteit

Beeldregistratie kan worden verwezenlijkt met beelden van verschillende dimensionalitei-
ten. Deze dimensies kunnen puur spatiaal zijn, maar ook de tijd kan een dimensie vormen.
In ieder geval, een probleem kan ook worden geclassificeerd afhankelijk van de hoeveel-
heid dimensies dat het probleem vereist. De meeste medische beeldregistratie applicaties
registreren twee 3-D beelden met elkaar, waar de tijd buiten beschouwing wordt gelaten.
Deze vorm van registratie behandelt normaliter twee tomografische datasets. Bij 2-D-2-D
beeldregistratie worden 2-D vlakken vanuit tomografische data sets geëxtraheerd en deze
worden vervolgens gebruikt als input voor het registratie proces. 3-D-3-D beeldregistratie
applicaties zijn meer complex dan hun 2-D-2-D tegenhanger, aangezien het aantal para-
meters dat wordt gebruikt, alsook het datavolume, bij een 3-D-3-D beeldregistratie groter
is dan bij een 2-D-2-D beeldregistratie. Men kan ook een 2-D-3-D registratie uitvoeren,
waarbij men een vlak registreert op een spatiaal volume.

In deze thesis probeert men een template te registreren op een vlak dat uit een gegeven
MRI-volume werd geëxtraheerd. Dit betekent dat het gëımplementeerde beeldregistra-
tieframework aan 2-D-2-D beeldregistratie doet.

2.5 Optimalisatie

Optimalisatietechnieken worden door beeldregistratietechnieken gebruikt om tot optimale
transformatieparameters te komen die ervoor zorgen dat twee beelden goed worden gea-
ligneerd. Of met andere woorden: het bepaalt hoe de transformatieparameters worden
aangepast zodat de twee te registreren beelden meer op elkaar gelijken. Er zijn verschei-
dene methodes voorgesteld om functies te optimaliseren. Dit betekent dat er voor een
functie naar ofwel een mimimum ofwel een maximum wordt gezocht. Elk van deze metho-
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des variëert in complexiteit. Goede optimalisatietechnieken bepalen snel en accuraat de
nodige transformatieparameters. In niet-rigide applicaties wordt het kiezen van een juiste
optimalisatietechniek bemoeilijkt door het feit dat hoe meer “niet-rigide”, of flexibel, het
transformatiemodel moet zijn, des te meer parameters er moeten zijn om de vervorming
te kunnen beschrijven. Door het “lokale minima”-probleem, is de kans groot dat een
optimalisatietechniek een stel parameters kiest dat een algemeen goed resultaat levert,
maar niet het meest optimale resultaat.

Deze transformatieparameters worden ofwel onmiddellijk berekend, ofwel worden ze
geleidelijk aan bepaald door middel van een “zoektocht”. Deze laatste methode vindt
de meest optimale transformatieparameters door een optimum, een minimum, te zoeken
voor een bepaalde kostfunctie. In het geval van beeldregistratie, is de kostfunctie de maat
van overeenkomst.

Veel optimalisatietechnieken maken gebruik van de eerste afgeleide van de kostfunctie
om de robuustheid van het optimaliseren te verhogen maar ook om het aantal iteraties
van de optimalisatie te beperken. Deze berekening brengt meestal een aanzienlijke com-
putationele kost met zich mee. In ons geval zal een deel van de berekeningen dat nodig
is voor het berekenen van de afgeleide van de kostfunctie, overeenkomen met de bereke-
ningen die nodig zijn voor het berekenen van de kostfunctie. Hierdoor wordt de extra
computationele kost verminderd.

De meest simpele optimalisatietechnieken, die gebruik maken van de eerste afgeleide,
hanteren een techniek genaamd steepest descent. Startende van een gegeven positie, zullen
deze methodes zoeken naar een optimum in de richting van de eerste afgeleide. Meer
geavanceerde methodes, denk maar aan de quasi-Newton methodes, gebruiken ook de
tweede afgeleide in de zoektocht naar een optimum.

De robuustheid en snelheid van een gekozen optimalisatietechniek kan worden verbe-
terd door een hiërarchische multi-resolutie methode te hanteren. Gebruikmakend van deze
methode, zal het probleem opgesplitst worden in verschillende optimalisatiefases, waar in
elke fase de complexiteit van het probleem geleidelijk aan wordt verhoogd. Startende
van beelden waarvan de resoluties werden verlaagd en een transformatiemodel dat werd
gëınitialiseerd met een ruw grid van controle punten, wordt geleidelijk aan de resolutie
van de beelden verhoogt en wordt het grid van controlepunten steeds meer verfijnd totdat
de gewenste accuraatheid wordt bereikt. De volgende sectie geeft hier meer uitleg over.

3 Overzicht

Voor deze thesis werd een framework ontworpen dat een vlak zal identificeren en ex-
traheren dat een corpus callosum bevat met minimale dwarsdoorsnede oppervlakte, ge-
bruikmakende van CUDA om het registratiegedeelte van het framework te versnellen.
Normaliter zou een dergelijke techniek een MRI-volume vereisen waarin het corpus call-
osum pre-gesegmenteerd werd, maar deze segmentatie is meestal niet beschikbaar. Het
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gëımplementeerde framework zal het corpus callosum segmenteren op het geëxtraheerde
vlak. De segmentatie gebeurt door een template beeld, dat een gesegmenteerd corpus
callosum bevat, te registreren op het geëxtraheerde vlak. Het oppervlakte van het corpus
callosum wordt vervolgens berekend door de integraal te berekenen van de determinant
van de Jacobiaan van het vervormingsveld. Het corpus callosumoppervlakte kan worden
beschouwd als een functie van de extractieparameters van het te extraheren vlak, dus we
gebruiken een optimalisatietechniek om een vlak te extraheren die een corpus callosum
bevat met minimale dwarsdoorsnede oppervlakte.

In deze thesis zal er gebruik gemaakt worden van een niet-rigide transformatiemo-
del en een voxelgebaseerde maat van overeenkomst. Het gëımplementeerde framework
zal kleinse kwadraten gebruiken als voxelgebaseerde maat van overeenkomst; het is dus
een 2-D-2-D mono-modale beeldregistratieapplicatie. Een vrije-vorm vervormingsmodel,
gebruikmakend van B-splines, zal worden gebruikt om niet-rigide transformaties te mo-
delleren, alsook zal steepest descent gehanteerd worden als optimalisatietechniek.

Om de robuustheid en snelheid van het registratieproces te verbeteren, wordt een
hiërarchische multi-resolutie methode gehanteerd. Van zowel het referentiebeeld als het
zwevende beeld zal een Gaussiaanse piramide worden opgemaakt, die op elke laag van de
piramide een geschaleerde versie van de afbeelding in kwestie bevat. Op het laagste ni-
veau bevindt zich het beeld op volle resolutie. Deze resolutie van het beeld neemt af naar
mate men stijgt in de piramide. Startende met de beelden op laagste resolutie, zal men
beginnen met het registratieproces, gebruikmakend van een ruw grid van controlepunten.
Het resultaat van de registratie van een lager resolutieniveau wordt gebruikt bij het re-
solutieniveau daarboven en het registratieproces wordt herhaald. Het registratie proces
stopt zodra het niveau met de originele resolutie van de beelden werd behandeld. Door
deze methode te hanteren kunnen globale vervormingen vroeg worden gedetecteerd op een
niveau met lage beeldresolutie en worden lokale vervormingen gedetecteerd op niveau’s
met hogere beeldresolutie.

Het framework voor het vinden van het vlak met minimale corpus callosum dwars-
doorsnede oppervlakte alsook het framework dat de beeldregistratie afhandeld, worden
gedetailleerd besproken in deze thesis. Beide raamwerken worden ook geëvalueerd en
worden de resultaten uitvoerig besproken.
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Chapter 1

Introduction

Multiple Sclerosis is an inflammatory disorder of the brain and spinal cord and it has been
known to cause atrophy and deformation in the corpus callosum. Longitudinal studies try
to quantify these changes by using medical image analysis techniques for measuring and
analyzing the size and shape of the corpus callosum. These medical techniques mostly
analyze and track changes in the corpus callosum by measuring the corpus callosum
cross-sectional area by selecting a 2-D measuring plane, typically a mid-sagittal plane.
This method depends on the accurate identification of the mid-sagittal plane. If this
is done incorrectly, consequently the measurement of the corpus callosum area is also
faulty. Therefore, an automation of finding a plane with minimal corpus callosum area
is implemented to ensure that the measurement of the cross-sectional area of the corpus
callosum is done correctly.

The employed method of finding a plane with minimal corpus callosum area depends
heavily on deformable image registration. Therefore, this thesis focuses on the theoretical
background and implementation of a registration algorithm. As the image registration
process must be employed several times in search for the plane with minimal corpus cal-
losum area, it is important that the registration is performed as quickly, and correctly, as
possible. The use of a GPU can greatly improve computation time, so this thesis also fo-
cuses on algorithms and data structures that exploit the parallel computation capabilities
of a GPU. The implemented framework is inspired by the work of various research groups
and tries to combine the advantageous approaches into one method. As the registration
framework is an integral part of finding a plane with minimal corpus callosum area, it
has been evaluated using synthetic data as well as real medical data. The framework for
finding a plane with minimal corpus callosum area has also been evaluated using medical
data.

3



4 CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

This thesis has been split into four parts. Each part will approach the topic from a
different angle, but all parts build upon each other. A quick overview of these four parts
is the following:

I Introduction and Problem Setting. After a short introduction, a general
overview of the problem setting is given. It focuses on explaining what multiple scle-
rosis entails, how one extracts a plane with minimal cross-sectional corpus callosum
area, how an image registration problem is described, and what was implemented
for this thesis.

II Background and Previous Work. This part describes the vital concepts of the
deformable registration process. All the necessary notions that are required for
understanding the subsequent parts are described in full detail. Also, a chapter
has been written that sheds light on related research conducted by other research
groups.

III Framework Algorithms Description and Implementation Details. First,
all the necessary algorithms that are needed for this thesis are outlined in a formal
view. Afterwards, the implementation details are described in detail.

IV Evaluation and Conclusion. The evaluation contains the results of the experi-
ments conducted on the image registration framework with synthetic and medical
data. The framework of finding the plane of minimal corpus callosum area has also
been evaluated and its results are thoroughly discussed. The conclusion summarises
what was researched in this thesis and sheds some light on possible future work.



Chapter 2

Problem Setting

2.1 Multiple Sclerosis

Multiple sclerosis (MS) is primarily an inflammatory disorder of the brain and spinal cord
in which lymphocytic infiltration leads to damage of myelin1 and axons, atrophy and
lesions. Initially, the inflammation is temporary and the remyelination occurs after the
inflammation. However, with MS the remyelination is not durable. This demyelination
generally causes the gradual loss of motor, sensory and visual skills, but many more
symptoms and signs can occur [7].

2.1.1 Categories

The United States National Multiple Sclerosis Society has described four clinical categories
that can describe a patient’s situation concerning MS:

1. Relapsing-remitting MS (RRMS), in which the patient suffers from unpredictable
attacks of MS but also knows periods of remission;

2. Secondary progressive MS (SPMS), where the patient starts with RRMS but over
time the periods of remission fade away;

3. Primary progressive MS (PPMS), which is characterized by steady progression of
disability from onset, but with no, or minimal, periods of remission or improvement;

4. Progressive relapsing MS (PRMS), which causes a steady degeneration similar to
PPMS, but with additional attacks of MS [28].

1Electrically insulating material that forms a layer around the axon of a neuron

5



6 CHAPTER 2. PROBLEM SETTING

2.1.2 Diagonosis and MRI

Although the fundamental aspects of multiple sclerosis pathology have been well described
in the scientific literature for more than 130 years, the ability to image the dynamics of
the disease process in living subjects through neuroimaging studies continues to advance
our understanding of the MS disease process and its response to therapy [38]. Because
MS causes lesions and atrophy in the brain, magnetic resonance imaging is ideal for
detecting these symptoms. For this reason, dual-echo, fluid-attenuated inversion recovery
and postcontrast T1-weighted MRI sequences are regularly used to monitor the course
of the disease in patients with confirmed MS and have been included in the diagnostic
workup of patients in whom MS is suspected.

Other quantitative magnetic resonance-based techniques with a higher pathological
specificity (like magnetization transfer-MRI, diffusion tensor-MRI and proton MR spec-
troscopy) have been extensively applied to measure disease burden within visible lesions
and in the normal-appearing white matter and gray matter of MS patients at different
stages of the disease.

These methods, combined with functional imaging techniques, are progressively im-
proving our understanding of the factors associated with MS evolution [12].

2.1.3 Corpus Callosum

The corpus callosum, Latin for “tough body”, is by far the largest bundle of nerve fibers
in the entire nervous system. It joins the two cerebral hemispheres, along with a relatively
tiny fascicle of fibers called the “anterior commissure”. The word “commissure” signifies a
set of fibers connecting two homologous neural structures on opposite sides of the brain or
spinal cord; thus the corpus callosum is sometimes called the great cerebral commissure.
On Figure 2.1a one can see the corpus callosum delineated on a sagittal slice of a brain.
Figure 2.1b shows the morphology of the corpus callosum.

Until about 1950 the function of the corpus callosum was a complete mystery. On
rare occasions, the corpus callosum in humans is absent at birth, in a condition called
agenesis of the corpus callosum. Occasionally it may be completely or partially cut by
the neurosurgeon, either to treat epilepsy (thus preventing epileptic discharges that begin
in one hemisphere from spreading to the other) or to make it possible to reach a very
deep tumor.

In 1955 Ronald Myers, a graduate student studying at the University of Chicago
proved that the corpus callosum provided the exchange of information between the two
cerebral hemispheres, by performing experiments with animals whose chiasm and corpus
callosum had both been surgically divided [19].

As previously stated, multiple sclerosis can cause lesions in the corpus callosum, but it
can also cause generalized tissue loss (atrophy). Both afflictions affect the cross-sectional
area of the corpus callosum. Changes in form and shape of the corpus callosum can have
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(a) CC delineated on a sagittal slice of a brain (b) Corpus callosum morphology

Figure 2.1: Corpus Callosum

an effect on motor, sensory and visual skills [50]. The corpus callosum is a dense fibrous
rich structure and it is hypothesized to be less sensitive to hydration effects. Therefore
its area is potentially a more reliable measure of neuro-degeneration and atrophy than
other measurements such as brian volume which may be susceptible to dehydration and
rehydration effects [11].

2.2 Minimum CC Area Plane Extraction

As previously described in Section 2.1.3, the corpus callosum joins the two cerebral hemi-
spheres. It acts as a bridge existing out of nerve fibers and it provides the exchange of
information across the two hemispheres. Neurological diseases have been known to af-
fect the shape and size of the anatomical structures in the brain. Measurement of this
change and its correlation with disease progression has been one of the goals of clinical
research [7, 19,50].

MS often affects the brain ventricles width, overall brain width and specially the
corpus callosum whose area loss has been documented in longitudinal studies [50, 51].
These effects on the corpus callosum size have generally been quantified by measuring the
cross-sectional area of the corpus callosum.

Another popular brain morphometry measure is the brain volume. However, work by
Duning et al. has challenged the use of the whole brain volume as a measure of brain
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atrophy due to its susceptability to dehydration and rehydration effects [11], whereas the
corpus callosum, being a dense fibrous structure, is hypothesized to be less sensitive to
hydration effects and its area is potentially a more reliable measure of neuro-degeneration
and atrophy [21].

2.2.1 Measurement of Corpus Callosum Size

In the studies previously mentioned, the changes in the corpus callosum size have been
quantified by measuring the corpus callosum cross-sectional area imbedded in a measure-
ment plane. Therefore, it is paramount that the accurate measurement of this change
in corpus callosum area is dependent on the repeatable identification of the same corpus
callosum cross-section in different scans. Typically, the mid sagittal plane (MSP) serves
as this measurement plane.

Previously, many have focused on the identification and extraction of the MSP. Most of
these MSP identification and extraction techniques can be classified ino either symmetry
or feature based approaches, which differ from each other in the way the MSP is identified
[21]. The symmetry based methods are based on the fact that the brain hemispheres
display approximate bilateral symmetry. The MSP is therefore selected as the plane
maximizing this symmetry. However, these symmetry based methods differ from each
other in terms of how the symmetry criteria is defined and measured. In the feature based
methods, the MSP is defined as the plane best matching the cerebral interhemispheric
fissure in the human brain.

Ishaq emphasizes on two major disadvantages of using MSP as the plane for measure-
ment of the corpus callosum area [21]. First, accurate and repeatable identification of the
same corpus callosum cross-section is difficult due to potential changes in brain anatomy
over time, which can potentially affect the interhemispheric symmetry and the shape of the
interhemispheric fissure. Even small errors in the selection of the MSP have been found
to mystify the interpretation of the actual changes in the corpus callosum area due to
pathology. Second, these extraction methods only incorporate the information regarding
the brain hemispheric symmetry and the interhemispheric fissure, but completely ignore
the characteristics of the corpus callosum itself. However, the rate of corpus callosum
atrophy and deformation can be independent of the rate of the hemispheric degeneration,
therefore the repeatable extration of the same corpus callosum cross-section becomes dif-
ficult even for those cases where the brain hemispheres undergo minimal or no change
between scans. These issues cast doubt on the reliability of employing the MSP as the
measurement plane for measuring the corpus callosum area.

To this end, Ishaq proposed a novel an clinically meaningful criterion for defining
an ideal measurement plane for the corpus callosum area measurement. It differs from
the symmetry and feature based methods because it is based on finding the plane which
optimizes certain physical properties of the corpus callosum itself, which is clinically
meaningful and specifically tailored for the task at hand, that is, the measurement of
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corpus callosum area changes and its correlation with disease progression. It has been
known that the cross-sectional area of the corpus callosum is proportional to the number
of nerve fibers passing through it. This implies that the maximum neural transmission
between the hemispheres is bounded from above by the minimum cross-section of the
corpus callosum bridge. Therefore, Ishaq stipulated that the minimum corpus callosum
cross-sectional area is potentially a more appropriate measure of corpus callosum degen-
eration that the area of any other cross-section of the corpus callosum and the plane
containing this cross-section is a more appropriate measurement plane than the MSP. He
also states that the criterion proposed by him is not a new criterion for MSP extraction,
rather, it is a novel basis for identification of a plane for measuring corpus callosum area
change. For convenience, this minimum corpus callosum area plane will be shortened to
“MCAP”.

It is important to note that for a single MRI volume the MCAP is not guaranteed to be
unique, that is, multiple planes in the brain may have the same minimum corpus callosum
area. Since all of these planes restrict the neural transmission equally, identification of
one of these planes is sufficient for our purposes.

2.3 Image Registration

As will be discussed in Section 5.1, the identification of the MCAP relies on image regis-
tration. Image registration is an important preprocessing step in medical image analysis.
Medical images are used for diagnosis, treatment planning, disease monitoring and image
guided surgery and are acquired using a variety of imaging modalities (see Section 2.3.1).
The widespread use of both CT and MR-imaging of the head for diagnosis and surgical
planning indicates that the physicians and surgeons gain important complementary in-
formation on bony and soft tissue anatomy from these two tomographic modalities. To
monitor disease progress and growth of abnormal structures, images are acquired from
subjects at different times or with different imaging modalities. In current practice, im-
age volumes of each modality may be transfered to film to be examined side-by-side in
the traditional light box, or they may be examined on a computer screen where window
and level adjustments can be made interactively. Unfortunately, because of differences
in the positioning and orientation of the head, field of view, and resolution, the corre-
spondence between three-dimensional (3-D) points in different images can be difficult to
determine. During the examination of the images, the information of the images is com-
bined in the physician’s mind to produce a mapping of points from one image space to
another. This 3-D mapping relies on experience that allows the physician to recognize
homologous anatomical features in CT and MRI. This combined image information is
then used in making a diagnosis or in planning for surgical intervention. Uncertainty in
the mental mapping from one image to another may lead to uncertainty in the diagnosis
or planning [13,31].
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There are, therefore, potential benefits in improving the way these images are com-
pared and combined. Computerized approaches offer potential benefits, particularly by
accurately aligning the information in the different images and providing tools for visu-
alizing the combined images [18]. Image registration is a task to reliably estimate the
geometric transformation such that two images can be precisely aligned. In this thesis,
the following terminology will be used: the image that is not changed during the reg-
istration process is often called the reference or fixed image. The second image that is
transformed in such a manner that it increasingly resembles the fixed image, is often
called the template or moving image.

Any registration technique consists out of these three components:

1. a transformation model, which relates the fixed and moving images;

2. a similarity measure, which measures the similarity between fixed and moving
image;

3. an optimization technique, which determines the optimal transformation param-
eters as a function of the similarity function.

Each of these components can be implemented in different ways. Over the years,
numerous algorithms have been proposed. For more information about some of these
algorithms, look to Section 4. Next, important classification criteria of an image registra-
tion algorithm are discussed. The criteria mostly specify the manner in which images are
compared and transformed.

2.3.1 Mono-modal and Multi-modal Applications

Medical images are acquired by use of different modalities. Some of these modalities are
the following: Computer Tomography (CT), X-ray, Magnetic Resonance Imaging (MRI),
Positron Emission Tomography (PET), Ultrasound, Single Photon Emission Computed
Tomography (SPECT), etc. Each type of modality has its own strengths, for example:
CT and MRI are anatomical images with high spatial resolution. However, their physio-
logical information is limited. On the other hand, although PET and SPECT images can
provide physiological information, spatial resolutions of both are too poor to provide clear
anatomical information. Thus it would be advantageous to combine images from different
modalities, so that the resulting image can provide both physiological and anatomical
information with high spatial resolution for use in clinical diagnosis and therapy.

Image registration applications that use medical images can thus be divided into two
categories: mono-modal applications, where the images to be registered belong to the
same modality, as opposed to multi-modal applications, where the images to be registered
stem from two different modalities [31]. Since our application registers MRI slices coming
from the same volume, this implemented framework can be considered a mono-modal
application.
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2.3.2 Feature-Based and Voxel-Based Similarity Measures

A similarity measure is used by registration applications to determine the degree of align-
ment between two images. The two main approaches are feature-based and voxel-based
similarity measures. Feature-based registration approaches usually utilise points, lines or
surfaces as features and aim to minimize the distance between the corresponding features
in the images. An advantage of feature-based registration is that it can be used for both
mono- and multi-modality registration but the need for a feature extraction step, in form
of landmark detection or segmentation, can be troublesome. Moreover, any error dur-
ing the feature extraction stage, wether manual or automated, will adversely affect the
registration and cannot be recovered at a later stage.

It is possible to avoid such errors by using the image intensities directly without the
need for feature extraction. This relies on voxel-based similarity measures which aim
to measure the degree of shared information in the image intensities. This is relatively
simple in the case of mono-modality registration, but more complex for multi-modalality
registration. Over the last decade, voxel-based similarity measures have become the
method of choice for measuring image alignment, largely due to their robustness and
accuracy [40]. There are different voxel-based similarity measures, as we will discuss in
Section 3.4, like the sum of squared differences (SSD), mutual information (MI), and
correlation coefficient (CC). SSD and CC are used in a mono-modal setting, while MI
can also be used in both mono-modal and multi-modal applications. The implemented
framework makes use of the sum of squared differences similarity measure, as it is a
mono-modal application.

2.3.3 Rigid and Non-rigid Transformation

The transformation model specifies how one image can be transformed to another. The
most simple model assumes the transformation behaves rigid or affine. Rigid registration
only compensates for overal differences in pose by global transformation and rotation.
Affine registration also includes scaling and skew. It can register images whose contents
can be assumed to be a rigid object. A typical example are the human skull and bones,
as they usually do not change shape in a healthy person. However, most of the human
body cannot be considered as a rigid (or affine) transforming object and therefore many
registration applications require a non-rigid transformation model for correct registration.

Non-rigid registration involves finding a field of displacement vectors that map each
voxel from the moving image into the corresponding point in the reference image. It allows
displacement of individual voxels such that local transformation between both images can
be corrected for. While the affine transformation model requires no more than 12 degrees
of freedom (DOFs), non-rigid registration involves a much larger number of DOFs to
make the displacement field sufficiently flexible to recover local shape variability.

However, not all transformations are physically feasible or realistic and the image in-
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tensity information may be insufficient to unambiguously define such a voxel-scale trans-
formation field. Therefore, regularisation of the transformation field is used to impose
local consistency or smoothness on the transformation and to propagate the results from
areas with salient registration evidence into areas where registration features are largely
absent [26,40].

Such smoothness properties can be enforced in deformable registration algorithms by
different means. For instance, a transformation model such as that of free-form deforma-
tions (FFD) can be chosen that inherently generates smooth deformations. In addition, a
regularization strategy can be used that penalizes unlikely deformations and favor smooth
candidates [44].

Given that the corpus callosum can change in shape and size if the patient has MS, a
free-form deformation transformation model will be used in this thesis.

2.3.3.1 Free-Form Deformation

The origins of free-form deformation can be traced back to the area of computer aided
design [2,45], but it can also be used in medical image analysis [41]. We have chosen for an
FFD model based on B-splines. The basic idea of FFDs is to deform an object by manipu-
lating an underlying mesh of control points. The resulting deformation controls the shape
of a 3-D (or 2-D) object and produces a smooth and C2 continuous transformation [41].
In contrast to thin-plate splines or elastic-body splines, B-splines are locally controlled,
which makes them computationally efficient even for a large number of control points.
In particular, the basis functions of cubic B-splines have limited support, meaning that
changing a certain control point only affects the transformation in the local neighborhood
of that control point.

2.3.4 Dimensionality

Image registration can be done using different image dimensions. These dimensions can be
purely spatial, but time can also a added as a dimension. In either case, the problem can be
further categorized depending on the number of spatial dimensions involved. Most current
papers focus on 3-D-3-D registration of two images, where time is not involved. This type
of registration normally applies the registration of two tomographic data sets. 2-D-2-D
registration may apply to seperate slices from tomographic data. Compared with 3-D-3-D
registration, 2-D-2-D registration is far less complex in terms of number of parameters
and the volume of data which makes it faster than its 3-D-3-D registration counterpart.
We reserve the 2-D-3-D registration for the direct alignment of a single tomographic slice
to spatial data. Since most 2-D-3-D applications concern intra-operative procedures, they
are heavily time-constrained and consequently have strong focus on speed issues connected
with the computation time and the optimization step [30].
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This thesis extracts a plane from a given MRI volume and registers a template image
onto it. This means that the implemented registration framework deals in 2-D-2-D image
registration.

2.3.5 Optimization

Optimization techniques are used to obtain the optimum transformation parameters re-
quired for aligning the images, or in other words: it defines how the transformation
parameters are adjusted to improve the image similarity. A lot of methods have been pro-
posed for function optimization (finding the minimum or maximum value of a function),
with varying complexity. Good optimization algorithms determine the transformation pa-
rameters reliably and quickly. In non-rigid registration applications choosing or designing
an optimize can be difficult because the more “non-rigid” (or flexible) the transformation
model, the more parameters are generally required to describe it. Due to the local min-
ima problem there is more chance of choosing a set of parameters which result in a good
overall result, but not the optimal one [31].

The transformation parameters are computed either directly or searched for. This last
method finds the optimal transformation parameters by finding an optimum of some cost
function defined on the parameter space. The cost function is the similarity measure,
discussed in Section 2.3.2.

Many optimization methods employ the first derivative of the cost function, to increase
robustness and to reduce the number of iterations. However, the calculation might require
a substantial computational cost [26]. In our case, part of the calculations required to
obtain the first order derivatives overlaps with the calculations required for the functional
value and, therefore, the extra cost is limited.

The simplest classes of multidimensional optimisation methods with calculation of the
first derivative use steepest descent. Starting from a given position, these methods will
look for the optimum along the direction of the derivative. More advanced methods, like
quasi-Newton methods, will gradually build up the second derivative (or Hessian).

The robustness and speed of the chosen optimization method can be further increased
by using a hierarchical multiresolution approach [26, 41]. Using this approach, several
optimization stages are performed, while in each stage the complexity of the problem
are gradually increased. Starting from a downscaled images and a coarse transformation
model, the images are gradually upscaled and the transformation model is refined until
the required accuracy is reached.

2.4 Method Overview

A framework was created that will identify and extract the plane that contains the corpus
callosum cross-section with minimum area, using CUDA to speed up the registration part



14 CHAPTER 2. PROBLEM SETTING

of the framework. Normally, such a technique would require an MRI volume with a pre-
segmented corpus callosum bridge, which is typically not readily available. To that end,
the framework will segment the corpus callosum area embedded in the extracted plane.
The corpus callosum is segmented by deformably registering a 2-D template containing
a segmented corpus callosum to the extracted plane. The corpus callosum area is then
calculated from the integral of the determinant of the Jacobian of the displacement field.
The corpus callosum area is a function of the plane extraction parameters, so we use
an optimization algorithm to obtain the plane which contains the corpus callosum with
minimal cross-sectional area.

In this thesis we will be using a non-rigid transformation model and a voxel-based simi-
larity measure. The proposed framework will use sum of squared difference as voxel-based
similarity measure, restricting the framework to handle only mono-modality problems. To
be more specific, 2-D-2-D mono-modal registration will be performed. A free-form de-
formation model, using B-splines, will be used to model the non-rigid deformations, and
steepest descent is the method used for optimization.

In order to improve robustness and speed of the framework, a hierarchical multireso-
lution approach is adopted. A Gaussian pyramid of both the fixed and moving image will
be built that will contain the resampled versions of the images at decreasing resolutions.
Starting with the pair of images at the lowest resolution, registration is performed using
a coarse grid of control points. The registration results from a previous resolution level
are used at the higher resolution level and the registration is run again, stopping only
when the full image resolution is reached. Adopting this approach, large deformations
can be recovered early at low resolution and more detailed deformations are observed at
the increasingly finer resolution levels.

The framework for finding the plane with with minimal corpus callosum cross-sectional
area and the image registration framework are both discussed in detail in the following
chapters. They are also both evaluated and their results are properly discussed.
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Chapter 3

Background

In this chapter, a thorough background will be provided of the used technologies and
applied algorithms. The core technology used in this thesis is image registration. In
this thesis, this consists out of the free-form deformation model, a similarity measure
for calculating the resemblance between two images and the calculation of displacement
fields. Since the framework relies on B-splines for the free-form deformation model, it is
interesting to study splines a little closer.

3.1 Compute Unified Device Architecture

CUDA stands for “Compute Unified Device Architecture” and it is the hardware and soft-
ware architecture that enables NVIDIA GPUs to execute programs written in C/C++,
Fortran, OpenCL, DirectCompute, and other languages. The CUDA Architecture in-
cludes a unified shader pipeline, allowing each and every arithmetic logic unit (ALU) on
the chip to be marshaled by a program intending to perform general-purpose computa-
tions. Because NVIDIA intended this new family of graphics processors to be used for
general purpose-computing, these ALUs were built to comply with IEEE requirements
for single-precision floating-point arithmetic and were designed to use an instruction set
tailored for general computation rather than specifically for graphics. Furthermore, the
execution units on the GPU were allowed arbitrary read and write access to memory as
well as access to a software-managed cache known as shared memory. All of these fea-
tures of the CUDA Architecture were added in order to create a GPU that would excel
at computation in addition to performing well at traditional graphics tasks [42].

A CUDA program calls parallel kernels. A kernel executes in parallel across a set of
parallel threads. The programmer, or compiler, organizes their threads in thread blocks,
which are in turn organized in grids of thread blocks. Each thread within a thread
block executes an instance of the kernel. Such a thread has a thread identifier within its
thread block, a program counter, registers, per-thread private memory, inputs and output

17
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results. A thread block is a set of concurrently executing threads that can cooperate
among themselves through barrier synchronization and shared memory. A thread block
has a block ID within its grid. A grid is an array of thread blocks that execute the same
kernel, read inputs from global memory, write results to global memory, and synchronize
between dependent kernel calls. In the CUDA parallel programming model, each thread
has a per-thread memory space used for register spills and function calls. Each thread
block has a per-block shared memory space used for inter-thread communication, data
sharing, and result sharing in parallel algorithms. Grids of thread blocks share results in
Global Memory space after kernel-wide global synchronization [35].

Next, a simple example will be given to show the advantages that CUDA can offer.
Consider the code in Listing 3.1, run on CPU, that will make the sum of two vectors,
A and B, and store the result in C. The same functionality can also be run on a GPU,
as seen in Listing 3.2. There is no reason in particular why one needs to do this. The
intention was to show how a particular operation, like the addition of two vectors, can be
implemented on a graphics processor.

Listing 3.1: Example CPU code

void add ( int ∗a , int ∗b , int ∗c , int N)
{

int t i d = 0 ;
while ( t i d < N)
{

c [ t i d ] = a [ t i d ] + b [ t i d ] ;
++t i d ;

}
}

Listing 3.2: Example GPU code

g l o b a l void add ( int ∗a , int ∗b , int ∗c , int N)
{

int t i d = threadIdx . x ;
i f ( t i d < N)

c [ t i d ] = a [ t i d ] + b [ t i d ] ;
}

3.1.1 Hardware Execution

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU
executes one or more kernel grids; a streaming multiprocessor (SM) executes one or more
thread blocks; and CUDA cores and other execution units in the SM execute threads.
The SMs, in the Fermi architecture (which was used for this thesis) executes threads in
groups of 32 threads, which is called a warp. While programmers can generally ignore a
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(a) Orientations of the human brain: Right,
Left, Anterior, Posterior, Inferior and Superior

(b) Head orientation reference

Figure 3.1: Medical Image Orientation

warp execution for functional correctness and think of programming one thread, they can
greatly improve performance by having threads in a warp execute the same code path
and access memory in nearby addresses [35].

3.2 Medical Image Orientations

3.2.1 Spacial Coordinates

In dealing with MRI data, it’s necessary to be familiar with conventions and terminology
used to describe orientation. “Up”, “down”, “front” and “back” are not used when
talking about medical images, because they have confusing meanings when dealing with
patients in different orientations (e.g.: lying down). To talk about locations in space in
the neighborhood of the brain, one must be able to talk more precisely about sets of axes,
including which direction is positive, and the order in which they are going to be listed
when describing a point’s coordinates. There are three axes (see Figure 3.1a), which could
be used in any order, and where either direction could be positive, giving a total of 48
possible axis schemes.

In MRI practice, are two schemes who are most popular: RAS and LAS, respectively
Figures 3.3a and 3.3b. To describe a certain scheme of orientation, it is common to sum
up three axis names. These three axes have a positive direction, but the ordering of the
names is also important, for example: LAS is not the same as ALS. RAS is a right-
handed coordinate system: the thumb points in the Right direction, the index finger in
the direction of the Anterior and the middle finger points in the direction of the Superior,
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whereas LAS is a left-handed coordinate system. This is significant when performing
matrix and vector math, where a right-handed coordinate system is customarily used.

Using an X, Y , Z coordinate system, the RAS direction scheme is expressed as follows
+X = R, +Y = A and +Z = S. This means that the positive X, Y and Z axis fall
together with the R, A, S directions specified by the RAS direction scheme.

There are also three possible names for slice planes, but these do not specify the
directions of their axes. They are suggestive, but insufficient to describe the order of
voxels in a file:

• Axial, which is a R-L x A-P plane;

• Coronal, which is a R-L x S-I plane;

• and Sagittal, which is a A-P x S-I plane.

Figure 3.2 aids in visualizing the different names for slice planes.

3.2.2 Voxel Ordering

A number of MRI file formats (e.g.: Analyze, AFNI, NIfTI, . . . ) store voxel intensities
as a stream of intensity numbers into a file in some agreed-upon manner. These formats
require recording a number of characteristics of the image file, including voxel order, other
attributes relating to conditions of image acquisitions, processing steps that have been
performed, and so on. In general terms, voxels are stored in sequence along a row, one
row after another, one slice after another. Like the case of the three orientation axes,
there are again 48 different storing order possibilities. For RAS, this means voxels are
ordered from left to right to form a row and from posterior to anterior to form a slice.
Slices are stores from inferior to superior. The difference between RAS and LAS is that
to form a row, the intensities are stored from right to left while the rest is the same as in
RAS [62].

The voxel-ordering and spatial coordinates used in this thesis are discussed in Section
5.1.3.

3.3 NIfTI

The use of digital tools has proven useful at all stages of neuroimaging, as previously
mentioned in Section 2.3. It allows scientists to control highly sophisticated imaging
instruments and to make sense of the vast amounts data generated by them. While these
tools are paramount to taking full advantage of the promise of neuroimaging, current tools
have been developed piecemeal, by scientists who are interested in answering particular
neuroscience questions rather than in producing software products that are optimized for
meeting the many and varied needs of the broader research community. It is, therefore,
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Figure 3.2: Different plane names

(a) Right Anterior Superior (b) Left Anterior Superior

Figure 3.3: The two most popular orientation schemes
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not surprising that many of these tools are not as robust, generally useful, or easy to use.
While a handful of neuroimaging tools are suitable for general use, many important tools
are not widely available. Furthermore, even those that are in general use make varying
assumptions, use different algorithms, or implement similar algorithms in different ways.

This Tower of Babel problem raises important concerns about the compatibility be-
tween different tools and it also limits the ability of scientists to rigorously compare their
findings. The Neuroimaging Informatics Technology Initiative (NIfTI) is meant to work
with the tool-user and tool-developer communities to address these needs. They provide
coordinated and targeted service, training, and research to speed the development and
enhance the utility of tools related to neuroimaging [20].

3.3.1 NIfTI-1 Data Format

NIfTI-1 is adapted from the widely used Analyze 7.5 file format. The hope is that older
non-NIfTI-aware software that uses the ANALYZE 7.5 format will still be compatible with
NIfTI-1. NIfTI-1 uses the “empty space” in the ANALYZE 7.5 header to add several new
features. For more information about these new features, we refer to the website1. One of
the more important features of the NIfTI-1 data format is the standardized way to store
datasets, which resolves a lot of problems introduced in Section 3.3. The MRI volumes
used in this thesis have all been stored in NIfTI-1 files. This guarantees us that the to be
used data is not ambiguously defined.

3.4 Similarity Measures

As described in Section 2.3.2, there are two main approaches for measuring similarity:
feature-based and voxel-based similarity measures. Feature-based registration approaches
usually utilise points, lines or surfacesand aim to minimize the distance between the corre-
sponding features in the images, while voxel-based approaches aim to measure the degree
of shared information in the images their intensities. Over the last decade, voxel-based
similarity measures have become the method of choice for measuring image alignment,
largely due to their robustness and accuracy [40].

Before proceeding, first some terminology is required. From this point, we will call
the fixed image “If” and the moving image “Im”. Each of these images will be two
dimensional, because the fixed image is a two-dimensional plane extraced from a 3-D
volume “V ” and the moving image is the template which will be transformed to resemble
the fixed image. We denote the domain of the image volume with dimensions (X, Y, Z)
as Θ = {(x, y, z)|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z}. The 2-D images, with dimensions
(X, Y ) will be denoted as follows: Ω = {(x, y)|0 ≤ x ≤ X, 0 ≤ y ≤ Y }. When a certain
certain pixel is discussed, it will be denoted by p.

1http://nifti.nimh.nih.gov/nifti-1

http://nifti.nimh.nih.gov/nifti-1
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One of the simplest similarity measures is the sum of squared differences (SSD) be-
tween images,

SSD(If , Im) =
1

N

∑
p∈Ω

(If (p)− Im(T(p)))2, (3.1)

which is minimized during registration. In Equation 3.1, N is the total number of pixels
and T(p) is a transformation function that maps a pixel p to its new position [16,18].

Another frequently used similarity measure, is the slightly modified SSD version called
sum of absolute differences (SAD). When a small number of pixels are expected to have
very large intensity differences between the images If and Im, SSD falls short and one
can apply SAD to gain better results. This problem might arise, for example, if contrast
material is injected into the patient between the acquisition of images or if the acquisition
of images are acquired during an intervention and instruments are in different positions
relative to the subject in the two acquisitions. SAD takes the follow mathematical form:

SAD(If , Im) =
1

N

∑
p∈Ω

| If (p)− Im(T(p)) | . (3.2)

These similarity measures, SSD and SAD, can be used for mono-modal registration.
With multi-modal registration the situation is quite different. There is, in general, no
simple relationship between intensities in images of different modalities. Here, the inten-
sity mapping function is a complicated function and no simple arithmetic operation on
the pixel values is going to produce a single derived image from which we can quantify
misregistration.

It can be useful to think of image registration as trying to maximize the amount of
shared information in two images. In a very qualitative sense, we might say that if two
images of the head are correctly aligned then corresponding structures will overlap, so we
will have two ears, two eyes, one nose and so forth. When the images are out of alignment,
we will have duplicate versions of these structures from the two input images [18].

Two different groups, Collignon and Maes at KU Leuven, Belgium and Viola and Wells
[60, 61] at the Massachusetts Institute of Technology, Cambridge, almost simultaneously
but independently of each other, introduced Maximization of Mutual Information (MMI)
of image intensities as a new registration criterion. Mutual Information (MI), or relative
entropy, is a basic concept from information theory, which can be considered a non-linear
generalization of cross-correlation. MI measures the statistical dependence between two
random variables or the amount of information that one variable contains about the
other [8]. The MMI registration criterion postulates that the MI of the image intensity
values of corresponding pixel pairs is maximal if the images are geometrically aligned [29].
The mutual information of two images If and Im is

MI(If , Im) = H(If ) +H(Im)−H(If , Im), (3.3)
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with H(If ) and H(Im) being the entropy of If and Im respectively and H(If , Im) being
their joint entropy. Entropy is a known to be a measure of the amount of uncertainty
about a certain variable. The outcome of the MI calculation can be interpreted as follows:

• If the two images If and Im are independent of each other, MI(If , Im) will equal to
zero, meaning that H(If ) +H(Im) = H(If , Im);

• If the two images are one-to-one related, MI(If , Im) = H(If ) = H(Im);

• If the result is somewhere between the first two conditions, the two images If and
Im share some information.

Since this thesis handles only mono-modal registration problems, the complex MI and
MMI similarity measures are not necessary to be implemented. SSD is being used for
measuring similarity between the extracted plane and the given 2-D template image.

3.5 Splines and B-splines

In most image processing applications, the pictures to be manipulated are represented
by a set of uniformly spaced sampled values. Finding a general mechanism for switching
between the continuous and discrete signal domains is one of the fundamental issues in
signal processing [58,59]. It is a problem that arises during the acquisition process where
an analog signal is to be converted into a sequence of non-integer numbers. Although most
processing algorithms are derived within a purely discrete framework, there are a variety
of problems best formulated by considering an image as a real-valued function f(x, y).
When one wants to digitalize a signal, Shannon’s sampling theory is applied, describing
an equivalence between a band-limited function and its equidistant samples taken at a
frequency that is superior or equal to the Nyquist rate [48]. Although this theory has had
an enormous impact on the signal processing community, it stil has a number of problems.
One of those problems is that it relies on the use of ideal filters, which are devices not
commonly found in nature. Also, the band-limited hypothesis is in contradiction with
the idea of a finite signal. There are other problems, but that would take us too far from
topic.

Unser provided arguments in favor of an alternative approach that uses splines, which
is equally justifiable on a theoretical basis, and which offers many practical advantages.
An interesting note: splines are slightly older than Shannon’s sampling theory. They were
first described in 1946 by Schoenberg, where he laid the mathematical foundations for the
subject [43]. He showed how one could use splines to interpolate equally spaced samples
of a function and he also introduced B-splines, which are used in this thesis.

Splines are piecewise polynomials with pieces that are smoothly connected together.
These joining points are called knots. For a spline of degree n, each segment is a polynomial
of degree n and therefore, n+1 coefficients are needed. There is an additional smoothness
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Figure 3.4: Centered B-splines of degree 0 to 3

constraint that imposes the continuity of the spline and its derivative up to order n−1 at
the knots, so that, effectively, there is only one degree of freedom per segment. Schoenberg
states that these splines are uniquely characterized in terms of a B-spline expansion

s(x) =
∑
k∈Z

c(k)βn(x− k), (3.4)

which involves the integer shifts of the central B-spline of degree n denoted by βn(x). The
parameters of this model are the B-spline coefficients c(k). B-splines, that will be defined
below, are symmetrical, bell-shaped functions constructed from the n+1-fold convolution
of a rectangular pulse β0:

β0(x) =


1, −1

2
< x < 1

2
1
2
, |x| = 1

2

0, otherwise
(3.5)

βn(x) = β0 × β0 × . . . × β0︸ ︷︷ ︸
(n+ 1) times

. (3.6)

The B-splines of degrees 0 to 3 are shown in Figure 3.4. Of all the possible polynomial
splines, cubic splines tend to be the most popular in applications [58]. In this thesis, cubic
B-splines will be used within the free-form deformation model. Cubic B-splines can be
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represented as follows:

β3
l (t) =


β3

0(t) = (1− t)3/6,
β3

1(t) = (3t3 − 6t2 + 4)/6,
β3

2(t) = (−3t3 + 3t2 + 3t+ 1)/6,
β3

3(t) = t3/6.

(3.7)

3.6 Image Warping

Similarity measures have been covered, showing how they are used for calculating how
much two images resemble each other. In Section 5.2, the FFD transformation model
will be discussed, giving an overview of how displacement field will be calculated with the
B-splines introduced in Section 3.5, that is used for transforming the moving image Im so
it will resemble the fixed image If . The actual transformation is done by means of image
warping.

Once a transformation has been computed, information is required on how to move
each individual pixel in the image that is being transformed. A displacement field stores
this information, relating the positions of pixels between the fixed and moving images.
This displacement field is a function u : Ω → Rd on the image domain Ω, where d is
the dimensionality. In Equation 3.1, we already introduced the transformation function
T(p). The general form of a transformation function is the following:

T : Ω→ Ω; T(p) = p + u(p). (3.8)

This transformation function transforms pixel coordinates p in the fixed image If to co-
ordinates in the moving image Im by means of an identity mapping and the corresponding
value of the displacement field. How the displacement field u is computed, depends on
the properties of particular applications. In this thesis, a B-spline based transformation
function is employed.

There are two ways of how image warping can be achieved. One method is that for
each position p of the template image, the corresponding intensity value is stored in
the new image. This process is referred to as forward warping, since pixels are moved
“forward” from the coordinate frame of the old image (Im) to the new image (I ′m). A
problem with this method is that it can be that not every pixel in the new image I ′m is
assigned a value and some pixels can be assigned several times.

The second method, called backward warping, eliminates this problem. The main
difference is that now for every pixel of the new image I ′m a coordinate in the original image
is computed, where its intensity value originates from. Backward warping calculations can
produce non-integer values. In that case, an interpolation method must be used to obtain
intensity values at the coordinates between pixels (Section 3.7) [44]. In this thesis, bilinear
and trilinear interpolators will be used for interpolation purposes, as discussed in Section
3.7.



3.7. INTERPOLATION METHODS 27

3.7 Interpolation Methods

The problem of constructing a continuously defined function from given discrete data is
unavoidable whenever one wishes to manipulate the data in a way that requires informa-
tion not included explicitly in the data. In this age of ever-increasing digitization in the
storage, processing, analysis, and communication of information, it is not difficult to find
examples of applications where this problem occurs. The relatively easiest and in many
applications often most desired approach to solve the problem is interpolation, where an
approximating function is constructed in such a way as to agree perfectly with the usually
unknown original function at the given measurement points. The word “interpolation”
originates from the Latin verb interpolare, a contraction of “inter”, meaning “between”,
and “polare”, meaning “to polish”. That is to say, to smooth in between given pieces of
information. [32].

Interpolation is a basic tool used extensively in tasks such as zooming, shrinking,
rotating, and geometric corrections. They can be considered as resampling methods.
Fundamentally, interpolation is the process of using known data to estimate values at
unknown locations [15].

As previously stated in Section 3.6, a displacement field is calculated and used to find
where a certain pixel’s intensity value originated from. These coordinates can be non-
integer values and therefore an interpolation method must be used to obtain the intensity
values at the coordinates between pixels. Since this thesis employs a 2-D-2-D registration
method for solving a mono-modal problem, it is sufficient to use bilinear interpolation as
an interpolation method.

Bilinear interpolation is an extension of linear interpolation for interpolating functions
of two variables on a regular 2-D grid. The linear interpolar that is used in bilinear
interpolation takes the following form:

LI(u1, u2, w) = u1(1− w) + u2w. (3.9)

The resulting value of LI(u1, u2, w) is calculated from two known data values u1 and u2,
and the value w signifies a weight.

Consider a 2-D image I with dimensions (U, V ) as Ω = {(u, v)|0 ≤ u ≤ U, 0 ≤ v ≤ V },
and a point Ix,y with non-integer coordinates. To calculate the intensity value for Ix,y,
see Figure 3.5, bilinear interpolation uses the four neighboring pixels to approximate the
point with non-integer coordinates using the following steps:

t = LI(Iu,v, Iu+1,v, w1) w1 = x− u
s = LI(Iu,v+1, Iu+1,v+1, w1)

Ix,y = LI(t, s, w2) w2 = y − v.

(3.10)

The values w1 and w2 can be seen as the fractional parts of the coordinates x and y of
point Ix,y.
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Figure 3.5: Calculating value for pixel Ix,y by means of bilinear interpolation

Bilinear interpolation is not the only interpolator employed in this thesis. To extract
a 2-D plane, with (some) non-integer coordinates, from a 3-D volume, a trilinear interpo-
lation method is used. Like bilinear interpolation is an extension to linear interpolation,
trilinear interpolation extends bilinear interpolation.

Consider a volume with dimensions (X, Y, Z) as Θ = {(x, y, z)|0 ≤ x ≤ X, 0 ≤ y ≤
Y, 0 ≤ z ≤ Z}, and a point Px,y,z with non-integer coordinates. To calculate the intensity
value for Px,y,z, see Figure 3.6, trilinear interpolation uses the eight neighboring voxels2

to approximate the point with non-integer coordinates using the following steps:

r = LI(Iu,v,w, Iu+1,v,z, f1) f1 = x− u
s = LI(Iu,v,w+1, Iu+1,v,w+1, f1)
t = LI(Iu,v+1,w, Iu+1,v+1,w, f1)
u = LI(Iu,v+1,w+1, Iu+1,v+1,w+1, f1)

v = LI(r, s, f2) f2 = z − w
w = LI(t, u, f2)

p = LI(v, w, f3) f3 = y − v.

(3.11)

The values f1, f2, and f3 can be seen as the fractional parts of the coordinates x, y, and
z of point px,y,z.

2A voxel is a volumetric pixel
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Figure 3.6: Calculating value for point Px,y,z by means of trilinear interpolation
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Chapter 4

Previous Work and Related Research

In this section, we aim to give the reader an overview of related research that served as
a theoretical and practical foundation for the work described in this thesis, but we also
give some examples of applications and settings where deformable registration is used.

To date, there are multiple deformable registration algorithms proposed and validated.
This includes thin-plate splines (1993) [4], viscous fluid registration (1996) [6], surface
matching (1996) [57], finite-element models (1997) [33], spline-based registration (1997)
[55], demons registration (1998) [56], and B-spline registration (1999) [41]. As one can see,
there are a plethora of registration methods, but the choice of a certain image registration
method for a particular application is largely unsettled [46]. The choice for a certain
registration method can be determined by considering several factors, namely: the choice
of similarity measure to be used, the transformation model, and the optimization process.
Maintz and Viergever have made a survey of registration methods and their possible use
in specific application domains [30].

Spline-based registration methods are currently very popular. This is because of their
flexibility and robustness provide the ability to perform mono-modal and multi-modal
registration. The appealing characteristics of both free-form deformation and spline-based
methods are the most important reason why many studies have been conducted involving
these techniques. As stated in Section 2.3.3.1, the origin of free-form deformation can be
traced back to the area of computer aided design. In their paper, Sederberg and Parry
described FFD as a method for sculpturing solid models [45]. They accomplished this
deformation by manipulating a geometric model its surrounding space via a grid of control
points. Szeliski and Coughlan noted that a dense deformation field can be interpolated
from a coarse grid of moving control points [55]. A few years later, Rueckert et al. present
a more specialized method using cubic B-splines curves to define a displacement field which
maps voxels in a moving image to those in a reference image [41]. Each individual voxel
movement between reference and moving image, is parameterized in terms of uniformly
spaced control points that are aligned with the voxel grid. The displacement vectors are
obtained via interpolation of the control point coefficients, using piecewise, continuous
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B-spline basis functions.
Besides the popularity of spline-based registration methods and their potential to

greatly improve the geometric precision for a variety of medical procedures, they are usu-
ally computationally intensive [47]. Shackleford points to reports of algorithms requiring
hours to compute for demanding image resolutions [1, 39], depending on the specific al-
gorithm implementation. To remedy these shortcomings, Shackleford has proposed a
GPU-based image registration design to accelerate both the B-spline interpolation prob-
lem as well as the cost-function gradient computation that makes use of coalesced accesses
to the GPU global memory and an efficient use of shared memory.

Applications benefiting from deformable registration include interventional procedures
such as image-guided surgery where deformations of the brain can be tracked during
surgery. This gives a surgeon better visualization and reduces the amount of the unre-
sected tumor [17]. Another possible application may be in the domain of image-guided
radiotherapy, where deformable registration can improve geometric and dosimetric accu-
racy of radiation treatments [63].

This thesis uses deformable registration for extracting a plane with minimal corpus
callosum area from a given medical image, for the purpose of detecting changes in the
size of the corpus callosum and correlating it with MS progression. Previously, clinical
studies have mostly focused on tracking and analyzing the changes in the corpus callosum
by measuring the cross-sectional area of the corpus callosum and correlating in with MS
progression [50,51]. This was done through selecting a 2-D measuring plane from a MRI
volume, typically the mid-sagittal plane, and measuring the area of the corpus callosum
cross-section in this plane. This method is highly dependent on the accurate selection of
the measuring plane, as it influences the measurement of the corpus callosum area. As
longitudinal studies require patients to undergo several scans over a long period of time,
factors such as the error in positioning of the human head in the MRI scanner between
two scans can potentialy be a source of error in the selection of the mid-sagittal plane and
consequently the measurement of the corpus callosum area. Ishaq proposed a method for
finding a plane with minimal corpus callosum area and tries to mitigate the previously
mentioned errors [21].
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Chapter 5

Algorithms

5.1 MCAP Extraction and CC Segmentation

The method proposed by Ishaq identifies accurately the MCAP and simultaneously seg-
ments the corpus callosum cross-section embedded on it. Normally, such a technique
requires an MRI volume with a pre-segmented corpus callosum bridge, which is typically
not readily available.

His solution addressed this problem by equipping the optimization based plane ex-
traction framework with a mechanism for continuously segmenting the corpus callosum
cross-section embedded in the extracted plane. The corpus callosum is segmented by
deformably registering a 2-D template containing a segmented corpus callosum to the
extracted plane. The corpus callosum area is then calculated from the integral of the
determinant of the Jacobian of the displacement field. This corpus callosum area is a
function of the plane extraction parameters. Optimization of this function obtains the
plane with minimum corpus callosum area.

The following paragraphs will give a detailed description of how the framework finds
the plane with minimum corpus callosum area. The steps proposed by Ishaq were imple-
mented with some key differences.

5.1.1 Method Overview

The goal is to extract a plane from a MRI volume which embeds the corpus callosum
cross-section with the minimum area. This cross-sectional area of the corpus callosum
will be denoted as Acc, and the plane which embeds this minimal area will be denoted as
Pext. In other words, this means that the area Acc can be written as a function with Pext
as its parameter:

Acc(Pext). (5.1)
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This function must be minimized with respect to the parameter Pext. In order to optimize
Equation 5.1, the value of Acc must be calculated, what entails taking the folling three
steps:

1. Extract a 2-D slice specified by the parameter Pext from an MRI volume. This entails
resampling a plane in the volume. The orientation and position of this plane are
parameterized over two rotations (Rx, Ry) round the X- and Y-axes respectively,
and one translation (Tz) along the Z-axis. Together, these parameters form the
parameter

Pext = (Rx, Ry, Tz). (5.2)

This step will be described in more detail in Section 5.1.3;

2. Segment the corpus callosum cross-section in the slice extracted in step 1. This
segmentation is performed by registering a 2-D template with a segmented corpus
callosum to the extracted slice. In this thesis, the registration is done with a free-
form deformable transformation model and with the sum of squared differences as
similarity measure, as discussed in Sections 3.4 and 3.5 respectively. The results of
this step are the B-spline transformation coefficients (see Section 5.1.4);

3. Calculate the Acc area, given the B-spline coefficients obtained in step 2. The area
Acc is calculated by integrating the determinant of the Jacobian of the displacement
field over all the points on the template which lie inside the corpus callosum [9].
The details of this particular step are discussed in Section 5.1.5.

All these steps together calculate the area of Acc with respect to the parameter Pext.
Given Equation 5.2, Equation 5.1 can be rewritten as follows:

Acc(Rx, Ry, Tz). (5.3)

The details of the area optimization are given in Section 5.1.6.
Ishaq mentions that one can also propose an alternative framework which segments

the whole corpus callosum bridge in a given volume, by registering it in 3-D to a pre-
segmented template volume and then finding MCAP by slicing the corpus callosum bridge
and measuring the corpus callosum area. However, the corpus callosum is mostly a
featureless organ. Therefore, such a 3-D registration can potentially cause anatomically
different slices from the template and target corpus callosums to map to each other, while
this is unlikely to happen in the current solution.

5.1.2 Template Preperation

Since the template is a vital part in finding the MCAP, it is manually extracted from
the MRI volume. Using Slicer1, the right slice is sought for and saved as a NIfTI-image.

13D Slicer is a free, open source software package for visualisation and image analysis. http://www.

slicer.org

http://www.slicer.org
http://www.slicer.org


5.1. MCAP EXTRACTION AND CC SEGMENTATION 37

Together with this image, the corpus callosum is segmented and this result, being a binary
map, is also saved as a Nifti-image.

The slice to be used as template, is the central sagittal slice, because it is hypothesized
to lie not far in 3-D from the sought for objective slice with the minimal cross-sectional
corpus callosum area, the MCAP. Since the corpus callosum is not too different from the
corpus callosum segmented from the template, smooth and localized deformations are
ensured during the registration.

5.1.3 Slice Extraction

The extraction of a plane is done by positioning a 2-D slicing plane in the MRI volume
and sampling the intensities on the plane. Sampling is done by trilinear interpolation, as
discussed in Section 3.7. This position of the slicing plane in the volume is dependent
on its orientation and distance from the origin of the reference coordinate system. The
coordinate system maps the anterior, superior and left directions to the positive X, Y , and
Z axes respectively and is different from the RAS and LAS coordinate systems introduced
in Section 3.2.1.

The slicing plane orientation can be specified by two angles between its normal vector
and two of the reference axes. The center of the slice plane is taken as the center of the
rotation. For an initial sagittal plane, the distance from the origin is specified by the
distance Tz, expressed in millimeters and introduced in Equation 5.2, between the center
of the slice and the origin of the reference coordinate system, parallel to the Z axis. Next,
the orientation is specified by the rotations Rx and Ry, also introduced in Equation 5.2,
around the X and Y axes respectively. Both rotations are expressed in degrees.

Before these rigid transformations are performed, the center of the coordinate system
is also the center of the slicing plane. These three parameters are used to extract a 2-D
slice, which can be oblique or orthogonal, out of a 3-D MRI volume. Image intensities
are approximated using trilinear interpolation if the do not lie at sample grid points. The
extracted slice can also be expressed as a function ExtractSlice:

I(x′, y′) = ExtractSlice(VMRI, Rx, Ry, Tz), (5.4)

where VMRI denotes the MRI volume, x′ and y′ denote the local 2-D coordinates of the
extracted slice and Rx, Ry and Tz are the rigid transformation parameters introduced in
Equation 5.2.

5.1.4 Slice Registration

The next step is to segment the corpus callosum from the extracted slice. This is done
by deformably registering the presegmented template to the extracted slice from Section
5.1.3. As previously stated, the registration is done with a hierarchical multiresolution



38 CHAPTER 5. ALGORITHMS

approach. This means that the registration of the extracted slice and the template is
first performed on a coarse level, where both images their dimensions are reduced by a
factor of two. Starting from a downscaled image and a coarse transformation model, the
image is gradually upscaled and the transformation model is refined until the required
accuracy is reached. Adopting this approach, large deformations can be recovered early
at low resolution and more detailed deformations are observed at the increasingly finer
resolution levels.

As mentioned in Section 3.5, the 2-D-2-D registration of the template image to the
extracted slice is done by the free-form deformable transformation model, using B-splines.
The control points are arranged in a regular and uniform grid. Bilinear interpolation is
used for approximating the transformation of pixels lying between control points. See
Section 3.7 for more information on (bilinear) interpolation. For a similarity measure,
the sum of squared differences (Section 3.4) is used, because of the mono-modal nature of
the registration problem. The optimization is handled by employing the gradient descent
method, that will be discussed in length in Section 5.2.4. The result of this registra-
tion process is a set of B-spline coefficients, specifying the spatial transformation of the
template.

5.1.5 Area Calculation

As denoted in Sections 3.5 and 3.6, the B-spline coefficients from the registration process

are used to generate a displacement field, which can be called
−→
V . This displacement

vector field is used to find for every pixel (x∗, y∗) of the template image a coordinate
(x′, y′) in the extracted slice , that is,

(x′, y′) = (x∗, y∗) +
−→
V (x∗, y∗). (5.5)

The determinant of the Jacobian J of the displacement vector field
−→
V is used for finding

the area of the corpus callosum, returning a scalar field S = |J(
−→
V )|. When one calculates

the integral of S over all the points in the template which lie inside of the corpus callosum,
one finds the area Acc of the corpus callosum of the extracted slice. The integral is written
as follows:

Acc =

∫
(x∗,y∗)∈CC

S(x∗, y∗)dx∗dy∗. (5.6)

Ishaq notes that the displacement vector field
−→
V maps each point (x∗, y∗) to a point

(x′, y′) in “real space”, including non-integer locations. Therefore, the corpus callosum
area calculated through the Jacobian of the displacement vector field is not affected by the
discretization of the position of the corpus callosum boundary points and is an accurate
way of measuring the corpus callosum area after the image registration.
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5.1.6 Area Optimization

Using the parameters Rx, Ry, and Tz of the extracted slice, the corpus callosum area is
minimized. In each area optimization iteration, the corpus callosum area Acc is calculated
with respect to these Rx, Ry, and Tz parameters that are used to extract a slice from
the MRI volume. As previously described, the template is deformably registered to the
extracted slice to segment this corpus callosum area. The Rx, Ry, and Tz parameters are
optimized by means of the gradient descent optimization strategy.

Ishaq mentions that the upper and lower bounds for these three parameters are −2.0
and 2.0 (Rx and Ry are expressed in degrees and Tz in millimeters) respectively, because
the corpus callosum bridge is well defined in this interval. Beyond this interval, the corpus
callosum bridge starts to diffuse into the brain hemispheres. During the initialization step,
the sagittal plane in the center of the volume is used, that is, the plane extracted with
the following parameters: Rx = 0, Ry = 0, and Tz = 0.

5.2 Free-Form Deformable Registration Using B-splines

As discussed in Section 2.3, image registration exists out of three crucial components,
namely: (1) a transformation model which relates the fixed and moving images, (2)
a similarity measure which measures the similarity between fixed and moving image,
and (3) an optimization technique which determines the optimal transformation pa-
rameters as a function of the similarity function. So, image registration is an optimization
problem, where a target function must be minimized. In this case, the target function
is the similarity function. A set of parameters are manipulated in an iterative manner,
resulting in an optimal, minimal solution so that the template image resembles the fixed
image. In the following sections, image registration will be discussed in more detail.
Schwarz has described a high level view of the basic steps needed to be taken to perform
image registration [44]:

• Initialization. Since the free-form deformation model depends on a grid of control
points, these must be evenly distributed across the 2-D surface. All the control
points are set to zero, and the fixed and template images are scaled so their intensity
values are in the range [0, 1].

• Iteration. Starting from the initialized grid of control points from the previous
step, a displacement field is calculated and applied to the template image. Next,
the similarity measure, that acts as the target function and must be optimized, is
evaluated based on the newly calculated image in comparison to the fixed image.
The control points displacement is also computed; this is handled by steepest descent
optimization. After the control points have been updated, the next iteration begins.
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• Termination. If the target functions has reached a predefined threshold value, or
if it converges, no more iterations are performed. The final configuration of the
control points is returned as the optimal solution to the registration problem. The
displacement field and the warped template image can be stored for further use. In
case of a multiresolution approach, the control points displacement field is used to
initialize the control points of the next level.

5.2.1 Configuration

When one wants to represent a signal or an image, one usually has the choice of two
options. The first is to use an exact representation of the signal, by which f(x, y) precisely
interpolates the sampled values. The second is to use an approximate representation of
the signal, in which the function parameters are determined by minimizing some measure
of the discrepancy between pixel values and f(x, y) at the grid points. This last approach
usually has fewer DOFs than the previous one, which may make it more robust in the
presence of noise [59]. As described in [25, 41], B-splines approximation is used as a
transformation model for image registration. In this thesis, we use the FFD model as the
transformation model which makes use of B-splines. B-splines were introduced in Section
3.5.

5.2.1.1 Control Points

In Section 2.3.3.1, when describing the free-form deformation model, it was made apparent
that FFDs depend on a grid of control points, evenly distributed across a 2-D surface.
This grid of control points is defined as follows. Let Φ denote a nx × ny mesh of control
points φi,j of uniform spacing δ. This spacing can be set arbitrarily, but in this thesis,
the spacing is kept the same in both dimensions. This results in an equidistant spacing of
the control points across the 2-D surface. The dimensions nx and ny of the control point
grid take the following form:

nx =

⌈
mx

sx
+ 3

⌉
, ny =

⌈
my

sy
+ 3

⌉
, (5.7)

where mx and my are respectively the X and Y dimensions of the template image, and sx
and sy are the control point spacing distances. sx and sy will both equal to the uniform
spacing δ mentioned earlier.

5.2.1.2 Calculating the Displacement Field

Section 3.6 introduced image warping, which makes use of a displacement field for calcu-
lating the warped image. In the case of image registration, the template will be warped in
each iteration, until it resembles the fixed image. The FFD transformation model used in
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this thesis uses the grid of control points to calculate the displacement field for the tem-
plate image. The FFD can be written as the 2-D tensor product of 1-D cubic B-splines

T(x, y, φ) =
3∑
l=0

3∑
m=0

βl(u)βm(v)φi+l,j+m. (5.8)

The parameters i, j, u and v are described as follows

i =

⌊
x

nx

⌋
− 1, j =

⌊
y

ny

⌋
− 1, (5.9)

u =
x

nx
−
⌊
x

nx

⌋
, v =

y

ny
−
⌊
y

ny

⌋
. (5.10)

For more information about these four parameters, see Section 6.1.1. The summation in
Equation 5.8 takes place over the control points in the neighborhood pixel p(x, y). Since
cubic B-splines are defined by four pieces, see Equation 3.7, the neighborhood exists out
of 16 control points. This explains the size of the grid of control points, since the rows
and columns of control points outside the template image boundaries are required so
that the control point neighborhood is defined for every pixel in the image. The βl and
βm notations of Equation 5.8 represent the respectively l-th and m-th basis function of
the B-spline, as defined in Equation 3.7. The control points Φ act as paramaters of the
B-spline FFD and the degree of non-rigid deformation which can be modeled depends
essentially on the resolution of the mesh of control points Φ. A large spacing of control
points allows modeling of global non-rigid deformations, while a small spacing of control
points allows modeling of highly local non-rigid deformations. At the same time, the
resolution of the control point mesh defines the number of DOFs and consequently, the
computational complexity.

This model has not only shown to be computationally more efficient than other alter-
natives due to the local support of B-splines, also B-splines are easily scalable and have
good multiresolution properties [24,26]. As previously stated in Section 2.3.5, to improve
robustness and to alleviate some computational cost, a hierarchical multiresolution ap-
proach is handled in this thesis, in which the resolution of the control mesh is increased
along with the image resolution, in a coarse to fine fashion.

5.2.2 Deformation Regularization

It is worth noting that not all types of deformations are physically plausible. Therefore,
registration algorithms are often regulated using a technique that evaluates a given candi-
date deformation and penalizes it if it is “unregular”. See Figures 5.1a, 5.1b and 5.1c for
examples of irregular deformations. Usually in practice, these regularization techniques
rely on rather simple mathematical properties of deformation. Most regularizers exploit
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the smoothness of displacement fields, as shown by [41]. This displacement field is smooth
if it has no “harsh jumps”. In other words: the direction and magnitude of displacements
in a certain neighborhood change gradually, not abruptly. Measuring a gradual change of
displacement implies the use of derivatives of the displacement fields. The two most used
methods for regularization are diffusion and curvature regularizers.

(a) Folding (b) Irregular (c) Expansion/compression

Figure 5.1: Implausible deformations

5.2.2.1 Diffusion

A diffusion regularizer stems from the physical world, namely the heat diffusion equation.
This equation describes how heat is distributed in a given medium over time [34]. How
heat from a static source is distributed over a cooler medium can be used as an analogy,
as that local displacements are expected to spread over a certain region. The diffusion
regularizer uses the first order derivatives of a displacement field and can be denotes as
follows:

RD(u) =
∑
p∈Ω

‖∇ux(p)‖2 + ‖∇uy(p)‖2, (5.11)

where ux is the x-component of the displacement field u, ∇ = (∂/∂x, ∂/∂y)T is the
gradient operator, p are the pixel coordinates, and ‖.‖ is the Euclidean vector norm.
This kind of regularizer is usually used in a global cost function which is to be minimized
during optimization (see Section 5.2.3). This means that for a good displacement field u,
RD(u) is minimal. This thesis will make use of a diffusion regularizer.

5.2.2.2 Curvature

An other regularizer is the curvature regularizer. This kind of regularization is based
on second order derivatives [34]. The curvature regularization is achieved by adding the
unmixed second partial derivatives ∆ = ∂2/∂x2 + ∂2/∂y2, where ∆ is a Laplace operator.
This function can also be written as follows:

RC(u) =
∑
p∈Ω

(∆ux(p))2 + (∆uy(p))2. (5.12)
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An important characteristic of a curvature regularizer is that it is invariant under affine
transformations, which means that translations, rotations and scaling are not penalized.

5.2.3 Goal

The registration problem can be described as finding the optimal deformation so that the
template image maps perfectly onto the fixed image. Since the deformation is calculated
by means of the control points, one can deduce that the optimal control point configuration
has to be found. This translates to optimizing a certain cost function

E(φ) = S(φ) + αR(φ), (5.13)

which entails evaluating two terms. The first term, S(φ), is the similarity term which
measures the similarity of two images. In our case, this is the sum of squared differences
as described in Section 3.4. Equation 3.1 can be written as follows

S(φ) =
1

N

∑
p∈Ω

(If (p)− Im(T(p, φ)))2, (5.14)

where T (p, φ) equals the one described by Equation 5.8 if you replace the term p by the
pixel coordinates (x,y). The second term is called a regularity term and its function is
to penalize control point displacements that potentially lead to implausible deformations,
as discussed in Section 5.2.2. The weighting factor α ∈ R governs the strength of the
regulation. This thesis adopts the regularizer used by Schwarz [44], which essentially is a
diffusion regularizer that is applied to the control points as opposed to the displacement
field [41]. As the number of control points is typically orders of magnitude less than the
number of elements in the displacement field, it makes computationally more sense to
regularize the control points. The proposed regularizer can be described as follows:

R(φ) =
1

N

∑
(i,j)

‖∇φx(i, j)‖2 + ‖∇φy(i, j)‖2, (5.15)

where N is the total amount of control points and ∇ denotes a discrete approximation of
the gradient operator based on central differences. The latter will be further explained in
Section 6.2.

5.2.4 Optimization

To describe optimization in general, we refer to Bertsekas [3]. Mathematical models of
optimization can be generally represented by a constraint set X and a cost function f .
The set of X consists of the available decisions x and the cost f(x) is a scalar measure of
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undesirability of choosing decision x. One wants to find an optimal solution decision so
that

f(x∗) ≤ f(x), ∃x∗ ∈ X, ∀x ∈ X. (5.16)

Optimization problems can either be continuous or discrete. Continuous problems are
those where the constraint set X is infinite (or unconstrained) and has a “continuous”
character. Examples of such problems are those where there are no constraints or where
X is specified by some equations and inequalities. These problems are generally analyzed
using the mathematics of calculus and convexity.

Discrete problems are those that are not continuous, usually because of the finiteness
of the constraint set X. Typical examples of such problems are combinatorial problems,
like scheduling, route planning and matching. Image registration is in need of continuous
optimization methods, more specifically: a gradient descent optimization method is used,
where one tends to mimimize a certain function f(x).

A vector x∗ is an unconstrained minimum of f if it is no worse than its neighbors;
that is if there exists an ε > 0 such that

f(x∗) ≤ f(x), ∀x with ‖x− x∗‖ < ε. (5.17)

Most of the interesting algorithms for this problem rely on an important idea, called
iterative descent that works as follows: start at some point x0 (an initial guess) and
successively generate vectors x1, x2, . . . , such that f decreases at each iteration, that is

f(xk+1) < f(xk), k = 0, 1, . . . . (5.18)

In doing so, we successively improve our current solution estimate and hope to decrease
f all the way to its minimum. Most descent algorithms specify a stepsize αk, so that

f(xk + αkdk) < f(xk), k = 0, 1, . . . . (5.19)

The simplest and most famous of these methods is the method of steepest descent, also
called gradient descent, first proposed by Cauchy in 1847 [53]. With gradient descent, dk

takes the following form:

dk = − ∇f(xk)

‖∇f(xk)‖
. (5.20)

Choosing the stepsize wisely is important, for it has an effect on the correctness of the
result but also on the computation time. In the simplest rule of this type, an intial stepsize
s is chosen and if the corresponding vector xk + sdk does not yield an improved value of
f, that is, f(xk + sdk) ≥ f(xk), the stepsize is reduced, perhaps repeatedly, by a certain
factor until the value of f is improved. While this method often works in practice, it is
theoretically unsound because the cost improvement obtained at each iteration may not
be substantial enough to guarantee convergence to a minimum.
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The Armijo rule is essentially the successive reduction rate just described, but suitably
modified to eliminate the theoretical convergence difficulty. The following fixed scalars
are chosen: s, β, and σ, with 0 < β < 1, and 0 < σ < 1. So we set ak = βms, where m is
the first nonnegative integer for which

f(xk)− f(xk + βmsdk) ≥ −σβms∇f(xk)dk. (5.21)

In other words, the stepsizes βms, m = 0, 1, . . ., are tried successively until the un-
equality in Equation 5.21 is satisfied. Usually σ is chosen close to zero, for example,
σ ∈ [10−5, 10−1]. The reduction factor β is usually chosen from 1/2 to 1/10, depending on
the quality of the initial step s. In this thesis the following values were used: σ = 10−4,
β = 1/2 and s = 1.

5.2.5 Multiresolution Approach

In Sections 2.3.5 and 5.1.4 we mentioned the use of a multiresolution approach. Rueckert
proposed the use of multiresolution pyramids in order to achieve the best compromise
between the degree of nonrigid deformation and computational cost. His method involved
the increase of the resolution of the grid of control points, along with the image resolution,
in a coarse to fine fashion. This method would recover global nonrigid deformations at a
coarse level and local deformations at the finer levels [41]. The final deformation would
be a combination of the control point configurations from all resolution levels. It is
worth mentioning that the computational complexity increases with the control point
grid resolution.

Implementing this method includes the creation of two image pyramids, one for the
extracted slice and one for the template image, but also a way to adjust the resolution
of the grid of control points. Therefore the multiresolution approach is defined by the
following steps:

• Resampling. This entails the generation of two Gaussian pyramids, one for the
extracted slice and one for the template image. The base level of a pyramid is the
full-resolution of the input image, and each level that follows contains the image of
the previous level, but at half the resolution.

• Registration. As previously stated, the registration starts with the coarsest level
of both image pyramids, containing the images at the lowest resolution. The reg-
istration steps were explained in previous sections. An important note, the control
point spacing is kept constant across all resolution levels.

• Subdivision. The control point configuration obtained as a registration result on
one resolution level is used to generate a finer grid of control points to be used
with the next higher resolution images. The registration and subdivision steps are
repeated until the full-resolution images have been processed.
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5.2.5.1 Gaussian Pyramid

A Gaussian pyramid consists of low-pass filtered, downsampled images of the preceding
level of the pyramid, where the base level is defined as the original image [10]. More
formally, let the 2-D original image be denoted by I(x, y). The Gaussian pyramid is
defined recursively as follows,

G0(x, y) = I(x, y), for level l = 0, (5.22)

Gl(x, y) =
2∑

m=−2

2∑
n=−2

w(m,n)Gl−1(2x+m, 2y + n), (5.23)

where w(m,n) is a suitable Gaussian smoothing kernel, and the parameter l denotes the
level. In other words, each level is smoothed by means of a convolution filter (see Sections
6.3.1 and 6.3.2) before its resolution is reduced.

5.2.5.2 Grid Subdivision

Once the registration process on a certain level of the Gaussian pyramid is finished, the
control point configuration reflects the deformation of this level. Before starting the
registration process of the next level begins, the control point grid has to be subdivided
so that there are twice as many control points, since that the image resolution of the next
level is also doubled. Initializing the control points on the new level to zero, as is done on
the coarsest level, is not possible because then the registration result from the previous
level would be lost.

The new grid has to be constructed from the old one, by keeping every other point and
inserting a new control point between every pair on the coarse grid. A straightforward
approach would be to insert new control points by averaging their neighbors on the coarse
grid. However, another approach is handled in this thesis. Catmull and Clark [5] suggest
subdivision masks that can be seen in Figure 5.2. Using this method, exactly the same
displacement field can be obtained from the subdivided control point grid as on the coarse
grid, just at twice the resolution. In one dimension, there are two possible configurations
for new control points. A point can either be placed in the subdivided grid at a position
that corresponds to a control point on the coarse grid, or between two control points. In
Schwarz’s thesis [44], he explained it as follows.

Let ϕt denote the control points of pyramid level t and let t−1 be the next, finer level.
Let p = (1/8, 6/8, 1/8) and q = (0, 1/2, 1/2) denote vectors containing the weights. Then
the weights in q are used for the directions in which a new control point is between two
control points on the coarser grid. Control points in the other directions are weighted by
p. For instance, in the computation of control point ϕt−1(2i, 2j + 1) the neighboring old
control points in the y direction would be weighted by q and the weights in p would be
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Figure 5.2: Catmull and Clark subdivision masks. The top left configuration is used
to calculate a new control point with coordinates (2i + 1, 2j + 1). With the top right
configuration, a control point is calculated with the coordinates (2i, 2j + 1). Bottom left
configuration is used to calculate a control point with the coordinates (2i, 2j). The bottom
right configuration is used to calculate a control point with coordinates (2i+ 1, 2j).
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applied to the neighbors in the x direction. Calculating the control point values can be
done as follows [14]:

ϕt−1(2i, 2j) =
2∑
l=0

2∑
m=0

pl pm ϕt(i+ l − 1, j +m− 1)

ϕt−1(2i+ 1, 2j) =
2∑
l=0

2∑
m=0

ql pm ϕt(i+ l − 1, j +m− 1)

ϕt−1(2i, 2j + 1) =
2∑
l=0

2∑
m=0

pl qm ϕt(i+ l − 1, j +m− 1)

ϕt−1(2i+ 1, 2j + 1) =
2∑
l=0

2∑
m=0

ql qm ϕt(i+ l − 1, j +m− 1)

(5.24)



Chapter 6

Implementation Details

In this chapter a detailed description will be provided of the implemented framework.

6.1 Image Registration Using CUDA

The GPU is an attractive platform to accelerate compute-intensive algorithms (such as
image registration) due to its ability to perform many arithmetic operations in parallel,
as made apparent in Section 3.1. Section 5.2 gave a detailed description of what image
registration entails. The actual implementation details will be explained in this section.
For this thesis, the implementation was modeled after the work of Shackleford [46,47,49].
Shackleford’s efforts resulted in the creation of the Plastimatch1 framework.

Before going into further detail, an overview will be given of what has been imple-
mented to achieve the image registration functionality. This is done by Algorithm 1. Note
that the cost function exists out of two terms: the similarity measure and the regulizer.
The total cost function is calculated on GPU, but only the calculations concerning the
similarity measure are explained in this thesis, since this is the part where the computation
speed can be significantly increased. The explanation of how to calculate the regulizer
term and its derivative, are explained in Sections 5.2.3 and 6.2 respectively.

With image registration, a displacement field is calculated that is used to warp the
template in such a manner that it resembles the fixed image (in our case, the extracted
slice). As was mentioned in Section 5.2, the displacement field is calculated using the grid
of control points and the overal registration process can be viewed as an optimization
problem as the similarity measure performed on the two images, has to be minimized.
One must also take into consideration the regularization term described in Section 5.2.3.
This requires that we evaluate:

1. C, the cost function corresponding to a given set of B-spline coefficients;

1http://plastimatch.org/

49
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Algorithm 1 The image registration algorithm used in this thesis

calculate the Gaussian pyramids of both the fixed and template images
initialize the grid of control points Φ. This happens at the coarsest levels of the
Gaussian pyramids.
repeat

calculate the cost function gradient with respect to the B-spline coefficients in Φ:

∇C =
∂C

∂Φl

while ‖∇C‖ > ε do
recalculate the control points Φ = Φ + µ ∇C‖∇C‖
recalculate the cost function gradient ∇C

end while
increase the control point grid resolution by calculating new control points Φl+1

from Φl.
increase image resolution of both images by going to a higher level in their respective
Gaussian pyramids.

until finest level of resolution is reached.

2. ∂C/∂Φ, the change in the cost function with respect to the B-spline coefficient
values Φ at each individual control point.

For simplicity, ∂C/∂Φ will be called cost function gradient throughout the thesis. The
registration process then becomes one of iteratively defining B-spline coefficients Φ by
generating a displacement field, by means of B-spline interpolation, and use it to warp
the template image, evaluating the cost function C by means of a similarity measure
and a regulizer, calculating the cost function gradient ∂C/∂Φ for each control point, and
performing the optimization (in our case, this is gradient descent, as shown in Section
5.2.4) to generate the next set of B-spline coefficients. As mentioned by Shackleford,
the B-spline interpolation and the gradient calculation are the two most time-consuming
stages within the overall registration process. Therefore, these two stages have been
accelerated with CUDA.

6.1.1 Displacement Field by B-spline Interpolation

A grid of uniformly-spaced control points is superimposed on the grid of pixels of the
template image, as shown in Figure 6.1. This results in that the image is partitioned
into many equally sized 5 × 5 tiles. Every vector of the displacement field is influenced
by the 16 control points in the tile’s immediate neighborhood and the B-spline basis
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Figure 6.1: A grid of control points superimposed on the pixels of the template image.
Both marked pixels are located at the same relative offset within their respective tiles, so
both will use the same βl(u)βm(v) value.

function product evaluated at the pixel. The latter is only dependant on the pixel’s local
coordinates within the tile. For example, in Figure 6.1 one can see that both marked
pixels have the same local coordinates within their respective tiles, namely (2, 2), which
will result in the same B-spline basis function product value at these two pixels. This
property allows the pre-computation of all the relevant B-spline basis function values once,
instead of recalculating these values for each individual tile.

The displacement field calculation was explained in Section 5.2.1.2, but for reading
convenience, some aspects will be repeated in the following paragraph. The B-spline
interpolation used for the calculation of the x-component of the displacement vector for
a certain pixel with coordinates (x, y) is

T(x, y, φ) = vx(x, y) =
3∑

m=0

3∑
l=0

βl(u)βm(v)φx,i+l,j+m, (6.1)

where φx is the spline coefficient defining the x-component of the displacement vector for
one of the 16 control points that influence the pixel. The dimensions nx and ny of the
control point grid take the following form:

nx =

⌈
mx

sx
+ 3

⌉
, ny =

⌈
my

sy
+ 3

⌉
, (6.2)
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where mx and my are respectively the X and Y dimensions of the template image, and
sx and sy are the control point spacing distances. The parameters i and j are the indices
of the tile, consisting out of control points, within which the pixel (x, y) falls, that is

i =

⌊
x

nx

⌋
− 1, j =

⌊
y

ny

⌋
− 1. (6.3)

The local coordinates of the pixel within this tile, normalized between [0, 1], are

u =
x

nx
−
⌊
x

nx

⌋
, v =

y

ny
−
⌊
y

ny

⌋
. (6.4)

Finally, the cubic B-spline basis function β3
l along the x directions is given by

β3
l (u) =


β3

0(u) = (1− u)3/6,
β3

1(u) = (3u3 − 6u2 + 4)/6,
β3

2(u) = (−3u3 + 3u2 + 3u+ 1)/6,
β3

3(u) = u3/6.

(6.5)

and similary for β3
m along the y direction. As previously mentioned, a straightforward

implementation would result in calculations that could easily be reduced. Implementing
a data structure that exploits the symmetrical features that emerge as a result of the grid
alignment, makes the implementation of Equation 6.1 much faster. Shackleford considers
the following optimizations:

• All pixels within a single tile use the same set of 16 control points to compute
their respective displacement vectors. This means that for each tile in the image,
the corresponding set of control point indices can be pre-computed and stored in a
lookup table (LUT), called the index LUT.

• Equation 6.4 shows that for a tile of dimensions nw = nx × ny, the number of
β(u)β(v) combinations is limited to nw values. Furthermore, as shown in Figure
6.1, two pixels belonging to different tiles but with the same local coordinates, will
be subject to identical β(u)β(v) products. This means that a lookup table, called the
multiplier LUT, can be calculated containing the pre-computed β(u)β(v) product
for all the normalized coordinate combinations.

For each pixel, the absolute coordinates (x, y) within the image dimensions are used to
calculate the tile indices that the pixels falls within as well as the pixel’s local coordinates
within the tile, using Equations 6.3 and 6.4 respectively. These tile indices will be used to
access the index LUT, which will provide coordinates of the 16 neighboring control points
that influence the pixel’s interpolation calculation. The pixel’s local coordinates within
the tile will be used to retrieve the appropriate, pre-calculated β(u)β(v) product from
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the multiplier LUT. Using these lookup tables, the displacement field calculation can be
considerably optimized.

Once the displacement field is calculated, it is used to warp the template image.
Bilinear interpolation, which was explained in Section 3.4, is used to determine intensities
of pixels at non-integer coordinates. Once warped, the template image is compared to the
fixed image (in our case, the extracted slice) by means of the similarity measure. This
similarity measure is one of the cost function terms that has to be optimized. In our case,
the similarity measure is the SSD, as explained in Section 3.4, that is

Csim =
1

N

Y∑
y=0

X∑
x=0

(If (x, y)− Im(x+ vx, y + vy))
2, (6.6)

where Csim is the similarity measure part of the cost function, N is the amount of pixels
in the template image, X and Y are the template image’s dimensions, and (vx, vy) form
the displacement field vector for the template image pixel with coordinates (x, y). The
similarity part of the cost function will be called the similarity cost function throughout
the rest of this thesis.

6.1.2 Similarity Cost Function Gradient Calculation

As was explained in Section 5.2.4, the gradient descent optimization requires the partial
derivatives of the similarity cost function with respect to each control point (B-spline)
coefficient value. The lookup tables introduced in the previous section not only accelerate
the B-spline interpolation stage, it also accelerates the similarity cost function gradient
calculation. The similarity cost function gradient can be considered as the change in the
similarity cost function with respect to the coefficient values Φ at each individual control
point. This similarity cost function gradient can be decomposed and can be computed
independently, for a given control point at the grid coordinates (κ, λ), as

∂Csim
∂Φ(κ,λ)

=
1

N

16 tiles∑
(x,y)

∂C

∂−→v (x, y)

∂−→v (x, y)

∂Φ
, (6.7)

where the summation is performed over all the pixels (x, y) of the template image con-
tained in the 16 tiles found in the control point’s local support region. By means of
this decomposition, the similarity cost function gradient’s dependencies on the simi-
larity cost function and spline coefficients can be independently evaluated. The first
term, ∂Csim/∂

−→v (x, y), depends only on the similarity cost function. The second term,
∂−→v (x, y)/∂Φ, describes how the displacement field changes with respect to the control
points. This last term is only dependent on the B-spline parameterization and the pixel’s
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location; it is computed as

∂−→v (x, y)

∂Φ
=

3∑
l=0

3∑
m=0

β3
l (u)β3

m(v). (6.8)

This only needs to be computed once, since it remains constant over all the optimization
iterations. The pre-calculated β(u)β(v) product is available via the multiplier LUT.

Since the SSD similarity measure is utilised, the first term (see Equation 6.7) can be
written in terms of the template image’s spatial gradient ∇Im(x, y) (see Section 6.3.3) as

∂Csim
∂−→v (x, y)

= 2× (If (x, y)− Im(x+ vx, y + vy))∇Im(x, y). (6.9)

Equation 6.9 shows that it depends on the intensity values of the fixed image (the extracted
slice) and the template image, If and Im respectively, as well as the current value of the
displacement field −→v . Meaning, that during each iteration, the displacement field will
change and that results in the modification in the correspondence between the fixed
and template images. This also means that, unlike ∂−→v /∂Φ, ∂Csim/∂

−→v needs to be
recalculated during each iteration of the optimization. With both terms calculated, they
can be combined using the chain rule from Equation 6.7, wich can be written in terms of
the control point coordinates (κ, λ) as

∂Csim
∂Φ(κ,λ)

=
1

N

16 tiles∑
(κ,λ)

sy∑
b=0

sx∑
a=0

∂Csim
∂−→v (x,y)

×
3∑

m=0

3∑
l=0

β3
l

(
a

sx

)
β3
m

(
b

sy

)
, (6.10)

where a and b are the unnormalized local coordinates of a pixel inside its respective tile,
and x and y represent the absolute coordinates of a pixel within the template image.
Here, x and y can be defined in terms of the control point coordinates and summation
indices as follows:

x = sx(κ− l) + a, y = sy(λ−m) + b. (6.11)

6.1.3 Framework Organization

The implemented image registration framework uses the GPU for calculations as shown
in Figure 6.2. The B-spline interpolation and the cost function gradient, as explained in
Sections 5.2.1.2 and 6.1.2 respectively, are implemented on the GPU by means of CUDA,
while the optimization stage is performed on CPU. During each iteration, the optimizer,
working on the CPU, calculates new parameters to update the control points so that the
cost function is minimized. When a minima has been reached, the registration process
stops.

When analyzing Figure 6.2, one can see that both the evaluated cost function and
its gradient must be transfered from GPU to the CPU for every iteration of the image
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Figure 6.2: Framework organization
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registration process. Transfers between the CPU and GPU memories are the most costly
in terms of time, but Shackleford observed in his experiments that the CPU-GPU com-
munication overhead demands roughly 0.14% if the total algorithm execution time. This
fact allows the conclusion that the CPU-GPU transfers do not affect the overal algorithm
performance.

6.1.4 GPU Implementation

As previously mentioned, the similarity cost function evaluation, the ∂Csim/∂
−→v term,

the ∂−→v /∂Φ term and the similarity cost function gradient ∂Csim/∂Φ are calculated on
the GPU. This section will denote in pseudo-code what the kernels look like. Algorithm
2 shows how the similarity cost function is evaluated and how the ∂Csim/∂

−→v term is
calculated. Algorithm 3 shows how a kernel calculates the ∂Csim/∂Φ term. This is
however a näıve implementation how the algorithm should be implemented on the GPU.
A more optimized implementation will be discussed in Section 6.1.4.2, while the näıve
implementation will be described by Section 6.1.4.1.

6.1.4.1 Näıve Implementation

The described kernels in Algorithms 2 and 3 show that the calculations for image reg-
istration can easily be calculated in parallel. The kernel described in Algorithm 2, for
example, shows that one thread is launched per pixel in the fixed image. The coordinates
for each pixel are deferred from the CUDA thread indices. Here, the template image is
already warped with the displacement field calculated by using Equation 6.1. One can see
that the difference between the fixed image and warped template image their intensities
can be used for calculating the similarity cost function and the similarity cost function
gradient, which is very convenient since no two seperate functions must be implemented.
The similarity cost function and ∂Csim/∂

−→v values are stored in the GPU global memory
when the kernel finishes its calculations.

The kernel described by Algorithm 3 calculates the cost gradient function vector
∂Csim/∂Φ for a control point. As previously described, this gradient calculation makes
use of the ∂Csim/∂

−→v and ∂−→v /∂Φ terms, as described in Equation 6.7. The kernel is
launched with as many threads as there are control points, where each thread calculates
the ∂Csim/∂Φ value for each control point. As shown in the pseudo-code, the coordinates
(κ, λ) are deferred from the CUDA thread indices. Each control point’s gradient is influ-
enced by 16 neighboring tiles, and the template pixel values that these tiles contain. Once
the calculations are finished, the results are stored in the global memory of the GPU.



6.1. IMAGE REGISTRATION USING CUDA 57

Algorithm 2 Kernel that calculates the similarity cost function value and the ∂Csim/∂v
value for a pixel

Require: If is the fixed image, I ′m is the warped template image, ∇If is the spatial
gradient of If , ∇Im is the spatial gradient of Im, x and y are obtained by the thread
indices of CUDA

/* Calculate the SSD difference for the similarity cost function score */
D = If (x, y)− I ′m(x, y)
C(x, y) = D2

/* Compute ∂Csim/∂
−→v and store it in global memory of GPU */

(∂Csim/∂v(x, y)).x = 2×D ×∇I ′m,x(x, y)
(∂Csim/∂v(x, y)).y = 2×D ×∇I ′m,y(x, y)

6.1.4.2 Optimized Implementation

Although the implementation described in Section 6.1.4.1 is a good way to exploit the
parallelization capabilities of a GPU, it suffers from serious performance deficiency as the
kernel described in Algorithm 3 does a lot of redundant load operations [46, 47, 49]. As
each set of pixels within each tile is influenced by the neighboring 16 control points, so
does each of these pixels in each tile influence the gradient calculation of each of these
neighboring control points. As can be seen in Algorithm 3, the gradient value for each
control point is influenced by its neighbors. This also implies that when two different
threads calculate their respective contribution to a certain one control point, and they
both need to calculate the contribution of one the same control point, they must each
load the same ∂Csim/∂

−→v values from the same tile. The only thing these two threads
do different is that they must each use different basis-function products when computing
the ∂−→v /∂Φ term to obtain their respective contributions to the ∂Csim/∂Φ term. To gain
a visible view of the problem, consider the following equations. Thread 1 calculates the
following contribution of a tile: ∑

sx,sy

∂Csim
∂−→v (x, y)

β0(u)β0(v). (6.12)

Thread 2 calculates his contribution of the same tile, but with different l and m values:∑
sx,sy

∂Csim
∂−→v (x, y)

β1(u)β2(v). (6.13)

In both Equations 6.12 and 6.13, the u and v values are the normalized position of a pixel
within the tile. One can clearly see that although these two threads are executed inde-
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Algorithm 3 Kernel that calculates the ∂Csim/∂Φ value for a control point

Require: Use the ∂Csim/∂
−→v calculated in Algorithm 2, and obtain the (κ, λ) coordinates

of the control point

/* Iterate through the 16 tiles affecting this control point to calculate ∂Csim/∂Φ. */
Ax = Ay = 0;
for m = 0 to 3 do

for l = 0 to 3 do
tx = κ− l; // X component of tile index
ty = λ−m; // Y component of tile index
for j = 0 to sy do

for i = 0 to sx do
/* Absolute x and y pixel coordinates of template image */
x = (sx × tx) + i;
y = (sy × ty) + j;
if x and y fall within the bounds of the template image then
U = βl(u)βm(v);
Ax = Ax + U × ∂Csim/∂−→v tx(i);
Ay = Ay + U × ∂Csim/∂−→v ty(j);

end if
end for

end for
end for

end for

/* Store the ∂Csim/∂Φ solution for the control point (κ, λ) in GPU global memory*/
(∂Csim/∂Φ(κ, λ)).x = Ax;
(∂Csim/∂Φ(κ, λ)).y = Ay;



6.2. NUMERICAL DIFFERENTIATION 59

pendently of each other in parallel, each thread will end up loading the same ∂Csim/∂
−→v

values, as they are handling the same tile.
This redundant loading of ∂Csim/∂

−→v values can be mitigated by implementing the
following two stages. The first stage will read all the ∂Csim/∂

−→v values of a certain tile
from global memory. Any given pixel tile is influenced by (and influences) 16 neighboring
pixel tiles, meaning that there are 16 different possible (l,m) combinations. For a certain
tile with a certain (l,m) combination, the following must be calculated

−→
Z (κ,λ,l,m) =

sy∑
b=0

sx∑
a=0

∂Csim
∂−→v (x, y, z)

βl(u)βm(v), (6.14)

where the values for x and y can be calculated using Equation 6.11. The operation
described in Equation 6.14 is performed for the 16 possible (l,m) combinations, resulting

in 16
−→
Z values per tile. This operation will be implemented as a GPU kernel. Each of

these
−→
Z values is a partial solution to the gradient computation for a certain control point

within the grid. Therefore, we allocate for each control point within the grid an array (or

bins) that can hold up to 16 of these partial gradient computation
−→
Z values. Once the

16
−→
Z values for a certain tile are computed, each of these values must be inserted into

the correct control point’s bin of partial gradient computation
−→
Z values. In other words,

when a tile computes the 16
−→
Z values, these values will not only be written to different

control points, but to different bin slots within the control point. The second stage of the

gradient computation will simply sum up these 16
−→
Z for each control point.

The two proposed stages are implemented as GPU kernels and are described by Al-
gorithms 4 and 5. The kernel described in Algorithm 4 will be launched with 16 threads
operating on a single tile. Each one of these threads will read a portion of the ∂Csim/∂

−→v
values if this tile into shared memory, so that each of these 16 threads doesn’t constantly
have to read out of global memory. Once they have been read into shared memory,
each thread will compute the ∂Csim/∂Φ value with the appropriate (l,m) values. When
a thread finishes this calculation, it puts the computed value into the correct control
points’s correct bin.

Stage two is described by Algorithm 5. Each thread that executes this kernel represents
a control point. It simply sums up all the 16 values of the control point in question.

6.2 Numerical Differentiation

The cost function exists out of two terms:

1. the similarity measure, which was described in detail in Sections 3.4 and 5.2.3;

2. the regularizer term, which was described in Section 5.2.3.
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Algorithm 4 Optimized kernel design for calculating the ∂Csim/∂Φ value for a control
point. Stage 1.

Require: Use the ∂Csim/∂
−→v calculated in Algorithm 2, get the thread block IDs

(cpX,cpY ), get the thread IDs within the thread block (tx,ty)

/* The block IDs (cpx,cpy) represent a control point with coordinates (κ,λ). Each
thread (tx,ty) calculates a contribution to a different control point using the ∂Csim/∂

−→v
values if this tile. Each thread loads a part of the ∂Csim/∂

−→v values if this tile into
shared memory smem. This eliminates the redundant loads from global memory. */

/* After reading into shared memory is done (left out for brevity) */
synchthreads();

/* Ax and Ay will contain the contribution */
Ax = Ay = 0;
for j = 0 to sy do

for i = 0 to sx do
/* U = βl(u)βm(v) */
Ax = Ax + U × ∂Csim/∂−→v x(i);
Ay = Ay + U × ∂Csim/∂−→v y(j);

end for
end for

/* dc dp buckets is a [sxsy×16×2] matrix that will contain the seperate partial gradient
contributions (for both x- and y-dimensions) of all the control point’s 16 neighbors. Nx

is the width of the control point grid. */
if cpx + tx and cpy + ty fall within the bounds of the control point grid then
dc dp buckets[cpx + tx + (cpy + ty)Nx][(3− tx) + 4(3− ty)][0] = Ax;
dc dp buckets[cpx + tx + (cpy + ty)Nx][(3− tx) + 4(3− ty)][1] = Ay;

end if
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Algorithm 5 Optimized kernel design for calculating the ∂Csim/∂Φ value for a control
point. Stage 2.

Require: dc dp buckets calculated in Algorithm 5, obtain the (κ, λ) coordinates of the
control point

/* Ax and Ay will contain the total gradient value of the control point in question */
Ax = Ay = 0;

/* cpt will be the control point index, Nx will be the width of the control point grid,
and (cpx,cpy) represent a control point with coordinates (κ,λ) */
cpt = 16(cpx + cpyNx)

for i = 0 to 16 do
Ax = Ax + dc dp buckets[cpt][i][0];
Ay = Ay + dc dp buckets[cpt][i][1];

end for

/* Store the ∂Csim/∂Φ solution for the control point (κ, λ) in GPU global memory*/
(∂Csim/∂Φ(κ, λ)).x = Ax;
(∂Csim/∂Φ(κ, λ)).y = Ay;
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Calculating the cost function gradient entails the calculation of the gradient of the sim-
ilarity measure in function of the control points, but also the gradient of the regularizer
term. The latter will be explained in this section.

Equation 5.15 shows that the regularizer term is calculated by means of the∇ operator,
which is a discrete approximation of the gradient operator based on central differences
[37]. Using this central differences method, the first partial derivative in the x direction
∇φx(i, j) can be denoted as follows:

∇φx(i, j) = (Dxφx(i, j), Dyφx(i, j)) (6.15)

Dxφx(i, j) = 1
2sx

(φx(i+ 1, j)− φx(i− 1, j)),

Dyφx(i, j) = 1
2sy

(φx(i, j + 1)− φx(i, j − 1)),
(6.16)

where sx and sy represent the control point spacing in x and y direction. The first partial
derivative in the y direction ∇φy(i, j) can be denoted as follows:

∇φy(i, j) = (Dxφy(i, j), Dyφy(i, j)) (6.17)

Dxφy(i, j) = 1
2sx

(φy(i+ 1, j)− φy(i− 1, j)),

Dyφy(i, j) = 1
2sy

(φy(i, j + 1)− φy(i, j − 1)).
(6.18)

As explained in Sections 5.2.3 and 5.2.4, in order to optimize the cost function, its gra-
dient must be calculated. This not only entails the calculation of the derivative of the
similarity measure, but also the calculation of the derivative of the regularizator. To find
the regularizator gradient, the second partial derivatives can be constructed as central
difference approximations of the first partial derivatives. The second partial derivative of
the regularizator in the x direction can be stated as follows:

∂R(φx)

∂φx(i, j)
= − 2

N
∆φx(i, j) = − 2

N
(Dxx(i, j) +Dyy(i, j)), (6.19)

where ∆ is represented as the discrete version of the Laplace operator. Dxx denotes a
central difference approximation of the second unmixed partial derivative in the x direction
and can be written as follows:

Dxxφx(i, j) = 1
2sx

(Dxφx(i+ 1, j)−Dxφx(i− 1, j)),

= 1
2sx

(
1

2sx
(φx(i+ 2, j)− φx(i, j))− 1

2sx
(φx(i, j)− φx(i− 2, j))

)
,

= 1
4s2x

(φx(i− 2, j)− 2φx(i, j) + φx(i+ 2, j)),

(6.20)

whereDxφx was explained by Equation 6.16. Equation 6.20 is the second partial derivative
in the x direction, it can easily be represented for the y direction. This version, however,
will not be described as the reader can derive it for himself.
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6.3 Spatial Filtering

Spatial filtering is typically used for image processing, like smoothing an image or calcu-
lating its spatial derivative, in a broad spectrum of applications. The term filter comes
from the frequency domain processing field, where it refers to accepting (or rejecting) cer-
tain frequency components. Spatial filtering and filtering in the frequency domain have
a one-on-one correspondence, although one can only perform non-linear filtering in the
spatial domain and not in the frequency domain. It is not the purpose of this thesis go
into further detail of spatial filtering theory, therefore, we will only discuss the spatial
filters used in the implemented framework.

6.3.1 Discrete Convolution

There are two ways to perform spatial filtering, namely by means of correlation or convo-
lution. Both methods move a filter mask over the image, multiply each pixel in the range
of the filter mask with the corresponding weighting factor of the mask, add up these
products and store the result at the center pixel [15, 22]. The mechanics of convolution
and correlation are the same, except that for convolution, the filter mask is rotated 180◦.
Convolution can be written as follows:

(w ∗ I)(x, y) =
c∑

s=−c

c∑
t=−c

w(s, t)I(x− s, y − t), (6.21)

where w is the convolution kernel, r is the side length of w and c = br/2c, I is the image
that is to be processed, and x and y are the image’s pixel coordinates. The formula shows
that the result of the summation is written to the central pixel of the current position
of the convolution operation. When processing the border of the image, the filter mask
ranges over the edge of the image. To mitigate this problem, a border is added to the
image with half the width of the filter mask (this is the c parameter in Equation 6.21).
Next, this border area is filled with zeros or this area mirrors the boundary of the image.

6.3.2 Gaussian Smoothing Filter

Gaussian filters are useful for smoothing images or detecting edges after smoothing. The
multiresolution approach of the framework requires that the fixed and template images
must be smoothed with a Gaussian filter, by means of convolution, upon reducing their
resolution. This convolution filter is obtained by sampling the Gaussian function

g(x, y) =
1

2πσ2
e−

(x2+y2)

2σ2 . (6.22)

The weights of the convolution kernel decrease smoothly to zero when the distance from
the origin increases, meaning that the image values near the central location are more
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important than the values that are more remote. The σ parameter determines how broad,
or focused, the neighborhood will be. It is said that 95% of the total weight will be
contained within 2σ of the center [54]. In this thesis, a 5× 5 convolution kernel is utilized
and the σ parameter is set to 1.

6.3.3 Sobel Filter

Section 6.1.2 describes how the cost function gradient is computed. One of these calcu-
lation steps is to calculate the ∂Csim/∂

−→v , using the template image’s spatial gradient
∇Im(x, y). A Sobel convolution filter can be used to calculate these gradients. The gradi-
ent of a certain function f(x, y) is a two-dimensional vector [∂f/∂x, ∂f/∂y]T , which means
that when one calculates the gradient of an image, one must calculate the gradient for
the x direction as well as for the y direction. For a certain image I, the two components
of the gradient take the following form:

∂I

∂x
=

1

8

−1 −2 −1
0 0 0
1 2 1

 ∗ I, ∂I

∂y
=

1

8

−1 0 1
−2 0 2
−1 0 1

 ∗ I, (6.23)

where ∗ denotes the discrete convolution operator. These Sobel kernels use a weight value
of 2 in the center coefficient to achieve some smoothing by giving more importance to the
center point.



Part IV

Evaluation and Conclusion

65





Chapter 7

Evaluation

Given that the method for extracting the corpus callosum area relies heavily on deformable
registration, the quality of the registration directly affects the accuracy of the corpus
callosum registration and its area measurement. Several experiments have been conducted
in order to evaluate the deformable registration that was implemented. Synthetic data has
been used to demonstrate the effectiveness and performance of the registration framework,
but the registration framework has also been evaluated with medical data. Section 7.1
contains the results of the performed experiments. In Section 7.2, the robustness of the
method of finding the plane with minimal corpus callosum area will be evaluated.

7.1 Deformable Registration Evaluation

As stated above, the deformable registration has been evaluated by using both synthetic
data and medical data. Section 7.1.1 will discuss the evaluation using synthetic data and
Section 7.1.2 will contain the results of the evaluation using medical data.

7.1.1 Synthetic Data

To evaluate the effectiveness and performance of the registration framework, ground truth
experiments have been conducted. The main idea of ground truth experiments is that
some sort of data is used which is known to be correct in some sense. The precision and
error introduced by the algorithm that has to be evaluated, can be assessed by comparing
the results with the ground truth. In this case, a synthetic image is deformed using
a known control point configuration. This deformed image will serve as the reference
image, while the original, undeformed image will act as the template image. The quality
of the registration can be measured by comparing the displacement field obtained by
the registration framework with the ground truth displacement field computed from the
known control point configuration.
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For the experiments, two synthetic images where used as shown in Figures 7.1a and
7.2a. Figure 7.1a is a simple checkerboard image of size 256 × 256, while Figure 7.2a is
a checkerboard pattern of size 256× 256 with with varying intensities. For both images,
a seperate control point configuration was created that were sinusiodal in both x- and y-
direction and with a fixed control point spacing. Using these control point configurations,
the displacement fields were calculated for each original image together with the resulting
warped images as shown by Figures 7.1b and 7.2b. Next, the registration framework is
utilized with various control point spacings ranging from 5 to 50 pixels with increments
of 5.

7.1.1.1 Similarity after Registration

The first metric that has been observed, is the similarity of the images after the registration
process. The results can be seen in Figure 7.3. One can see that the optimal solution is
achieved when a control point spacing of 15 to 20 pixels is handled. Using a control point
spacing of 25 pixels also generates a reasonable result, but anything higher than 25 pixels
produces an undesirable outcome. In practice, one typically uses relatively small control
point spacings in order to capture subtle image details, as was in our case.

7.1.1.2 Root Mean Square Error Metric

The next experiment calculated the Root Mean Square Error (RMSE) between the ground
truth displacement field and the displacement field obtained from the registration process.
The results can be found in Figure 7.4. Given that the images that were used were
checkerboard patterns with a lot of homogeneous regions, the final transformation can
result in displacement vectors that differ from the ground truth [27]. Although this has
no influence on the final transformed image, it does lead to an increased RMSE. The
results show that the most preferable control point spacing configuration is around 20
pixels for the large checkerboard pattern and 25 pixels for the little checkerboard pattern.

7.1.1.3 Magnitude of Difference Metric

The image registration problems are not the only technology that handle displacement
fields. For instance, optical flow uses displacement fields for describing changes between
moving images in sequence [36]. One of the measures handled, is the magnitude of dif-
ference. This is a straightforward approach that averages the magnitude of difference
between all vectors of the displacement field of the ground truth and the displacement
field generated by a certain algorithm. The simple magnitude of difference can be denotes
as follows

emod(c, e) = ‖c− e‖, (7.1)
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(a) Original image (b) Warped image

(c) Image difference: Before registration (d) Image difference: After registration

Figure 7.1: Little checkerboard

where c is a ground truth vector and e the estimated vector calculated by a certain
algorithm. The measure can be used to compare two displacement fields fc and fe,
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(a) Original image (b) Warped image

(c) Image difference: Before registration (d) Image difference: After registration

Figure 7.2: Large checkerboard with different intensities

consisting out of N vectors by the following equation

Emod(fc, fe) =
1

M

∑
x∈Ω

emod(fc(x), fe(x)). (7.2)
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Figure 7.3: Similarity after registration
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Figure 7.4: RMSE of the generated displacement field and the ground truth
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Figure 7.5: Magnitude of Difference of generated displacement field and ground truth

The results of this experiment can be viewed in Figure 7.5. Sharp averages indicate good
registration results, meaning that a control point configuration around 20 pixels for the
large checkerboard pattern and 25 pixels for the little checkerboard patttern gives the
best result.

7.1.1.4 Processing Time

For this thesis, three versions of the image registration implementation were written. The
näıve implementation described in Section 6.1.4.1 was implemented on GPU and on CPU.
The optimized version described in Section 6.1.4.2 was only implemented on GPU. All
three implementations will generate the same result, but will perform the registration at
different speeds. Figure 7.6 shows the impact of different control point spacings on the
three implemented registration versions. Both the GPU and CPU versions of the näıve
implementation are susceptible to grid spacing, because a coarse grid spacing means bigger
tiles to compute and a lot of redundant ∂Csim/∂

−→v loads. The performed experiments
showed that when comparing the GPU and CPU version of the näıve implementation, for
a grid spacing of 5 pixels, the GPU performed about 40 times faster than the CPU. When
reaching a grid spacing of 50 pixels, it only performed 3 times faster than the CPU.

The optimized GPU version, however, is rather agnostic to grid spacing. At a grid
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Figure 7.6: Processing time of registration using CPU, GPU and the optimized GPU
versions

spacing of 10 pixels, it performed about 60 times faster than the näıve CPU version.
When using a grid spacing of 50 pixels, the optimized version calculated its results about
20 times faster than its näıve CPU counterpart. Since the image registration framework
is an essential part in finding the corpus callosum plane with minimal cross-sectional area,
it is paramount that this part is properly optimized.

7.1.2 Medical Data

The deformable registration framework has also been evaluated using medical data. To
assess the quality of the registration, two measurements were used, namely the sum of
squared differences (SSD) measurement and the correlation coefficient (CC) measure-
ment. SSD has already been described in this thesis in Section 3.4. The correlation
coefficient measurement, however, is another similarity measure that is used frequently.
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This measurement can be denoted as follows:

CC(If , Im) =

∑
p∈Ω

(If (p)− Īf )(Im(T(p))− Īm(T(p)))√∑
p∈Ω

(If (p)− Īf )2
∑
p∈Ω

(Im(T(p))− Īm(T(p)))2

, (7.3)

where in this thesis If is the fixed image, Im is the moving image, Im(T(p)) is the trans-
formed moving image, Īf is the average intensity of the fixed image, Īm(T(p)) is the
average intensity of the transformed moving image, and p denotes a certain pixel’s coor-
dinates. The correlation coefficient makes the implicit assumption that after registration,
the images differ only by Gaussian noise. Another, however slight less strict, assumption
is that when performing the registration, there is a linear relationship between the inten-
sity values of both images [16]. The correlation coefficient calculation results in a value
between −1 and 1, where 1 is total positive correlation, 0 is no correlation, and −1 means
that there is total negative correlation.

To evaluate the performance of the registration framework on medical data, we have
used three MRI data sets retrieved from the Open Access Series of Imaging Studies
(OASIS) project1 as well as a MRI volume obtained from icoMetrix2. The OASIS project
is aimed at making MRI data sets of the brain available to the scientific community.
The volume of icoMetrix has a size of 79× 95× 68 voxels, while the three volumes from
OASIS have a size of 128 × 256 × 256 voxels. However, the three volumes from OASIS
are anisotropic in nature. Each of the volumes have been resampled so that they are
isotropic, which results in a volume of size 160 × 256 × 256. For each of these volumes,
we extracted a plane that roughly resembles the mid sagittal plane that would serve as
the fixed image. Next, we also extracted from each volume a plane that has been rotated
over several degrees from the central pixel of each volume’s extracted mid sagittal plane.
The reason behind the choice of these planes, is that this is exactly what will be done
when searching for the plane with minimal cross-sectional corpus callosum area. Figure
7.7 contains the image differences from before (left) and after (right) the registration
process. Ideally, the difference images would only show the underlying noise of the image
acquisition. However, this not the case; the effect of misregistration due to motion is also
visible in the difference images. One can see that the differences images on the right in
Figure 7.7 show that the registration process compensates for motion, as the difference in
the images has been significantly reduced.

Figures 7.8 and 7.9 show the results of the registration in terms of the sum of squared
differences and correlation coefficient measurements respectively. The results clearly show
that the registration process increases correlation between the used images and, by doing
so, also increases the similarity.

1http://oasis-brains.org
2http://www.icometrix.com

http://oasis-brains.org
http://www.icometrix.com
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7.2 Evaluation of MCAP Extraction

Figure 7.10 shows a graph of normalized corpus callosum areas for 8 MRI volumes agains
optimizer iterations. 7 of these MRI volumes came from the OASIS project and the
other one came from icoMetrix. The results for each volume have been normalized to the
corpus callosum area at the start of the optimization process. This normalized area at the
start of the iteration is that of the plane extracted from the volume using the parameters
Rx = Ry = Tz = 0. The results show a distinct decrease and convergence of the corpus
callosum area for almost all examined volumes.

For the examined volumes, we register a percentage drop ranged from a minimum
of 1.4614%, a maximum of 7.3102% with a mean decrease in area of 4.36% and a me-
dian decrease of 4.67%. As stated by Ishaq [21] and longitudinal study performed by
Juha [23], the minimization in corpus callosum area is potentially significant, given that
approximately 33% of the reduction in corpus callosum area can be explained by atrophy.

We also tested the framework’s robustness by using diffferent initializations. The
results can be viewed in Figure 7.11. Each graph compares the mean normalized area
after registration using different initialization parameters to the mean normalized area
after registration using the standard initialization (Rx = Ry = Tz = 0). The figures,
from top to bottom, were generated by varying one of the plane extraction parameters.
The X axis of each plot denotes which parameter was variable. Each variable parameter
was tested in a range from −2 to 2, with a step size of 1, while keeping the other two
parameters set to zero. This range was chosen as Ishaq stipulated that one can expect the
plane extraction parameters to have values within this range. In each plot, you can see
the results of the standard initialization at x = 0. One can easily see that some parameter
setting produce a result that is worse than that of the standard initialization, but some
perform better. This can be explained by the fact that the patient’s head was slightly
rotated when capturing the MRI volume and that the template image used was not the
most optimal central sagittal plane. By using an other than standard initalization, one
can compensate for a head’s rotation. If the correct central sagittal plane were to be
used, the standard initialization would outperform any other initialization. These results
underline the importance of the use of a decent template image and a correct input MRI
volume.
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Figure 7.7: Image difference of the fixed image and warped moving image. Left is before
the registration process and right is after the registration process.
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Figure 7.8: Sum of squared differences between the fixed image and the warped moving
image before and after the registration process.
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Figure 7.9: Correlation coefficient between the fixed image and the warped moving image
before and after the registration process.
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Chapter 8

Conclusion

This thesis contains the theoretical and practical aspects of deformable image registration,
but also of finding the plane with minimal corpus callosum area has been described.
Evaluation of both aspects has been conducted. This chapter will reiterate what was
implemented and a few ideas for possible future work are also given.

8.1 Extraction of MCAP

The developed framework can automatically extract a plane with minimal corpus callosum
area and simultaneously segment the corpus callosum. Keep in mind that this process is
automatic after the generation of the template. This is a novel method, introduced by
Ishaq, that can aid longitudinal studies. The method used, treats the corpus callosum
area as a function of the plane extraction parameters and it uses deformable registration to
generate a displacement field that can be used for the calculation of the corpus callosum
area. The gathered results show a clear decrease and convergence to the plane with
minimal corpus callosum area. However, one must make sure that the MRI volumes to
be used are correctly orientated and that the used template image correctly contains the
central sagittal plane. Were the optimal central sagittal plane used as the template, then
the standard initialization would outperform any other initialization.

The obtained results cannot be compared to other, existing methods, because none
of the existing methods try to achieve the same objective, which is the identification of
minimal corpus callosum area and therefore, such a comparison would not be meaningful.
As stated by Ishaq, this work can benefit future studies on longitudinal analysis of the
change in corpus callosum area with the progression of different neurological diseases.
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8.2 Deformable Image Registration

Deformable registration is a crucial part in finding the plane with minimal corpus callosum
area. The algorithm for deformable registration has been described in detail. Free-form
deformation has been used, which allows to model flexible deformations by means of a
limited grid of control points, instead of manipulating each pixel individually as is done
in deformable registration methods based on dense deformation fields. A regularization
term is also used that will penalize deformations that are implausible. In other words,
it remedies the ill-posedness of the deformable registration problem. The regularization
term used in this thesis is applied to the grid of control points and not to the displacement
field as is usually done.

Finding a plane with minimal corpus callosum area requires multiple image registra-
tions, therefore, the registration framework has been optimized using CUDA. The algo-
rithms, optimizations and data structures introduced in Section 6.1 reduce the complexity
of the B-spline registration process. Highly parallel and scalable designs for computing
both the sum of squared differences similarity measure and its derivative with respect
to the B-spline parameterization were implemented. The speed and robustness of the
image registration process were determined using both synthetic and medical data. The
acceleration of the GPU process ranges from 20 to 60 times faster than the näıve CPU
implementation, depending on the grid spacing used for the control points.

8.3 Future Work

Although a lot of work went into the implementation of the registration framework and
for finding the plane of minimal corpus callosum, there are still some aspects that can be
improved or require continued research.

• Similarity measures. This thesis used the sum of squared differences as a sim-
ilarity measure for the deformable registration process. It serves its purpose well,
since that the fixed images and template images used stem from the same MRI
volume, it is a mono-modal problem and there is no need for a more complicated
similarity measure. However, the framework may merit if other similarity measures
were implemented. Mutual information was mentioned in Section 3.4 and it is used
in multi-modal registration, since MI does not rely on image intensities directly.

• Regularization. Diffusion regularization was used in this thesis, but other regu-
larizators exist. Curvature was mentioned in Section 5.2.2, and it can be worth it
to study the results using this kind of regularizator. Another example, that was not
mentioned in this thesis, is linear elasticity [52].

• Optimization strategies. The optimization strategy used in this thesis is gradi-
ent descent. There are other strategies that use gradients or approximate gradients.
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Newtonian methods optimize a problem using second order deriviations, or the Hes-
sian matrix. Calculating second order derviations, however, can be computationally
expensive. Quasi-Newton methods, on the other hand, don’t calculate the Hessian
matrix directly, but they approximate it. The most popular quasi-Newton method
is the Broyden-Fletcher-Goldfarb-Shanno algorithm, that can greatly increase the
robustness of an optimization problem.

• Additional evaluation. Additional evaluation of the registration framework should
be performed using medical data. Since different types of medical images have dif-
ferent characteristics, only further studies can reveal potential shortcomings of the
registration framework.

• Better CC segmentation methods. Ishaq stated that with the potential devel-
opment of better methods for corpus callosum segmentation, these methods can be
incorporated in the MCAP extraction framework to replace the current registration
based segmentation method.

• Longitudinal studies. Currently, no longitudinal MS data was in our possession.
In the future, with the availability of longitudinal data for MS, the plane extraction
framework should be employed for detecting change in the size of the corpus callosum
with the progression of MS.
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