2013-2014
FACULTY OF SCIENCES

Master of Statistics

Master's thesis
Software development for biclustering methods: The biclust GUIR package

Promotor :
Prof. dr. Ziv SHKEDY
De heer Martin OTAVA

Transnational University Limburg is a unique collaboration of two universities in two countries:

the University of Hasselt and Maastricht University. EWOUd De Troyer
Thesis presented in fulfillment of the requirements for the degree of Master of
° ° ° Statistics
universiter
»»hasselt
universitel B : L
niversitei mpu r renlaan - aaStrICht UnlverSIt
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt »»hg Sse t w y

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

2013-2014
FACULTY OF SCIENCES

Master of Statistics

Master's thesis

Software development for biclustering methods: The
biclust GUIR package

Promotor :
Prof. dr. Ziv SHKEDY
De heer Martin OTAVA

Ewoud De Troyer

Thesis presented in fulfillment of the requirements for the degree of Master of
Statistics

universitei b _ o
>>h?‘SSPﬁ’[< Maastricht University

Acknowledgments

First of all I would like to thank my parents for always being there for me and providing me with everything I
needed to be able to follow my dreams. Without your support and love and I would never have been able to
find the energy time after time, in good and bad moments, to chase my ambitions and always give it the best I
have. Thank you mom for all the moments we shared. Thank you dad for being there for me every step of the
way.

Next I would also like to extend a lot of gratitude to professor Ziv Shkedy. It was a pleasure having you
as my promotor for both my bachelor and master thesis. Your teachings, kindness and advice have each time
inspired me to go the extra mile! You were an incredible mentor these past 2 years and thanks to your unre-
lenting support I will be able to learn even more from you the coming years during my PhD.

Further I would also like thank Martin Otava for his great guidance during the stages of R software develop-
ment. Your crash courses were greatly appreciated and of immense help to me! More thanks go out to Tatsiana
Khamiakova whose insight in superbiclust was of great aid to me in improving my understanding of the package
as well as its implementation in the GUI.

Next I am also very grateful for the quick response and help of Mengsteab Aregay in getting the bediag package
back online on CRAN!

I would also like to greatly thank my landlady and landlord, Maria and Kamiel, who were always concerned
about my well-being. They were always there to lend a helping hand if necessary. Your Sinterklaas days will
not soon be forgotten!

Last, but certainly not least, I have to thank 2 more persons who were of great importance to me during
these past years at Uhasselt. Marijke and Kevin, without your support, laughs, tears and discussions, I would
have never made it as far as I have. You were always there for me, in prosperity and adversity. You kept me on
my feet the entire way through. You cannot fathom how happy I am I can share 4 more close years with the
both of you, not only as fantastic friends, but also as colleagues.

Abstract

This thesis is centered around the subject of biclustering which is the simultaneous clustering of genes and
conditions in a gene expression matrix. The focus will not be on the actual methods themselves, but on the
software development of their implementation in a user-friendly Graphical User Interface.

This GUI is packaged as RemdrPlugin.BiclustGUI which is a plug-in for the already existing

R-commander. The report will handle the implementation of several biclustering methods as well as ways to
extract diagnostics and plots from the results, all by using the GUI.

The second part of the report will handle the implementation of future new biclustering methods or diagnostic
tools. Because the framework of RemdrPlugin.BiclustGUI was created specifically for biclustering, this is can
be achieved very easily. Thanks to easy-to-use scripts, developers can freely design their own GUI windows
for their methods which can then later be added to RemdrPlugin.BiclustGUI very quickly by the maintainer.
The strength of these scripts lies in the fact that they do not rely on any knowledge of tcltk or Remdr which
is normally required for creating such windows. This enables RemdrPlugin.BiclustGUI to quickly gain a vast
collection of biclustering methods which will then be accessible by non-R. users through a simple point-and-click
system. Further, it is also an attractive approach to easily connect biclustering methods with diagnostic and
plotting packages to further investigate and visualize bicluster results.

iii

Contents

1 Introduction
1.1 R Commander e e e e e e e
1.2 Biclustering e

2 A New Concept in Software Development using R

5 References

6 Appendix

3 The BiclustGUI R Package
3.1 Imstalling and Loading L e
3.1.1 R Commander e
3.1.2 RemdrPlugin.BiclustGUI 000 o
3.1.3 Datalnput
3.2 GUI Structure e e e
3.3 biclust-package L
3.3.1 Plaid Biclustering e
3.3.2 CC(0) Biclustering
3.3.3 XMotifs Biclustering
3.3.4 Spectral Biclustering
3.3.5 QuestMotif Biclustering
3.3.6 Bimax Biclustering
3.3.7 Biclust: Plots & Diagnostics
3.4 fabia-package L e e
3.4.1 Laplace Prior L e
3.4.2 Post-Projection
3.4.3 Sparseness Projection L Lo
3.4.4 SPARSE e
3.4.5 Fabia: Plots & Diagnostics
3.5 dsal2-package L e e e e
3.6 iBBiG-package e e
3.7 Diagnostic Packages
3.7.1 BcDiag-package
3.7.2 superbiclust-package L
4 A Guideline to New Implementations
4.1 TImplementing a New Method
4.1.1 New Method Script - ClusterTab & PlotDiagTab
4.1.2 The Frame Scripts« . . e
4.1.3 A quick example - Plaid
4.2 TImplementing a New Tool e
4.2.1 New Tool Script e
4.2.2 A quick example - BeDiago
4.3 Testing your Script L

6.1 Introduction L
6.2 The BiclustGUI R Package
6.2.1 Dbiclust-package L
6.2.2 fabia-package L
6.2.3 isa2-package
6.2.4 iBBiG-package
6.2.5 BcDiag-package
6.2.6 superbiclust-package L L
6.3 Guideline - Template Scripts L
6.3.1 mnewmethod_script L
6.3.2 frames.script L
6.3.3 Quick Example - Plaid o
6.3.4 mewtoolscript L
6.3.5 Quick Example - BecDiago
6.3.6 Extra Example - Superbiclust

29
29
29
34
40
41
41
42
44

45

1 Introduction

Data obtained from microarrays has been subject to a variety of studies. The art of identifying differentially
expressed genes, finding high predictive genes or groups of genes with respect to a response or conditions has
been of major interest in order to explore the structure of these gene expression datasets.

Another way to investigate this kind of data is through the help of clustering. Through clustering gene ex-
pression matrices can be analyzed in both dimensions, the gene and condition dimension. This translates into
the grouping of genes according to their expression under multiple conditions and the grouping of conditions
based on the expression of a number of genes. These results can then for example be utilized for classification
afterwards.

This procedure can be extended to clustering on the genes and conditions simultaneously which is called biclus-
tering.

There exist a great deal of methods to do biclustering for which many R packages have been developed. For
example biclust (Kaiser and Leisch, 2008), fabia (Hochreiter et al., 2010), isa2 (Csardi et al., 2010) and
iBBiG (Gusenleitner et al., 2011) are some of these.

But while there are a lot of R packages available, not a lot of user-friendly graphical user interfaces (GUI) exist
to execute these biclustering methods. This is particulary helpful for scientists with limited knowledge of R as
they can apply the multitude of methods through simple point-and-click dialogs. Further, since the GUI is a
plugin of Remdr, the user will also be exposed to the actual R commands of the implemented packages, making
it a learning experience on the use of R.

The RemdrPlugin.BiclustGUI is a continuation of the same-named package available on R-Forge, made by
Setia Pramana. The already implemented biclustering algorithms were completely redone, adding extra param-
eter options in the process. New methods have been added as well as more options to graphically present the
results of all methods. Further all biclustering procedures have been implemented in the GUI in a very specific
framework which makes adding new packages in the future a quick and easy task with minimal interference of
the maintainer. In short, the method/package developer will be able to create his own dialogs/windows for his
procedure without having to rely on any knowledge of the Remdr or tcltk syntax which is normally necessary
to create these.

Thanks to this, the package has the potential to become a GUI from which a vast collection of biclustering
methods can be accessed in the future.

Following on the introduction, three will be two major sections about the RcmdrPlugin.BiclustGUI pack-
age. In the first, the already implemented biclustering methods will be briefly explained followed by showcasing
the functionality of the GUI. This will contain the executing of the procedure itself as well as the visualisation
of the results through the appropriate plots.

In the second section, an extensive guideline will be presented with explanatory examples on how to create
the appropriate scripts to add new biclustering procedures. The main idea is that these scrips can then be
send forward to the maintainer of RemdrPlugin.BiclustGUI who can then easily add these new dialogs to the
already implemented procedures.

It should be stressed that over the entirety of the report the focus will be on the software development of
the GUIL. While a multitude of biclustering methods will be visited, the goal is not to investigate into detail how
they work, but how they are implemented in the GUI. What will be of interest though is the structure of the
GUI, namely how the several methods are automatically linked to the plots and diagnostics without unnecessary
interference of the user. Therefore the description of the implemented methods will be very brief and basic.

1.1 R Commander

R Commander, Remdr(2005), is a GUI developed by John Fox from McMaster University, Canada. Originally
it was conceived as a basic-statistics graphical user interface for R, but its capabilities have been extended
substantially since. The Remdr package is based on the tcltk package (Dalgaard, 2001) which provides an
R interface to the Tel/Tk GUI builder. Since tcltk is available on all the operating systems on which R is
commonly run, the R Commander GUI will also run on all of these platforms.

The GUI is also very easy to start to use for beginners who do not have any or little experience with R.
It will protect beginners from errors as the dialog boxes only have limited options related to the current context
which minimizes the errors made by users. Further, since the users are exposed to the actual R commands
through a script and output window, besides analyzing and managing the data in R easily, they can also learn
how do it in R without a GUIL. Another advantage is that the script will be generated on the fly as the user
applies the desired statistics through the point-and-click GUI. This means it can be easily saved at the end of a

session which enables the user afterwards to recreate the results by running the R script without going through
all the dialogs again. Advanced users can even adapt the created script to do some more detailed analysis.
These are the main advantages Recmdr has over other available RGUI packages.

Starting with version 1.3-0, Remdr also provides the possibility of plug-in packages which can augment the R
Commander menus. These packages are developed, maintained, distributed and installed indepently of Rcmdr
and can provide a wide variety of new dialog boxes and statistical functionality. More information on developing
such a plug-in can be found in Fox (2007).

It is through this functionality that the RemdrPlugin.BiclustGUI has been created which brings a new menu
to the R Commander GUI containing a collection of biclustering procedures.

Data Loading
F R Commander EE

File Edit 1 Data !Statistics Graphs Models Distributions Tools Help
1

@ Data set: | <MNo active datas&b‘ [Z Edit data set] [ﬂ View data set] Model: | X <No active model>‘

R Script |R Markdown

Script Window

Output Window

< "

Messages

e eneMessage Window ...

P —

Figure 1: Default R Commander

1.2 Biclustering

Let Y be a m x n matrix. The goal of biclustering now is to find subgroups of rows and columns which are
as similar as possible to each other and as different as possible to the rest (Kaiser and Leisch, 2008). This
basically comes down to clustering on both the row and column dimension simultanously and while clustering
methods on 1 dimension derive a global model, biclustering algorithms will produce a local model. For example
in clustering algorithms each row in a rowcluster is defined over all the columns, however a row in a bicluster
is selected using only a subset of columns.

Going back to the matrix Y, this corresponds to looking for submatrices with a high similarity of elements.
This submatrix is what is called a bicluster.

a11 ai2 - Qln

a21 a2z -+ Q2pn
Y =

Aml Am2 - Omn

While biclustering has its applications in many areas such as marketing and behavior science, a popular use of
it is for the analysis of genetic data. The Y matrix would then be a gene expression matrix in which the rows
correspond with the genes and the columns with the conditions/samples. In this setting a,,, is the expression

level of the mth gene under the nth condition and biclustering algorithms will identify groups of genes that show
similar activity patterns under a specific subset of the conditions. Therefore, biclustering is the key technique
in situations where a cellular process, in which only a small set of the genes participate, is of interest or in the
situation that an interesting cellular process is active only in a subset of the conditions.

There exist a great deal of different biclustering algorithms today and several authors have provided exten-
sive reviews, discussion and comparisons of these (Maderia and Oliveira, 2004, Tanay et al., 2004, Preli¢ et al.,
2006).

All these different algorithms are able to identify several types of biclusters which can be identified into four
major classes:

1. Biclusters with constant values

2. Biclusters with constant values on rows or columns
3. Biclusters with coherent values

4. Biclusters with coherent evolutions

To briefly elaborate on this, coherent values would mean that each row and column can be obtained by adding a
constant to each of the others or by multiplying each of the others by a constant value. Further in the evolution
approaches, the elements of the matrix are viewed as symbolic values and biclusters with coherent behaviour
will be discovered regardless of the exact numeric values in the matrix. These types of biclusters can be found
in Figure 37 in the Appendix.

It is also interesting to know that while many biclustering algorithms perform simultaneous clustering on both
dimensions of the data matrix, there also exist two-way clustering approaches. These use one-way clustering to
produce clusters on both dimensions of the data matrix separately.

Finally, if a biclustering algorithm assumes the existence of several biclusters, several underlying structures
of the data matrix can be considered. Madeira and Oliveira (2004) listed the following eight major types of
underlying bicluster structures:

1. Exclusive row and column biclusters (rectangular diagonal blocks after row and column reorder).
2. Non-Overlapping biclusters with checkerboard structure.

3. Exclusive-rows biclusters.

4. Exclusive-columns biclusters.

5. Non-Overlapping biclusters with tree structure.

6. Non-Overlapping non-exclusive biclusters.

7. Overlapping biclusters with hierarchical structure.

8. Arbitrarily positioned overlapping biclusters.

These different structures are visualized in figure 37 in the Appendix.

2 A New Concept in Software Development using R

There exist a great number of packages for R. On CRAN for example there are almost 6000 packages available
which handle many topics. Due to the fact that for each topic or area many packages can be installed, it can
sometimes be challenging for new users to quickly execute a certain analysis of interest (e.g. dose-response
modelling, biclustering methods, etc.).

The creation of ‘envelope packages’, related to a common data analysis problem, can be a solution to this
often-occuring problem. An attractive way to implement this, is with the help of a Graphical User Interface (=
GUI).

The idea is to design a joint development programming environment in which methodological developers can
include their packages in this ‘envelope package’ without too much programming effort.

Not only can multiple people contribute to this ‘envelope package’, the users will be able to make use of all of
these packages in one clear environment. To clarify, all the implemented packages in the ‘envelope package’ are
still independent entities on CRAN or Bioconductor. This means the ‘envelope’ package is simply depending on
these other packages, not incorporating the actual code behind them. As a result, any updates by the authors
on an outsourced package will also automatically update the ‘envelope package’. The main goal of the ‘envelope
package’ is to provide a solid and intuitive ‘module-like’ structure in which the external packages can fit in,
while also providing the possibility of interconnecting these packages.

So while the packages are still independently developed, the end user will only need this ‘envelope package’
to carry out a specific analysis for which multiple methods exist. The ‘envelope package’ can make sure the
output of implemented packages is processed in a similar way, providing a user-friendly environment to execute
each step of an analysis. An example of this could be that after applying a certain analysis method, the results
can immediately be visualized through an appropriate button in the GUI.

Further, such an ‘envelope package’ also introduces a lot of flexibility in the way several packages can be
connected, providing an easier workflow. For example a package focused at the visualisation of results could
easily be connected with other packages in a GUI, alleviating the work of the user in figuring the right data
input for each function.

Also, by creating the GUI as a plug-in for R-Commander, it will not deny the user access to the actual R code
which is used for applying a certain analysis. The R-Commander window will generate the actual R code on
the fly which can be saved, re-executed and even edited. Before, in other GUI systems for R, this was not yet
possible. They did not provide any insight for the user about the R code behind the functionalities.

It is this concept which was the basis for the development of the RemdrPlugin.BiclustGUI package. The
goal of this package is to serve as a platform from which several biclustering algorithms as well as the appro-
priate diagnostics and graphs can be accessed.

3 The BiclustGUI R Package

3.1 Installing and Loading
3.1.1 R Commander

Like a lot of R packages, R Commander can simply be downloaded from CRAN at http://cran.r-project.
org/web/packages/Rcmdr/index.html or simply by using install.packages("Rcmdr") in the R console. If
you use this last command, R will automatically give you the option to install the packages required for R
commander to work correctly.

After the installation, the R commander main window can simply be opened by using library(Rcmdr). It
could very well be that at first launch the GUI will still prompt to install some suggested packages.
Note that if you close down the main window it can be reopened by using the Commander () command.

As can be seen in Figure 1, the window is separated in three parts: a script window, an output window and a
messages window. In the first the generated R commands from R Commander (and plug-ins) will appear. Users
are also able to edit, enter and re-execute commands from this window. The second window is simply what
would normally appear in the R-console window and the third displays error messages and warnings.

More information on the use of R commander can be found in ‘Getting Started With the R Commander’ by
J. Fox (2007).

3.1.2 RcmdrPlugin.BiclustGUI

The latest version of the package can be obtained by sending a mail to ewoud.detroyer@student.uhasselt.be.
You will get a zip-file which contents will have to be placed inside the library folder of R.

Also note that RemdrPlugin.BiclustGUI depends on several other biclustering packages which should also be
installed. Some can be found on CRAN, others on Bioconductor.

e CRAN: biclust, BcDiag, superbiclust, isa2
e Bioconductor: iBBiG, fabia

Note that installing from Bioconductor is slightly different. First you need to use the
source ("http://bioconductor.org/biocLite.R"), followed by a biocLite() command.
(e.g. biocLite("fabia"))

After succesfully installing the plug-in, there are two ways to load it: directly or through R Commander.
e Simply use library(RcmdrPlugin.BiclustGUI) in the R console.

e Launch R Commander first, then go to Tools, Load Rcmdr plug-in(s)... and simply select
RcmdrPlugin.BiclustGUI in the newly opened window.

3.1.3 Data Input

There are a couple of ways on how to load data into the Remdr package:
e Enter new data directly with: Data — > New data set ...
e Load an existing data set from the R workspace: Data — > Load data set ...

e Import existing data from a plain-text file, other statistical packages (SPSS, SAS, Minitab, STATA) or
even an Excel file: Data — > Import data — > (choose required option)

e Use a data set which is included in an R package: Data — > Data in packages — > Read data set from
an attached package ...

Note that in most cases the biclustering procedures require a data matrix with the rows as genes and the
columns as conditions/samples.

http://cran.r-project.org/web/packages/Rcmdr/index.html
http://cran.r-project.org/web/packages/Rcmdr/index.html
mailto:ewoud.detroyer@student.uhasselt.be

3.2 GUI Structure

The general structure of a biclustering window is always the same for each method. This is shown in Figure
2. The method dialog consists out of two tabs: the biclustering tab and the plots & diagnostics tab.

In the first tab, the user will be able choose the appropriate parameters for a biclustering algorithm and then
click the Show Results button to execute it. If relevant, there will also be a small seed box present to set your
seed for this run in order to obtain reproducable results (this will appear as set.seed(...) in the script). In
the second tab, one can find the specific plots and diagnostic tools for the chosen method or package. However,
from this second tab you are also able to access more general diagnostics and plots obtained from an external
package. Two which are already implemented are BcDiag and superbiclust. They can be easily accessed
through a button, provided they are compatible with the chosen method. Clicking one of these buttons will
open up a new window entirely with additional plotting and diagnostic tools.

When these diagnostics are opened up from a specific biclustering window, the plots and diagnostics will
automatically choose the right object to apply their functions to. This way no extra interference of the user
is necessary when applying their functionality and the user will not have to worry about the communication
between these windows.

Plots & Diagnostics

Biclustering |Plots & Diagnostics

.

189 (Seed)

Optional

Figure 2: Default Window Structure

Note that when the graphs are produced they will appear in a separate graphics device window. Due to the
variaty of graphical parameters some diagnostic plots use, it might sometimes be necessary to close this graphics
device down before utilizing a certain graph.(e.g. when you observe the size of a plot is considerably smaller
and multiple are appearing in the same device). Further, if you would like the save a graph appearing in the
device, simply select the device window and go to the working bar of R itself (not R Commander). Here, select
File, Save As and then choose the desired extension (png, pdf,...).

Finally, each biclustering method can be accessed from the Biclustering menu (see Figure 3) in R comman-
der which will appear after loading the plug-in.

E T
File Edit Data Statistics Graphs Models Distributions Tools Help
Hel BiclustGUL..
@ Data set: BicatYeast /" Edit data set || |) View Sl Etran ctive model>
I5A
R Script |R Markdown iBBiG
Biclust Biclustering - Plaid
Fabia 4 Biclustering - CC
Biclustering - XMotif
Biclustering - Spectral
Biclustering - QuestMotif
Biclustering - Bimax I
I [

Figure 3: Biclustering Menu (Biclust submenu,)

The implemented algorithms and diagnostic tools can be found in Table 1.

Type Package Method /Description
Plaid
CcC
XMotif
Spectral
QuestMotif
Bimax

biclust

Biclustering Algorithms

Laplace Prior
Post-Projection
Sparseness Projection
SPARSE

fabia

isa2 The Iterative Signature Algorithm

iBBiG Iterative Binary Biclustering of Genesets

General Plots/Diagnostics BcDiag Bicluster Diagnostics Plots

superbiclust Generating Robust Biclusters from a Bicluster Set

Table 1: Table of implemented packages

3.3 Dbiclust-package
3.3.1 Plaid Biclustering

The plaid biclustering in the GUT implements the plaid algorithm by Turner et al. (2005) which was proposed as
an improvement of the plaid model discussed by Lazzeroni and Owen (2000). The plaid model is a biclustering
method which takes the interactions between biclusters into consideration by defining the data structure (e.g.
expression level) as a sum of layers. This model includes a background layer to capture the global effects and
afterwards the method will construct a series of layers that represent the biclusters.

Plaid Model:

P
Ymn = gmnO + Z 97nnp7mp77np + €mn (1)
p=1
_J 1 mep _J 1 nep

Tmp = { 0 otherwise ’ and 1y = { 0 otherwise (2)

Hop (3.1)

) oy Famp (3.2)
0 = 3
mnp tp + Brp (3.3) (3)

Hp + Cmp + Bap (3.4)
In (1), Y, is the expression level of gene m in condition n with m =1,--- M and n =1,--- | N. Further, p

is the layer index, P is the number of biclusters, 6,,,0 is a sum of overal mean and €,,, is a random error with
mean zero. The model also contains two indicator variables, v, and 7,;, which represent the the membership
of the gene/condition in a bicluster p as formulated in (2). Finally 6,,,, is the mean gene expression which can
take four possible forms as shown in (3). In this formula, (3.1) implies a constant bicluster whereas (3.2) and
(3.3) respectively imply biclusters with constant rows or columns. The last one, (3.4) implies a bicluster with
coherent values across the genes and conditions in a bicluster.

The estimation of the plaid method is done with an iterative algorithm. First the background layer is fit-
ted, then the bicluster-specific layers are added one at a time. In each iteration the algorithm will estimate the
parameters with binary least squares after which a permutation test is performed which is a built-in protection
against the discovery of random biclusters. This procedure is repeated until no layer is found anymore or until
the maximum amount of layers as been reached. More detailed information about these steps can be found in
Lazzeroni and Owen (2000) and Turner et al. (2005).

G Biclustering - Plaid ‘ [
Biclustering | Plots & Diagnostics

Plaid Specifications

To Cluster Maodel
) Rows Model Formula: y ~ m+a+b
) Columns

@ Rows & Columns
Layer Specifications
Background Layer?
Shuffle: 3 Iteration Startup: 5

Back Fit: 0 Iteration Layer: 10
Max Layes: 20

e)

402 (Seed)

Figure 4: Plaid Window

In Figure 4, the standard Plaid window can be found which contains all the necessary paramaters to apply
plaid biclustering. First the user is able to decide they only want to cluster the rows and columns, or on both
(recommended). Next the model which is fitted to each layer can be specified in the Model Boz. This coincides
with formula (3) and is defaulted toy ~ m + a + b (m=constant for all elements in bicluster; a=constant for
all rows in bicluster; b=constant for all columns in bicluster).

The remaining parameters are there to further specify the layer options in the algorithm. The background
check specifies if there is a background layer present in the data. Iteration startup and layer define the number
of iterations to find respectively the starting values and each layer. And as already explained earlier, maz layers
will determine the maximum number of layers to include in the model and therefore the maximum number of
biclusters.

Finally, Back F'it specifies the additional iterations to refine the fitting of the layer and Shuffle is a parameter
connected with the permutation test. Before a layer is added, its statistical significance is compared against a
number of random obtained layers, defined by this parameter.

3.3.2 CC(d) Biclustering

The 0 biclustering, also known as CC algorithm is based on the framework by Cheng and Church (2000). The
algorithm discovers biclusters one at time and considers a bicluster as a subset of rows and columns that show
coherent values. The method is a combination of data analysis based on an ANOVA model and a node deletion
algorithm.

Let A;; be a submatrix, i.e. a 0-bicluster, in the data matrix A (I = (i1,--- ,ix);J = (j1, -+ ,Jx)). Note that
a;; is the expression leven of gene 7 in condition j.

Now Cheng and Church defined a mean residual score (MSR) as follows

1
Hiy=— 3 03
2,

iel,jeJ

where Tij = Qij — Q35 — Qfj +arj, i€l jed.

A submatrix is now called a bicluster if the MSR is less than a pre-defined threshold 4.

In order to find these §-biclusters, the algorithm will start with the full matrix and calculates the MSR. Now the
MSR will be minimized by deleting/including rows and columns in the matrix. Since the brute-force approach
is computationally not time-efficient, node deletion algorithms were developed (single & multiple) which is a
greedy algorithm. These algorithms iterate the process of choosing a row and column with the largest MSR, and
removing them from the data matrix until the desired submatrix is found. Note that after the node deletion,
the bicluster may not be maximal (some rows/columns may be added without increasing the MSR) so therefore
node addition is performed by again adding rows and columns one by one (if it does not increase the MSR).
More about both algorithms and the CC biclustering can be found in Cheng and Church (2000).

10

Biclustering | Plots & Diagnostics

CC Specification
Delta: 1
Alpha: 1.5
Maximal Mumbers: 100

[showResuit | Bit || Hep |

Figure 5: CC Window

As can be seen in Figure 5, there are not a lot of input parameters in the CC window for the J-biclustering.
The most important parameter is of course Delta, the maximal accepted score which will be compared with the
MSR. The choice of this variable should depend on the total variability of the data, taking into account both
the assumed variability of the noise and bicluster values. Next, Alpha is a scaling factor. It is a parameter for
the multiple node deletion and takes part in the three major steps of the algorithm:

1. Deleting rows and columns with a score larger than Alpha times the matrix score.
2. Deleting the rows and columns with the largest scores.
3. Adding rows or columns until Alpha level is reached.

Finally, the user is also able to set a maximum number of clusters to be found with the Mazimal Numbers input
parameter. The algorithm will stop until no bicluster is found or until this threshold is reached.

3.3.3 XMotifs Biclustering

The XMotifs biclustering algorithm was proposed by Murali and Kasif (2003) and looks for conserved gene
expression motifs in a discretized version of the data matrix. This is achieved by searching for rows with
constant values over a set of columns. The authors assume in their model that the gene can be expressed in a
finite number of states (e.g. 2 states: up- and downregulated). The states of the gene expression matrix can also
be defined by a fold change, represented by quantile discretization of the original matrix with log-transformed
values. A conserved gene expression motif is now defined as a submatrix of mazimum size for which the values
within each row are equal to the same level.

Following the discretization, the biclusters are discovered with an iterative procedure which will be briefly
touched upon down below while explaining the input parameters of the window. More detailed information can
be found in Murali and Kasif (2003).

Bl
Biclustering | Plots & Diagnostics

Kmotifs Specification

Mumber of samples chosen: 10 Scaling Factor (column result): 0.05
MNurnber of repetitions: 10 MNumber of bicluster: 100
Sample Size in repetitions: 5

Discretize Data
[Discretize?
Number of Levels 10 [] Use quantiles? (else equally spaced)

.

830 (Seed)

Figure 6: XMotifs Window

In Figure 6, the Xmotifs window is displayed which contains all the necessary input parameters for the algorithm.
Note that in the bottom box, the user is able to discretize the active data set in the R commander session if
necessary. This is done with the discretize function in the biclust package. For plotting however, the
original matrix will be used.

11

After the discretization, the algorithm first needs a number of samples/columns (= ‘Number of samples chosen’)
to be randomly selected as a seed. Then a number of sets of samples (= ‘Number of repetitions’) of a defined
size (= ‘Sample size in repetitions’) needs to be inputted which will be randomly selected from the samples that
were not in the number of samples chosen.

After this is done, the following steps are performed as described in Kaiser and Leisch (2008):

1. Choose a subset from these columns and collect all rows with equal state in this subset.
2. Collect all columns where these rows have the same state.

3. Return the bicluster if it has the most rows from all found and is also larger than a « (= ‘Scaling factor’)
fraction of the data.

To collect more than one bicluster, the calculation is rerun without the rows and columns already found (or
return the smaller combinations found). This is done until the maximum number of biclusters (= ‘Number of
biclusters’) is achieved or until no clusters can be found anymore.

3.3.4 Spectral Biclustering

Spectral biclustering is a method developed by Kluger et al. (2003), used for discovering multiplicative biclusters
of coherent values. First of all it assumes that the gene expression matrix assumes a checkerboard structure
after normalization therefore resulting in non-overlapping biclusters. These biclusters are called multiplicative
because each bicluster element (a;;, expression level gene 4, condition j) can be defined as a product of three
terms: overall mean (u), row-specific (o;) and column-specific (5;) means (a;; = 1 X a; X 5;).

The spectral biclustering is mostly based on a singular value decomposition (SVD) of the normalized data
matrix and consists out of the following steps (Kaiser and Leisch, 2008):

1. Re-order the data matrix and apply one of the three normalization methods (independent rescaling,
bistochastization or log-interactions).

2. Obtaining eigenvalues and eigenvectors using SVD.

3. Depending on the normalization method, the biclusters are constructed beginning from the largest or
second largest eigenvalue. The eigenvectors (left & right) corresponding to the largest eigenvalues are
expected to provide optimal clustering of rows and columns.

4. The data is projected on the the best two or three eigenvectors and k-means clustering is run to get the
grouping.

More detailed descriptions of the above steps can be read in Kluger et al. (2003).

{5 Biclustering - Speclrd_- M
Biclustering | Plots & Diagnostics

Spectral Specifications

Mermalization:
@ Logarithmic Nermalization

() Independent Rescaling of Rows & Columns

() Bistochastization

Mumber of Eigenvalues:
Minimurm number of Rows:

Minimum number of Columns:

k| k| w

Maximum Within Variation:

ShowResult | | Bit || Help
660 (Seed)

Figure 7: Spectral Window

In Figure 7 above, the Spectral window is shown which contains the major steps of the spectral biclustering,
namely the normalization and the SVD.

As already explained earlier, the data matrix need to be normalized first as this is necessary for a checkboard
structure to be discovered by the use of Singular Value Decomposition. The user is able to choose out of three

12

different options for this step. The Independent Rescaling of Rows & Columns assumes the non-normalized
matrix is obtained by multiplying each row and column with a scalar. Bistochastization works by repeating the
independent scaling of rows and columns until stability is reached. For this normalization, the final matrix has
all rows sum to a constant and all columns sum to a different constant. The final method, Logarithmic Normal-
ization (= log-interactions) assumes that after taking the logarithm, the original rows/columns differ by additive
constants. Further each row and column is expected to have mean zero which is achieved with a transformation.

Finally, the user will have to specify the input parameters connected with the SVD. These include: Num-
ber of Figenvalues, Minimum number of Rows, Minimum number of columns, Mazimum Within Variation.
Note the number of eigenvalues coincides with the number of biclusters that should be discovered.

3.3.5 QuestMotif Biclustering

The Questmotif Biclustering is based on the framework by Murali and Kasif (2003) and developed by Kaiser
(2012). The algorithm will search for biclusters of questioners which have similar answer to the questions.

Following now is a short description of the algorithm with respect to the Questmotif window in Figure 8.

@® Biclustering - Questmotif ﬁ

Biclustering | Plots & Diagnostics

Method Specifications

Method:

@ Mominal Data (Default)
(7 Ordinal Data

() Metric Data

Metric Specific Options: Ordinal Specific Options:
Quantile: 0.25 Half Margin of Interval: 1
Variance: 1

Questmotif Specifications

Mumber of samples choosen: 10 Scaling Factor for column result: 0,05
MNumber of repetitions: 10 MNumber of biclusters: 100

Sample Size in repetitions: 5

ST .

754 (Seed)

Figure 8: QuestMotif Window

The Quest algorithm contains three methods to deal with different scale levels data, especially for biclustering
questionnaire data. All of the three methods can be selected by the user and depending on the choise, some
additional parameters might have to be defined.

If the answers are given on a nominal scale, the algorithm simply works like the Xmotifs algorithm. For the
ordinal scale, the algorithm will search for similar answers in an interval of a size set by the parameter ‘Half
Margin of Interval’ (= d). This implies that the interval will be of the form [mean — d, mean+d]. In the contin-
uous case, namely metric data, this interval is set by the quantile of a chosen distribution. It uses all previously
found values to calculate the mean value and uses a given parameter for the variance of this distribution. Both
the Quantile and Variance will have to be provided by the user in this case. (Since the normal scores are used
in such data, the normal distribution is commonly used in this case.)

Finally, a couple of general input parameters, used by the algorithm, will have to be set by user in the Questmotif
Specifications box. These include: number of samples choosen, number of repetitions, sample size in repetitions,
scaling factor for column result and number of biclusters. Note that these are the same input parameters used
by the Xmotif algorithm.

More insight and details about the algorithm itself can be found in Kaiser, S. (2012).

3.3.6 Bimax Biclustering

The last implemented biclustering method from the biclust package is the Bimaz (= binary inclusion-maximal)
biclustering algorithm which was developed by Preli¢ et al. (2006). They advocated its use as a preprocessing

13

step to identify potentially relevant biclusters that can be used as input for other methods. According to the
authors, the main benefit of the method is the relatively small computation time while still providing relevant
biclusters using a simple data model.

The Bimax algorithm works on a binarized data matrix in which the expression value is set to 1 if there is a
change with respect to the control setting and to 0 otherwise. If a control setting is unavailable, one can simply
take a threshold based on the distribution of the data values. The goal of the Bimax method is to find maximal
inclusion biclusters. This means a Bimax bicluster spans a submatrix of 1’s which cannot be part of a larger
submatrix of 1’s. The algorithm achieves this by applying a divide-and-conquer strategy in which the rows and
columns are rearranged (to concentrate ones in the upper right corner of the matrix) before dividing the matrix
into two submatrices.

More detailed information about the algorithm can be found in Preli¢ et al. (2006).

Biclustering | Plots & Diagnostics

Bimax Specifications

Minimum Row Size: 2 Murmnber of biclusters: 100

Minimum Ceolumn Size: 2

maxBimax/BCrepBimax Specifications

() Repeated Bimax Algorithm |
() Use maxBimax? (find maximal size)
@ Mone

maxBimax Specifications BCrepBimax Specifications
Backfit: 3 Max column size of bicluster: 12

Repetitions: 30

Binarize Data
[] Binarize?
Threshold (NA=median) MNA

T

Figure 9: Bimaz Window

The first box in the Bimaz window, shown in figure 9, are general input parameters required by the algorithm.
These include the minimum row & column size of a bicluster (for it to be included) and the number of biclusters.
The algorithm will terminate when this boundary level of number of biclusters is achieved or when no more
maximal inclusion biclusters can be found.

Further, Kaiser and Leisch (2008) suggested that in order to get satisfying results. the method should be
iterated several times with different starting points. This can be accomplished with the ‘Use maxBimaz’ option
in the second box for which the number of repetitions and backfit should be defined. With this option biclusters
of maximal size will be discovered.

Finally, also the Repeated Bimax Algorithm is implemented in this window for which the maz column size of
biclusters should be inputted. More information about this last variation of Bimax can be found in Dolnicar et
al. (2012).

Finally in the last box, the active data set in your R Commander session can be binarized if this is not a
binary matrix by default. This is done through a available function binarize in the biclust package. A
threshold can be set for this transformation or it can be left on the default option, namely the median. Do note
that when plotting graphs (e.g. the biclust plots), the original data matrix will be used which is the active data
set in your session.

3.3.7 Biclust: Plots & Diagnostics

After executing any of the biclustering methods available in the biclust package, the user is now able to
proceed to the second tab ‘Plots & Diagnostics’ which is identical for all of these methods. No additional work
is needed by the user for the plotting and diagnostic functions to use the correct results from the method which
was applied in the first tab. An example (for the Plaid Biclustering) of the Plots & Diagnostics window is given
in Figure 10. Note that the second window in this figure is accessible through the Fxtra Biclust Plots button.

14

_
@ Biclustering - Plaid [= |

Plots & Diagnostics

Summary & Diagnostics

Bicluster Number 1 Obe, F Stat.

Bootstrap Options:

@ Extra Plots from ‘biclust’ - Plaid)

Bicluster Number: 1
MNumber Bootstrap Replicates: 100

Biclust Bubble Plot

Projection: Extra Cluster Results? Draw Plot

[] With Replacement? Bootstrap l [Visualize] @ Mean bicResult2: NULL
©) Iso Mds bicResult3: NULL
(@) Cmd Scale

Parallel Coerdinate Plot

Plot Type: Bicluster Number: 1 |

@ Default [] Show Labels?

(") Combined (rows & columns) Barplot of Bicluster

Default Type Options: Total Number of Biclusters: & [] Legend?

Plot Only Column
[] Plot Rows & Columns

Compare Draw Plot

Heatmap Plot
} Bit | Help
[¥] Local - Bicluster Number: 1

Biclustmember Plot

Mid Bicluster Label:
Extra Biclust Plots

[BcDiag] [Superbiclu;t]

Bar Chart Plot

Figure 10: Biclust - Plots & Diagnostics Tab

Summary & Diagnostics

In the first box, the summary of the biclustering result as well as some basic diagnostics can be called by the
user. The Summary button will provide the user with the number of clusters found as well with the number
of rows and columns each bicluster contains. Next, the Obs. F Stat. button will enable the user to compute
some F-statistics about a specific bicluster, defined by the number in the Cluster Number entry box. These
F-statistics include the main effects, namely the row and column, and also the interaction effect. The first two
F-statistics (main effects) are calculated from a two-way ANOVA with such row and column effect. Because
the full model with interaction is unidentifiable, Tukey’s test for non-additivity is used to detect an interaction
within a bicluster. Lastly, the p-values are obtained from asymptotic F distributions.

The last option in this first box, is the ability to calculate p-values of earlier F-statistics but now with the help
of bootstrapping. This means the p-values are now calculated by taking the number of bootstrap replicates
which are larger than the observed F-statistics and divide it by the total number of replicates plus one. This
number can be set by the Number Bootstrap Replicates entry box and the user can also decide to bootstrap with
or without replacement with the corresponding checkbox. The bootstrapping on the defined Cluster Number is
executed through the Boostrap button after which the user can use the Visualize button to obtain histograms
of the bootstrap results of the row and column tests. An example of this graph (and bootstrapping output) can
be found in the Appendix in figure 39. Note that the vertical green line represents the observed F-statistic.

Parallel Coordinate Plot

In the next box the user is able to produce a variety of parallel coordinate plot. The graphs make use of the
expression levels in the original data matrix (unaffected by discretization or binarization). The plot represents
these levels through gene and/or condition profiles in a bicluster as lines. The bicluster which will be drawn is
once again defined by a Cluster Number entry box.

The first Plot Type is the default one for which extra options are available in the form of checkboxes. By checking
only the Plot Only Column, the expression levels for the columns in the selected bicluster will be drawn. This
means each line is a column profile with the genes on the x-axis. By checking Plot Rows & Columns a second
plot will be added to the graphics device, but now with the row/gene profiles with the columns/conditions on
the x-axis. The last checkbox, Compare, will make sure the other profiles, not in the chosen bicluster, are also
plotted in a light-gray colour.

Finally the second type, Combined (rows & columns), in a way combines the information about the bicluster
grouping of rows and columns. Again, each line is a gene/row profile, but the columns/conditions on the x-axis
are reordered in such a way that the columns belonging to the bicluster come first. This is visualized by showing
a red line when belonging to the selected bicluster and black one when not.

15

An example of these parallel coordinate plots (or profile plots), can be found in the Appendix in Figure 40.

Heatmap Plot

In this box, the user can visualize the gene expression data matrix as a heatmap. The rows and columns will
be reordered so that the inputted bicluster in the Cluster Number entry box will appear in the top-left of the
matrix. However, by checking the Local option, only the heatmap of the bicluster will be drawn, omitting the
rest of the matrix.

An example is given in the Appendix in Figure 41.

Biclustmember Plot

The last box on this window contains the options to draw a Biclustmember Plot. This plot can primarily be
used to compare the discovered biclusters against each other. On this graph, as given in the Appendix in figure
42, one can find multiple columns of stacked rectangles. Each such column is a representation of a bicluster and
each rectangle inside represents a column/condition/sample of the data matrix. Basically if in a column of of
these stacked rectangles, a rectangle is coloured, it means that this condition is part of that particular bicluster.
Now, if the Mid box is not checked, a coloured rectangle consists out of two parts, left and right. The left colour
represents the mean of this condition for all the genes within the biclusters. However, the right colour contains
the global mean value for this condition. If the Mid option is checked though, the rectangle exist out of three
colours with the global mean in the middle and the bicluster mean on the left and right.

Finally, the user is also able to set a label which will come in front of the cluster number with the Cluster Label
entry box.

Biclust Bubble Plot

The first plot the user can create from the extra window, is the Biclust Bubble Plot. The bubbleplot is a
2D-projection of the biclusters, done through multidimensional scaling based on the gene and condition profiles.
It is used as a tool to help understand the overall behaviour of biclustering methods, detect trends, outliers,
etc. Each bicluster is represented as a circle of which the brightness represents the homogeneity (darker, less
homogeneous). The size on the other hand represents the size of the biclusters, as rows X columns. The user
is able to add up to three bicluster results in the Extra Cluster Results entry boxes, obtained from earlier runs
of methods from biclust. Note that each bicluster set will get a different colour in the plot.

Further, the user is also able to choose between three different kind of projections, namely mean, Iso Mds and
CmdScale of which more information can be found in the help files (note that this Help button is linked to the
bubbleplot help page).

Lastly the Show Labels checkbox will give each bicluster the corresponding bicluster number if checked. An
example of this type of graph can be found in the Appendix in Figure 43.

Barplot of Bicluster

The graph available in this box is a barplot of biclusters which is used to compare the values inside a bicluster
with the values outside of the bicluster. For each bicluster, three bars are drawn per column/condition part of
the bicluster. The darkest represents the values inside of the bicluster and the other two the mean and median
of the values outside of the cluster. The user is able to draw a legend yes or no with the Legend checkbox and
can also determine the number of biclusters which should be drawn with the Total Number of Biclusters entry
box. However this works in a slightly different way, namely on each graphics output device, only 6 bicluster
barplots can fit. Further the spot such barplot will get on this ‘grid’ will always be the same. For example, if
you would take as input the number 14, only bicluster 13 and 14 would appear on the device. If you you would
put in the number 12, bicluster 7 to 12 would appear.

An example is given in the Appendix in Figure 44.

Bar Chart Plot

The final graph in this window will create a barchart for all the biclusters, representing the columns. Each block
represents one bicluster and the bars inside of it represent the means of bicluster values for the corresponding
column.

An example of this is also given in the Appendix in figure 45.

3.4 fabia-package

The biclustering algorithm FABIA or Factor Analysis for Bicluster Acquisition was proposed by Hochreiter et al.
(2010). A couple of variations are available in the fabia packages of which the Laplace Prior, Post-Projection,
Sparseness Projection and SPARSE are implemented in the GUI.

The main description of fabia will be given for the Laplace prior implementation. For the others, the differences
between the windows will be briefly touched upon.

16

3.4.1 Laplace Prior

Factor Analysis for Bicluster Acquisition with Laplace Prior is an algorithm is based on factor analysis where
the homogeneity is based on the latent relationship between the variables in the data. The method will discover
multiplicative biclusters which are found by sparse factor analysis where both the factors and loadings are sparse.
This assumption of sparseness comes from the gene expression data, where normally only a small fraction of
the genes is active under a small subset of conditions (Khamiakova, 2009). Further, the model assumes non-
Gaussian signal distributions with heavy tails.

Now, a factor model for data matrix Y with P factors can be described as follows

P
Y=Y N7, +e

p=1

where Z,, is the pth factor, A, is the vector of factor loadings for Z, and where additive random noise is assumed
to be normally distributed, e ~ N (0, ®). Furthermore, the model assumes that W is a diagonal matrix, i.e. the
error terms € are independently and normally distributed given the p factors in the model. Another assumption
is that Z and ¥ are independent which implies that the noise is independent of the signal strength. Lastly, as
said before, the factor model assumes sparseness of factors and their loadings and this is reflected by the choice
of the corresponding prior on loadings and factors (i.e. a Laplace Distribution).

Using this factor model, biclusters can be be obtained as following. On a side note, it is important to men-
tion that the method works on normalized data. Now, the algorithm will estimate the parameters and factors
through maximizing the posterior of A, ¥ and Z. Using the estimates for A and Z, the denoized data is obtained
and the biclusters are derived from A,Z,. This means that this component can be seen as a bicluster of which
the non-zero genes and samples are members of the bicluster.

More intricate details and information about the method and its variations, can be found in Hochreiter et al.
(2010 and 2014).

The Fabia with Laplace Prior window is shown in figure 11 in which the fabia specifications as well as some
data manipulation can be decided upon.

@ Biclustering - Fabia Laplace Pr_ ﬁ
Biclustering |Plots & Diagnostics

Fabia Specifications

MNurnber of Biclusters: 13 Scale Loading Vectors: 0
Mumber of Iterations: 500 Min. value of variational pm.: 1
Sparsness Loadings [0,1]: 0.01 Mazx. biclusters for row (default = no limit): 0
Sparsness Prior Loadings [0,2]: 0 Maz. rows per bicluster (default = ne limit): 0
Sparsness Factors [0.5,2]: 0.5 Cycle Start (default = beginning): 0

Random init. loadings (<0 SVD ; =0 [-rr]): 1

Mon-negative factors and loadings:
@ Default

() Non-Negative

Data Manipulation

Data Centering Data Normalization:

) Mone) Mone

) Mean @ Quantile (0.75-0.25)

@ Median & Var=1

) Mode
.
731 (Seed)

Figure 11: FABIA (Laplace Prior) Window - Clustering Tab

As one can see there are a lot of input parameters which can be specified. The most important ones are the
Number of Biclusters which is equal to the number of factors and can be set to the upper boundary. The other
parameters of importance are responsible for the specification of the sparseness such as the Loadings, Prior
Loadings, Factors, etc. These depend on the noise level in the data and also the size of the data set.

The user can also select if the factors and loadings are non-negative or not.

17

Finally, the user can also apply some data manipulation before the method is executed, namely Centering
and Normalizing the data matrix.

3.4.2 Post-Projection

For Fabia Post-Projection, some post-processing is present. Namely the final results of the loadings and the
factors are projected to a sparse vector according to Hoyer (2004). This means: given an l;-norm and an
la-norm, minimize the Euclidean distance to the original vector (currently the l3-norm is fixed to 1).

The Fabia Post-Projection window is given in figure 12.

' Biclustering - Fabia Post—ij_ u
Biclustering |Plots & Diagnostics

Fabia Specifications

Number of Biclusters: [E| Scale Loading Vectors:

MNurmber of Iterations: 500 Min. value of variational pm.:

0
1
Sparsness Loadings [0,1]: 0.01 Mazx. biclusters for row (default = no limit): 0
Sparsness Prior Loadings [0,2]: 0 Max. rows per bicluster (default = ne limit): 0

0

Sparsness Factors [0.5,2]: 0.5 Cycle Start (default = beginning):
Random init. loadings (<0 SVD ; =0 [-rr]): 1

Mon-negative factors and loadings: Final Sparseness Loadings: 0.6
@ Default Final Sparseness Factors: 0.6
) Non-Negative
Data Manipulation

Data Centering Data Normalization:
) MNone) MNone

) Mean @ Quantile (0.75-0.25)
@ Median @ Var=1

) Mode

][e

132 (Seed)

Figure 12: FABIA (Post-Projection) Window - Clustering Tab

As one can see, the window is primarily the same as the Laplace Prior one, but the user can now also define
the Final Sparseness Loadings and Final Sparseness Factors.

3.4.3 Sparseness Projection

The next implemented fabia algorithm is fabia with Sparseness Projection. In this version, the prior has finite
support, therefore after each update of the loadings they are projected to this finite support. This projection is
again done according to Hoyer (2004) (See Post-Projection).

Figure 13 shows the Fabia Sparseness Projection window.

18

Biclustering |Plots & Diagnostics

Fabia Specifications

MNurmnber of Biclusters: Min. value of variational pm.: 1

MNumber of Iterations: 500 Mazx. biclusters for row (default = no limit): 0
Sparsness Loadings [0,1]: 0.01 Mazx. rows per bicluster (default = ne limit): 0
Sparsness Factors [0.5,2]: 0.5 Cycle Start (default = beginning): 0

Random init. loadings (<0 SVD ; =0 [-rr])k 1

Mon-negative factors and loadings:

@ Default

0) Non-Megative

Data Manipulation

Data Centering Data Normalization:
) Mone) Mone

) Mean @ Quantile (0.75-0.25)
@ Median @ Var=1

) Mode

Show Result ’ Exi

408 (Seed)

t | Hep |

Figure 13: FABIA (Sparseness Projection) Window - Clustering Tab

The only difference with Laplace Prior is that some options in the specifications have disappeared. These
include the Sparseness Prior Loadings and the Scale Loading Vectors.

3.4.4 SPARSE

This is a version of fabia for a sparse data matrix. The matrix is directly scanned by C-code and therefore must
be in sparse matrix format as described in Hochreiter et al. (2010) and Hochreiter (2014).

Again biclusters are discovered through sparse factor analysis and the model selection is performed by a vari-
ational approach according to Girolami (2001) and Palmer et al. (2006). Further a prior on the parameters
is included and a lower bound on the posterior of the parameters is minimized, given the data. The update
of the loadings includes an additive term which pushes the loadings towards zero (Gaussian prior leads to a
multiplicate factor).

More detailed information about this algorithm and its methodology can be found in Hochreiter et al. (2010)
and Hochreiter (2014). The Fabia SPARSE window is shown in Figure 14.

19

Biclustering |Plots & Diagnostics

Fabia Specifications

Murmnber of Biclusters: 13 Scale Loading Vectors: 0
MNumber of Iterations: 500 Min. value of variational pm.: 1
Sparsness Loadings [0,1]: 0.01 Mazx. biclusters for row (default = no limit): 0
Sparsness Prior Loadings [0,2]: 0 Maz. rows per bicluster (default = ne limit): 0

Sparsness Factors [0.5,2]: 0.5 Cycle Start (default = beginning): 0
| Random init. loadings (<0 5VD ; =0 [-rr]): 1

MNon-negative factors and loadings:
@ Default

() Non-Negative

I Extra SPARSE Options

Vector of Samples (def.=ALL): 0 Lower Bound filter col.: 0
Index Vector to init. L (def.=random): 0 Upper Bound filter col.: 1000
Mumber of Iterations: 1 Lower Bound Variational lapla: 0.001
Quantile L Values removal: 0.001 Lower Bound for divisions: 1e-10

[7] Rescale Z, L factors
[] Compute bicluster IC

Data Manipulation

Data Input? Filename: data Data Mormalization:
@ Existing Sparse Matrix file) None
() Convert Dataset to SPARSE file @ Var=1

[] Write Result Files

][e

69 (Seed)

Figure 14: FABIA (SPARSE) Window - Clustering Tab

Once again, the same specifications as for the Laplace Prior are available in this window. However the options
for Data Centering and Quantile Normalization are not available anymore.

In the second box, Fxtra SPARSE Options, more specifications are given, specific for the SPARSE algorithm.
More information about these can be found in the reference manual and vignette of fabia (Hochreiter, 2014).

As explained earlier, the algorithm requires the data matrix in a special sparse format so therefore, the data
input for this method works slightly different. Namely the function requires the data to be located in a plain
text file in said format. There are two options of inputting the data into this algorithm which will now be
explained.

The first option assumes that the user already has this text file which contains the data matrix in sparse format.
In this case the Ezisting Sparse Matriz file option should be used and the Filename entry box should contain
the name of this file (without the extension). Upon pressing the Show Result button, the GUI will prompt the
user with a directory window in which they have to select the folder where this file is located.

The second option, Convert Dataset to SPARSE file, will -as the option states- transform the active dataset in
the R commander session to a data matrix in sparse format. With this option a plain text file will be generated,
containing the data matrix in sparse format with the name inputted in the Filename entry box. Now upon
pressing the Show Result button, the user chooses the folder where this file will be saved. Note that the code
behind this transformation was based on example R-code, available in the fabia vignette (Hochreiter 2014).
Finally, the user can also check the Write Result Files which will enable the results being saved in the chosen
folder location in the form of plain text files.

3.4.5 Fabia: Plots & Diagnostics

Similar to the ‘Plots € Diagnostics’ of biclust, also for fabia the second tab is the same for all of the methods
implemented from this package. The idea is to proceed to this tab after executing the biclustering method in
the first one so that the biclustering result object is available for the plotting functions. The structure of this
Plots € Diagnostics window is given in Figure 15 which, in this example, is part of the Laplace Prior dialog.

20

Plots & Diagnostics

Summary & Summary Plots

Summary Plot: [Summary] [Draw Plot
@ information Content of Biclusters

() Information Content of Samples
() Loadings of the Biclusters
(7) Factors of the Biclusters

Extract, Extract Plot & Bicluster Plot

Threshold bicluster sample: 0.5

Threshold bicluster loading (def. = estimated): MULL

Extract which plot? Optional Noise Data Matrix
(7 Noise Free data (if available) Moise Free Data Matri: NULL
@ Data

(7) Reconstructed Data
() Error

() Absolute Loadings
(7 Absolute Factors

Bicluster Plot? (Extract First Required!) [] Opposite Bicluster?
@ Data Matrix (with bicluster)

() Only Bicluster
Bicluster Number: 1
BiPlot
Principal Factors
First: 1
Second: 2
BcDiag ” Superbiclust] Exit

Figure 15: Fabia Window - Plots & Diagnostics

Summary & Summary Plots

By clicking the Summary button, the user will receive some general information about the fabia result. Infor-
mation such as the number of rows and columns in the data matrix, the number of clusters, the information
content of the biclusters & samples and finally some summary statistics of the column clusters/factors and row
clusters/loadings, will be printed in the output window.

Further in this first box, the user can also plot several graphs containing the information which was outputted
by the Summary button. The first two are histograms containing the Information Content of Biclusters and
Information Content of Samples. The other two options are boxplots of the Loadings of the Biclusters and the
Factors of the Biclusters. Examples of these four types of graphs can be found in the Appendix in figures 46
and 47.

More information about the calculation of the information content can be found in the fabia vignette (Hochre-
iter, 2014). Basically it is a way to rank the discovered biclusters analogously to principal components which
are ranked according to the data variance they explain. In this case the biclusters are ranked according to the
information they contain about the data.

Extract, Extract Plot & Bicluster Plot

First of all, in the top of this box, the user is able to extract the bicluster results from the fabia results object so
it can be used for other applications. This is achieved by using the Eztract button. Before doing this, 2 thresh-
olds should be set, namely the ‘Threshold bicluster sample’ which is a threshold determining when a sample
belongs to a bicluster and the ‘Threshold bicluster loading’ which is, unsurprisingly, the threshold determining
when a loading (=row) belongs to a bicluster. Note that by default this last one is estimated. The result of
this extraction is a list object which contains the following items: the extracted biclusters and their indices, the
extracted opposite biclusters and their indices, the scaled and centered data matrix and lastly the number of
biclusters. (Opposite means that the negative pattern is present.)

21

The next option in this box is the ability to extract more useful plots from the fabia result. Note that again
the earlier mentioned threshold for samples and loadings apply to these graphs as well. The user is able to pick
out of a multiple of plots, namely the Data, Reconstructed Data, Error, Absolute Factors, Absolute Factors and
(if available) the Noise Free data. For the latter the object name of the noise free matrix should be entered in
the Noise Free Data Matriz entry box. Interesting to know is that to achieve sorting, k-means is performed so
that the vectors belonging to the same cluster can be put together. However, in general this sorting is not able
to visualize all biclusters as blocks, namely if they overlap. Several examples of these plots are given in Figure
48 in the Appendix.

The final plot is this particular box is the Bicluster Plot which is basically the same as the heatmap avail-
able in biclust. The user is able to choose a specific bicluster in the Cluster Number entry box and then draw
only the bicluster (Only Bicluster) or the entire data matrix with the bicluster in the top-left (Data Matriz
(with bicluster)). Further the user can also decide to plot the opposite bicluster with the Opposite Bicluster
checkbox. Note that the bicluster plot will only work if the extraction in the first part of this box is executed as it
requires this output to draw the biclusters. An example of both graphs can be found in figure 49 in the Appendix.

BiPlot

The final implemented plot in the last box is the BiPlot for the matrix factorization result. The user will have
to specify the Principal Factors that are plotted along the horizontal (First) and vertical (Second) axis. On
this biplot, the row-items/genes are represented as circles with their areas proportional to the row weighting.
The most informative genes are those that are the most distant from the center of the plot. Note that the
column-items are represented by squares. Also for this last plot type, an example is available in the Appendix
in Figure 50.

3.5 isa2-package

The ISA biclustering or Iterative Signature Algorithm (Bergmann et al., 2003) is a semi-supervised method,
designed to decompose a large set of data into modules. These modules or biclusters consist of subsets of
genes (rows) that exhibit a coherent expression profile only over a subset of samples/conditions/experiments
(columns). ISA does allow for overlapping modules (rows and columns belonging to multiple modules) and it
is developed to find biclusters that have correlated rows and columns which are identified through an iterative
procedure. A standard ISA procedure starts with normalizing the data first and then generates random input
seeds which correspond to some set of genes or samples. This is refined at each iteration by adding and/or
removing genes and/or samples until the process converges to a stable set, the transcription module. Following
now will be the explanation of the ISA window in Figure 16 with some more basic information about the
important parameters of the algorithm. More detailed information can however be found in Bergmann et al.
(2003) and the isa2 documentation.

7 Biclustering - ISA [
M.
Biclustering |Plots & Diagnostics
ISA Specifications
Row Thresholds Columns Threshelds Mumber of Seeds: 100
From:] From: 1
To: 3 To: 3
By: 0.5 By: 0.5
Row Direction: Column Direction:
() Lower than Average () Lower than Average
() Higher than Average (©) Higher than Average
@ Both @ Both
Show Result Bit || Help
604 (Seed)

Figure 16: ISA Window - Clustering Tab

The two main parameters of ISA are the two thresholds (for rows & columns). If the row threshold is high,
then the modules will have very similar rows, if the threshold is mild, the modules will be bigger but with
less similar rows (analogous for columns). The user is able to set a sequence of thresholds for both the rows
and the columns (default: ¢(1,1.5,2,2.5,3) and ISA will run over all combinations of these sequences. For
each threshold combination the similar modules will be merged and as a last step again similar modules will be

22

merged but now across all threshold combinations. In this last step, if two modules are similar, then the larger
one (with milder thresholds) is kept.

Another interesting parameter the user can set is the direction of rows and columns. This will determine if you
are interested in rows/columns that are higher or lower than the average or even both.

The final input value is the number of seeds which are generated to start the ISA algorithm with. For now
the GUI only allows for random seeding, but advanced user can use the isa2 package to set non-random seeds
which are based on knowledge of the data (e.g. gene sets).

-
o
Plots & Diagnostics

Summary & ISA Plots

[Summary] [Extract l

Scores Plot: Vector of Biclusters: c(1)
© Rows

) Columns

Plot Modules: Vector of Biclusters: ¢(1) Meduleplot
Binary?

Biclust Diagnostics

Bicluster Number: 1 Obs. F Stat.

Bootstrap Options:
Bicluster Mumber: 1

Mumber Bootstrap Replicates: 100

[¥] With Replacement? Bootstrap l [Visualize]

Biclust - Parallel Coordinate Plot
Plot Type: Bicluster Mumber: 1 Draw Plot
@ Default

() Combined (rows & columns)

Default Type Options:
Plot Only Column

[] Plot Rows & Columns
Compare

Extra Biclust Plots

[BcDiag] [Superbiclust]

Figure 17: ISA Window - Plots & Diagnostics Tab

In Figure 17 above, the the second tab for the ISA method can be found. Apart from the first box ‘Summary
& ISA Plots’ the plotting and diagnostic options are the same as for the biclust methods therefore they will
not be elaborated on.

The Summary button will give some information about the bicluster result of isa2. It will give the num-
ber of found clusters and report the top 10 clusters based on the robustness score which is a measure of how
well the rows and columns are correlated. The next button Eztract will transform the result of isa to a list of
biclusters and save it in an list-object called Extract. Each entry of this list will have two sublists, rows and
columns which contain the indices of the subset of rows and columns.

The last two buttons in this box will create graphs based on a user-defined vector of biclusters (e.g. ¢(1,2,3)
= bicluster 1, 2 and 3). The first, Scores Plot, will plot either the row or columns scores (depending on the
radio button selection) which is a number between -1 and 1. The further this number is from zero, the stronger
the association of the given row or column to the bicluster. The last, Moduleplot, will create image plots for the
chosen set of modules as well as the matrix of the original data. The binary check box will determine whether
to binarize the biclusters before plotting or use the actual ISA scores. An example of these last two graphs can
be find in Figure 51 in the Appendix.

On a final note it should be mentioned that while the extract and score plot functions were not available in the
isa2 package, they were based on the author’s code in the Csardi, G. (2013).

23

3.6 iBBiG-package

iBBiG or lterative Binary Bi-clustering of Gene Sets is a biclustering algorithm proposed by Gusenleitner et
al. (2012) which, similar to Bimaz, will look for submatrices (= modules) of 1’s in a spare binary matrix. But
because it works under the assumption of noisy data (non-perfect binarization), a number of 0’s are tolerated
within a bicluster. Further, it also allows for discovery of overlapping biclusters and the method is optimized
for finding modules in matrices of discretized p-values from gene set enrichment analysis (GSA). However this
does not prevent one to apply it to any kind of binary matrix. Another attractive feature of iBBiG is that it
does not require prior knowledgde or limit the number or size of clusters.

In short, the iBBiG algorithm consists out of three main components: 1) a module fitness score 2) a heuristic
search algorithm to identify and grow modules in a high dimensional search space (Genetic Algorithm) and
3) an iterative extraction method to mask the signal of modules that have already been discovered (Iterative
Module Extraction). Further information can be found in Gusenleitner et al. (2012).

The iBBiG window is shown in Figure 18 which contains the paramaters which iBBiG needs to execute its
algorithm.

% Biclustering - IBBIG - =
Biclustering |Plots & Diagnostics

iBBiG Specifications

MNurnber of Expected Clusters (will be optimized): E
Weighting Factor [0,1] (Suggested: [0.3,0.5]): 0.3

Extra Parameters (Little Effect on Performance)

Population Size: 100 Parent Selection Pressure: 1.2

GA Mutation Rate: 0.08 Max Parent Selection: 15 I
Stagnation Stop Criterion: 50 Succes Ratio: 06
Binarize Data
[Binarize?

Threshold (NA=median) NA

][v

480 (Seed)

Figure 18: iBBiG - Clustering Tab

The most important parameter is «, the weighting factor, which is responsible for the balance between module
homogeneity and module size when computing the fitness score (number of phenotypes versus number of gene-
sets, consequently tradeoff between specificity and sensitivity). A small o wil give more weight to the module
size while a large one gives more weight to the homogeneity. However the authors showed in simulated studies
that a range of 0.3-0.5 is appropriate with an optimal default value of 0.3.

The other important parameter is the number of expected values, but because the algorithm is optimized to
find a minimal number, this parameter can be larger than the expected value. This means it is recommended
to choose an upper boundary for this parameter.

All the other parameters are linked to the genetic algorithm which is a class of heuristic search algorithms
based on evolutionary concepts. It is however recommended to keep these on default as these input parameters
were reported to have little effect on the results.

Finally, the active data set in your R Commander session can be binarized if this is not a binary matrix

by default. (This uses the same function available in biclust.) Do note that when plotting graphs (e.g. the
biclust plots), the original data matrix will be used which is the active data set in your session.

24

-
Ssanerg s ek
Plots & Diagnostics

iBBIG - Summary & General Plot

| Summary | [CIusterScores] [Draw Plot J

Biclust - Diagnostics

Bicluster Number: 1 Obs. F Stat.

Bootstrap Options:
Bicluster Number: 1

MNurnber Bootstrap Replicates: 100

[¥] With Replacement? [Bootstrap] [Visualize J

Biclust - Parallel Coordinate Plot
Plot Type: Bicluster Number: 1 Draw Plot
@ Default

(Z) Combined (rows & columns)

Default Type Options:
Plot Only Column

[] Plot Rows & Columns
Compare

Biclust - Heatmap Plot

Local Bicluster Number: 1

Biclust - Biclustmember Plot

Mid Bicluster Label:
Extra Biclust Plots

’ BcDiag] [Superbiclust]

Figure 19: iBBiG - Plots & Diagnostics Tab

As can be seen in Figure 19, a lot of the functionality is the same as for the biclust algorithms so it therefore
will not be explained again here.

On the top, three iBBiG specific buttons can be found. The summary button will give some basic infor-
mation about the number of clusters found and first five biclusters of which the number of rows and columns
will be reported. The next button, Cluster Scores, will give the module score of the clusters and the third one,
Draw Plot, will create a general graph of the biclustering result. This graph contains a plot of all the modules
colour-labeled in the matrix, aswell as some histograms with the module sizes, module scores and weighted
scores. An example of this can be found in the Appendix in Figure 52.

3.7 Diagnostic Packages

3.7.1 BcDiag-package

The first implemented diagnostics package is BcDiag which is compatible with biclust, fabia and isa2. Since
the output of iBBiG is an extension of biclust, the diagnostics will also work on this package.
BcDiag’s task is the visualisation of bicluster data which can be categorized in three sections:

1. Profiling and Summarising the biclustered versus the clustered data simultaneously.
2. Profiling and Summarising the biclustered data only.
3. Exploring the biclustered data using anova and median polish techniques.

A general overview will follow, but more detailed descriptions can be found in Aregay et al. (2014).

In Figure 20, the BcDiag Window with the accompanying output summary window are shown. Note that
in this example the diagnostics window was called from a Plaid Window as can be read in the window title.

25

_
' BCDIAG - Plaid [= |

Plotting Cluster Number & Summary Output

Bicluster Number: 1

ANOVA & Median Polish Residual Plots

() Diagnostic Plots

) Tukey Additivity Plot
) Anova Plots

() Mpolish Plots

@ Anova & Mpolish

G BCDIAG Output -Plaid [

Exploratory Plots for Biclustered & Clustered data
Writing a Summary Output to text-file:

Plot for: Dimension:

® Mean @ Genes Filename: output.tet Append?
) Median () Conditions Title: Output Result

(©) Variance Delimiter (def.=""):

) Median Absolute Deviation

© Al

Bicl. & Clust. Only Biclust.

Praofile Plots for Biclustered & Clustered data

Bit || Hep |

Plot Type: Dimension: 3D Rotation:

@ Al @ Genes 120
@ Lines) Conditions Theta: L1
() Boxplot 30

~) Histogram BhE L
@ 30

=

[mit [Hep |

Figure 20: BeDiag Window with Summary Output Window

Summary Output

Using the Summary button will open up a small new window which can be seen at the right in Figure 20. With
the use of this window a summary output in text format can be created. The user needs to provide filename
and title and can also decide on which delimiter to use (default=space). Further the user is also able to set the
working directory in which the file will be saved before using the write button which will create the text file.
The original function was developed in the biclust package and will create a text file with the total number
of biclustered, the dimension and the name of biclustered rows and columns.

Cluster Number

At the top of the BecDiag Window the user can set the number of the bicluster for which the graphs should
be created. This value is used for all the plots down in the window apart from of course the summary button
which extracts all biclusters.

ANOVA & Median Polish Residual Plots

Here residual plots or residual box plots for a bicluster can be created. These can be diagnostic plots (fitted vs
residual, QQ,...), Tukey additivity plots, anova and mpolish plots. An example of some of these graphs can be
found in the Appendix in Figure 53.

Profile Plots

With this graph, profile plots for biclustered data can be created. These profile plots can either be in lines,
boxplot, histogram or even 3D format. For this last type the rotation can be controlled by the theta and phi
parameter, respectively the z and y azis. Further, the user can decide to either to make these profile plots
on the genes (=rows) or conditions (=columns) dimension. If for example you would choose the conditions
dimension and lines as type, you would get the same result as the parallel coordinates plot (combined type)
from the biclust plots. In this scenario each line is a gene in the bicluster and it gets a red colour labeling if
the column also is a part of the bicluster. The other way around, namely choosing the genes dimension, would
mean that each line is one condition which is red when the gene on the x-axis is part of the bicluster. Some

26

examples of these are shown in Figure 54 in the Appendix.

Exploratory Plots

These plots are summary plots for the mean, median, variance, MAD and quantiles of the data. Just like for the
profile plots, the dimension can be chosen here aswell. Lastly the user can decide to show both the in-bicluster
and out-bicluster information with the left button Bicl. & Clust. (as is always the case for the profile plots)
or only the in-bicluster information with the Only Biclust. button. This is basically just the first part of the
graph with both the in- and out-bicluster information as can been seen in figure 55 in the Appendix.

3.7.2 superbiclust-package

A central issue of biclustering is its stability which can highly influence the ability to interpret the results of a
biclustering analysis. The stability can be affected by initialisation, parameter settings and perturbations such
as random noise. Shi et al. (2010) introduced a novel procedure for obtaining robust biclusters from a set of
initial values which is exactly what superbiclust will accomplish. It will construct a hierarchy of biclusters
based on for example the Jaccard index from which the robust biclusters based on this ‘superbiclust’ concept
can be extracted.

Starting now, the functionality of the superbiclust window will be explained, following the default structure of a
superbiclust analysis. However, for more information about the architecture of superbiclust, see Khamiakova,
T. (2013, 2014) and see Shi et al. (2010) for more details about the ‘superbiclust’ concept itself.

@R SuperBiclust - Plaid | £ |

Extra Biclust Data Input

Vector of Biclust Objects (Example: c'biclust?’,'biclust3'))
¢ NULL

Superbiclust Configuration
Similarity? Type?
@ Jaccard) Rows
") Sorensen () Columns
) Ochiai @ Both
() Kulezynski
*) Sensitivity
) Specificity

Dendogram

Where to cut tree? (number overrides height)

Mumber of Biclusters: MULL
Height: MULL

Robust Bicluster Gene Profiles

[] Show Inside Robust BC? Robust BC
Type? Which Robust BC?

@ Within Biclusters MNurmber:
) All Samples

Save the Robust Biclusters (Biclust Only)

Save | [Reset |

[it || Hep

Figure 21: Superbiclust Window

Extra Biclust Data Input

First of all, at the top of the window in Figure 21, there is room to add other biclust objects which are loaded
in the R workspace. The format should be as in the given example: c('biclust2', 'biclust3'). This box
will only be available for biclust methods and iBBiG.

Superbiclust Configuration

In this box, the first part of a superbiclust analysis is executed, namely the computation of the similarity matrix
of the biclusters. In this figure, we are working with the results of the plaid method as can be seen in the title

27

window. This matrix can be based on several types of similarity and the user can also decide to base it on the
rows, columns or on both (as is suggested for bicluster results).

Dendogram

In the next step, the similarity matrix will be used to construct a hierarchical tree. This is visualised in a den-
dogram which can be drawn with the Draw Tree button of which an example is given in Figure 56 (Appendix).
By cutting this tree now, the robust or super biclusters can be obtained. This user can do this either by setting
a number of desired clusters or by choosing an appropriate height to cut the tree at before using the Cut Tree
button.

Robust Bicluster Gene Profiles

After cutting the tree, some information can be called with the Robust BC button with or without the Show
Inside checkbox. The result of this can be found in Figure 57 in the Appendix. In first part a matrix is presented
with in the first row the index of the robust bicluster and in the second row the number of original biclusters
it contains. Note that only those robust biclusters created from more than one bicluster will be displayed. The
second part, which will appear if you check the Show Inside option, will tell you the indices of the original
biclusters in a robust bicluster.

In the last part of this box, the user is able to quickly draw a profile plot of a robust bicluster of choice. Just
like in the Bediag Window, either all the data (in-bicluster 4+ out-bicluster) or only the in-bicluster data can be
drawn.

Save the Robust Biclusters

The last box gives the user the option to save the robust biclusters. By doing this, the user can go back to
the previous window (plots & diagnostics tab) or even to the bediag window. If the user creates the graphs
now, they will be based on the robust biclusters instead of the original ones. However, take note that this only
applies to the biclust-plots/diagnostics and the plots created by bediag. For example in the case of isa2, the
user will not be able to create the correct scores or modules plots as this information is lost after combining
biclusters into a robust one. Another example would be the buttons in the ‘summary & general plot’ box of
iBBiG. If you would like to go back to the original bicluster result, simply click the Reset Button.

Also note that currently this save-option is not available for the fabia-methods.

28

4 A Guideline to New Implementations

Thanks to the easy plug-in extensibility of R Commander, adding new dialogs is very simple. One only needs
to make the desired window function and then add this to the menus.txt file situated in the plugin package
folder (package —-> inst -> etc) as explained in Fox (2007).

If you are familiar with the Remdr and tcltk syntax, you can make your own customized dialog functions and
then send these to the maintainer of RemdrPlugin.BiclustGUI.

However, if you are new to these two packages or simply want an easier and quicker way to construct your
biclustering dialogs, template functions have been created to serve this purpose. In the following sections, an
explanation will be given on two kinds of scripts in which these functions are called to create your desired
window. One script will adress the creating of a dialog to execute biclustering methods, the other one adresses
the creation of an extra tool window. This last one can serve as either an extension of the first or can be a
general diagnostic window compatible with multiple methods. This will be further discussed in a later section.
It should also be noted that these templates are specifically tailored to biclustering methods and that all of the
already implemented methods are done through these scripts.

In the end, what should be given to the maintainer to implement a new method are the following items:
e The necessary window scripts (manually or through the templates)
e A description of how the menu should look like in R-Commander (e.g. Biclust menu opens up into several
subitems like Plaid, Xmotif,. . .)
4.1 Implementing a New Method

For starters, each biclustering window is made out of two tabs. One to execute the method and one to show
diagnostics and plots. Both tabs have some standard buttons which will appear at the bottom as well as some
optional ones as depicted in Figure 22.

Plots & Diagnostics

Biclustering |Plots & Diagnostics

.

189 (Seed)

1 BcDia Superbiclust | ! Exit
il g |[sup v

Optional

Figure 22: Standard Tab Buttons

As will become clear later, the clustering tab will contain the parameters of the biclustering method while the
second tab will contain diagnostics and plots specific to this method. The concept is that the optional buttons
will lead to new windows of general diagnostic packages, compatible with multiple biclustering methods.

Secondly, it is also important to realise that the idea is to have one biclustering function/method for each
biclustering dialog and tailor it towards this. Why this is important will become clear once we go over the
details of the template script.

4.1.1 New Method Script - ClusterTab & PlotDiagTab

We will now start going through newmethod_script.R which can be found in the Appendix.

General Method Information

The script starts by making a function which will be called on to create a window. First thing you should do
of course is to rename this function to your own liking. Next, some objects are initialized that will be used to
store information in about your window you are about to create.

newmethod_WINDOW <- function(){
nevw.frames <- .initialize.new.frames()

grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

29

methodname <- "A new method"

methodfunction <- "methodfunction"
data.arg <- "d"

data.matrix <- TRUE

methodshow <- TRUE

other.arg <- ""

methodhelp <- ""

data.discr <- FALSE
data.bin <- FALSE

methodseed <- TRUE

bcdiag.comp <- FALSE

superbiclust.comp <- FALSE

}

The scripts starts be filling in some information about your biclustering method. A clarifying example follows
later, filling in this information for the Plaid method.

e methodname: The title of the window which will be shown on top. It may contain no special characters besides
7, It is important to know that the result of your biclustering function will be saved in a global variable,
named methodname without the spaces and ‘-’ symbols. Therefore, do not make this string too elaborate.

methodfunction: A string which contains the name of your biclustering method’s function. By this the actual
R function, corresponding with the method, is meant. Without going into too much detail, it might be
interesting to know that the R command to execute the biclustering actually starts with this small string.
New arguments are simply appended to this string untill you have the full command you need.

e data.arg: The name of the argument which needs the data.

data.matrix: Logical value which will determine if the data needs to be transformed to a matrix with
as.matrix().

method.show: Logical value which decides if the the object in which the clustering result is saved, should be
printed. See figure 23.

e other.arg: A string containing extra arguments you do not want the user to change. For example in the
Plaid window, it is used as following: since the biclust package uses only one function to execute all of
the different methods, for the Plaid method the string here was " ,method='BCPlaid'". Also note the use
of the comma in the beginning! This is because this string is not restricted to only one argument, it could
contain several of them. They simply need to be added in this string as they would be added inside the
function itself.

methodhelp: The name of the helppage the help button should be directed to. (help(methodhelp))

data.discr: Logical value determining if a frame should be added above the Show Results button with the
option to discretize the data. The discretize function from the biclust package is used to achieve this.
See Figure 24.

30

e data.bin: Logical value determining if a frame should be added above the Show Results button with the

option to binarize the data. The binarize function from the biclust package is used to achieve this.
See Figure 24.

e methodseed: Logical value determining if there should be a seed box below the Show Results button. This
will make sure a set.seed() is executed before the biclustering function.

e bcdiag.comp & superbiclust.comp : Logical value determining compatibility with the BcDiag and superbiclust
package respectively. Please note that this only enables the appearance of the buttons in the second tab.
For a button to function properly, some minor coding needs to be carried out by the maintainer.

R Script |R Markdown

data (Bicat¥east, package="biclust") o~

BicatYeast «<- as.data.frame (BicatYeast) o

names (BicatYeast) <- make.names (names (Bicat¥Yeast))

set.zeed(189)

Plaid<-biclust (x=as.matrix (BicatYeast) , method=BCPlaid(),cluster='b"',
fit.model=y ~ m+atb,background=TRUE, shuffle=3,back.fit=0,max.layers=20,

L _irex.startup=5,iter.layer=10)

L Plaid 1

e

nethod . show=TRUE|,

|| -
> Plaid

1
1
1
An object of class Biclust |
1
1
1

m

Figure 23: Example of Plaid Biclustering - With method.show=TRUE

Discretize Data
[Discretize?
Number of Levels 10 [] Use quantiles? (else equally spaced)

Binarize Data
[] Binarize?
Threshold (NA=median) NA

B .

Figure 24: Ezample of discretize and binarize frames.

31

Cluster Tab
After providing the information about the method we can finally start making windows! Both the clustering
tab and the plotting & diagnostics tab are created in three easy steps as shown in Figure 25:

1. Making the frames
2. Configuring the frames into a grid

3. Combining rows into a box

1. Making the Frames 2. Configuring the Grid 3. Combining Rows
[@ Biclustering - Plaid =5

+ Combine row 1

("Plaid Specificationg" Title)

Combine row 2 & 3

("Layer Specificationg" Title)

Shuffle:

I [Show Result |
Back Fit: 0
0

445 (Seed)

Figure 25: Making windows in 3 steps

HAARHH AR HARHA AR R AR A

CLUSTERING TAB

T A

input <- "clusterTab"

1. ADDING THE FRAMES

Add frames here

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("framel","frame2","frame3",NA,"frame4" ,6NA),
nrow=3,ncol=2,byrow=TRUE, grid.config=grid.config)

3. COMBING THE ROWS

grid.rows <- .combine.rows(input=input,rows=c(1),title="A nice box: ",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

32

grid.rows <- .combine.rows(input=input,rows=c(2,3),title="A nice box: ",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

Looking at the script, you can see it starts with putting the input to clusterTab. This will make sure everything
you are creating and saving now will be done for the first tab.

Step 1:

As already explained earlier, the first step will be to create the frames in which you want to put your function
arguments. A variety of frames can be created, but these will be explained in more detail in the following
section. To give a quick summary, here is the list of the types of frames which can be generated in the clustering
tab.

Check Boxes

Radio Buttons

Entry Fields
e Sliders
e Spinboxes

In future updates, there is still the possibility to add even more types if required.

Step 2:

During the creation of the frames in the previous step, you will have given each of them a unique name. Using
these framenames, the next step will be to simply order them into a matrix grid, filling in the empty spots
with NA’s. This is achieved with the .grid.matrix function. The function accepts the exact same arguments
as the matrix function apart from two new ones, namely input and grid.config. The first is to make sure
the template function knows we are adding frames in the first tab, while second one is there to ensure that the
new information is added to the old grid.config object and that old information is not lost.

Further, it is important to know that the inserted frames will always be pulled towards the north-west as much
as possible. Therefore in a 1-row matrix, something like c(NA,"framel") or c("framel",NA) would give ex-
actly the same result.

Step 3:

The final step will enable you to put one or multiple rows in a seperate box which can serve two different
purposes. The first, being the most obvious one, is simply to add some visual distinction between rows with
the help of a title with or without a border around the row(s).

The second purpose is connected to the way frames are added in this grid. Sometimes if frames have a large
difference in size, other frames might seem to be jumping to the right, trying to fit in one general grid. In
general if you see this happening, putting this row(s) in a box will solve this problem and the frames will again
be pulled towards the left.

Creating these boxes by combining rows is again very easy, one simply needs to use the .combine.rows function
which will save the necessary information in the grid.rows object. The function only has three arguments you
should change: rows which is a vector containing the rows you wish to combine, title to give the box a title
("" means no title) and border to decide if there should be a border.

Note that in contrast to the grid configuration, you can call this function multiple times until the desired result
is obtained.

33

PlotDiag Tab
The clustering tab configuration is immediately followed by making the second tab.

e e e e A e S e s e
PLOTTING & DIAGNOSTICS TAB
e e e e e e i e

input <- "plotdiagTab"

1. ADDING THE FRAMES

Add frames here

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input ,c("frameb","frame6") ,nrow=1,ncol=2,
byrow=TRUE, grid.config=grid.config)

3. COMBING THE ROWS

grid.rows <- .combine.rows(input=input,rows=c(1l),title="Plot 1" ,border=TRUE,
grid.rows=grid.rows,grid.config=grid.config)

B e e e et
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL CLUSTERTEMPLATE FUNCTION
HARARRBARRRAARRRAARRAAR R RRRRRARRRRRR R R RRRBARRRRARRBAAR R AR BB RRARRAAR R AR

cluster_template (methodname=methodname ,methodfunction=methodfunction,
methodhelp=methodhelp,data.arg=data.arg,other.arg=other.arg,
methodseed=methodseed,grid.config=grid.config,grid.rows=grid.rows,
new.frames=new.frames,superbiclust.comp=superbiclust.comp,
bcdiag.comp=bcdiag.comp,data.matrix=data.matrix,
data.discr=data.discr,data.bin=data.bin,methodshow=methodshow)

Analogous to the first tab, this part of the script starts by putting the input variable to plotdiagTab. Next the
same three steps are repeated as for the clustering tab. There is only one difference and that is the addition of
one new type of frame which can be created in the plots & diagnostics tab. This is the manual button frame
which will also be explained in more detail down below. Basically a manual button can serve two purposes, it
can be tied to a plot or diagnostics function which uses some arguments or it can lead to a new window entirely
which can be created with the new tool script.

Finally at the end of the script, all the variables and created objects are used in the cluster_template function
which will create the actual window.

4.1.2 The Frame Scripts

In this section, the several types of frames which can be used in the newmethod_script will be showcased. The
idea is that these parts of the R-code (which are also in the Appendix) are copy-pasted into the newmethod_script
and are adjusted as deemed necessary.

All the frame types have the title and border option in common. The results of these options can be seen in
figure 26. Also note that for each frametype the information is saved in one object, namely new.frames. Just
as the grid and row configuration earlier, new information will keep on getting added to this object, now with
the help of the .add.frame function. Lastly, at the start of each frame script, a type variable will be set to
determine the type of frame for this previous mentioned .add.frame function.

34

A Title Ttle - ___

—
—
o
9]
-
—
3]
-
oo
=
(9]

1
1
1
1

Figure 26: a.Title & No Border b.Title & Border c.No Title & No Border

Entry Fields

The first type of frame is the entry fields frame. It can be used for both numerical arguments and character
arguments of your biclustering function. Multiple entries can be added in one frame which will be placed below

each other.

type <- "entryfields"

frame.name <- "entryframel"

argument.names <- c("Argument 1","Argument 2","Argument 3")

argument.types <- c("mm","num","char")

arguments <- c("argl","arg2","arg3")

initial.values <- c(1,2,"a")

title <- "A Title"

border <- FALSE IR
entry.width <- c("2","2","6") Argument3: a

ATitle
Argument1: 1

new.frames <- .add.frame(input=input,type=type
,frame.name=frame.name,argument .names=argument . Names
ts=arguments,initial.values=initial.values
=title,border=border,entry.width=entry.width
,ArFument . types=argument.. types ,new.frames-new.frames)

» ATl

titl

Figure 27: Entry Fields: Code + Ezample

Entry Fields Variables:
e frame.name: The unique name of this frame. (Which is used in the grid matrix)

e argument.names: The argument names how they will appear in the window.

e argument.types: A vector defining if the argument is "num" or "char". This basically just means if there
should be a ’ 7 around the value when filling it in in the biclustering function. (e.g. In Figure 27 the

arguments would be filled in as ,argl=1,arg2=2,arg3="'a')

e arguments: The actual argument names, used for the biclustering function.

initial.values: A vector containing the initial values in the entry fields.

title: Optional title for the frame ("" means no title)

border: Logical value determining the presence.

e entry.width: A vector containing the width of the entry fields (1 width = 1 number/character).

Check Boxes

The second type of frame is the check boxes frame which is used for TRUE/FALSE arguments. Just like for entry

fields, multiple check boxes can be added below each other.

35

type <- "checkboxes"

frame.name <- "checkboxframe1"
argument .names <- c("Check 1","Check 2","Check 3") title
arguments <- c("checkargl","checkarg2","checkarg3") [Check1
initial.values <- c¢(0,1,1))

Check 2

title <- "title"

border <- FALSE Check 3

new.frames <- .add.frame(input=input,type=type
,frame.name=frame.name, argument . names=argument .names
,arguments=arguments,initial.values=initial.values
,title=title,border=border,new.frames=new.frames)

Figure 28: Check Boxes: Code + Ezample

Check Boxes Variables:

e frame.name: The unique name of this frame. (Which is used in the grid matrix)

e argument.names: The argument names how they will appear in the window.

e arguments: The actual argument names, used for the biclustering function.

e initial.values: A vector containing the initial values in the entry fields. (0 for FALSE, 1 for TRUE)
e title: Optional title for the frame ("" means no title)

e border: Logical value determining the presence.

Radio Buttons
The next type is radio buttons, which is used for only one argument with a finite number of values.

type <- "radiobuttons"

frame.name <- "radioframel"
argument.names <- c("Button 1","Button 2","Button 3")
arguments <- c("buttonarg")

argument.types <— "char" Button Options
argument.values <- c("bi","b2","b3") () Button1
initial.values <- "b3" % () Button?
title <- "Button Options" @ Button 3

border <- TRUE

new.frames <- .add.frame(input=input,type=type
,frame .name=frame.name, argument . names=argument . Names
,arguments=arguments,argument.values=argument .values
,initial .values=initial.values,title=title,border=border
,new. frames=new.frames,argument. types=argument . types)

Figure 29: Radio Buttons: Code + Example

Radio Buttons Variables:

e frame.name: The unique name of this frame. (Which is used in the grid matrix)
e argument.names: The names of the buttons how they will appear in the window.

e arguments: The actual argument name, used for the biclustering function.

argument.types: Just as for the entry fields, this will determine of the values are filled in with or without
”. The two options are again "num" and "char", but in contrast with the entry fields it is now only one
value and not a vector..

36

e argument.values: The actual values of the radio buttons that correspond to the values passed to biclustering
function.

e initial.values: The initial value of the radio buttons. It will determine which button is selected on opening
the window.

e title: Optional title for the frame ("" means no title)
e border: Logical value determining the presence.

Value Sliders
The following type will create value sliders which can only be used for numerical values. Again multiple sliders
can be placed under each other. The current value of the slider will always appear on top of it.

type <- "valuesliders"

frame.name <- "sliderframel"

argument.names <- c("Slider 1 ","Slider 2 ","Slider 3 ")

arguments <- c("sliderargl","sliderarg2","sliderarg3") Title
initial.values <- ¢(1,5,10) 1
from <- c(1,1,1) Slider1 |_| |
to <- ¢(5,50,500) N 10
by <- ¢(1,10,50) Shider2 | _| |
length <- c(50,100,150) 0
title <- "Title" Slider3 |_| |

border <- TRUE

new.frames <- .add.frame(input=input,type=type,
title=title,border=border,frame.name=frame.name,
argument.names,arguments=arguments,
s=initial.values,from=from,to=to,by=by,
length=length,new.frames=new. frames)

Figure 30: Value Slider: Code + Example

Value Sliders Variables:

e frame.name: The unique name of this frame. (Which is used in the grid matrix)
e argument.names: The argument names how they will appear in the window.

e arguments: The actual argument names, used for the biclustering function.

e initial.values: Vector of initial values of the sliders.

e from: Vector of starting points of the sliders.

e to: Vector of ending points of the sliders.

e by: Vector with the values determining how one movement of the sliders will change the current value.
e length: Vector containing the lengths of the sliders.

e title: Optional title for the frame ("" means no title)

e border: Logical value determining the presence.

Spin Boxes
This type will create spin boxes which are again solely used for numerical values. Just as for sliders, multiple
spin boxes can be placed below each other.

37

type <- "spinboxes"

frame.name <- "spinboxframel"

argument.names <- c("Spin Box 1: ","Spin Box 2: ","Spin Box 3: ")
arguments <- c("spinargl","spingarg2","spingarg3")

initial.values <- c(5,10,20)

from <- ¢(1,5,10) Spin Box ! .
to <- ¢(10,20,30) Spin Box1: |5 =
by <- c(1,1,1) ——F SpinBox2: [103]
entry.width <- "2" Spin Box 3: |202]

title <- "Spin Box !"
border <- TRUE

ame . name=frame.name , argument . names=argument . names,
1ts=arguments,initial.values=initial.values,
from, to=to,by=by,entry.width=entry.width,
title=title,border=border,new.frames=new.frames)

Figure 31: Spin Bozes: Code + Ezample

Spin Boxes Variables:

e frame.name: The unique name of this frame. (Which is used in the grid matrix)
e argument.names: The argument names how they will appear in the window.

e arguments: The actual argument names, used for the biclustering function.

e initial.values: Vector of initial values of the spin boxes.

e from: Vector of starting points of the spin boxes.

e to: Vector of ending points of the spin boxes.

e by: Vector with the values determining how much one click will change the current value.
e entry.width: Width of all the spinboxes (one value which applies to all of them)
e title: Optional title for the frame ("" means no title)

e border: Logical value determining the presence.

Manual Buttons

The last type of frame which can be utilized, is making manual buttons which will only work in the plot &
diagnostics tab. As already explained earlier, there are two primary uses for these buttons. The first use is
to simple execute a plot or diagnostic function, based on the arguments of other frames in the window. The
second application is to tie the button to another window function (created with newtool_script) to open up
more options.

38

type <- "buttons"

frame.name <- "buttonframel"
button.name <- "Button 1"
button.function <- "buttonfunction"
button.data <- "d"

button.biclust <- "biclust"

arg.frames <- c("framel","frame2")

save <- TRUE
show <- TRUE

button.otherarg <- ""

type=type,button.name=button.name,

button.f ion=button.function,button.data=button.data,

button) g=button.otherarg,
arg.frames=arg.frames,save=save,show=show,new.frames=new.frames)

Figure 32: Manual Button: Code + Ezxample

Manual Button Variables:
e frame.name: The unique name of this frame. (Which is used in the grid matrix)

e button.name: The text which will appear on the button. No special characters are allowed and if the result
of the button is saved, it will be in an object with this name without the spaces.

e button.function: A string of the function which should be tied to this button. This could either be a plot,
diagnostic or simple summary. Another useful practice is to actually make an entire new function for this
manual button. This new function could then for example contain a series of diagnostic functions which
would then be carried out all at the same time when clicking on this button.

e button.data: The name of the data argument the button function. The data which is loaded in R Commander
will then be pasted after this argument. (Simply put "" when this is not necessary)

e button.biclust: The name of the biclustering result argument in the button function. Here the saved result
after using the Show Results button will be pasted.

e button.otherarg: Just like for the biclustering function (other.arg), this is the variable in which one can
add arguments to the function which should not be controlled by the user (e.g. ",type='biclust'").
Again, do not forget to add a comma in the beginning. The only time when the comma should be excluded
is when both button.data and button.biclust are put to "".

e arg.frames: A vector containing the names of those frames from which this button function should pull its
arguments.

e save: Logical value determining if the result of the button function should be saved. For example for a
plotting function this is mosty likely not necessary, however for a diagnostic result it is. The difference
between a TRUE and FALSE option is shown in figure 33.

e show: Logical value determining if the button function should be shown in R Commander. It is good practice
to do this for the plotting and diagnostics functions however if is a function to create a new window, it is
probably not necessary to show it.

1. show = TRUE & save = TRUE

Buttonl <- buttonfunction (d= (Tbiclustc=)
Buttonl

2. show = TRUE & save = FALSE

| buttonfunction (d= (biclust= 1 _| ” |

Figure 33: Manual Buttons - save option

39

4.1.3 A quick example - Plaid

The entire script to construct the Plaid Window can be found in the Appendix. In this small section, some
parts will be highlighted and explained in their context.

HUAARRBARRRAARRRARRRARRRRARRRARRBRRRRBARRBARRRAARRRAH
GENERAL INFORMATION ABOUT THE NEW METHOD/WINDOW
B e o

methodname <- "Plaid"
methodfunction <- "biclust"
data.arg <- "x"

data.matrix <- TRUE
other.arg <- " ,method=BCPlaid()"
methodhelp <- "BCPlaid"
methodseed <- TRUE
data.discr <- FALSE
data.bin <- FALSE
bcdiag.comp <- TRUE
superbiclust.comp <- TRUE

Biclust only (Not for public use)
extrabiclustplot <- TRUE

First of all, the general information is filled in for the plaid method as shown in the script above. Please not
that the extrabiclustplot is a biclust-only variable and will not be elaborated on.

Next, in Figure 34 we can see the code which makes the two frames in the top row.

1
1type <- "radiobuttons"
1

i
1
1
1
1
1
1 1
1 # Change variables accordingly:
:frame.name <- "toclusterframe" :
| argument .names <- c("Rows","Columns","Rows & Columns") — |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Biclustering | Plots & Diagnostics

Plaid Specifications

\:To Cluster
) Rows

Columns

| arguments <- c("cluster")

1 argument . values <- c("r","c","b")
| argument. types <- "char"
'initial.values <- "b"

:title <- "To Cluster"

:border <- FALSE

Layer Specifications

] 5
'# DO NOT CHANGE THIS LINE: [¥]Background Layer?

1new.frames <- .add.frame(input=input,type=type,

: frame.name=frame.name, argument.names=argument .names, ShUﬁk:E_ e T S

1 arguments=arguments,argument.values=argument.values, BackFit 0 : 10

: initial.values=initial.values,title=title,border=border, Max Layes: 20

1 new.frames=new.frames,argument.types=argument.types)

= = o = SrnTooocoocoocooooooo oo o Show Result Hely
FHRHE ~ ERTRY FIELDS FRARE ~#F4Y | Help
1

230 (s
1
rtype <- "entryfields"
1

:# Change variables accordingly:
\frame.name <- "modelframe"

iargument .names <- c("Model Formula")
‘aTgument.types <- c("num")
arguments <- c("fit.model")
:initial.values <= c("y " mt+a+b")
itle <- "Model"

border < FALSE

Putry.width <= c("10")

1

'# Do not change this line:

hﬂw.frames <- .add.frame (input=input,type=type,
frame.name=frame.name,argument.names=argument .names,
arguments=arguments,initial.values=initial.values,
title=title,border=border,entry.width=entry.width,

- .argument. types=argunent.types _,new.frames-mew.frames) _,

Figure 34: Building the Plaid Window - ClusterTab

Following the rest of the frame creations is of course the grid configuring and the row combining of the cluster

40

tab. In this extract of the script, one can see the two frames from Figure 34 being placed in the top row of the
matrix after which the first row is made into a box with border and Plaid Specifications title.

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("toclusterframe","modelframe",
"backgroundcheckframe" ,NA, "backgroundentryframel", "backgroundentryframe2"),
byrow=TRUE,nrow=3,ncol=2,grid.config=grid.config)

3. COMBING THE ROWS

grid.rows <- .combine.rows(input=input,rows=c(1l),title="Plaid Specifications",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(2,3),title="Layer Specifications",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

Finally, an example of the creation of manual buttons is shown in Figure 35. Note that the line of code containing
the .add.frame has been omitted here for better clarity of code.

Naturally the creations of the other frames, together with the configuring of the grid and rowcombining follows
after.

1
[- T
'type <- "checkboxes" ! - /]
: : Plots & Diagnostics
1
1
1
1

:# Change variables accordingly:
(frame.name <- "heatplotcheckframe"
:argument‘names <- c("Local™)
rarguments <- c("local")
:inltial.values <— (1)

1title <= ""

iborder <- FALSE

Summary & Diagnostics
Bicluster Number: 1 Obs. F Stat.

Bootstrap Options:
Bicluster Number: 1
MNurmber Bootstrap Replicates: 100

With Replacement? [Bootstrap] [Visualize]

Panllel Coordinate Plot

: type <- "entryfields"
1

Bicluster Mumber: 1 Draw Plot

:Ei Change variables accordingly:

: frame.name <- "heatplotentryframe"

1 argument . names <- c("Bicluster Number")
|argument.types <- c("num")

1arguments <- c("number")
:inltia]_.‘u'alu.es < c(1)

|tit]_e < "

border <- FALSE
Ientry width <- c("2")

Biclustmember Plot

Mid Bicluster Label: |
' Change varidbles a
1frame.name <-

'button.name <- Extra Biclust Plots
1 Exit

1button. function \¢- "drawHeatmap" [BcDiag] [Supe:bidustl
:button.data <
lbutton.biclust <=
,save <— FALSE

Figure 35: Building the Plaid Window - PlotDiagTab

4.2 Implementing a New Tool

The second template script (which is also available in the Appendix) is newtool_script.R. With the help of
this script one can make a new window which can for example be tied to a manual button in the second tab of a
clustering window. Another possibility is to make another general diagnostics window compatible with several
other biclustering packages. This is for example already done with the BcDiag and superbiclust package for
which the button appears in the second tab of the compatible methods. Also just as for these two packages, a
compatibility variable could then be added in the begin of the newmethod_script to decide if the button for
your new general diagnostics package should appear for a specific method.

4.2.1 New Tool Script

41

newtool _WINDOW <- function(methodname){

new.frames <- .initialize.new.frames()
grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

i B
GENERAL INFORMATION ABOUT THE NEW TOOL
i e

toolname <- "A new tool"
toolhelp <- "helppage"
data.matrix <- TRUE

Do not change this line:
input <- "plotdiagTab"

ADDING FRAMES
Analogous to plotdzag tab.

CONFIGURING GRID
grid.config <- .grid.matrix(input=input,c(),nrow=1,ncol=2,
byrow=TRUE, grid.config=grid.config)

COMBINING ROWS
grid.rows <- .combine.rows(input=input,rows=c(),title="Plot 1",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

e B e e
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL NEW TOOL FUNCTION
e

newtool_template(toolname=toolname,methodname=methodname,
toolhelp=toolhelp,data.matrix=data.matrix,grid.config=grid.config,
grid.rows=grid.rows,new.frames=new.frames)

}

Just as for newmethod_script the adjusting of the template starts with changing newtool _WINDOW to your own
desired windowfunction name. Next at the start of the script again the necessary objects are initialized followed
by some variables containing general information about the tool:

e toolname: The name of the tool appearing at the top of the window.
e toolhelp: The helppage the help button should be linked with. (help(toolhelp))

e data.matrix: Logical value determining if the active data set should be transformed to a matrix when using
any of the functionality of the tool window.

After filling in these couple of variables, making this window is exactly the same as creating the second tab in
newmethod_script. This means it is also possible to create manual buttons in this window. Note that even
the input variable is again set to plotdiagTab. The only difference can be found in the last line where now the
template function has changed to newtool_template.

Finally the attention should also be pointed to the fact that by default the newtool_WINDOW function has
methodname as an argument. This means if this function is used inside a newmethod_script, the new tool
window can behave differently depending on the method it is being called by. This will become clear in the
example shortly.

4.2.2 A quick example - BcDiag

We will now go through a couple of parts of the script responsible for the BeDiag window. The full script can
once again be found in the Appendix.

42

bcdiag WINDOW <- function(methodname){

new.frames <- .initialize.new.frames()
grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

Some extra code to determine the input type: "biclust”, "fabia", "isal"
biclust.names <- c("Bimax","CC","Plaid","Questmotif","Spectral",
"XMotifs","IBBIG")
fabia.names <- c("Fabia Laplace Prior","Fabia Post-Projection",
"Fabia Sparseness Projection","Fabia SPARSE")
isa.names <- c("ISA")

if (methodname %in% biclust.names){
extra.arg <- ",mname='biclust'"

if (methodname %inY, fabia.names){
extra.arg <- ",mname='fabia'"

if (methodname %in% isa.names){
extra.arg <- ",mname='isa2'"

B e et
GENERAL INFORMATION ABOUT THE NEW TOOL
HBRARBRARRBRARBHARHRBRRBRARRAARRBRARBRARRHRRARBRHARRHAA

toolname <- "BCDIAG"

toolhelp <- "BcDiag-package"

data.matrix <- TRUE
Y#ignore

In the code above the variables containing the general information are filled in as expected, however just above
some extra code has been added. These extra lines of code are simply determining what string should be saved
in extra.arg based on the methodname given to bcdiag_WINDOW. This extra.arg variable will then be used
later in the creation of a manual button as we will see now in Figure 36. Note that just as for the plaid example
the .add.frame line has been omitted to maintain clarity.

43

,
N

1 I Pletting Cluster Number & Summary Qutput

entry_number
1argument . names <- ¢ ("Bicluster Number")

:ira_'ne‘na_'ne <

Plot Type:

Diagnostic Plots

1
1
1
1
1
1
(]
| argument . types <- c("nun") bl | © DegnoshicBlots oyt mem = m 2
raTguments <- c("bmum") h Tukey Additivity Ploﬂ
1initial.values <- c(1)] Anova Plots !
1
ititle < " 1 Mpolish Plots 1
1
' |
1
Clustered data

1
,border <- FALSE 8 Anova 8 Mpolish

entry.width <- c("3")

type <- "radiobuttons"

:frame.uame <- "radio_anomed
1argument .names <- c("Diagnostic Plots","Tukey Additivity Plot",
: "Anova Pleots","Mpolish Plots","Anova & Mpolish")

rarguments <- c("fit")

:argument.values <- c("aplot","mplot", "anovbplot", "mpolishbplot",
1 "boxplot")

:argument.types <- "char"

tinitial.values <- "boxplot"

:tLtle <- "Plot Type:"

1

1

1

1

1

;- 1
hange variab sccordingly: 1
! _ " -u. 1
yframe.name <- "button_anomed \
'button.name <- "Draw Plot" 1
1

1

1

1

1

1

1

1

1

Ch

(button.function <- "anomedOnlybic"
'button.data <- "dset"”
\butten.biclust <- "bres"
:button.otherarg <—
|save <- FALSE

:a_'rg.ira_'nes <- c("radio_anomed","entry_number")

Figure 36: Building the BcDiag Window

Apart from the usual framebuilding, one can see that this earlier mentioned extra.arg is now used for the
button.otherarg argument in the manual button setup.

This is only one of many ways in which you can tailor the tool window to a specific biclustering method. A
more complicated example would the implementation of the superbiclust window in which methodname is also
transformed to method_result (methodname without spaces and ‘-’s) in order to make some distinguishments.
Further in this script a different grid.config and grid.rows will be created depending on methodname.
Since apart from these additions the script is still very much the same as the others, it will not be elaborated
on. It can however still be found in the Appendix.

4.3 Testing your Script

Once you have completed your script for a certain windowfunction, it is very simple to test it to check if it is
to your liking or if any errors were made. Simply load in the RemdrPlugin.BiclustGUI package and wait for
the R Commander window to open up. Then run the entire script and execute the created windowfunction. A
new window should appear on top of the R Commander one, containing whatever you specified in the script.

44

5 References

Aregay, M., Otava, M., Khamiakova, T. and De Troyer, E. (2014). Package ‘BcDiag’. Diagnostics plots for
Bicluster Data. Available: http://cran.stat.ucla.edu/web/packages/BcDiag/BcDiag.pdf. Last accessed
21th August 2014.

Bergman, S., Thmels, J. and Barkai, N. (2003). Iterative signature algorithm for the analysis of large-scale
gene expression data. Physical Review, 67.

Cheng, Y. and Church, G.M. (2000). Biclustering of expression data. Proc International Conference on Intel-
ligent Systems for Molecular Biology, 8, 93-103.

Cséardi, G. (2013). The Iterative Signature Algorithm - Tutorial. Available: http://raptorl.bizlab.mtsu.
edu/s-drive/TEFF/Rlib/library/isa2/doc/ISA_tutorial.pdf. Last accessed 3rd Septembre 2014.

Csardi, G. (2014). Package ‘isa2’. The Iterative Signature Algorithm. Available: http://cran.r-project.
org/web/packages/isa2/isa2.pdf. Last accessed 21th August 2014.

Culhana, A. and Gusenleitner, D. (2014). Introduction to iBBiG. Available: http://www.bioconductor.
org/packages/release/bioc/vignettes/iBBiG/inst/doc/tutorial.pdf. Last accessed 21th August 2014.

Dalgaard, P. (2001). The R-Tcl/Tk interface. DSC 2001 Proceedings of the 2nd International Workshop
on Distributed Statistical Computing, Vienna, Austria.

Dalgaard, P. (2001). A Primer on the R-Tcl/Tk Package. R-News. 1/3.
Dalgaard, P. (2002). Changes to the R-Tcl/Tk package. R-News. 2/3.

Dolnicar, S., Kaiser, S., Lazarevski, K. and Leisch, F. (2011). Biclustering: overcoming data dimensional-
ity problems in market segmentation. Journal of Travel Research

Fox, J. (2005). The R Commander: A basic-statistics graphical user interface to R. Journal of Statistical
Software. 14(9).

Fox, J. (2007). Extending the R Commander by “Plug-In” Packages. R News. 7/3.

Fox, J. and Bouchet-Valat, M. (2013). Getting Started With the R Commander. Available: http://socserv.
mcmaster.ca/jfox/Misc/Rcmdr/Getting-Started-with-the-Rcmdr.pdf Last accessed 3rd September 2014.

Girolami, M. (2001). A Variational Method for Learning Sparse and Overcomplete Representations. Neu-
ral Computation, 13(11), 2517-2532.

Gusenleitner, D., Howe, E.A., Betink, S., Quackenbush, J. and Culhane, A.C. (2012). iBBiG: Iterative Bi-
nary Bi-clustering of Gene Sets. Bioinformatics, 28, 2484-2492.

Gusenleitner, D. and Culhane, A. (2014). Package ‘iBBiG’. Iterative Binary Biclustering of Genesets. Avail-
able: http://www.bioconductor.org/packages/release/bioc/manuals/iBBiG/man/iBBiG.pdf. Last ac-
cessed 21th August 2014.

Hochreiter, S., Bodenhoger, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Sanden,
S.V., Lin, D., Talloen, W., Bijnens, L., Géhlmann, H.-W.H., Shkedy, Z. and Clevert, D.-A. (2010). FABIA:
Factor analysis for bicluster acquisition. Bioinformatics, 26(12), 1520-1527.

Hochreiter, S. (2014). Package ‘fabia’. FABIA: Factor Analysis for Bicluster Acquisition. Available: http:
//www.bioconductor.org/packages/release/bioc/manuals/fabia/man/fabia.pdf. Last accessed 21th Au-
gust 2014.

Hochreiter, S. (2014). FABIA: Factor Analysis for Bicluster Acquisition -Manual for the R package-. Available:

http://www.bioconductor.org/packages/release/bioc/vignettes/fabia/inst/doc/fabia.pdf. Last ac-
cessed 21th August 2014.

45

http://cran.stat.ucla.edu/web/packages/BcDiag/BcDiag.pdf
http://raptor1.bizlab.mtsu.edu/s-drive/TEFF/Rlib/library/isa2/doc/ISA_tutorial.pdf
http://raptor1.bizlab.mtsu.edu/s-drive/TEFF/Rlib/library/isa2/doc/ISA_tutorial.pdf
http://cran.r-project.org/web/packages/isa2/isa2.pdf
http://cran.r-project.org/web/packages/isa2/isa2.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/iBBiG/inst/doc/tutorial.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/iBBiG/inst/doc/tutorial.pdf
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/Getting-Started-with-the-Rcmdr.pdf
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/Getting-Started-with-the-Rcmdr.pdf
http://www.bioconductor.org/packages/release/bioc/manuals/iBBiG/man/iBBiG.pdf
http://www.bioconductor.org/packages/release/bioc/manuals/fabia/man/fabia.pdf
http://www.bioconductor.org/packages/release/bioc/manuals/fabia/man/fabia.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/fabia/inst/doc/fabia.pdf

Hoyer, P.O. (2004). Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine
Learning Research, 5, 1457-1469.

Kaiser, S. and Leisch, F. (2008). A toolbox for bicluster analysis in R. Tech. rep.. Department of Statis-
tics University of Munich.

Kaiser, S. (2011). Biclustering: Methods, Software and Application. Ph.D. thesis, Ludwig-Maximilians-
Universitat Munchen.

Kaiser, S., Santamaria, R., Khamiakova, T., Sill, M., Theron, R., Quintales, L. and Leisch, F. (2014). Package
‘biclust’. BiCluster Algorithms. Available: http://cran.r-project.org/web/packages/biclust/biclust.
pdf. Last accessed 21th August 2014.

Khamiakova, T. (2013). Statistical Methods for Analysis of High Throughput Experiments in Early Drug
Development. The R Package superbiclust. PhD Thesis. Hasselt University

Khamiakova, T. (2014). Package ‘superbiclust’. Generating Robust Biclusters from a Bicluster Set (En-
semble Biclustering). Available: http://cran.r-project.org/web/packages/superbiclust/superbiclust.
pdf. Last accessed 21th August 2014.

Kluger, Y., Basri, R., Chang, J.T. and Gerstein, M. (2003). Spectral biclustering of microarray data: Co-
clustering genes and conditions. Genome Research, 13, 703-716.

Lazzeroni, L. and Owen, A. (2000). Plaid models for gene expression data. Tech. rep., Standford Univer-
sity.

Madeira, S.C. and Oliveira, A.L. (2004). Biclustering Algorithm for Biological Data Analysis: A Survey.
IEEE/ACM Transactions, Computational Biology and Bioinformatics. 1(1), 24-45

Murali, T. and Kasif, S. (2003). Extracting conserved gene expression motifs from gene expression data.
In: Pacific Symposium on Biocomputing 8, 77-88.

Palmer, J., Wipf, D., Kreutz-Delgado, K. and Rao, B. (2006). Variational EM algorithms for non-Gaussian
latent variable models. Advances in Neural Information Processing Systems, 18, 1059-1066.

Pramana, S. (2011). Statistical Methods for Microarray Experiments: Analysis Dose-response studies and
Software Development in R. PhD Thesis. Uhasselt University.

Preli¢, A., Bleuler, S., Zimmermann, P., Wille, A., Biihlmann, P., Gruissem, W., Henning, L., Thiele, L.
and Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression
data. Bioinformatics, 22, 1122-1129. Available: http://view.ncbi.nlm.nih.gov/pubmed/16500941. Last
accessed 21th August 2014.

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statis-
tical Computing, Vienna, Austria. Available: http://www.R-project.org/. Last accessed 2nd September
2014.

Shi, F. Leckie, C., Maclntyre, G., Haviv, 1., Boussioutas, A. and Kowalczyk, A. (2010). A bi-ordering ap-
proach to linking gene expression with clinical annotations in gastric cancer. BMC' Informations, 11, 477.

Tanay, A., Sharan, R. and Shamir, R. (2004). Biclustering algorithms: A Survey. Available: www.cs.tau.
ac.il/~roded/bicrev.ps. Last accessed 21th August 2014.

Turner, H. Bailey, T. and Krzanowski, W. (2005). Improved biclustering of microarray data demonstrated
through systematic performance tests. Computational Statistics and Data Analysis, 48, 235-254.

46

http://cran.r-project.org/web/packages/biclust/biclust.pdf
http://cran.r-project.org/web/packages/biclust/biclust.pdf
http://cran.r-project.org/web/packages/superbiclust/superbiclust.pdf
http://cran.r-project.org/web/packages/superbiclust/superbiclust.pdf
http://view.ncbi.nlm.nih.gov/pubmed/16500941
http://www.R-project.org/
www.cs.tau.ac.il/~roded/bicrev.ps
www.cs.tau.ac.il/~roded/bicrev.ps

6 Appendix

6.1 Introduction

1.0]1.0]1.0/1.0 10|1.0]1.0J00 10)20|30]40 1.0|20]5.0]00 1.0]2.0]05]1.5
1.0]1.0]1.0/1.0 20)20)2.0|20 10)20)30)40 20|30|60|10 20|40(10|30
1.0]1.0]1.0/10 30)3.0)3.0|30 10)20)30)40 40|50|80|30 40|8.0|20|60
1.0]1.0]1.0J1.0 40]4.0]40)40 10])20]3.0)4.0 5.016.0]9.014.0 30]6.001.5]4.5
(a) Constant Bi- (b) Constant (c) Constant (d) Coherent (e) Coherent
cluster Rows Columns Values - Values -
Additive Model Multiplicative
Model

51515151 51)51)51 |51 51|52|53|54 7013]19]10
S1|S1]st st 52|52|s52|s2 S1)52|s3 |54 20 |40 |49 |35
S1|S1]St|st S3|53|S3|s3 S1|52]S3 |54 40 (20|27 |15
51515151 5415454 |54 S51|52|53 |54 S0 1520012

(63 Overall (g) Coherent (h) Coherent (i) Coherent
Coherent Evolution on Evolution on Evolution on
Evolution the Rows the Columns the Columns

Figure 37: Several Types of Biclusters

o | Fe

(a) Single Bicluster (b) Exclusive row (¢) Checkerboard) lusi () Exclusive-
and column biclus- Structure biclusters columns biclusters
ters

] —
(f Non- (2 Non- (h) Overlapping bi- (i) Arbitrarily po-
Overlapping Overlapping clusters with hierar- sitioned overlapping
biclusters with tree non-exclusive chical structure biclusters
structure biclusters

Figure 38: Underlying Bicluster Structures

47

6.2

The BiclustGUI R Package

6.2.1 biclust-package

Bootstrap <- diagnoseColRow (X=as.matrix (Bicat¥east),bicResult=Plaid,
number=1, nResamplings=1000, replace=TRUE)

Bootstrap

Output L
[898,] 0.6083114 9.502426
[599,] 1.5774350 7.570106

[1000,] 0.3291879 17.256812

SobservedFstatRow
[1] 2.880129

$observedFstatCol
[1] 31.20914

SbootstrapPvalusRow
[1] 0.02537403

SbootstrapPvalusCol
[1] 0.000993001

Figure 39: An example of bootstrap output & Histograms

R

Value

Value

[E=1 R =5

R Graphics: Device 2 (ACTIVE)

Bicluster 1
(rows= 23 ; columns=12)

=T
== N
¥

11170 7 r 7 T T T T T T TT71
247474 at 259773 at 257506 _al 247055 at 250801 at

Rows

o™

= e
o

w
i

T T T T T T T T T T T 1
diunal_04h.CEL diurnal_20h.CEL cell_cycle_aph_12h

Columns

value

R R Graphics: Device 2 (ACTIVE) EI@
row scores column scores
o -
o ’x
w
8 _
o
o
o
= z 3 N
z 2 S I
a ° a
o™
(3' o
a j b g I -
o o
—r1r 1 1 71 1 T 1 1 1711
01 2 3 4 5 05 15 25
F(A) F(B)
TR R Graphics: Device 2 (ACTIVE) [E=5Ech 5|

-2

Bicluster 1
(rows= 23 ; columns=12)

59

14 20 26 32 43 49 55 61

columns

Figure 40: An example of Parallel Coordinates Plot - Default
Type

48

Type (row & column + Compare) & Combined

R R Graphics: Device 2 (ACTIVE)

diurnal_04h CEL

1
L
Q
e
©
=]
©

c

£
=
o

diurnal_12h.CEL

diurnal_16h.CEL
ce\l_cycle_aphj-@

cell_cycle_aph_1 E
cell_cycle_aph_1 @

diurnal_20h.CEL
cell_cycle_aph_8
cell_cycle_aph_8
cell_cycle_aph_1
cell_cycle_aph_1

262883 _at
266965_at
250801 at
266222_at
258757 _at
262970_at
250366 _at
247055_at
240645_at
261772 at
259787 _at
259783_at
257506_at

250790 s _at
252965_at
260221 at
255822 at
250773 at
254746_at
254250_at
252011 at
263549_at
247474 at

Bicluster 1 (size 23x12)

R R Graphics: Device 2 (ACTIVE)

= e)

Figure 41: An example of the Heatmap - Local & Full Matrix

R R Graphics: Device 2 (ACTIVE)

BiCluster Membership Graph

1 3 5 7 9 11 13 15
Cluster

=5 HR =)

R R Graphics: Device 2 (ACTIVE)

BiCluster Membership Graph

== == BER == =e=EE
==
=
EE = BE =
== == ==
— == e e
== R ==
1 3 5 7 9 1" 13 15
Cluster

=5 HR =)

Figure 42: An example of BiclustMember Plot - Mid Checked & Mid Unchecked

49

= e

R R Graphics: Device 2 (ACTIVE)

16

o

11

[{e]®]

13

[

&7

Figure 43: An example of Biclust Bubble Plot with Mean Projection

[E=1 R =5

Cluster 2 Size: 24

IR R Graphics: Device 2 (ACTIVE)

Cluster 1 Size: 23

jﬁh%Lthﬁﬁﬁhﬁ

Plotclust

o

0

o
=1

jrerereer

«?

o
<

Uz 000E2a
g g .

i R
g ueaf g AT
@

Tueauf st LW_
U usadlyest
yg uasf yes M

7} LW_

:vwxcmm._qu:omﬂo

yg uasf oo _.rlm_u LW_

Uz uaaUl ploo

_mr

]
y |~_n_m|m_u>u.mmu &l
g yde~apdo F{o mr

ug yde w_u>u amQ m_

TITUOZ LN

130ug) ewnig = I—

T3TUZ) lewng

T30ug0 [Eewnp mr

IO UPD (LR mr
r—rr1
S0 50 G

Ug L Yde ajpAaT@0

g yde apAaT@0

Ul Yde sk @

Uz | yde ajpAaT@0

ygL yde aphsa @

g yde apha @

Upz woi"jes

g ool jes

Upg usaufi jes

Upg jood 2o wso
Ug jood 20 wso
ypg usaul ojowso
g uaalf ojowso

UpZ Si004 pio3

Figure 44: An example of the Barplots

50

R R Graphics: Device 2 (ACTIVE) EI@
2 0 2 20 2
1 1 1 1 1 1 1 1 | 1 1
A B [¢c D
7 m£
*
%
I
E 5 G H
=S Sl
-
f—
—_ *
J K L
E ¥
e - —_—
— -
—
M N 0] P
_ Y ¢
| —
= — L r—
Eiﬁ!&?ﬁﬁ T T T T 1T T 1 LI
20 2 20 2
Population mean: —Segmentwise means: ng%%sﬁr:\uster

Figure 45: An example of Bicluster Barchart

6.2.2 fabia-package
R R Graphics: Device 3 (ACTIVE) EI@ R R Graphics: Device 3 (ACTIVE) EI@
Information Content of Biclusters Information Content of Samples
o - -" _ M e i 7- B -
o . o A L1
['3] @ M nllm - M I 0o
g - = 2 SR
= n
— |
o ~
[el —
(]
o _
(S5l
o
8 4
o~
[
o™
o
S 7 2 H
o - ——JrJJ I JJtJ (=T
BC 1 BC3 BCS5 BC7 BCSY9 BC11 BC13 Sample 1 Sample 16 Sample 32 Sample 48 Sample 64

Figure 46: Ezamples of Information Content Histogram of biclusters and samples

51

[E=3 B

(32
00 Wop--- oo [} m
[sa]
@ _V\Ew\t wo
" [} o) TE-.A @O D o m
o o ooooo_.:E.._ om0 0o 2 @
k3 @
m oook----- _H_uv}wi o m
o OO0 oD o_.-._H_H_:._ [} oo
m o oo o T.-.‘_H_H_:..A [} [} m
5 T i
o o @ fb--- ---4 oo o
: - :
s =R o amo |-] %
m o 20 TE{._ c@oo o
nw 2]
@ o o oo SOTE._SRUO oo &)
m fis}
= R - o
:m o_.-:._H_u.:..Ao o o W
a
] T T T T T
5 e z a z b
o
o
=4
2 o
i ol T S
m
e [frie
o | oo 5
1o
@ 00 p------=-q | |- O @
g | oo :
m O - - - - — _H_u o m
m omb---------—-(| f--------- Jo o
@ 1 i
¢ M I 3
A i I e R
..m O OHMECO® F------ H \\\\\\\ 1o m
§ | [e E
T e i Em S R
: B N S
I Cog— e
] T T T T T
s z b 0 b z-
o
e
==

Figure 47: Examples of bozplots of Loadings & Factors

52

R R Graphics: Device 3 (ACTIVE)

245364 _at

(E=3 Eol)|
FABIA: data

419 genes, 70 samples, 13 biclusters)

R R Graphics: Device 3 (ACTIVE)
FABIA: reconstructed data
genes, 70 samples, 13 biclus

419

245364 _at

[E=S{EE)

ters)

o _
248522_at 248622_at -
261158_s_at 261158_s_at
o _
250971_at 250971_at
w0
252885_at 252885_at
264019_at 0 264019_at
263800_at 263800_at
o
250296_at 250296_at
o
251868_at 251868_at
261691_at 261691_at
w w
249197_at 249197_at
262607_at 262607_at
o
262887 _at - 262887 _at
cold_green_Bh genotox_root_6h heat_root 3.21h ABA_3h MJ_3h cold_green_Bh genotox_root_6h heat_root 3.21h ABA_3h MJ_3h
TR R Graphics: Device 3 (ACTIVE) [o)ie)m) TR R Graphics: Device 3 (ACTIVE) [o)ie)m)
FABIA: error FABIA: absolute loadings
419 les, 13 biclusters) 419 genes, 70 samples, 13 biclusters)
249364_at — — 249364_at
248822 st w 248822 st
261158_s_at 261158_s_at (=]
g -
250971_at 250971_at
o
252835_at 252835_at
©
284019_at 284019_at -
253800_at 253800_at
w
260296_at 260296_at <
251665_at 251665_at
261691_at 261691_at
=] i}
N o
249191_at 249191_at
262607_at 262607_at
o
262887_at 262887_at o

cold_green_6h

genotox_root_6h heat_root_321h

ABA_3h MJ_3h

bicluster3 biclusterd biclusterd bicluster7 biclsters

bicluster8

IR R Graphics: Device 3 (ACTIVE) [E=R(EER =)
FABIA: absolute factors
(419 genes, 70 samples, 13 biclusters)
bicluster3
biclusterS
w —
biclusters
bicluster2
~
biclusterS
bicluster10
bicluster? i
bicluster!
biclusteri1 o
biclusters
bicluster12 —
bicluster13
biclusters
o
cold_green_6h genotox_root_6h heat_root_3.21h ABA_3h MJ_3h

Figure 48: Ezamples Extract Plots

53

IR R Graphics: Device 3 (ACTIVE) =0 =R~ IR R Graphics: Device 3 (ACTIVE) =2 BN ===
o
-
o
245445 _at
263352_at
267035_at b
263200_at
260287 _at o
253619 _at
253874 _at
[Ts]
i
243181_at
252068 _at
[=]
262887 _at -
cell_cycle_aph_6h genotox_root_6h cold_roots_6h DC3000_24h MJ_3h cell_cycle_aph_6h cell_cycle_aph_16h UV.B_root_6h oxidative_root_24h

Figure 49: Example of Bicluster Plot - Full & Only Bicluster

IR R Graphics: Device 4 (ACTIVE) =R

508

BC2: 8%,

3 ol
&wnau:h.cEL
6h

BC1: 10%, 564
FABIA

Figure 50: Ezample of BiPlot

54

6.2.3

6.2.4

isa2-package

IR R Graphics: Device 2 (ACTIVE)

e
=

Scores
0.0 05

-0.5

-1.0

BC1

= r=rE=]

o

R R Graphics: Device 2 (ACTIVE)

[sIreE=]

T T
100 200

T
300

T
400

Figure 51: An example of score € module plot

iBBiG-package

IR R Graphics: Device 2 (ACTIVE)

Gene Signatures

Module Size

FMumber (Phenatypes)
o

: |||||U|||D

— NO s W D~ 0 OO
EEEEEEEEEE

Pairiise Test Score

o0
600
500
400
300
200
100

0

Phenotypes

Module Score

|I|||U|..D

— N =W D~ 0 OO
EEEEEEEEEE

Wieighted Score

MW n

-

0

Weighted Score

|||I| 11

— N s O~ 0 3OO
EEEEEEEEE;

Figure 52: An example of the general iBBiG plot

55

6.2.5 BcDiag-package

IR R Graphics: Device 2 (ACTIVE) [e ==
Residuals vs Fitted Normal Q-Q
o o © - w0,
P wwgf °°o§,%s § -
L Y 5 o
§ .17 8? g - ERR
o ° e &
°n
T T T T T e
4 3 2 1 0 2 4 0 12
Fitted values Theoretical Quantiles
Constant Leverage:
Scale-Location Residuals vs Factor Levels
o
- o o140
e ° 3" o e
s -7 o® E woglo
g e 2% %87 | g w%ﬁﬁ%& 00
4 0002 S o s o
T o B oo g 38%:0% o H ow Q& ggw o °°Q>% R S
o s 8
S o W, T e %W’o oo
o o & %
o o ° &
s’ e + 20
° T T T T) T T TTTTTT T
asﬁdb M)
4 3 2 1 0 12 15 18 21
Fitted values Factor Level Combinations

IR R Graphics: Device 2 (ACTIVE)

Resid vs Condition(ANQVA)

o=

Resid vs Genes(ANOVA)

Resid vs Conditions(Mpolish)

13679 1215 1821

Resid vs Genes(Mpolish)

. =

T T
13679 1215 1821

Figure 53: ANOVA & Residual Plots: Diagnostic Plots and ANOVA & Mpolish

R R Graphics: Device 2 (ACTNE)

200 300

400 248910_at 264989 at 256145_at 247240_at

R R Graphics: Device 2 (ACTVE)

200 400 600 60D

0

0

T T T T T T
10 20 30 40 50 60 70

Condtions

cold_green_24h

heat_root 3.3h MJ_3h

190 920

Figure 54: Profile Plots: Example of all types for gene & condition dimension

Figure 55:

IR R Graphics: Device 2 (ACTIVE) ===
Mean Median
o
& - 4
T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400
Variance MAD
o - @
. : MM“WWWNWM
o 29
o R
T T T T T S
0 100 200 300 400 0 100 200 300 400

Ezxploratory Plots:

IR R Graphics: Device 2 (ACTVEY

05 10 1.5 20 25

Median

Mean

Variance

56

Left and right button for gene dimension

6.2.6 superbiclust-package

IR R Graphics: Device 2 (ACTIVE) =R E=R =

Cluster Dendrogram

o
(:)__
© W © o © © o o~ o
- = ~ -
)]
O')__
o
~
3
©
O')__
o
[0 .
h
e
=
o
[
T [
G")__
o
©
G‘)__
o

as.dist(1-x)
hclust (%, "complete™)

Figure 56: Ezxample of a superbiclust tree (Note that this tree is only here for ezample purposes. All the biclusters
here seem to be unique.)

> superbiclust.robust.GUI (CutTree=CutTree, show.which=TRUE)

Robust Biclusters created from more than 1 bicluster:

<NL> <MNA>
Robust Bicluster: 4 =]
#BC'=s inside: 2 2

Which Biclusters Inside?
Robust BC 4 : 4 10
Robust BC 9 : 9 11

m

4 | »

Figure 57: Example of Robust BC' button with Show Inside checked

6.3 Guideline - Template Scripts
6.3.1 newmethod_script
This script can also be found in the doc subdirectory of the package.

newmethod_WINDOW <- function(){ # Change newmethod to your own method name
new.frames <- .initialize.new.frames()

grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

57

B s T s s
GENERAL INFORMATION ABOUT THE NEW METHOD/WINDOW
H# SR R R R

methodname <- "A new method"

methodfunction <- "methodfunction"
data.arg <- "d"

data.matrix <- FALSE

methodshow <- TRUE

other.arg <- ""

methodhelp <- ""

Extra Data Conversion Boxes
data.discr <- FALSE
data.bin <- FALSE

Possibility to give a seed 7
methodseed <- TRUE

COMPATIBILITY?

BcDiag
bcdiag.comp <- FALSE

SuperBiclust

superbiclust.comp <- FALSE

Hit

CLUSTERING TAB

HESH

input <- "clusterTab"

1. ADDING THE FRAMES

Add frames here

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("framel","frame2","frame3",6NA

,"frame4" ,NA) ,nrow=3,ncol=2,byrow=TRUE,grid.config=grid.config)

3. COMBING THE ROWS #i##

grid.rows <- .combine.rows(input=input,rows=c(l),title="A nice box: "
,border=TRUE, grid.rows=grid.rows,grid.config=grid.config)
grid.rows <- .combine.rows(input=input,rows=c(2,3),title="A nice box: "

,border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

L S s S s
PLOTTING & DIAGNOSTICS TAB #i###
s
input <- "plotdiagTab"

1. ADDING THE FRAMES

58

Add frames here
2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("frame5","frame6") ,nrow=1,
ncol=2,byrow=TRUE,grid.config=grid.config)

3. COMBING THE ROWS #i##

grid.rows <- .combine.rows(input=input,rows=c(l),title="Plot 1",
border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

HERHHHAFHHHHHH R FH R RS R BB FRA SRR F RS H BB H B R R HE R H T
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL CLUSTERTEMPLATE FUNCTION
B R S R S S S

cluster_template (methodname=methodname,methodfunction=methodfunction,
methodhelp=methodhelp,data.arg=data.arg,other.arg=other.arg
,methodseed=methodseed,grid.config=grid.config,grid.rows=grid.rows,
new.frames=new.frames,superbiclust.comp=superbiclust.comp,
bcdiag.comp=bcdiag.comp,data.matrix=data.matrix,data.discr=data.discr,
data.bin=data.bin,methodshow=methodshow)

6.3.2 frames_script

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:

frame.name <- "entryframel"

argument .names <- c("Argument 1","Argument 2","Argument 3")
argument.types <- c("num","num","char")

arguments <- c("argl","arg2","arg3")

initial.values <- c(1,2,"a"

title <- "A Title"

border <- FALSE

entry.width <- c("2","2","6")

Do not change this line:

new.frames <- .add.frame(input=input,type=type
,frame.name=frame.name,argument .names=argument .names
,arguments=arguments,initial.values=initial.values
,title=title,border=border,entry.width=entry.width
,argument .types=argument.types ,new.frames=new.frames)

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radioframel"

argument .names <- c("Button 1","Button 2","Button 3")
arguments <- c("buttonarg")

argument.types <- "char"

59

argument.values <- c("bi","b2","b3")
initial.values <- "b3"

title <- "Button Options"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type
,frame.name=frame.name,argument.names=argument .names
,arguments=arguments,argument.values=argument.values
,initial.values=initial.values,title=title,border=border
,new.frames=new.frames,argument. types=argument.types)

CHECK BOXES FRAME
type <- "checkboxes"

Change variables accordingly:

frame.name <- '"checkboxframel"

argument .names <- c("Check 1","Check 2","Check 3")
arguments <- c("checkargl","checkarg2","checkarg3")
initial.values <- c(0,1,1)

title <- "title"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type
,frame.name=frame.name,argument .names=argument .names
,arguments=arguments,initial.values=initial.values
,title=title,border=border,new.frames=new.frames)

VALUE SLIDER FRAME
type <- "valuesliders"

Change variables accordingly:

frame.name <- "sliderframel"

argument .names <- c("Slider 1 ","Slider 2 ","Slider 3 ")
arguments <- c("sliderargl","sliderarg2","sliderarg3")
initial.values <- c(1,5,10)

from <- c(1,1,1)

to <- ¢(5,50,500)

by <- ¢(1,10,50)

length <- ¢(50,100,150)

title <- "Title"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,
title=title,border=border,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,
initial.values=initial.values,from=from,to=to,by=by,
length=length,new.frames=new.frames)

SPIN BOX FRAME

type <- "spinboxes"

Change variables accordingly:

60

frame.name <- "spinboxframel"

argument.names <- c("Spin Box 1: ","Spin Box 2: ","Spin Box 3: ")
arguments <- c("spinargl","spingarg2","spingarg3")

initial.values <- c(5,10,20)

from <- ¢(1,5,10)

to <- ¢(10,20,30)

by <- c(1,1,1)

entry.width <- "2"

title <- "Spin Box !"

border <- TRUE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,
frame.name=frame.name,argument .names=argument.names,
arguments=arguments,initial.values=initial.values,
from=from,to=to,by=by,entry.width=entry.width,
title=title,border=border,new.frames=new.frames)

MANUAL BUTTONS FRAME
type <- "buttons"

Change variables accordingly:
frame.name <- "buttonframel"
button.name <- "Button 1"
button.function <- "buttonfunction"
button.data <- "d"

button.biclust <- "biclust"

arg.frames <- c("framel","frame2")

save <- TRUE
show <- TRUE
button.otherarg <- ""

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
type=type,button.name=button.name,
button.function=button.function,button.data=button.data,
button.biclust=button.biclust,button.otherarg=button.otherarg,
arg.frames=arg.frames,save=save, show=show,new.frames=new.frames)

6.3.3 Quick Example - Plaid

biclustplaid_WIN <- function(){

new.frames <- .initialize.new.frames()
grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

HEHHHHAHHHBHHHHAFH R B H RS H RS H RS H B H RS
GENERAL INFORMATION ABQOUT THE NEW METHOD/WINDOW
HUS A

methodname <- "Plaid"

methodfunction <- "biclust"
data.arg <- "x
data.matrix <- TRUE

61

other.arg <- " ,method=BCPlaid()"
methodhelp <- "BCPlaid"

Possibility to give a seed 7
methodseed <- TRUE

Add a discretize box?
data.discr <- FALSE

Add a binarize box?

data.bin <- FALSE

COMPATIBILITY?

BcDiag
bcdiag.comp <- TRUE

SuperBiclust
superbiclust.comp <- TRUE

Biclust only (Not for public use)
extrabiclustplot <- TRUE

LT s s s
CLUSTERING TAB
HHH R R

1. ADDING THE FRAMES

input <- "clusterTab"

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "toclusterframe"

argument .names <- c("Rows","Columns","Rows & Columns")
arguments <- c("cluster")

argument.values <- c("r","c","b")

argument.types <- "char"

initial.values <- "b"

title <- "To Cluster"

border <- FALSE

DO NOT CHANGE THIS LINE:
new.frames <- .add.frame(input=input,type=type,
frame.name=frame.name,argument .names=argument .names,
arguments=arguments,argument .values=argument.values,
initial.values=initial.values,title=title,border=border,
nevw.frames=new.frames,argument.types=argument.types)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "modelframe"

argument .names <- c("Model Formula")

argument.types <- c("num"
arguments <- c("fit.model")

62

initial.values <- c("y ~ mt+a+b")
title <- "Model"

border <- FALSE

entry.width <- c("10")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument .types=argument.types ,new.frames=new.frames)

CHECK BOXES FRAME #it##
type <- "checkboxes"

Change variables accordingly:
frame.name <- '"backgroundcheckframe"
argument .names <- c("Background Layer?")
arguments <- c("background")
initial.values <- c(1)

title <= ""

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=
frame.name,argument .names=argument .names,arguments=arguments,
initial.values=initial.values,title=title,border=border,new.frames=
new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:

frame.name <- "backgroundentryframel"

argument .names <- c("Shuffle","Back Fit","Max Layes")
argument.types <- c("num","num","num"

arguments <- c("shuffle","back.fit","max.layers")
initial.values <- ¢(3,0,20)

title <= ""

border <- FALSE

entry.width <- c("2","2" "2")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument . types=argument.types ,new.frames=new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:

frame.name <- "backgroundentryframe2"

argument.names <- c("Iteration Startup","Iteration Layer")
argument.types <- c("num","num"

arguments <- c("iter.startup","iter.layer")

initial.values <- ¢(5,10)

63

title <- ""
border <- FALSE
entry.width <- c("2","2")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument.types=argument.types ,new.frames=new.frames)

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("toclusterframe","modelframe",
"backgroundcheckframe",NA, "backgroundentryframel", "backgroundentryframe2"),
byrow=TRUE,nrow=3,ncol=2,grid.config=grid.config)

3. COMBING THE ROWS

grid.rows <- .combine.rows(input=input,rows=c(1l),title="Plaid
Specifications",border=TRUE,grid.rows=grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(2,3),title=
"Layer Specifications",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)

HEHHHHA B R
PLOTTING & DIAGNOSTICS TAB ##i##
L s s s s s

input <- "plotdiagTab"

1. ADDING THE FRAMES

Hit# Hit#
Parallel Coordinates Plot
H#it# #it#

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "pplottypeframe"

argument .names <- c("Default","Combined (rows & columns)")
arguments <- c("type2")

argument .values <- c("default","combined")

argument.types <- "char"

initial.values <- "default"

title <- "Plot Type:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names ,arguments=arguments,argument.values=

64

argument.values,initial.values=initial.values,title=title,border=border,
new.frames=new.frames,argument.types=argument.types)

CHECK BOXES FRAME #iHH#
type <- "checkboxes"

Change variables accordingly:

frame.name <- '"pplotcheckframe"

argument .names <- c("Plot Only Column","Plot Rows & Columns","Compare")
arguments <- c("plotcol","plotBoth","compare")

initial.values <- c(1,0,1)

title <- "Default Type Options:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,new.frames=new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "pplotentryframe"
argument .names <- c("Bicluster Number")
argument.types <- c("num"

arguments <- c("number")

initial.values <- c(1)

title <= ""

border <- FALSE

entry.width <- c("2")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument . types=argument.types ,new.frames=new.frames)

H#HH# MANUAL BUTTONS FRAME H#HH#
type <- "buttons"

Change variables accordingly:

frame.name <- "parallelbuttonframe"

button.name <- "Draw Plot"

button.function <- "parallelCoordinates3"

button.data <- "x"

button.biclust <- "bicResult"

button.otherarg <- ""

save <- FALSE

arg.frames <- c("pplotcheckframe","pplotentryframe","pplottypeframe")

Do not change this line:

65

new.frames <- .add.frame(input=input,frame.name=frame.name,save=save,
type=type,button.name=button.name,button.otherarg=button.otherarg,
button.function=button.function,button.data=button.data,button.biclust=
button.biclust,arg.frames=arg.frames,new.frames=new.frames)

B s T s T

#i##
#i# Heatmap Plot ##
#Hit# #it#

CHECK BOXES FRAME HitH#
type <- "checkboxes"

Change variables accordingly:
frame.name <- "heatplotcheckframe"
argument .names <- c("Local")
arguments <- c("local")
initial.values <- c(1)

title <- "

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,new.frames=new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "heatplotentryframe"
argument .names <- c("Bicluster Number")
argument.types <- c("num"

arguments <- c("number")

initial.values <- c(1)

title <= ""

border <- FALSE

entry.width <- c("2")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument . types=argument.types ,new.frames=new.frames)

H#HH# MANUAL BUTTONS FRAME ####
type <- "buttons"

Change variables accordingly:
frame.name <- "heatbuttonframe"
button.name <- "Draw Plot"
button.function <- "drawHeatmap"
button.data <- "x"
button.biclust <- "bicResult"

66

save <- FALSE
arg.frames <- c("heatplotcheckframe","heatplotentryframe")

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,type=
type,save=save,button.name=button.name,button.function=button.function,
button.data=button.data,button.biclust=button.biclust,arg.frames=
arg.frames,new.frames=new.frames)

B R

it it
#i# Biclust Member Plot #i#
###

CHECK BOXES FRAME #iHH#
type <- "checkboxes"

Change variables accordingly:
frame.name <- '"mplotcheckframe"
argument .names <- c("Mid")
arguments <- c("mid")
initial.values <- c(1)

title <- "

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,new.frames=new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "mplotentryframe"
argument .names <- c("Bicluster Label")
argument.types <- c("char")

arguments <- c("cl_label")
initial.values <- c("")

title <- "

border <- FALSE

entry.width <- c("8")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument.types=argument.types ,new.frames=new.frames)

it MANUAL BUTTONS FRAME - EXAMPLE HiHH#
type <- "buttons"

Change variables accordingly:

frame.name <- "memberbuttonframe"

button.name <- "Draw Plot"
button.function <- "biclustmember"

67

button.data <- "x"

button.biclust <- "bicResult"

save <- FALSE

arg.frames <- c("mplotcheckframe","mplotentryframe")

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,save=save,
type=type,button.name=button.name,button.function=button.function,
button.data=button.data,button.biclust=button.biclust,arg.frames=
arg.frames,new.frames=new.frames)

B s s s s s

##H# ##H#
Summary & Diagnostics Box
#H# ##H#
H#HH# MANUAL BUTTONS FRAME H#HH#

type <- "buttons"

Change variables accordingly:
frame.name <- "summarybuttonframe"
button.name <- "Summary"
button.function <- "summary"
button.data <- ""

button.biclust <- "object"
arg.frames <- c()

save <- FALSE

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,save=save,
type=type,button.name=button.name,button.function=button.function,
button.data=button.data,button.biclust=button.biclust,arg.frames=
arg.frames,new.frames=new.frames)

L s s s s s s s s s s s s

HiHH# MANUAL BUTTONS FRAME ####
type <- "buttons"

Change variables accordingly:
frame.name <- "fstatbuttonframe"
button.name <- "Obs. F Stat."
button.function <- "computeObservedFstat"
button.data <- "x"

button.biclust <- "bicResult"

arg.frames <- c("fstatentryframe")

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,type=type,
button.name=button.name,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

B s L

68

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "fstatentryframe"
argument .names <- c("Bicluster Number")
argument.types <- c("num")

arguments <- c("number")

initial.values <- c("1")

title <= ""

border <- FALSE

entry.width <- c("4")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument.types=argument.types ,new.frames=new.frames)

ENTRY FIELDS FRAME
#

type <- "entryfields"

Change variables accordingly:

frame.name <- "bootstrapentryframe"

argument .names <- c("Bicluster Number","Number Bootstrap Replicates")
argument.types <- c("num","num")

arguments <- c("number",'"nResamplings")

initial.values <- c(1,100)

title <- "Bootstrap Options:"

border <- FALSE

entry.width <- c("4","4")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width
,argument.types=argument.types ,new.frames=new.frames)

CHECK BOXES FRAME #iHH#
type <- "checkboxes"

Change variables accordingly:

frame.name <- '"bootstrapreplacementframe"
argument .names <- c("With Replacement?")
arguments <- c("replace")

initial.values <- c(1)

title <- "

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,new.frames=new.frames)

69

#H#H# MANUAL BUTTONS FRAME #H#H#
type <- "buttons"

Change variables accordingly:

frame.name <- "bootstrapbuttonframe"

button.name <- "Bootstrap"

button.function <- "diagnoseColRow"

button.data <- "x"

button.biclust <- "bicResult"

arg.frames <- c("bootstrapentryframe","bootstrapreplacementframe")

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,type=type,
button.name=button.name,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

HiHH# MANUAL BUTTONS FRAME ####
type <- "buttons"

Change variables accordingly:

frame.name <- "bootstrapvisualbuttonframe"
button.name <- "Visualize"

button.function <- "diagnosticPlot"
button.data <- ""

button.biclust <- ""

button.otherarg <- "bootstrapOutput=Bootstrap"
save <- FALSE

arg.frames <- c()

Do not change this line: (without button.otherarg)

new.frames <- .add.frame(input=input,frame.name=frame.name,save=save,
type=type,button.name=button.name,button.function=button.function,
button.data=button.data,button.biclust=button.biclust,arg.frames=
arg.frames,new.frames=new.frames,button.otherarg=button.otherarg)

2. CONFIGURING THE GRID

grid.config <- .grid.matrix(input=input,c("summarybuttonframe",
"fstatentryframe","fstatbuttonframe","bootstrapentryframe",NA,NA,
"bootstrapreplacementframe", "bootstrapbuttonframe",
"bootstrapvisualbuttonframe" ,"pplottypeframe","pplotentryframe",
"parallelbuttonframe", "pplotcheckframe" ,NA,NA, "heatplotcheckframe",
"heatplotentryframe", "heatbuttonframe", "mplotcheckframe",
"mplotentryframe","memberbuttonframe") ,byrow=TRUE,nrow=7,ncol=3,
grid.config=grid.config)

3. COMBING THE ROWS

grid.rows <- .combine.rows(input=input,rows=c(1,2,3),title=
"Summary & Diagnostics",border=TRUE,grid.rows=grid.rows,grid.config=
grid.config)

grid.rows <- .combine.rows(input=input,rows=c(4,5),title=
"Parallel Coordinate Plot",border=TRUE,grid.rows=grid.rows,grid.config=

70

grid.config)
grid.rows <- .combine.rows(input=input,rows=c(6),title="Heatmap Plot"
,border=TRUE, grid.rows=grid.rows,grid.config=grid.config)
grid.rows <- .combine.rows(input=input,rows=c(7),title="Biclustmember
Plot",border=TRUE,grid.rows=grid.rows,grid.config=grid.config)

HERHHHAFHHBHHHRRFH R AR R B H RSB F R R H B R R
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL CLUSTERTEMPLATE FUNCTION
L s s S s s s s s s s s s

cluster_template (methodname=methodname,methodfunction=methodfunction,
methodhelp=methodhelp,data.arg=data.arg,other.arg=other.arg,
methodseed=methodseed,grid.config=grid.config,grid.rows=grid.rows,
new.frames=new.frames,superbiclust.comp=superbiclust.comp,bcdiag.comp=
bcdiag.comp,data.matrix=data.matrix,data.discr=data.discr,data.bin=
data.bin,extrabiclustplot=extrabiclustplot)

6.3.4 newtool_script

This script can also be found in the doc subdirectory of the package.
newtool _WINDOW <- function(methodname){

new.frames <- .initialize.new.frames()

grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

H A S
GENERAL INFORMATION ABOUT THE NEW TOOL

HEH S R
toolname <- "A new tool"

toolhelp <- "helppage"

data.matrix <- TRUE

Do not change this line:
input <- "plotdiagTab"

R

MAKING THE WINDOW
HHHHH

ADDING FRAMES

Analogous to plotdiag tab.
CONFIGURING GRID

grid.config <- .grid.matrix(input=input,c() ,nrow=1,ncol=2,byrow=TRUE
,grid.config=grid.config)

COMBINING ROWS #i##
grid.rows <- .combine.rows(input=input,rows=c(),title="Plot 1",

71

border=TRUE, grid.rows=grid.rows,grid.config=grid.config)

HERHHHRHHH B H R RSB R R R R R
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL NEW TOOL FUNCTION
B s

newtool_template(toolname=toolname,methodname=methodname,toolhelp=toolhelp,
data.matrix=data.matrix,grid.config=grid.config,grid.rows=grid.rows,
new.frames=new.frames)

6.3.5 Quick Example - BcDiag
bcdiag WINDOW <- function(methodname){

new.frames <- .initialize.new.frames()
grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

Some extra code to determine the input type: "biclust", "fabia", "isa2"
biclust.names <- c("Bimax","CC","Plaid","Questmotif","Spectral",
"XMotifs","IBBIG")
fabia.names <- c("Fabia Laplace Prior","Fabia Post-Projection",
"Fabia Sparseness Projection","Fabia SPARSE")
isa.names <- c("ISA")

if (methodname %in% biclust.names){

extra.arg <- ",mname='biclust'"
}

if (methodname %in% fabia.names){
extra.arg <- ",mname='fabia'"

}

if (methodname %in% isa.names)q{
extra.arg <- ",mname='isa2'"

}

HEHHHHAFHH B HHHAFH R B H RS H RS H RS H R H R H R RS R RS
GENERAL INFORMATION ABOUT THE NEW TOOL
HESHH AR R R R R

toolname <- "BCDIAG"
toolhelp <- "BcDiag-package"
data.matrix <- TRUE

Do not change this line:
input <- "plotdiagTab"

ADDING FRAMES

#H#H# #H#H#
The anomedOnlybic Function
i

RADIO BUTTONS FRAME

72

type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radio_anomed"

argument .names <- c("Diagnostic Plots","Tukey Additivity Plot",
"Anova Plots","Mpolish Plots","Anova & Mpolish")

arguments <- c("fit")

argument.values <- c("aplot","mplot","anovbplot","mpolishbplot",
"boxplot")

argument.types <- "char"

initial.values <- "boxplot"

title <- "Plot Type:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=border
,new.frames=new.frames,argument.types=argument.types)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:
frame.name <- "entry_number"

argument .names <- c("Bicluster Number")
argument.types <- c("num")

arguments <- c("bnum")

initial.values <- c(1)

title <= ""

border <- FALSE

entry.width <- c("3")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=
frame.name,argument .names=argument .names,arguments=arguments,
initial.values=initial.values,title=title,border=border,
entry.width=entry.width,argument.types=argument.types |,
new.frames=new.frames)

#it## MANUAL BUTTONS FRAME #it##
type <- "buttons"

Change variables accordingly:

frame.name <- "button_anomed"

button.name <- "Draw Plot"

button.function <- "anomedOnlybic"
button.data <- "dset"

button.biclust <- "bres"

button.otherarg <- extra.arg

save <- FALSE

arg.frames <- c("radio_anomed","entry_number")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=

73

button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

#iH# HHH#HH
#it EXPLORATORY PLOTS (biclustered & Clustered Data) ##
Hit# #Hit##

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radiol_explore"

argument .names <- c("Mean","Median","Variance","Median Absolute
Deviation","Quantile","A1l1l")

arguments <- c("pfor")

argument .values <- c("mean","median","variance","mad","quant","all")

argument .types <- "char"

initial.values <- "mean"

title <- "Plot for:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=border
,new.frames=new.frames,argument.types=argument.types)

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radio2_explore"

argument .names <- c("Genes","Conditions")
arguments <- c("gby")

argument.values <- c("genes","conditions")
argument.types <- "char"

initial.values <- "genes"

title <- "Dimension:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=
border ,new.frames=new.frames,argument.types=argument.types)

H#HH# MANUAL BUTTONS FRAME H#HH#
type <- "buttons"

Change variables accordingly:
frame.name <- "button_explore"
button.name <- "Bicl. & Clust."
button.function <- "exploreBic"
button.data <- "dset"
button.biclust <- '"bres"

74

button.otherarg <- extra.arg
save <- FALSE
arg.frames <- c("radiol_explore",'"radio2_explore","entry_number")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,save=
save,type=type,button.name=button.name,button.otherarg=button.otherarg,
button.function=button.function,button.data=button.data,button.biclust=
button.biclust,arg.frames=arg.frames,new.frames=new.frames)

#H#H# MANUAL BUTTONS FRAME #H#H#
type <- "buttons"

Change variables accordingly:

frame.name <- "button2_explore"

button.name <- "Only Biclust."

button.function <- "exploreOnlybic"

button.data <- "dset"

button.biclust <- "bres"

button.otherarg <- extra.arg

save <- FALSE

arg.frames <- c("radiol_explore","radio2_explore","entry_number")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

HiH# HiH#
#it PROFILE PLOTS #i#
#Hit# #it#

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "radiol_profile"

argument .names <- c("All","Lines","Boxplot","Histogram","3D")
arguments <- c("bplot")

argument.values <- c("all","lines","boxplot","histogram","threeD")
argument .types <- "char"

initial.values <- "all"

title <- "Plot Type:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=border
,new.frames=new.frames,argument.types=argument.types)

RADIO BUTTONS FRAME

type <- "radiobuttons"

Change variables accordingly:

(0]

frame.name <- "radio2_profile"

argument .names <- c("Genes","Conditions")
arguments <- c("gby")

argument.values <- c("genes","conditions")
argument.types <- "char"

initial.values <- '"genes"

title <- "Dimension:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name
,argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=
border,new.frames=new.frames,argument.types=argument.types)

VALUE SLIDER FRAME - EXAMPLE ##HH
Only for numerical values
type <- "valuesliders"

Change variables accordingly:
frame.name <- "slider_profile"
argument .names <- c("Theta: ","Phi: ")
arguments <- c("teta","ph")
initial.values <- c(120,30)
from <- c(-180,-180)

to <- c(180,180)

by <- ¢(10,10)

length <- c(125,125)

title <- "3D Rotation:"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,title=title,
border=border,frame.name=frame.name,argument .names=argument .names,
arguments=arguments,initial.values=initial.values,from=from,to=to,
by=by,length=length,new.frames=new.frames)

#H#H# MANUAL BUTTONS FRAME #H#H#
type <- "buttons"

Change variables accordingly:

frame.name <- "button_profile"

button.name <- "Draw Plot"

button.function <- "profileBic"

button.data <- "dset"

button.biclust <- "bres"

button.otherarg <- extra.arg

save <- FALSE

arg.frames <- c("radiol_profile","radio2_profile","entry_number",
"slider_profile")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=

76

button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

H#HH# MANUAL BUTTONS FRAME HHH#
type <- "buttons"

Change variables accordingly:
frame.name <- "button_summaryoutput"
button.name <- "Summary"
button.function <- "bcdiagwrite_ WINDOW"
button.data <- ""

button.biclust <- ""

temp <- paste("methodname='",methodname,"'",sep="")
button.otherarg <- temp

save <- FALSE

show <- FALSE

arg.frames <- c()

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
show=show,save=save,type=type,button.name=button.name,
button.otherarg=button.otherarg,button.function=button.function,
button.data=button.data,button.biclust=button.biclust,arg.frames=
arg.frames,new.frames=new.frames)

CONFIGURING GRID

grid.config <- .grid.matrix(input=input,c("entry_number",
"button_summaryoutput",NA,"radio_anomed","button_anomed",NA,
"radiol_explore","radio2_explore",NA,"button_explore","button2_explore"
,NA,"radiol_profile","radio2_profile","slider_profile","button_profile"
,NA,NA) ,byrow=TRUE,nrow=6,ncol=3,grid.config=grid.config)

COMBINING ROWS

grid.rows <- .combine.rows(input=input,rows=c(1l),title=
"Plotting Cluster Number & Summary Output",border=TRUE,grid.rows=
grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(2),title=
"ANOVA & Median Polish Residual Plots",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(3,4),title=
"Exploratory Plots for Biclustered & Clustered data",border=TRUE,
grid.rows=grid.rows,grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(5,6),title=
"Profile Plots for Biclustered & Clustered data",border=TRUE,
grid.rows=grid.rows,grid.config=grid.config)

B g
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL NEW TOOL FUNCTION
HHBHHHHHHHHH R R R R R

newtool_template(toolname=toolname,methodname=methodname,toolhelp=

toolhelp,data.matrix=data.matrix,grid.config=grid.config,grid.rows=
grid.rows,new.frames=new.frames)

7

6.3.6 Extra Example - Superbiclust

superbiclust_WINDOW <- function(methodname){

new.frames <- .initialize.new.frames()
grid.config <- .initialize.grid.config()
grid.rows <- .initialize.grid.rows()

method_result <- gsub(" ","" methodname,fixed=TRUE)
method_result <- gsub("-","" ,method_result,fixed=TRUE)

biclust.names <- c("Bimax","CC","Plaid","Questmotif","Spectral",
"XMotifs","IBBIG")

fabia.names <- c("Fabia Laplace Prior","Fabia Post-Projection",
"Fabia Sparseness Projection","Fabia SPARSE")

isa.names <- c("ISA")

if (methodname %in’% biclust.names){

#extra.arg <- paste("x=",method_result,sep="")

extra.arg <- paste(",method_result='",method_result,"'",sep="")

#isa2 <- FALSE

biclust.combine <- TRUE

make.save.button <- TRUE

save.type <- "biclust"

}

if (methodname %in}% fabia.names){

#extra.arg <- paste("x=",method_result,sep="")

extra.arg <- paste(",method_result='",method_result,"'",sep="")

#isa2 <- FALSE

biclust.combine <- FALSE

make.save.button <- FALSE

save.type <- "fabia"

}

if (methodname %in’ isa.names){

#extra.arg <- paste("x=isa.biclust",method_result,")",sep="")

extra.arg <- paste(",method_result='",method_result,"', isa2=TRUE"
,sep="")

#isa2 <- TRUE

biclust.combine <- FALSE

make.save.button <- TRUE

save.type <- "isa"

}

S s s g e g
GENERAL INFORMATION ABOUT THE NEW TOOL #i#

HHHH R
toolname <- "SuperBiclust"

toolhelp <- "superbiclust"

data.matrix <- TRUE

Do not change this line:
input <- "plotdiagTab"

H#HHHAHHHHH R R
MAKING THE WINDOW

78

HHHHHAHHHHH R R

ADDING FRAMES ##i##

#iH# H#H##
EXTRA DATA INPUT
HitH## HitH##

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:

frame.name <- "biclustcombine"

argument .names <- c("")

argument.types <- c("num")

arguments <- c("extra.biclust")

initial.values <- c("NULL")

title <- "Vector of Biclust Objects (Example: c('biclust2','biclust3'))"
border <- FALSE

entry.width <- c("50")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=
frame.name,argument .names=argument .names,arguments=arguments,
initial.values=initial.values,title=title,border=border,entry.width=
entry.width,argument.types=argument.types ,new.frames=new.frames)

#HiH# H#H#HH
SUPERBICLUST CONFIGURATION
Hit# #Hit##

RADIO BUTTONS FRAME
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "indexradio"

argument .names <- c("Jaccard","Sorensen","Ochiai","Kulczynski",
"Sensitivity","Specificity")

arguments <- c("index")

argument.values <- c("jaccard","sorensen","ochiai","kulczynski",
"sensitivity","specificity")

argument.types <- "char"

initial.values <- "jaccard"

title <- "Similarity?"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=border
,new.frames=new.frames,argument.types=argument.types)

RADIO BUTTONS FRAME

type <- "radiobuttons"

79

Change variables accordingly:

frame.name <- "typeradio"

argument .names <- c("Rows","Columns","Both")
arguments <- c("type")

argument.values <- c("rows","cols","both")
argument.types <- "char"

initial.values <- "both"

title <- "Type?"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=
border ,new.frames=new.frames,argument.types=argument.types)

i MANUAL BUTTONS FRAME i
type <- "buttons"

Change variables accordingly:
frame.name <- "superbiclust"
button.name <- "SuperBiclust"
button.function <- "superbiclust.GUI"
button.data <- ""

button.biclust <- "x"
button.otherarg <- extra.arg

save <- FALSE

show <- FALSE

if (biclust.combine==TRUE){

arg.frames <- c("indexradio","typeradio","biclustcombine")
}

elseq{

arg.frames <- c("indexradio","typeradio")

}

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=
show,save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

HH#H## HH#H#H#
DENDOGRAM
#HiH# HHH##
#H### MANUAL BUTTONS FRAME #H###

type <- "buttons"

Change variables accordingly:
frame.name <- "drawtree"

button.name <- "Draw Tree"
button.function <- "plot"

button.data <- ""

button.biclust <- ""

button.otherarg <- "x=superbiclust.tree"

80

save <- FALSE
show <- TRUE
arg.frames <- c()

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=show,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=button.data,
button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames)

ENTRY FIELDS FRAME
type <- "entryfields"

Change variables accordingly:

frame.name <- "cutentry"

argument .names <- c("Number of Biclusters","Height")
argument.types <- c("num","num"

arguments <- c("k","h")

initial.values <- c("NULL","NULL")

title <- "Where to cut tree? (number overrides height)"
border <- FALSE

entry.width <- c("6","6")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument .types=argument.types ,new.frames=new.frames)

i MANUAL BUTTONS FRAME i
type <- "buttons"

Change variables accordingly:

frame.name <- "cutree"

button.name <- "Cut Tree"

button.function <- "cutree"

button.data <- ""

button.biclust <- ""

button.otherarg <- "tree=superbiclust.tree"
save <- TRUE

show <- TRUE

arg.frames <- c("cutentry")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=show,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=button.data,
button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames)

#Hit## #it##
Plotting Robust Biclusters
HiH# H##

CHECK BOXES FRAME HHH#H

81

type <- "checkboxes"

Change variables accordingly:

frame.name <- '"showrobust"

argument .names <- c("Show Inside Robust BC?")
arguments <- c("show.which")

initial.values <- c(0)

title <= ""

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,new.frames=new.frames)

#H#H# MANUAL BUTTONS FRAME #H#H#
type <- "buttons"

Change variables accordingly:

frame.name <- "robustbutton"

button.name <- "Robust BC"

button.function <- "superbiclust.robust.GUI"
button.data <- ""

button.biclust <- ""

button.otherarg <- "CutTree=CutTree"

save <- FALSE

show <- TRUE

arg.frames <- c("showrobust")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,
show=show,save=save,type=type,button.name=button.name,button.otherarg
=button.otherarg,button.function=button.function,button.data=button.data,
button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames)

RADIO BUTTONS FRAME —
type <- "radiobuttons"

Change variables accordingly:

frame.name <- "plottyperadio"

argument .names <- c("Within Biclusters","All Samples")
arguments <- c("type")

argument.values <- c("within","all")

argument.types <- "char"

initial.values <- "within"

title <- "Type?"

border <- FALSE

DO NOT CHANGE THIS LINE:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,argument.values=
argument.values,initial.values=initial.values,title=title,border=border,
new.frames=new.frames,argument.types=argument.types)

ENTRY FIELDS FRAME

82

type <- "entryfields"

Change variables accordingly:
frame.name <- "whichrobust"
argument .names <- c("Number")
argument.types <- c("num"
arguments <- c("which.robust")
initial.values <- c("")

title <- "Which Robust BC?"
border <- FALSE

entry.width <- c("4")

Do not change this line:

new.frames <- .add.frame(input=input,type=type,frame.name=frame.name,
argument .names=argument .names,arguments=arguments,initial.values=
initial.values,title=title,border=border,entry.width=entry.width,
argument . types=argument.types ,new.frames=new.frames)

H#HH# MANUAL BUTTONS FRAME H#H#H#
type <- "buttons"

Change variables accordingly:

frame.name <- "superplot"

button.name <- "Draw Plot"

button.function <- "plotSuper.GUI"
button.data <- ""

button.biclust <- ""

button.otherarg <- "CutTree=CutTree"

save <- FALSE

show <- FALSE

arg.frames <- c("plottyperadio","whichrobust")

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=show,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=button.data,
button.biclust=button.biclust,arg.frames=arg.frames,new.frames=new.frames)

#it# H#itH##
SAVE BUTTON
#i## HHH##

ONLY FOR BICLUST

HHH## MANUAL BUTTONS FRAME HHH##
#

type <- "buttons"

Change variables accordingly:

frame.name <- "savebutton"

button.name <- "Save"

button.function <- "biclust.robust.fuse"

button.data <- ""

button.biclust <- ""

button.otherarg <- paste("CutTree=CutTree",",method_result='",
method_result,"'",",type="'",save.type,"'",sep="")

save <- FALSE

83

show <- TRUE
arg.frames <- c()

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=show,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

#it## MANUAL BUTTONS FRAME #it##
type <- "buttons"

Change variables accordingly:

frame.name <- "resetbutton"

button.name <- "Reset"

button.function <- "robust.reset"

button.data <- ""

button.biclust <- ""

button.otherarg <- paste("method_result='",method_result,"'",sep="")
save <- FALSE

show <- FALSE

arg.frames <- c()

Do not change this line:

new.frames <- .add.frame(input=input,frame.name=frame.name,show=show,
save=save,type=type,button.name=button.name,button.otherarg=
button.otherarg,button.function=button.function,button.data=
button.data,button.biclust=button.biclust,arg.frames=arg.frames,
new.frames=new.frames)

CONFIGURING GRID

if (biclust.combine==TRUE){

if (make.save.button==TRUE) {

grid.config <- .grid.matrix(input=input,c("biclustcombine",
NA,NA,"indexradio","typeradio", "superbiclust","drawtree",NA,NA,
"cutentry","cutree",NA, "showrobust","robustbutton",NA, "plottyperadio",
"whichrobust","superplot","savebutton","resetbutton",NA) ,byrow=TRUE
,arow=7,ncol=3,grid.config=grid.config)

}

else{

grid.config <- .grid.matrix(input=input,c("biclustcombine",NA
,NA,"indexradio","typeradio", "superbiclust","drawtree",NA,NA,"cutentry"
,"cutree",NA, "showrobust","robustbutton",NA, "plottyperadio",
"whichrobust","superplot") ,byrow=TRUE,nrow=6,ncol=3,grid.config=grid.config)

}

}

else{

if (make.save.button==TRUE){

grid.config <- .grid.matrix(input=input,c("indexradio",
"typeradio","superbiclust","drawtree",NA,NA,"cutentry","cutree",NA,
"showrobust","robustbutton",NA, "plottyperadio","whichrobust","superplot",

"savebutton","resetbutton",NA) ,byrow=TRUE,nrow=6,ncol=3,

84

grid.config=grid.config)

}

elseq{

grid.config <- .grid.matrix(input=input,c("indexradio",
"typeradio","superbiclust","drawtree",NA,NA,"cutentry","cutree",NA,
"showrobust", "robustbutton" ,NA, "plottyperadio","whichrobust","superplot")

,byrow=TRUE,,nrow=5,ncol=3,grid.config=grid.config)

COMBINING ROWS #i##
if (biclust.combine==TRUE){

grid.rows <- .combine.rows(input=input,rows=c(1),title=
"Extra Biclust Data Input",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)
grid.rows <- .combine.rows(input=input,rows=c(2),
title="Superbiclust Configuration",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)
grid.rows <- .combine.rows(input=input,rows=c(3,4),
title="Dendogram",border=TRUE,grid.rows=grid.rows,grid.config=grid.config)
grid.rows <- .combine.rows(input=input,rows=c(5,6),title=
"Robust Bicluster Gene Profiles",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)
if (make.save.button==TRUE){
grid.rows <- .combine.rows(input=input,rows=c(7),
title="Save the Robust Biclusters (Biclust Only)",border=TRUE,
grid.rows=grid.rows,grid.config=grid.config)

}

¥

elseq{

grid.rows <- .combine.rows(input=input,rows=c(1),
title="Superbiclust Configuration",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(2,3),
title="Superbiclust Configuration",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)

grid.rows <- .combine.rows(input=input,rows=c(4,5),
title="Robust Bicluster Gene Profiles",border=TRUE,grid.rows=grid.rows,
grid.config=grid.config)

if (make.save.button==TRUE){

grid.rows <- .combine.rows(input=input,rows=c(6),
title="Save the Robust Biclusters (Biclust Only)",border=TRUE,
grid.rows=grid.rows,grid.config=grid.config)

HEHHHHAFHHBHHHBHFHHAFH BB HHR SR BB H RS H RS H B H AR RS
USE ALL THE ARGUMENTS ABOUT IN THE GENERAL NEW TOOL FUNCTION
HESHHHR R B R R R

newtool_template(toolname=toolname,methodname=methodname,
toolhelp=toolhelp,data.matrix=data.matrix,grid.config=grid.config,

85

grid.rows=grid.rows,new.frames=new.frames)

36

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Software development for biclustering methods: The biclust GUI R package

Richting: Master of Statistics-Bioinformatics
Jaar: 2014

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

De Troyer, Ewoud

Datum: 10/09/2014

