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Abstract

Discovering the exact activities of a compound is important in drug discovery. The compound may or may
not have the desired effects and indeed, if a compound reacts to an off-target and this is not seen, severe
side effects can be the result. A single source of information is limited by its specific point of view. The
integration of multiple data sources can offer more insight into the mechanism of action and help to shine
a light on the global picture of the working of compounds. Several integrative data clustering techniques
were performed on two data sets which were accompanied by two data sources each. By comparing the
clustering on the separate sources with the integrative analyses, the influence of each could be investigated.
A best integrative method is not declared. Rather interest lies in clusters that are found to be stable over
the different methods. These compounds are indicated to be similar on different aspects of the underlying
biology. It can than be hypothesized that the data sources are related for those compounds. If compounds
do not show a clear resemblance to one or possibly multiple groups, they can be clustered differently for each
method. It was seen that the differential expression of the cluster is greatly influenced by the compounds

joined to them.
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1 Introduction

Discovering the exact activities of a compound is important in drug discovery. The compound may or may
not have the desired effects and indeed, if a compound reacts to an off-target and this is not seen, severe side
effects can be the result. It was only recently discovered that a drug for arthritis also cures a rare condition
causing baldness. This only proves that predicting the exact behavior remains a challenge. Therefore, it is
encouraged to rely on not one but several sources of information as a single data source is limited by its
specific point of view. The integration of multiple data sources can offer more insight into the mechanism

of action and help to shine a light on the global picture of the working of compounds.

If data from multiple sources are available, integrative data methods are necessary to analyze these simul-
taneously. The methods used in this project are several adaptations of a clustering procedure. Clustering is,
in its essence, a technique to find groups of objects that with a high similarity between each other among all
available objects. Many methods and algorithms are already established, differing in the applied similarity
measures between the objects, the measuring of distances between groups of objects and the structure of
joining objects together. Often clustering is performed on only one data source. The aim is now to focus
on two data modalities and combine their information. It is interesting to look for compounds that always
appear together and whose grouping is thus robust against the used method. This is an indication that those
compounds show similarities on both data sources and thus are similar to each other on several aspects. It
can than be suspected that the information on those compounds is related. A comparison with clustering

on the single sources shows which data source had the upper hand in the grouping.

The used data sets are the MCFT7 cell line (breast cancer) of the Cmap data and a company-provided
data set referred to as Inhousel. Two data modalities are given by each data set. The challenge is now to

exploit all the provided information by several clustering techniques and compare the results.

In section two the data is introduced and the methods are presented in section three. Technical details
are given if these are in order. Section four contains the results of the performed techniques and a compari-
son is made between them for each data set. Since for this project many functions were developed, section
five provides basic details of the used software. The functions were bundled into the package IntClust of
which the help files are provided in the Appendix. A discussion is held in section six and section seven

provides a conclusion.






2 Data

The mechanism of a compound is related to its structure and bio-activity. Information can be given in the
form of fingerprints, target predictions or bio-assays. Fingerprint data indicates whether or not a special
structure is present in the molecules of the compounds. The absence or presence of one of these fingerprints
can alter the behavior. Targets are predicted with the help of a binary target prediction scoring algorithm
and are recorded in the target prediction data source. During the development, a goal to which the compound
should react to is set but whether or not it will actually hit this target will not be seen until experiments are
conducted. Frequently, it is the case that a compound will hit multiple targets. Bioassay scores measure the
biological activity of drug and thereby its strength can be valued. Often this is determined by comparing

the newly developed drug to a standard substance.

For this project, two data sets were provided: the MCF7 and Inhousel data sets. MCF7 is a connectiv-
ity map (Cmap) data set concerning a breast cancer cell line. Cmap data is publicly available form the
Connectivity Map server and provides gene expression data for 2434 genes. The MCF7 cell line contains
56 compounds and information on 250 fingerprints and 477 predicted targets of those compounds. Inhouse
data 1 involves 1056 genes and 94 compounds. Further, a fingerprint matrix with 324 fingerprints and a
bio-assay activity matrix giving information of 13 bio-assay measuring points were provided. The names of

the genes and compounds of the Inhousel data are masked.

3 Methodology

3.1 Agglomerative Hierarchical Clustering

Clustering algorithms are unsupervised data mining techniques and aim to find subgroups of objects with a
high similarity among each other. The clusters can be formed by different methods but all rely on a measure
of distance or dissimilarity between the objects. The used technique here is hierarchical clustering. In this
procedure, the clusters are arranged into a natural hierarchy. At the lowest level, each object has its own
cluster and at each higher level, the two clusters closest in terms of the used intergroup dissimilarity, are
joined together. At the highest level, all objects form one cluster. The advantages of hierarchical clustering is
that no prespecified number of clusters or starting points are necessary. It is only based on the dissimilarity
between the objects. Hierarchical clustering is the clustering procedure that is performed in each of the

methods below. The resulting clustering can be visualized with a dendrogram.



3.1.1 Dissimilarity Matrices for Binary Data

The method starts with the computation of the dissimilarity matrix between the objects. The fingerprint
and target prediction data matrices are binary matrices. It was chosen to work with the tanimoto coefficient

as a measure for the dissimilarity for these data matrices. The tanimoto coefficient is formulated as follows:

N¢

TC =
Njs+ N — N¢

in which A is one object and B is another object. The number N4 represents the number of features
(fingerprints or targets) for object A and Np is this number for object B. The amount of shared features is
Ne¢. As explained in the paper by Li et al. (2011): the higher the Tanimoto coefficient, the more features are
shared between the two objects and the more alike they are. Since clustering is based on dissimilarity, the
resulting coefficients were first subtracted from 1 in order to work with dissimilarities. In literature, many
different definitions of this coefficient exist. Therefore, these distances were computed with a self made
function to make sure above definition was used. Since the bio-assay scores are of a continuous nature, the

chosen distance there was the euclidean distance.

3.1.2 The Ward link

The dissimilarity matrix is the input for the hierarchical clustering method. It was chosen to work with the
Ward link in the clustering process as a measure for the between group dissimilarity. The method of Ward
is based on minimizing the total within variance of the clusters. At each step in the iteration, the sum of
squared deviations from each object in the cluster to the mean of the cluster is calculated, referred to as

SSE). The total sum of squares is then the sum of the SSE}’s:

K
SSE =Y SSEj
k=1

with K the total number of clusters. Then the merging of every pair of clusters is considered and the two
whose joining results in the smallest increase in the SSE are effectively joined. Initially, all SSE are zero
and in the end only one group remains. The initial cluster distances in Ward’s minimum variance method

are the squared euclidean distances between points.

3.1.3 The gap statistic

Since the aim is comparing the results of the methods and to observe how the clusters are influenced, it
was decided to cut the dendrogram of each method into a fixed number of clusters. This way, it can be

studied how differently the objects are grouped together. Although the optimal number of clusters is a



rather subjective choice and any reasonable number would be appropriate, the number was based on the
gap statistic. The gap statistic represents the difference between the within cluster dissimilarity that is truly
observed from the data for a specific number of clusters k and the one that is obtained under the assumption
that the data is uniformly distributed (no clustering). The optimal number of clusters is the k that causes

the largest gap between these values. Tibshirani proposed to take the first k such that:

f(k) > f(/{? + 1) — Sk+1

with sgy1 the standard deviation for the gap statistic for £ + 1 clusters. It was chosen to take a suitable
(average or highest) k that was determined with the rule of Tibshirani for the original clustering on only

one source of information to continue the project with in the integrative analyses.

Next, all clustering methods applied on the data sets are described.

3.2 Clustering on a Single Source

Dissimilarity matrices were computed from the provided data matrices and hierarchical clustering was
performed on each of these separately. The results are visualized with a dendrogram. Two dendrograms
are thus produced for each data set, each based on a single (different) source of information. For the MCF7
data, the clusterings are based on fingerprints and target predictions while for the Inhousel data, they were
based on fingerprints and bio-assays scores. The results are later compared to those of the methods in which

information from the data sources is combined.

3.3 Multi-Source Clustering
3.3.1 Aggregated Data Clustering

If the data sources are of the same type, these can be combined into one larger data matrix. For the MCF7
data set this is possible since the two provided data sources are binary. Then this technique, referred to as
aggregated data clustering (ADC), proceeds with hierarchical clustering on this single (larger) data matrix.
Clustering is thus performed on both data sources simultaneously after a simple combination of the data

which results in having access to more variables at a time.

3.3.2 Aggregated Data Ensemble Clustering

Aggregated data ensemble clustering (ADEC) is described in Fodeh et al. (2013). This technique and adap-

tations of it were performed on the provided data sets. The original method, version a, is described next,



followed by a description of the differences with the two adaptations, versions b and c. It was decided to
work with different interpretations of the same basic idea to see what the influence would be of the changed

parameters. The method can only be performed if the available data matrices are of the same type.

ADEC starts with the merging of the data matrices into one larger data matrix. Then, ensemble clus-
tering is performed on the fused data. This comes down to repeatedly applying hierarchical clustering and

consist of the following steps. Call m the number of features of the large data matrix A.

1. In every iteration, a random sample of features r of A is taken and form matrix A’ The number of

features is randomly set between % and m — 1 each time.

2. Hierarchical clustering is performed on A’ The dendrogram is cut into a specific number of clusters k.

3. The incidence matrix C' is computed. This binary matrix has as rows and columns the objects of the

data set. A value of one indicates that these objects belong to the same cluster.

4. The co-association matrix S is iteratively computed as

St — g ¢

and indicates the number of times a pair of objects belong to the same cluster.
5. The steps in 1-4 are repeated ¢ times.

6. Finally, hierarchical clustering is performed on the resulting co-association matrix .S which yields the

result of the ensemble clustering.

The procedure is visualized in Figure 21 in the Appendix and is, apart from fusion of data matrices, the
same as performing ensemble clustering on a single data source. The method is said to be effective in the
improvement of robustness and stability since it is capable of combining several clustering results into one
single solution. Many methods and variations exists to this theme already with in this project version a

described above.

In version b, all features will be used in every iteration. However, variation is inserted by not splitting
the dendrogram a single time into one specific number but multiple times and for a range of values for k.
The last version, version c, is a combination of version a and b. It takes a new random number of samples
at every iteration and cuts the dendrogram several times for a range of values for k. For version a and c,

the option is available to fix the number of features to sample in each iteration.



3.3.3 Weighting on Membership

The “weighting on membership” (WonM) method has similarities with version b of ADEC. Hierarchical
clustering is performed on each data source separately. With k the number of clusters, the resulting dendro-
grams are cut into clusters for a range of values for k. Each time, an incidence matrix is put up. This is a
matrix with as rows and columns the objects of the data set. Its values are zero and one with one indicating
that a pair of object resides in the same cluster. The incidence matrices are first summed over all values of
k per data source and then these of the different data sources are added as well. On the resulting consensus
matrix, hierarchical clustering is performed once again to obtain the final clustering taking into account

information of all data sources.

3.3.4 Complementary Ensemble Clustering

Complementary ensemble clustering is described in Fodeh et al. (2013) and shows similarities with ADEC.
The main difference is the first step. Instead of merging the data matrices, ensemble clustering is performed
on each data matrix separately. The technique is presented in Figure 22. As for the ADEC method, three
versions were implemented. Version a is explained below. Suppose A; with i = 1, 2 refers to the corresponding

data matrix, k is the number of clusters and m; is the total number of features.
e For each data source A;:

1. In every iteration, a random sample of features r of A; is taken and form the matrix A;’. The

number of features is randomly set between 5t and m; — 1 each time.

2. Hierarchical clustering is performed on A;. The dendrogram is cut into a specific number of

clusters k.

3. The incidence matrix C' is computed. This binary matrix has as rows and columns the objects of

the data set. A value of one indicates that these objects belong to the same cluster.

4. The co-association matrix S; is iteratively computed as

S = g0 4 ¢

7

and indicates the number of times a pair of objects belong to the same cluster.

5. The steps in 1-4 are repeated ¢ times.

e The co-association matrices S; and S are linearly combined into the final co-association matrix S.



For a weight «, S is determined as:

S=a-S1+(1—-a)-S.

e Finally, hierarchical clustering is performed on the resulting co-association matrix S which yields the

result of the ensemble clustering.

Version b of CEC uses all features instead of a random sample but cuts the dendrogram multiple times in
a varying number of clusters just as version b of ADEC. Version c¢ is also here a combination of versions
a and b in which in each iteration a random sample of features is taken and for each clustering result the
dendrogram is split several times into a different number of clusters. For version a and c, the option is
available to fix the number of features to sample in each iteration. An extra parameter of choice in each
version is the weight a to be given to the co-association matrix. It is a challenge to determine the weight
that provides the optimal clustering. One option is to give the higher weight to the ensemble clustering of
the single data sources with the least distortion. Another is to try out several values of o and choose the

value that results in the better clustering.

3.3.5 Weighted Clustering

In weighted clustering, a weighted dissimilarity matrix is computed combining the available sources. Suppose
that W7 and W5 are the dissimilarity matrices of the two data sources. The weighted dissimilarity matrix

W is formed as:

W:5'W1+(1—5)'W2

where ¢ is the weight. It was decided to let § vary from one to zero. Hierarchical clustering is then performed
on the weighted dissimilarity matrix. For the weight one and zero, the clustering is based on a single source
of information. It is investigated how the original clustering evolves when the weight changes and what the

influence is of the addition of extra information on the objects.

3.3.6 Similarity Network Fusion

Similarity network fusion (SNF) was recently introduced by Wang et al. (2014). The technique basically
consists of two steps and results in a sharing of information over all available data sources. The ideas behind

the steps are as follows:

1. The initial step. A similarity network is set up for each data matrix by the means of similarity measure.

This results in a matrix with a similarity value for each pair of objects and can be seen as a distance



matrix. The connection to a network is made when the matrix is visualized as weighted graph with

the objects as nodes and the pairwise similarities as weights on the edges.

2. The network-fusion step. Each network is iteratively updated with information of the other network

which results in more alike networks every time. This eventually converges to a single network.

The result of the network-fusion step is a network in which weak similarities are smoothed out, reducing
noise, and strong similarities are highlighted. Figure 23 in the Appendix is the figure depicted in the paper

by Wang et al. (2014) and shows the steps of SNF clearly. A more detailed outline follows.

Consider the objects x; and z;. Suppose that the data is continuous in nature and the euclidean distance
between x; and z; is measured by p(z;,x;). The distances are scaled exponentially by the means of the

kernel of the standard normal distribution:

/’L : €Z7j

W (i, j) = exp <—p2(”“’“ xﬂ) .

The parameter u is a hyperparameter and according to Wang recommended to be in the interval [0.3;0.8].
Parameter ¢; ; is added to eliminate the scaling problem and computed as:
p(xi, Ni) + p(xj, Nj) + p(@i, )

Ei,j = .

3

The first and second element refer to the mean value of the distances between x; (z;), and each of the
neighbours N; (IN;). A question to be resolved is how many neighbours (k) to consider in the vicinity of the
points. It is advised by Wang et al. to determine the number of neighbours by dividing the total number
of objects by the number of clusters. If the number of clusters is unknown or not set to a specific value,
the total should be divided by 10. It is reported that the method is not influenced by the choice of this
parameter. When the scaled similarity values are computed, these are stored in a similarity matrix W. As
mentioned before, a similarity matrix of samples can be looked upon as a graph (network) G = (V, F) with
V representing the objects as vertices and E the weighted edges. The weights are the similarity values. This

is done for each data source and concludes the initial step.

In order to fuse the networks together, two more matrices are set up. Matrix P (status matrix) is a normalized

version of the similarity matrix W and its values are obtained as:

W (i) i
: Vit #d

P(i,j) = 22 ki W(EK)
3 Jif j =i



The similarity of each object to all other objects is stored in P and thus P carries the full information. Since
the goal is to update the network of one source with information of the other source and thereby highlighting
the stronger similarities, the matrix S focuses on the local information on each object and is referred to as
the kernel matrix. Consider the point x; and let N; be its k closest neighbours including «; itself. The values
of S are computed by:

W(i.j)

W@ i N,
S(i,j) = 2owem W OH

0 , if otherwise

This way, S only contains the normalized similarities of the points in the vicinity of x;. The assumption is
that objects in the neighbourhood of x; bring more reliable information forward than objects further away.
After obtaining the matrices P and S for each data source, an algorithm is carried out iteratively. The
procedure starts from the matrices P and uses the matrices S to update the information and grasping the

local structures of the data.

For two sources of information, the fusing algorithm starts with WO, W@ of which PO, P@, s and
S are calculated. These are the matrices at time ¢t = 0. The main step is update the matrices P() and

P®@) with information from the other source. This is done as follows:
1 2
Pt(Jr)1 =5 . p@ . (s)T

PP =5 .pM . (g,

After each iteration, normalization is performed on Pt(j_)l and Pt(i)l to ensure that every object is the most

similar to itself. The overall status after ¢ steps is:

PO 4 p®
R

plo —

Since the matrices S and S only have values for the neighbourhood of the object, information comes
from local similarities and not from remote ones. If z; and x; share objects in their neighbourhoods for both
data sources, it is very likely that these belong to the same cluster and this will show up in the overall status

matrix P, It is matrix P(© that is subjected to hierarchical clustering.

The SNF method is a network based integrative approach. It is capable of detecting common and com-
plementary signals across the data sets and also reduces noise by integrating over several types of data.

Therefore the method is said to have the ability to capture the reality behind the different types of data.



This is the method as it is described in Wang et al. (2014). The paper is accompanied by an R package
called SNFtool.

The functions of the package needed to perform SNF were gathered into one function called SNFa. However,
if a closer look is taken at these functions, these to do not seem to confirm the method outlined in the paper.
The differences and peculiarities are listed in the Appendix.

The concern lies in the multiple steps for normalization and not performing the normalization after every it-
eration as was indicated in the paper. It was decided to rewrite the SNFa function and outline the procedure
more as in the description. Function SNFb performs SNF as outlined above. Function SNFc is similar to
SNFb except for the computation of the kernel matrix .S. The difference is that in SNFa, two normalizations
are performed before obtaining .S, first to compute P of which the subsets are taken and then again over
these subsets to form S. In SNFb the subsets are taken first from the similarity matrices W followed by a
normalization over the neighbours only and in SNFc¢ the distance matrices are first normalized to obtain P
of which then a subset of k neighbours is taken to form S. A comparison of the results of the methods will be
held in the results and discussion section. Different values for the number of neighbours were considered and
a sensitivity analysis was conducted.. The parameter y was decided to be 0.5 and the number of iterations

20.

3.4 Comparison of Results

A comparison of the results is not done on sight. Different methods cluster the compounds in a different
order and this results in non-corresponding cluster numbers. Therefore, it was decided to take one method
as reference and rearrange the cluster numbers of the other results to this reference. The re-appointing of
the cluster numbers is based on finding the cluster that relatively has the most in common with one of the
reference clusters and taking over this number. The function MatrizFunction was written for this purpose.
It creates a matrix of which the columns are the compounds in the order of clustering by reference method.
The rows are the different methods and the values of the cells are the rearranged cluster numbers. If each

value is associated with a colour, a visualization of the matrix can be made.

A similarity measure is handy for the comparison of multiple methods. Given a method to be used as
reference, it is observed which compounds are residing in the same cluster for a second method after apply-
ing MatrizFunction. The number of compounds that belong to the same cluster is summed and divided by

the total number of objects in the data set.

10



3.5 Selection of a Specific Cluster

The clustering procedures and differential gene expression of a specific cluster is discussed in detail for each
data set. The choice of the cluster was influenced by the stability of each cluster over the results of the
different methods. If a grouping of compounds is found regularly, it is implied that these compounds show
resemblance on both data sources. One specific cluster was selected and it was studied how it alters over
the different methods and over the weights in the CEC and weighted clustering methods. The function
ClusterDistribution is capable of following a selection of compounds. It will investigate over how many
clusters the compounds are divided and give information on each of these clusters. For example, it is given
which compounds of the original selection it contains and which ones are extra to the newly formed cluster.
A plot was created to see how exactly the compounds are divided for each method or weight. Since it is
likely that some compounds of the selection are appointed to a different cluster, it was decided to focus on

the maximum number of compounds that remain together. This can imply that the cluster number changes.

3.6 Secondary Analyses
3.6.1 Differential Gene Expression

After clustering the next step was to find genes of interest. The gene expressions of the objects in each cluster
were compared to those of all other clusters combined. Interesting genes are those that behave differently in
the selected compounds. The gene may have a higher variation or can be up-regulated or down-regulated.
Several methods exist to find such differentially expressed genes such as a two sample t-test or a permuta-
tion test. It was opted to work with a method called Linear Models for Microarrays (limma). The resulting

p-values were adapted for FDR and the significance level was chosen to be 0.05.

Limma is in fact a regular two sample t-test with an adjusted denominator. This adjustment is made
to avoid that genes that have a small fold change and a small variance will be considered significant by the
procedure. The denominator is estimated with an empirical bayesian approach. More information can be

found in Smyth, G. K. (2004).

3.6.2 Pathway Analysis

The final step in the analysis is to allocate the genes to a gene set or pathway. If a gene set is enriched, i.e.
the probability to see this many significant genes of this gene set by chance is low in the selected compounds,
one may be fairly sure that the compounds share an activity on this pathway. The selected database for
pathway analysis is the Gene Ontology (GO) database. This is an hierarchical database which starts from

more general terms (annotations) to very specific ones. It can be seen as a large tree with parent and child
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nodes. It is more than likely that a node has multiple parents or children.

The pathway analysis performed was functional class scoring, also known as MLP. The search for enriched
gene sets starts from the p-values of all genes. For a predefined gene set, it calculates a score that summarizes
the significance of all the genes included in that specific set. This score is the mean of the negative logarithm
of the p-values:

MLP = mean(—log(p — values)).

It is then determined how likely it is to see the MLP value by chance. This is done by a comparison with
the empirical null distribution. To attain this distribution, the labels are permuted across the samples and
the MLP is recalculated. This is repeated a few times for all gene sets. The null distribution of MLP and
the observed value of MLP are compared and if there is a small probability to find the observed MLP (a

small p-value for this distribution), the score is deemed significant.

The MLP method to perform pathway analysis is based on resampling of the data. Therefore it is rec-
ommended to perform the pathway analysis multiple times to observe how much the results are influenced
by a different sample. Here, the pathway analysis is performed 10 times in a loop and the intersection of the

results of these 10 loops is considered as the result.
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4 Results

This section shows the results of the clustering techniques, the differential expression and the pathway
analyses that were conducted on the two data sets. The used software is R version 3.1.0. Many of the
applied functions in this project were developed outside of the already existing functions available in R
and bundled into a new package called IntClust. More information can be obtained in section five and the

Appendix.

4.1 Sensitivity Analysis

A few methods had multiple parameters that needed specification. For ADEC and CEC, this concerns the
number of iterations and whether or not to resample a specific number of features at each iteration. For SNF,
a free parameter is the number of neighbours. The influence of these is presented first before comparing the

results of the data sets.

4.1.1 ADEC & CEC

The methods ADEC and CEC are both ensemble clustering methods and three versions were implemented
for each. For versions a and c, the option is available to specify the number of iterations and features to
sample. In CEC, also a weight can be specified for the linear combination of the data sources but is set to
0.5 here to investigate the influence of the other parameters by an equal contribution of both data sources.
Since the data matrices of the Inhousel data set are of different types, the ADEC procedure can only be
conducted on the MCF7 data.

For ADEC, Figures 24 and 25 show a comparison for different numbers of iterations for version a and
¢ respectively. The first row of the figures, representing methods ADECalOR and ADECc10R respectively,
are the reference to which the other results are rearranged. The first five are indicated with an “R” since for
these the number of features was fixed to 544. This number is halfway between the half of the total number
of variables and the total minus one. The latter five were produced with a different number of features
in each iteration. Next, it is investigated what the influence is of the resampling of the features. This is
considered for 25 iterations and shown in Figures 26 and 27.

The same was conducted for versions a and ¢ of CEC on both data sets. If the number of features is spec-
ified, it must be given for each data source. For the MCF7 data, 187 features were to be sampled from
the fingerprints and 357 from the target predictions. For the Inhousel, 243 features were sampled from
the fingerprints and 9 of the bio-assays. The comparison plots in Figures 29 to 32 present the results of

versions a and ¢ over several numbers of iterations. A word should be said on the light blue colour arising
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in the figures for some results. This is an indication that one of the clusters of a method did not find a
did not find a suitable match to any of the reference clusters. It is possible that one cluster was fused to
another cluster or was completely divided among others by this method. This implies that one of the original
clusters dissapears as a separate unit. However, the tree of the method was still cut into a specific num-
ber of clusters and the light blue colour shows the “extra” cluster that does not match an original cluster.

The results for different resamplings for a constant number of 25 iterations are presented in Figures 33 to 36.

It is observed that overall the results are similar over the number of iterations, the specification of the
number of features and the resampling. This holds especially when excluding the results with only 10 it-
erations. Figure 28 shows the results for version a, b and ¢ for 25 iterations for ADEC and are practically
identical. The results of 25 iterations for CEC are shown in Figures 37 and 38. For MCF7, the results of
version a and c¢ share a high similarity while the result of version b differs somewhat. For the Inhousel data
the results of version a and ¢ agree on some clusters but not on all. However, smaller groups of compounds

are always found together although the group might have changed cluster over the versions.

4.1.2 SNF

The varying parameter in SNF is the number of neighbours. For version a in Figure 39 of the MCF7
data parts show similarities although more differences arise when the number of neighbours increases. A
possible reason is that when the number of neighbours increases, information from more distant compounds
is involved. This alters the similarities. In the results for version b and c, presented in Figures 41 and 43,
a similar situation arises. Figure 40 depicts the result of version a for the Inhousel data. It is seen that
large parts of the clusters remain independent of the used number of neighbours. This is especially true for
version b and ¢ in Figures 42 and 44.

Since SNF is based on updating a global network with local information and MCF7 has 56 compounds in
total, it was decided to continue with 15 neighbours only in each method. This to ensure that the information
comes from objects in the vicinity. The same reasoning lead to a choice of 20 neighbours for the Inhousel
data. The resemblance between the methods is depicted in Figures 45 and 46 and is striking. The results

differ in only one compound each for the MCF7 data and the differences for the Inhousel data are minor.

4.2 MCF7 Cmap Data
4.2.1 Clustering on a Single Source

The MCF7 data set was provided with fingerprint and target prediction data on 56 compounds. Both matri-

ces are binary, thus the tanimoto coefficient was used to compute the dissimilarity matrices. In a first stage,
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clustering was performed on each data matrix separately. Figure 47 represents the resulting clustering based
on fingerprints and Figure 48 the result based on target predictions. The rule of Tibshirani determined that
the optimal number of clusters for fingerprints and target predictions was six and seven respectively. The

number of clusters to continue with was decided to be seven.

A comparison is made between clustering on fingerprints and on target predictions just to see how far
these are apart. The dendrogram of the fingerprint clustering was cut into seven clusters and each one was
given a specific colour as depicted in Figure 47. The tree of the target predictions was also cut into seven
clusters and a colour was given to each compound. However, each compound was coloured into the same
colour it had in the clustering based on fingerprints. This way, it can be visualized how compounds have
changed in the clustering under the influence of the other source of information. A comparison can be pre-
sented as well by an adaptation of the heatmap in Figure 49. Here, the ordering of the target predictions
clustering is plotted against the ordering by the fingerprint clustering. This implies that the colours are
determined by the clusters based on fingerprints. Vertically, the clusters based on fingerprints are seen while
the horizontal direction shows the clusters based on target predictions. A final way to visualize the clustering
based on the two sources of information is presented in Figure 1. The values on the right side of the plot

are the similarity values computed with the first row as the reference.

Figure 1: A Cluster Comparison between Fingerprints and Target Predictions for MCF7

Again the compounds, represented by the columns, are in the order of clustering on fingerprints. Each colour
represents a cluster and the rows show the result for each method. Here, the clustering on target predictions

is compared to the clustering on fingerprints.
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From Figure 1, it can be seen that some clusters are well preserved over the methods as for example
the brown, red, green and purple clusters. Others are split up over different clusters as for example the com-
pounds belonging to the yellow cluster in the fingerprint clustering. This shows that however the compounds
are the same for both data sources, the clustering depends on the used data source. Some compounds are
alike in fingerprints but differ on their predicted targets. Others however, are similar whether the information
is based on fingerprints or on target predictions. The goal is now to see how the clustering is influenced when
both sources of information are used simultaneously. It is expected that the compounds belonging to the

brown, red, green and purple cluster will group together again since these clusters share many compounds

on fingerprints and target predictions.

4.2.2 Multi-Source Clustering

The reference method for a comparison of the integrative results for the MCF7 data is the result of ADC. A

dendrogram is depicted in Figure 2 and the clusters of the other methods will be arranged to this ordering

of compounds.
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Figure 2: The Dendogram based on ADC for MCF7

The methods CEC and weighted clustering involve a weighting of data sources. A comparison over these
weights is presented first. For CEC, influence of the weights is seen in Figures 50, 51 and 52. The results
of weighting the dissimilarity matrices is depicted in Figure 53. By also showing the results of the finger-
prints and the target predictions, the figures show that at a weight of 0.5 and higher, the target prediction

information is reflected in the clustering of the compounds while for lower weights more resemblance is seen
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with the fingerprint clustering. For version b of CEC, the line can be drawn very clearly. In the comparison
over all methods, the result of weight of 0.5 will be used. This implies that both sources contribute an equal

amount of importance.

Figure 3 presents a comparison of all integrated data methods versus the reference method ADC.

ADC

ADECa25

ADECb

ADECc25

CECa25

CECb

CECc25

SNFal5

SNFb15

SNFc15

WonM

Weighted

Figure 3: Comparison of All Methods versus ADC for MCF7

The methods ADECa, ADECb and ADECc agree highly with ADC and with each other. ADECD is identical
to ADC and only three compounds are shifted for ADECa and ADECec. In the results of CEC, CECb differs
from CECa and CECc while these two show a high similarity. SNFa, SNFb and SNFc only differ in one
compound each and show similarities with CECa and CECc. The same compounds are shifted. A detailed
comparison is shown in Figure 54. Only the result of CECb deviates. Many compounds of the purple cluster
are moved to the blue cluster although that part of the cluster remains together. The result of the weighted
clustering compares to the results of CEC and SNF as shown in Figure 54. Further is the result of WonM
identical to that of CECb. A comparison with the result on fingerprints and target predictions is presented

in Figure 4.
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Figure 4: Comparison of All Methods versus F for MCF7

One compound of cluster four is moved for every other method. This implies that the information on fin-
gerprints highlights a characteristic of that compound that is not seen for the target prediction information.
Note that the fingerprint clustering resembles ADC highly, just as the clustering methods ADEC, CECb and
WonM. A clear influence of the target prediction information is seen in CECa, CECc, SNF and weighted
clustering. Cluster three shows a high similarity amongst these. Except for four compounds, the clustering

of WonM and CECec is identical to the fingerprints clustering.

By studying Figure 4 it is seen that cluster four only differs in one compound over the methods and this
only for the fingerprints. This is found to be the most stable cluster for the MCF7 data. The compounds of

cluster four are summarized in Table 1.

Compounds ‘ ‘ Compounds ‘ ‘ Compounds
1 | verapamil 4 | clozapine 7 | prochlorperazine
quinpirole 5 | thioridazine 8 | trifluoperazine

3 | amitriptyline | 6 | chlorpromazine | 9 | fluphenazine

Table 1: The Selected Cluster for the FP of MCFEF7

This selection of compounds was tracked over the different methods and weights in the CEC and weighted
clustering procedures. For each, two plots will be given that focus on the alteration of the selection. The first
plot will show how the compounds get divided over different clusters for the different methods or weights.
The algorithm takes into account which compounds can be found in which cluster. It can be seen as if
every dot represents the compounds of the selection in that cluster. If a compound shifts cluster in the

next method, the dots are connected. The second figure will only keep track of the maximum number of
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compounds that can still be found together. This however implies that a change of cluster is possible. With

the use of the same colour coding for the clusters as in the figures above, it can be seen to which cluster the

compounds have shifted. The number under each dot also reveals the cluster number.

The evolution of the selected compounds over the methods is presented in Figures 5 and 6.
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Figure 5: The Evolution of Cluster 4
Methods for MCF7

TP
ADECa25 -
ADECb —
ADECc25 —
CECa25 -
CECb
CECc25
SNFal5 o
SNFb15 -
SNFcl5 o
WonM
Weighted -

SNFcl5 -
WonM |
Weighted —

Figure 6: The FEwvolution of Cluster 4 of FP over
All Methods for MCF7 - Maximum Number of Com-
pounds

of FP over All

The figures show that over the different methods, eight of the nine selected compounds are always found to

together. Figure 6 indicates that these eight compounds do not shift cluster and remain in cluster four. Only

the clustering based on solely the fingerprint information appoints the compound quinpirole to this cluster.

This implies that the dissapearing compound is alike to the other compounds in terms of fingerprints but

shows different characteristics when it comes to target predictions. All other methods replace it by haloperidol

and group quinpirole to several other clusters as seen in Figure 5. The cluster was also followed over the

weights in the weighted clustering and Figures 7 and 8 show the influence of the weights on the selection.
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Figure 7: The Ewvolution of Cluster 4 of FP over
Weighted for MCF7

Over the weights of the weighted clustering, first two compounds are removed from the cluster for a weight
of 0.9 but one rejoins the cluster for all other weights. The dissapearing compound is also here quinpirole
and haloperidol is joined to the cluster for a weight of 0.7 and lower as seen in Figure 53. Similar patterns
are seen over the weights in the CEC methods. The plots are presented in Figures 55 to 60 and the clustering
on fingerprints was used as a reference. For CECa and CECc quinpirole is not even joined to the cluster and
haloperidol joins the cluster at weight 0.7 while for CECb, it is only at the weight of 0.5 that haloperidol
replaces quinpirole. For weights 0.1 and 0.0 in CECc, the compounds are fused to those of cluster three.
Overall, once the information of the target predictions is involved, eight compounds are found similar on
both sources of information with haloperidol as the ninth compound. This cluster will also be discussed in

more detail in terms of differentially expressed genes and pathways.

4.2.3 Differential Expression and Pathway Analysis

After clustering, it was investigated whether interesting genes and pathways could be found for the clusters
and more importantly, if these results depend highly on the used methods. Finding genes of interest and
related pathways was done with the help of the DiffGenes and Pathways functions. These functions give
respectively per method an overview which genes and pathways are differentially expressed per cluster. The
result of the fingerprints is used as a reference and determines the order of the compounds and the colours.
A global overview of the gene expression and pathways per method can be found in Table 8. Per cluster it

is summarized how many genes and pathways were found to be significant for a significance level of 0.05.
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Further, it is also indicated how many of these were shared over all methods per cluster. However, it is seen
that no single gene was found to be differentially expressed for any cluster. Therefore, the row “Shared”
indicates between brackets the number of genes that would be shared if the top 10 differentially expressed

genes were studied. Per cluster it is also indicated how many compounds were shared.

Table 9 shows genes of interest for every cluster. A gene is not necessarily found to be differentially ex-
pressed by each method. This might be due to the dissapearing or addition of only a few compounds to a
cluster. The interesting genes are plotted in Figures 61 to 65. The compounds that are plotted to the left
are those that are shared for that cluster over the methods for which genes were found. The dots in the
plots indicate those compounds that are joined to the cluster for some of the methods. Finally, Table 10
summarizes the top three of shared pathways over the methods per cluster. This procedure was repeated
for weighted clustering as well. A summary can be found in Table 11, Table 12, Figures 66 to 70 and Table

13. The focus here will be put on the previously selected cluster.

The compounds of the selection can be found in Table 1. It was decided to focus only on the cluster
that contains the maximum number of compounds of the selection for the differential expression over the
methods and weights in CEC and weighted clustering. The found differentially expressed genes and path-
ways are summarized in Table 14. Between brackets are the number of genes and pathways that are shared
among those that actually find differentially expressed genes and pathways. For the CECc method, also the
exclusion of weight 1.0 and 0.9 is taken into account. Putting the table aside the Figures 5, 7, 50 to 52
and 55 to 59, the following is seen. In comparison over all methods, it is only the clustering on fingerprints
that has found no genes. As soon as quinpirole is removed and replaced by haloperidol, five genes show
a differential expression. The result over the weights of the CECb method show an identical pattern. For
CECa, first two compounds dissapear and no genes of interest were found. At a weight of 0.7 one of these is
rejoined to the cluster with the extra addition of haloperidol. Five genes were now discovered. In the method
CECec, it is seen that for weights one and 0.9 only five compounds of the selection are found together. These
five reveal nine genes that are differentially expressed. At a weight of 0.7, again five genes were found.
For the weighted clustering results, it is seen that if quinpirole is no longer present for weight 0.9 but is
not replaced by haloperidol either, one gene is differentially expressed for the remaining eight compounds.

All other weights join haloperidol to the cluster and the same five genes as for the other methods were found.

The finding of differentially expressed genes is greatly influenced by the removal of the compound quinpirole.

With the remaining eight compounds, one gene (PI3) of interest is found. If the compound haloperidol is

21



joined to these eight, five differential expressed genes are found. These are presented in Table 2.

‘ Genes ‘ ‘ Genes
1| PI3 4 | SRSF7
2 | IDI1 5| PNO1
3 | MSMO1

Table 2: The Interesting Genes for the Selected Cluster - MCFE7

The gene profiles of the interesting genes are plotted below in Figure 9. The compounds plotted to the left are
the selected compounds without quinpirole but with haloperidol. The values of quinpirole and haloperidol

are indicated with a dot.
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Figure 9: The Interesting Genes for the Selected Cluster - MCF7

The gene expression of the five genes is seen to be indeed different from the majority of the other compounds.
Some genes are upregulated while others are down regulated. The CECc method reveals that when only
five of the nine compounds are considered, nine genes are differentially expressed. The compounds and the

genes are listed in Tables 3 and 4.

Compounds ‘ ‘ Compounds ‘ Genes ‘ ‘ Genes ‘ ‘ Genes
1 | fluphenazine 4 | chlorpromazine 1| MSMO1 | 4 | HMGCS1 | 7 | SRSF7
2 | trifluoperazine 5 | thioridazine 2 | SQLE 5 | INSIG1 8 | HMGCR
3 | prochlorperazine 3 | IDI1 6 | CCNG2 9 | PPIF
Table 3: The Compounds of the Selected Cluster for Table 4: The Interesting Genes for CECc for
CECc in weight 1.0 and 0.9 - MCF7 weights 1.0 and 0.9 - MCF7
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It is observed that three of the nine genes are also found for many of the other methods. Figure 10 shows

the gene profiles of these nine genes making a distinction between the five compounds still found together

<
-

and the others.
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Figure 10: The Interesting Genes for CECc for weights 1.0 and 0.9 - MCF7

The number of found pathways lies around 53 for many methods. The top three for the selection with

haloperidol but without quinpirole is shown in Table 5.

Pathways

1 | cholesterol biosynthetic process
2 | sterol biosynthetic process

3 | cholesterol metabolic process

Table 5: The Shared Top 3 Pathways for the Selected Cluster - MCF7

The first two pathways are still found when taking quinpirole into account. The third pathway is replaced
by regulation of ATPase activity.

4.3 Inhousel Data

4.3.1 Clustering on a Single Source

The Inhousel data set included information on fingerprints and bio-assays for 94 compounds. In computing
the dissimilarity matrices, the tanimoto coefficient was applied to the fingerprint matrix and the euclidean
distance to the bio-assays. The clustering results on the data matrices separately can be found in Figures 71

and 72. The optimal number of clusters were respectively 12 and eight determined by the rule of Tibshirani.
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The analysis of this data set continues with the average of 10 clusters.

As for the MCF7 data set, a comparison is made of the clustering on the two sources separately. Fig-
ure 71 indicates the colouring of the several clusters and Figures 72 and 73 show how the grouping of the

compounds has changed. This is even more clearer depicted in Figure 11

FP

Figure 11: A Cluster Comparison between Fingerprints and Target Predictions for Inhousel

It is observed that for this data set, the clustering of the compounds differs reasonably between the sources
of information since many compounds have changed clusters. However, smaller groups of compounds do
seem to appear together as for example the brown, red and purple cluster and parts of the light green and
grey cluster. This implies that smaller groups of compounds have similar characteristics on both fingerprints
and bio-assays. It is expected that these little groups will be preserved among the other techniques in which

the information of the data matrices is combined.

4.3.2 Multi-Source Clustering

The reference method for integrative results of the Inhousel data is WonM as aggregated data clustering

could not be performed. A dendrogram of the result is shown in Figure 12.
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Figure 12: The Dendogram based on WonM for Inhousel
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The influence of the weights for each version of CEC is studied in Figures 74, 75 and 76. In comparison
with the results of fingerprints and bio-assays, the influence of the bio-assays increases as more weight is
appointed to this data source. Smaller groups of compounds, in groups of two and three, shift clusters as the
weight decreases. Also here, the line for version b can be drawn clearly. More colours arise in these results,
this is due to the fusion or complete segregation of multiple clusters compared to the reference method.
For example, clusters one, two and three in version b were fused together and cluster seven and eight as
well. This implies that three clusters dissapear as a separate unit and three colours are necessary to indicate
those that are not matched appropriately. Figure 77 shows the results of the weighted clustering versus the
fingerprint clustering. As soon as information from the bio-assays is involved, the clustering changes greatly.
This implies that the data matrices bring forth different aspects of information on the compounds and the
biological information of the bio-assays has great influence. The clustering results share a higher similarity
with the clustering on bio-assays than with the fingerprint clustering as is seen in Figure 78. The results for

a weight of 0.5 will be used is the comparison over all methods.

A comparison over all integrated methods is made in Figure 13 with the result of the WonM as reference.
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Figure 13: Comparison of All Methods versus WonM for Inhousel

The similarity between the methods is lower compared to the MCF7 data. The method of CECb gives also
here a clustering identical to WonM while CECa and CECc agree rather well on which smaller groups of
compounds are to be put together. The same holds for the results of SNF. Although compounds are often
given a different cluster colour for CEC and SNF, there is a similarity in which compounds form that cluster.
Their resemblance is presented in Figure 79. Although the weighted clustering for the MCF7 data showed

similarities with CEC and SNF, this is less the case for the Inhousel data. The weighted clustering has

26



similarities with every other method.

By studying the results of the separate clusterings, it is seen that both sources of information contribute

their share in each integrated method. This is seen in Figure 14.
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Figure 14: Comparison of All Methods versus F for Inhousel

It is SNFa that shows the highest similarity with the fingerprint clustering and the weighted clustering with
the bio-assays. WonM shows both similarities and differences with the results of the fingerprints and bio-
assays. The interest lies particularly in those clusters formed on fingerprints that also arise in clustering on
bio-assays. This implies that the fingerprint structure is related to the biology. An example is seen for cluster
six (purple) and cluster three (yellow) which do not undergo a lot of shifting over the different methods
unless in their whole. However, this is also seen for parts of the other clusters as clusters eight, nine and 10.

For the latter clusters, large parts remain together except for weighted clustering and clustering on bio-assays.

The selection of the most stable cluster is harder for the Inhousel data than it was for the MCF7 data.
Fusions and complete segregations have occurred in some methods and therefore not every reference cluster
has found a suitable match. Visually, it can be seen in Figure 14 that the compounds of cluster six are,
expect for the weighted clustering and the clustering on bio-assays, always found together although it is not
always the same cluster. This is an indication that for these compounds the information on fingerprints and
bio-assays is related. Therefore, this selection will be followed over the several methods and weights of CEC

and weighted clustering. The selected compounds are presented in Table 6.
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Compounds Compounds
1| Cpd29 5 | Cpd46
2 | Cpd39 6 | Cpd92
3 | Cpd4b 7 | Cpd93
4 | Cpd36

Table 6: The Selected Cluster for the FP of Inhousel

The compounds were followed over the different methods and its alterations were recorded in Figures 15

and 16.
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Figure 16: The Evolution of Cluster 4 of FP over All
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Figure 15: The Evolution of Cluster 4 of FP over All
Methods for Inhousel

The seven compounds remain together in the same cluster, whether it is cluster six or eight, except for the
weighted clustering and the clustering on bio-assays. For these, still respectively five and six compounds are
grouped together. The two compounds that dissapear are Cpd36 and Cpd46 although Cpd46 rejoins the
cluster for the bio-assays. The alteration of cluster number is due to the fusion with cluster eight and this
is seen for CECa, SNFb and SNFc. Further, the compounds that shift cluster for the weighted clustering
are joined to those of cluster eight. This cluster has four compounds which are Cpd35, Cpd95, Cpd65 and
Cpd94. This might be an indication that the compounds found in cluster eight show similarities to the
selected compounds for the fingerprints and bio-assays. The evolution of the cluster over the weights is

tracked in Figures 17 and 18.
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Figure 18: The FEwvolution of Cluster 6 of FP over
Weighted for Inhousel - Maximum Number of Com-
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Figure 17: The FEwvolution of Cluster 6 of FP over
Weighted for Inhousel

The compounds get maximally divided over two clusters and at least five compounds were always found
grouped together. It is seen that for the weights 0.7 to 0.4 the methods show a disagreement on which
compounds should be appointed to a different cluster. Also here, cluster eight is mentioned a number of
times and it are either compounds Cpd36 and Cpd46 or compounds Cpd29 and Cpd93 that shift cluster.
The selection was also followed for the weights over the three versions of CEC and the results are presented
in Figures 80 to 85. It is observed that for all three methods the complete selection is found eventually.
For CECa, often six compounds are together although it are not always the same six compounds. Only for
weights 0.6 and 0.5 all seven compounds form a cluster. When the weight decreases further, the compounds
are divided over cluster six and eight. Over the weights in CECb, it is seen that one compound dissapears
under the influence of the target predictions after the half way point of weight 0.5. This is Cpd36 that also
shifts cluster for the bio-assays. The method CECc shows a similar pattern as CECa and finds the whole
selection for weights between 0.8 and 0.3 which form a part of cluster six or eight as can be seen in Figure
76. It are always the same five compounds that can be found together. For the differential expression, the

focus lies on the cluster that contains the maximum number of compounds of the selection.

4.3.3 Differential Expression and Pathway Analysis

After obtaining the clustering results, differential expression of genes was investigated. Since for the Inhousel
data set the names of the genes were masked a pathway analysis could not be carried out. The result of

the fingerprint clustering will be used as the reference method. Table 15 shows how many genes were found

29



to be differentially expressed for each cluster in each method for a significance level of 0.05 and how many
are shared for this significance level and the top 10 genes respectively. Further, the same information on
the compounds is contained in this table. It is noted that some methods did not have a specific cluster

“_»

number. Either due to fusion or complete segregation of the cluster. If this was the case, a indicates
that the cluster was missing and not will not be taken into account when looking for shared genes over the
methods. For some clusters, many genes were found to be differentially expressed but not for every method.

The reason is that for some methods certain compounds are not present in the cluster of interest.

Interesting genes are summarized for each cluster in Table 16. It is possible that one cluster has merged
with another cluster. A consequence is that a gene can be found to be differentially expressed for a specific
cluster in one method and for a different cluster in another method probably because the cluster contains
mainly the same compounds. If this is the case, the cluster is indicated with an underscore. Figures 86 to
92 show the interesting genes per cluster. Since for cluster one many significant genes were found for the
fingerprints but none of these were shared for the other methods, a separate plot in Figure 87 shows the
top five genes of the fingerprint clustering. The differentially expressed genes and genes of interest were also
summarized for the weighted clustering in Tables 17 and 18 and Figures 93 to 100. The previously selected

compounds will be discussed in detail next.

The selected cluster can be found in Table 6. The gene expression was investigated for the cluster that
contained the maximum number of compounds of the selection. The results are summarized in Table 19.
Between brackets are the number of genes that are shared among those that find differentially expressed
genes and the number shared when excluding the methods that only find one gene of interest. With the help

of Figures 14, 15, 17, 74 to 76 and 80 to 84, the following can be said.

Following the cluster over all methods, it can be seen that the compounds stay together expect for the
weighted clustering and the bio-assays. The compounds that are joined to the selection influence the differ-
ential expression of the genes. The selection on its own, as it can be found for the fingerprints, finds one
gene of interest. The same is seen for a weight of one to 0.6 in the clustering for CECb and a weight of 0.3
in the results of CECc. This one gene is Gene494 and is discovered by every method and weight that finds
differentially expressed genes.

The methods SNFa, CECa for weights 0.6 and 0.5 and weighted clustering for a weight of 0.9 all find 50
differentially expressed genes. For these clustering results, three extra compounds are joined to the selec-

tion. These compounds are Cpd40, Cpd49 and Cpd48. For methods SNFb and SNFc, cluster six of the
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fingerprints is fused to cluster eight together with extra compounds Cpd40 and Cpd49. Here, eight genes
of interest were found. The results for weights 0.5 and 0.7 for the weighted clustering are identical to those
of CECc for weights 0.1 and zero. Compounds Cpd30, Cpd28 and Cpd49 are merged to the selection while
Cpd36 and Cpd46 dissapear. The limma method finds 71 genes to be differentially expressed for this new
cluster. The CECa methods removes Cpd45 from the cluster and joins Cpd40, Cpd48 and Cpd49 to the
selection for weight one to weight 0.7. A total of 80 genes were discovered as significant. For a weight of 0.4
in the CECb method, Cpd45 dissapears from the cluster while Cpd40, Cpd49 and Cpd80 are appointed to
it. This results in 65 differentially expressed genes. Finally, for weight 0.9 in the CECc method, 29 genes
were discovered after the dissapearing of compounds Cpd92 and Cpd93 and the addition of five extra com-
pounds: Cpd28, Cpd42, Cpd40, Cpd48 and Cpd49. The other resulting clusterings of the selected compounds
found no genes of interest under the influence of the merged compounds. The compounds and the top five

of the significant genes for each method that finds differentially expressed genes are summarized in Table 20.

The compounds that seem to be the most common are presented in Table 7. These consists of the selection

and three compounds joined extra to them under the influence of the bio-assay information.

Compounds Compounds Compounds
1| Cpd29 5 | Cpd46 9 | Cpd48
2 | Cpd39 6 | Cpd92 10 | Cpd49
3 | Cpd4h 7 | Cpd93
4 | Cpd36 8 | Cpd40

Table 7: The Most Common Compounds for The Selected Cluster - Inhousel

All differentially expressed genes were compared over the methods. When all methods and weights were
considered, it was found that three genes were discovered for each method. The gene profiles of Gene494,
Gene954 and Gene307 for the most common compounds are shown in Figure 19. When excluding the
methods SNFb and SNFc, 22 genes were in shared. The gene profiles of the top five genes is plotted in

Figure 20.
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Figure 19: The Gene Profiles for the DE Genes Found Figure 20: The Gene Profiles for the DE Genes Found
by Each Method - Inhousel by Fach Method Fxcluding SNFb and SNFc

The figures show a difference between the gene expression of the selected compounds and the others. The
three compounds joined the selection contribute to the discovery of interesting genes. The compounds Cpd40,
Cpd48 and Cpd49 are often found in the same cluster, especially Cpd40 and Cpd49. It is under the influence

of the bio-assays that these compounds are merged together.

32



5 Software Development

During this project a number of functions were written to facilitate the analysis and help in the comparison
over the results. The functions concern execution of the methods, differential expression, pathway analysis,
comparison functions and visualization functions. All were written in R version 3.1.0. and bundled into a

package called IntClust. A help file for each function is available in the Appendix.

For clustering on a single source the function Cluster can be used and every multi-source method has
it own function. The functions carry the same name as the reference used for the methods in this project.
The user only needs to provide the data sets and specify available options. The result is a list which contains
elements belonging to a specific method. The resulting clustering of the procedure can always be found

under the element “Clust”. Examples are given for the function Cluster and SNFa on the MCF7 data.

MC7_F = Cluster(fingerprintMat,distmeasure="tanimoto",clust="agnes",

linkage="ward" ,gap=FALSE,maxK=55)

MC7_SNFalb5=SNFa(list (fingerprintMat,targetMat) ,distmeasure=c("tanimoto",

"tanimoto") ,NN=15,alpha=0.5,T=20,clust="agnes",linkage="ward")

After obtaining the different clustering results, a comparison can be made. However, this is not done easily. It
has to be taken into account that different methods, have a different ordering of compounds and therefore a
different numbering of clusters. Therefore the MatrizFunction function was written which takes one method
as a reference and rearranges the cluster numbers of the other methods to this reference by looking for
the reference cluster they have the most in common with relatively. The result of this function is a matrix
of which the columns are the compounds in the order of clustering by the reference method and the rows
represent the methods compared to it. Each cell contains the number of the cluster the compound is in for

that method compared to the reference.

L=1ist (MC7_F,MC7_ADC,MC7_ADECa25,MC7_ADECb,MC7_ADECc25,MC7_CECa25,MC7_CECb,MC7_CECc25,

MC7_SNFa15,MC7_SNFb15,MC7_SNFc15,MC7_WonM,MC7_Weighted,MC7_T)

names=c ("FP","ADC","ADECa25","ADECb", "ADECc25","CECa25","CECb","CECc25","SNFal5","SNFb15",

"SNFc15","WonM" , "Weighted","TP")

MCF7_Matrix=MatrixFunction(L,nclusters=7,fusionsLog=TRUE,WeightClust=TRUE,,names=names)
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The MatrizFunction is employed by many other functions. In the visualization function ComparePlot, basi-
cally every cell of the matrix is given a colour corresponding to its value. A comparison over the methods

can than be made visually.

ComparePlot (L,nclusters=7,cols=my_palettela,fusionsLog=TRUE,WeightClust=TRUE,names=names,

reverse=FALSE ,margins=c(9.1,4.1,4.1,4.1))

The function DiffGenes and Pathwayslter also make use of MatrizFunction. Before applying the limma
method or pathway analysis, the clusters are rearranged to the reference such that a comparison of the
differential expression can be made. The function Genset.intersect takes the intersection over the number of

loops specified in Pathwayslter.

MC7_DiffGenes_0.05=DiffGenes(L,geneMat,nclusters=7,"limma",0.05,top=NULL, fusionsLog=TRUE,
WeightClust=TRUE,names=names)
MC7_Paths=PathwaysIter(L,GeneExpr=geneMat,nclusters=7,method=c("limma", "MLP"),
ENTREZID=GeneInfo[,1], geneSetSource = "GOBP",GENESET=GS,
top=NULL,sign=0.05,niter=10,fusionsLog=TRUE,
WeightClust=TRUE)
MC7_Paths_intersection=Geneset.intersect (MC7_Paths_A1110F,0.05,seperatetables=FALSE,

separatepvals=FALSE)

The function Shared takes the output of the DiffGenes and Geneset.intersect and sets up a table that contains
how many genes and pathways were found to be significant for each method. Further, it indicates how many
of these were shared. It provides the same information over the compounds and a list is returned containing

which compounds, genes and pathways are shared among the methods.

MC7_Shared=Shared (Datalimma=MC7_DiffGenes_0.05,DataMLP=MC7_Paths_intersection)

Disclaimer
All described functions were developed and tested on the MCF7 and Inhousel data sets. It is possible
however, to encounter a situation for which the functions will not perform properly. This is especially true

for the MatrizFunction whose algorithm is based on the perfect-matching algorithm.
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6 Discussion

Clustering was first performed on each data source separately. The downside of the technique is that only
one side of the reality is investigated. Since this gives a limited point of view, a interest has been taken in
combining information from multiple sources. This is why integrative data analysis is important. Involving
multiple sources of data reveals which compounds are similar to one another on different aspects. It also
shows if and how sources are related for these compounds. When a similar grouping of compounds is found
for each data source separately, the compounds are likely to be found together in the integrative data anal-
yses as well. It will help create a global view of the mechanism of action of the compounds and reveal the

underlying biology. Several integrative data methods were applied to the data sets.

In the ADC, ADECa, ADECb and ADECc methods, the available data matrices are combined into one
larger matrix. Clustering and respectively ensemble clustering is then performed on more variables simul-
taneously. These techniques can only be applied if the data sources are all of the same type. In the three
versions of the ADEC method, the number of iterations could be specified as well as a specific number of
features to draw at each iteration. The sensitivity analysis revealed that the number of iterations should not
be too few. Further, whether the number of features is fixed or not, compounds that are similar for many
variables and distinguish themselves will form a group together. For others, the final cluster will depend on
which and how many times features are involved. ADECa, ADECb and ADECc showed similar clusterings
of compounds.

WonM sets up an incidence matrix for each number of clusters the dendrograms of the single data matrices
are cut into. These are summed and the method thus tracks how many times compounds are found in the
same cluster. The higher the number of clusters the dendrogram is split into, the smaller the groups of
compounds. If compounds are still found in the same group for a high number of clusters, the closer these
are together. This is a similarity measure and therefore the final clustering on the sum of the incidence
matrices is performed on a similarity base.

The other ensemble clustering technique is CEC of which three versions were implemented as well. The
sensitivity analysis showed the same conclusion as for ADEC. As long as the number of iterations is not
too low, enough information surfaces to result in an adequate clustering. The fixation of the number of
sampled features seems to have no great influence. An extra parameter is the weight to be given to each
data source in the linear combination. This is a question also to be answered in the weighted clustering
technique. Determination of an optimal weight remains a challenge. It can be chosen to give a higher weight
to the data source with the most stable clusters or to try out a few values and discover the influence of the

weight. However, the weight can also be optimized with the help of the EM-algorithm as described by Xu
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et al. (2012).

The SNF technique was recently developed by Wang et al. (2014) and relies on updating a global network
with local information. The parameters of choice were the hyperparameter i, the number of iterations and
number of neighbours. Wang et al. recommend boundaries for each parameter and state that between these
limits, the method is insensitive to the choice. The hyperparameter p was therefore set to 0.5, the number of
iterations to 20 and the sensitivity analysis showed that respectively 15 and 20 neighbours for the data sets
were appropriate. Between SNFa, SNFb and SNFc, a high agreement was met although they are different
interpretations of the SNF method. There was a concern about the implementation of the functions in the
SNFtool package. Its results however, agree with the results of the methods as described in the methodology.
In all methods the actual grouping of the compounds was performed by agglomerative hierarchical clustering.
If distance matrices were calculated from the data, these were obtained by applying the tanimoto coefficient
for binary data sets and the euclidean distance for continuous values. It was necessary for some methods and
for the later comparison of the results to determine an appropriate number of clusters for each data set. With
the help of the rule of Tibshirani and the clustering on the singe sources of information, a suitable number

of clusters was determined. The choice fell on seven clusters for the MCF7 data and 10 for the Inhousel data.

In a comparison over all methods and both data sets, general remarks can be made. By involving the
results of the separate clustering, the influence of each data modality can be seen. Over the weights in
CEC and weighted clustering, some compounds change cluster as soon as the other source of information is
involved. Others remain together for the different weights. This depends on how much of the information is
shared between the data matrices. The higher the weight for a source of information, the higher its influence.
The results of CECa and CECc agree rather well. Especially for the MCF7 data. For the Inhousel data,
they do not show a similarity as high as for the MCF7 data. They do not always agree on the cluster number
but rather on which compounds to put together. Looking at the clustering from a more global point of view
shows that smaller groups of compounds are often found in both methods. The same conclusion holds for
the results of SNF. A high similarity is seen over SNFa, SNFb and SNFc for MCF7 while the methods agree
on smaller groupings in the clustering for Inhousel. The result of CECb and WonM is identical for both data
sets. Seeing a high degree of resemblance is not unexpected. Both are based on splitting the dendrogram into
a specific number of clusters several times. Further, the contribution of both information sources is identical
here since the result of CECb shown is the one for a weight of 0.5. CECb deviates from the results of CECa

and CECc due to the resampling in the latter methods.

The ADC and ADEC methods could only be applied on the MCF7 data sets. The methods show a high de-
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gree of resemblance with each other and with the clustering on fingerprints. It seems that in the aggregated
data techniques, the information of the fingerprints dominates the grouping and only the most prominent
information of the target predictions comes through. Overall, the results of the MCF7 data show a high
similarity. Some clusters are preserved over the methods, others undergo only minor changes under the
influence of the target predictions and often compounds are shifted in small groups. For some compounds, it
will be the fingerprints that give more information on their resemblance while for others it will be the target
predictions. Depending on the method of combination, compounds that show no remarkable similarity to
each other on either data source, will be dominated by one or the other. The fingerprints were actually used
to calculate the target predictions and therefore the sources are automatically related. Therefore these bring
forth similar information on the compounds and such a high similarity is seen.

The data sources for the Inhousel data are not known beforehand to be related but it is the goal of the in-
tegrated analysis to discover a relation between the fingerprints and the bio-assay scores of the compounds.
The results are therefore a lot less similar. The fingerprint and bio-assay informations resulted in many
smaller groups of compounds with similar values. This implies that if one compound shifts cluster, its neigh-
bouring compounds will as well. This indicates that these compounds are all similar but the combination
of the sources determines to which cluster they are appointed. The difference between these might only be

minor.

The goal of the different integrated data analyses is to reveal clusters of compounds that are stable over the
several methods. This implies that independent of the used technique, these compounds were found to be
similar on different aspects and that a connection can be seen between the structure of the compounds and
the predicted targets or the bio-assays. A stable cluster was selected for each data source and discussed in
detail in the results section. Under the influence of the data source, compounds dissapear and get joined to
it. This influences the differential expression of the cluster. For MCF7, the compound quinpirole leaves the
cluster as soon as target predictions are involved. Haloperidol is merged to the cluster and the differential
expression changes from zero genes found to five genes. In the Inhousel data, the selection of compounds
is mostly retained with the addition of three extra compounds. The gene expression changed from one to

multiple genes.
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7 Conclusion

Understanding the mechanism of a drug is a crucial step in the development of new compounds. It is im-
portant to know what the drug will react to and what its actions to this trigger will be. This all to avoid
side effects and to see whether or not the drug accomplishes what is has been created for to do. Unraveling
this is not always easy but a great help in this process is the comparison with other compounds that are
similar but not exactly the same or completely different compounds. A deduction of what some compounds
share but others do not, is often a good step in the right direction. The approach in this project was to rely

on clustering techniques to found groups of similar objects.

Clustering on a single source of information gives a limited point of view. Therefore a interest has been
taken in combining information from multiple sources. This is why integrative data analysis is important.
The combination of multiple aspects of the compounds helps to discover the underlying biology of their
actions. By comparing the clustering on the separate sources with the integrative analyses, the influence
of each source can be seen. If parameters such as the number of iterations, number of features to sample,
number of neighbours or weights need to be specified, it is recommended to try different values to establish
a lower limit. The rule of thumb is “not too few”. A best integrative method is not declared. Rather interest
lies in cluster that are found to be stable over the different methods. These compounds are indicated to be
similar on different aspects of the underlying biology. It can than be hypothesized that the data sources
are related for those compounds. If compounds do not show a clear resemblance to one or possibly multiple
groups, they can be clustered differently for each method. If the available data of the compounds is known to
be related, it can be expected to see a number of similarities over the method. If, however, this is unknown
it is interesting to look for stable clusters. It was seen that the differential expression of the cluster is greatly

influenced by the compounds joined to them.
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9 Appendix

9.1 Methodology

ADEC

Buneisn|D |eaiydlelsly [euld

s2011e|A 32UapidUl dn wing

Y Yyoea uo Suusisn|) |eaiydielsiy

~t|E0 | C0 | TO

1 0 |10
\\\\\\ o fom| [ Ta
Y

s

o 1| olto

I|lo| 1|0
~leo|zo | 10

o| 1| 0o

T|0|T[O
- |eo | zo | TO

X1J3e|A] UOI3EID0S5.-07)

XI1B|A BIRQ pasnd

S2DLI3B Al 22USPIDU|

T| 0| 01O
TEMZM [TM
o
T| T | T[20

U EM TN TA

v
sa0l1BA B1eg

Figure 21: Aggregated Data Ensemble Clustering
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Figure 22: Complementary Ensemble Clustering
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Figure 23: Similarity Network Fusion
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An overview of the differences and peculiarities of the functions in the SNFtool is presented below. The

affinityMatriz function is used to compute the similarity function W after receiving the distance matrix:
e affinityMatrix function:

— The input distance matrix and its transpose are added and divided by 2 in the same step.

— In computing the parameter ¢; ;, the necessary means are taken beforehand and only the average
of the 3 elements in the formula should be taken. The first element however, is summed with

itself, divided by 2 and then multiplied by 2 again. This is unnecessary.

— The values of W are scaled by the density of the normal distribution and not the kernel. The

1

values therefore deviate with a factor oo

— The resulting matrix W is added to its transpose and the sum is divided by 2.
e SNF function:

— The normalization in computing the P matrix is different from the outline in the methodology.
The similarity matrices are divided by Zﬁj\[ W (i, k) with N the total number of objects instead

of excluding the object ¢ and multiplying by 2.
— The matrix P and its transpose are added and the sum is divided by 2.

— The internal function .dominateset is used to determine the neighbourhoods of the objects and
calculate the matrix S. The subsets of neighbours are determined from the normalized similarity
matrices P and the resulting matrix is again normalized by dividing each value by the sum of its

row. Thus 2 normalizations are performed here to compute the kernel matrix S.

— In every iteration, the value 1 is added to each diagonal element. This is probably to ensure that
each object is the most similar to itself but when looked at the values without this addition, it is

was not discovered that this was not automatically the case.
— In every iteration, the matrix P® was added to its transpose and the sum was divided by 2.
— After every iteration, normalization was not performed.
— When the overall status matrix P(¢) was obtained, another normalization was performed.

— After this normalization, the resulting matrix was added to its transpose and a value of 1 was
added to each diagonal element as well. The sum was divided by 2 and this final matrix is returned

to the user for clustering.

If the distance measure is symmetric, taking the average of a matrix and its transpose will not make a

difference. However, this might be important if the distance matrix is not symmetric.
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9.2 Sensitivity Analysis

9.2.1 ADEC
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9.2.3 SNF
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9.3 MCF7 Cmap Data

Clustering on Separate Sources
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Figure 47: The Dendogram based on Fingerprints for MCF7
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Figure 48: The Dendogram based on Target Predictions for MCF7
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Figure 49: Heatmap of MCF7: Fingerprints vs Target Predictions
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9.3.2 Integrated Clustering
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Figure 55: The FEwvolution of Cluster 4 of FP over Figure 56: The FEwolution of Cluster 4 of FP over
CECa for MCF7 CECa for MCF7 - Maximum Number of Compounds

O  Cluster number = —— Maximum of compounds of original cluster together
4 4 4

4 4 —— Number of clusters original cluster divided amongst

9 4 o Cluster number

Number of Compounds

0.4 -
0.3 -
0.2 o
0.1
0.9 -
0.8 -
0.7 o
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1

FP
1

0.9
0.8 |
0.7
0.6 |
05 |

Figure 57: The FEwvolution of Cluster 4 of FP over Figure 58: The FEwolution of Cluster 4 of FP over
CECY for MCF7 CECY for MCF7 - Maximum Number of Compounds
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Figure 59: The FEwvolution of Cluster 4 of FP over Figure 60: The FEwvolution of Cluster 4 of FP over
CECc¢ for MCF7 CECc¢ for MCF7 - Maximum Number of Compounds
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Genes Significant For
EMP1 ADC ADECDH SNFa SNFb SNFc Weighted
TGFB1I1 FP ADC ADECDb SNFa SNFb SNFc Weighted
GPNMB FP ADC ADECbH SNFa SNFb SNFc Weighted
Cluster 1 HLX ADC ADECbH CECa CECc SNFa SNFb SNFc WonM Weighted TP
VIM ADC ADECDb SNFa SNFb SNFc Weighted
CD1D CECa CECc TP
ACVRI1 FP ADC ADECa ADECb ADECc CECb WonM
Cluster 2
TRIM22 FP ADC ADECa ADECb ADECc¢ CECb WonM
Cluster 3 | TUFT1 CECa CECc TP
PI3 All except FP
PNO1 All except FP
Cluster 4 || SRSF7 All except FP
MSMOL1 All except FP
IDI1 All except FP
Cluster 5 || - -
Cluster 6 || - -
Cluster 7 | MAGT1 FP CECb WonM
ASF1A CECa CECc SNFa SNFb SNFc TP

Table 9: Interesting for the Clusters over all Methods for MCFEF7
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Pathways Mean p-value
cellular amino acid metabolic process 0.0290
Cluster 1 || peptide metabolic process 0.0010
glutathione metabolic process 0.0013
negative regulation of neuron projection development 0.0015
Cluster 2 || ensheathment of neurons 0.0097
axon ensheathment 0.0097
Cluster 3 || cholesterol biosynthetic process 0.0000
Cluster 4 || sterol biosynthetic process 0.0000
regulation of ATPase activity 0.0113
regulation of mitochondrion organization 0.0044
Cluster 5 || ER to Golgi vesicle-mediated transport 0.0001
regulation of release of cytochrome ¢ from mitochondria 0.0088
pigmentation 0.0030
Cluster 6 || inner ear morphogenesis 0.0014
sensory perception of mechanical stimulus 0.0004
Cluster 7 || - -

Table 10: P-values of the Shared Top 8 Pathways for the Clusters over all Methods for MCFEF'7
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Genes Significant For Weight
EMP1 0.6 0.5
TGFB1I1 1.0 0.6 0.5
GPNMB 1.0 0.6 0.5
Cluster 1
HLX 0.6 0.5 0.4 0.30.20.10.0
CD1D 0.40.30.20.10.0
VIM 0.6 0.5
ACVRI1 1.0 0.8 0.7 0.6
Cluster 2
TRIM22 1.0 0.8 0.7 0.6
Cluster 3 || TUFT1 0.4 0.10.0
PI3 0.80.70.6 0.5 0.4 0.3 0.20.10.0
PNO1 0.70.6 0.5 0.4 0.3 0.2 0.1 0.0
Cluster 4 || SRSF7 0.70.6 0.50.40.30.20.10.0
MSMO1 0.70.6 0.50.40.30.20.10.0
IDI1 0.70.6 0.50.40.30.20.10.0
Cluster 5 || - -
Cluster 6 || - -
Cluster 7 || MAGT1 1.0 0.9 0.8
ASF1A 0.4 0.30.20.10.0

Table 12: Interesting Genes of the Weighted Clusters of MCF7
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Figure 70: Gene Profile of Interesting Genes for Cluster 7 of Weighted for MCF7

Pathways Mean p-value
cellular amino acid metabolic process 0.0005
Cluster 1 || peptide metabolic process 0.0001
glutathione metabolic process 0.0001
skeletal muscle tissue development 0.0062
Cluster 2 || myotube differentiation 0.0190
Cluster 3 || cholesterol biosynthetic process 0.0000
Cluster 4 || sterol biosynthetic process 0.0000
regulation of ATPase activity 0.0029
regulation of mitochondrion organization 0.0052
Cluster 5 || ER to Golgi vesicle-mediated transport 0.0004
regulation of release of cytochrome ¢ from mitochondria 0.0085
pigmentation 0.0081
Cluster 6 || inner ear morphogenesis 0.0029
sensory perception of mechanical stimulus 0.0011
Cluster 7 || - ,

Table 13: P-values of the Shared Top 3 Pathways for the Weighted Clusters for MCF7
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9.4 Inhousel Data

Clustering on Separate Sources

9.4.1

—

eopdo
|: 2opda

arpdo
agpdo
spdo
epdo
epdo

L |

oipdo
E epdo

0zpdo
aipdo
sipdo
61pdo
oo

|— apdo

eipdo

ubeH

68

Figure 71: The Dendogram based on Fingerprints for Inhousel
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The Dendogram based on Bio-assays for Inhousel

Figure 72
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Figure 73: Heatmap of Inhousel: Fingerprints vs Bio-assays



9.4.2 Integrated Clustering

Figure 74: Comparison for CECa over the Weights
for 25 Iterations for Inhousel

Figure 75: Comparison for CECb over the Weights

for Inhousel

Figure 76: Comparison for CECc over the Weights for 25 Iterations for Inhousel
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Figure 77: Comparison for Weighted Clustering over Figure 78: Comparison for Weighted Clustering over
the Weights for Inhousel vs FP the Weights for Inhousel vs B

CECa25

- || ||| | ||| | |

CECc25 —

SNFa20 —

SNFb20 — 0.64

SNFc20 —

Weighted

Figure 79: Comparison of CEC, SNF and Weighted for Inhousel
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Figure 81: The FEwvolution of Cluster 6 of FP over
CECa for Inhousel - Mazimum Number of Com-
pounds

Figure 80: The FEwvolution of Cluster 6 of FP over
CECa for Inhousel
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Figure 83: The FEwvolution of Cluster 6 of FP over
CECH for Inhousel - Mazximum Number of Com-
pounds

Figure 82: The FEwolution of Cluster 6 of FP over
CECY for Inhousel
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—s— Maximum of compounds of original cluster together
>
O Cluster number —— Number of clusters original cluster divided amongst
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Figure 85: The FEwvolution of Cluster 6 of FP over
CECc for Inhousel - Maximum Number of Com-
pounds

Figure 84: The FEwolution of Cluster 6 of FP over
CECc for Inhousel
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Genes

Significant For

Genel017 WonM CECb
Gene78 WonM CECb By
Cluster 1 Genel032 WonM CECb
Genel05 WonM CECb
Gene383 WonM CECb
Gene275 FP SNFa Weighted B
GenelT72 FP SNFa Weighted B
Gene669 FP SNFa Weighted B CECag
Cluster 2 || Geneb14 FP SNFa
Gene887 FP SNFa
Gene933 Weighted B CECag
Gene695 Weighted B
Gened95  WonM CECb Weighted CECcqy SNFcy CECayy SNFaj; SNEDbqq
Gene217  WonM CECb Weighted CECcqy SNFcy CECaj; SNFaj; SNEbqy
Cluster 3 Gene725 WonM CECb CECcy CECaj; SNFaj; SNEFbq
Gene975  WonM CECb Weighted CECcy SNFcy CECayy SNFaj; SNFEDbqg
Geneb08 WonM CECb CECcy CECaj; SNFa;; SNEbq;
Genel73 SNFa SNFb Weighted B CECcs
Genel20 SNFa SNFb Weighted B CECcj;
Cluster 4 Genel009 SNFa SNFb Weighted B CECcj;
Gene934 SNFa SNEFb Weighted
Gene411 SNFa SNFb Weighted
Cluster 5 || - -
Gened94 FP CECa SNFa SNFbg SNFcg
Gene424 CECa SNFa
Cluster 6 || Gene954 CECa SNFa
Genel53 CECa SNFa SNFbg SNFcg
Genel40 CECa SNFa SNFEbg SNFcg
Cluster 7 || - ;
Gene768 FP SNFa
Gene357 FP SNFa
Geneb86 FP SNFa
Cluster 8
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Gene4 FP SNFa
Gene642 FP SNFa
Gene382 SNFb SNFc
Geneb40 SNFb SNFc
Cluster 9 || - -
Cluster 10 || - .
Cluster 11 || - .
Cluster 12 || - -
Cluster 13 || - .

Table 16: Interesting for the Clusters over all Methods for Inhousel
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Genes

Significant For

Genel002 1.0 0.9
Geneb28 1.0 0.9
Cluster 1 Genedb57 1.0 0.9
Genebsh8 1.0 0.9
Gene699 1.0 0.9
Gene275 All but 0.5
Genel72 All
Gene669 1.0 0.9 0.8 0.50.4 0.3 0.2 0.1 0.0
Geneb514 1.00.90.8
Cluster 2 || Gene887 1.0 0.9 0.8
Gene933 0.70.6 0.50.4 0.3 0.2 0.10.0
Gene418 0.70.6
Genel009 0.6
Gene695 0.50.40.30.20.10.0
Geneb24 0.7 0.8
Gene&29 0.7 0.8¢
Gene495 0.7 0.8¢
Gene203 0.7 0.8
Gene704 0.7 0.8¢
Gene395 0.6 0.5 0.4 0.94 0.8;1 0.7;1
Cluster 3
Gene217 0.6 0.50.4 0.94 0.8;1 0.7;1
Gene725 0.6 0.94 0.8;1 0.7¢1
Gene97b 0.6 0.5 0.4 0.94 0.8;1 0.7;1
Geneb08 0.6 0.94 0.8;1
Genel30 0.504
Gene783 0.5 0.4
Genel73 0.70.6 0.50.4 0.30.20.10.0
Genel20 0.70.6 0.50.4 0.3 0.2 0.1 0.0
Genel009 0.6 0.50.4 0.3 0.20.10.0
Cluster / Gene934 0.6 0.5
Gened11 0.6 0.5
Gene78 0.40.30.20.10.0
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Gene309 0.40.30.20.10.0
Genel022 0.6 0.3 0.7 0.5¢
Genel84 0.6 0.3 0.7 0.5¢
Cluster 5 Gene3b2 0.6 0.3 0.7¢ 0.5¢
Gene644 0.6 0.3 0.7 0.5¢
Gene659 0.6 0.3
Gened94 1.0 0.9
Cluster 6
Genelbl 0.7 0.5
Cluster 7 || - -
Gene768 1.0 0.9
Gene3bs7 1.0 0.9
Cluster 8
Geneb86 1.0 0.9
Gened 1.0 0.9
Cluster 9 || - -
Cluster 10 || - .
Cluster 11 || - .

Table 18: Interesting Genes of the Weighted Clusters of Inhousel
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Methods
Fingerprints CECag 5 SNFb Weightedys; CECa;g_¢7 CECbyy CECcpg
CECDbi 9-0s CECagg SNFc  Weighted~
CECcy 3 SNFa CECcy 1
Weighted g CECcy o
Compounds
1 Cpd29 Cpd29 Cpd29 Cpd29 Cpd29 Cpd29 Cpd29
2 Cpd39 Cpd39 Cpd39 Cpd39 Cpd39 Cpd39 Cpd39
3 Cpd45 Cpd45s Cpd45s Cpd45 Cpd36 Cpd45 Cpd45
4 Cpd36 Cpd36 Cpd36 Cpd92 Cpd46 Cpd46 Cpd36
5 Cpd46 Cpd46 Cpd46 Cpd93 Cpd92 Cpd92 Cpd46
6 Cpd92 Cpd92 Cpd92 Cpd30 Cpd93 Cpd9a3 Cpd28
7 Cpd93 Cpd93 Cpd93 Cpd28 Cpd40 Cpd82 Cpd42
8 Cpd40 Cpd21 Cpd49 Cpd48 Cpd40 Cpd40
9 Cpd48 Cpd40 Cpd49 Cpd49 Cpd48
10 Cpd49 Cpd49 Cpd82 Cpd49
11 Cpd35
12 Cpd95
13 Cpd65
14 Cpd94
Genes
1 Gened94 Gene494 Gene494 Genel022 Gene494 Gene644  Gened24
2 - Gened24 Gene382 Genel84 Gened24 Genel022 Genel022
3 - Gene954 Genel53 Gene644 Gene9h4 Genel84  Genel84
4 - Genelb3 Genel40 Gene3db2 Genelb3 Gened44  Gene3db2
5 - Genel40 Geneb40 Genelbl Gene644 Gened494  Gene883

Table 20: Top 5 of significant genes at 0.05 significance level - Cluster 6 of FP - Inhousel Data
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Figure 101: Gene Profile of Interesting Gene for Clus-
ter 6 of FP, CECby.9—0¢ and CECcy3 - Inhousel

1.0
1.0

0.5
1

= Gene494
= Gene424
= Gene954

0.0
1

a I — Gene494
| = Gene382
- | — Genel53
i \-[ = Genel40
— Genel53 ’“‘ 7 | //D ] | Gene540
Gene140 | |
e ST LT 1\ O T
= ca A sezaihe— ) | v 9

Gene Expression
0.5
1
o
= e ———
'l‘c
i
Gene Expression

0.0
|
chﬂ‘ ‘|‘ i
5
<
i
g
=<l
—
Ve
=

-0.5
L
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Figure 103: Gene Profile of Top 5 of Interesting
Genes for Cluster 6 of SNFb and SNFc - Inhousel
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9.5 Functions

For this thesis project, a function was written for each of the methods mentioned in the methodology in order to facilitate and
speed up the analysis. In what follows, every function is explained separately, however the functions are also combined into an
Ultimate function in which the user can select one or more methods to be applied to its data set. The functions were designed
such that these can be used for a continuation of the research and potential expansion of their use. All functions were written

in R version 3.1.0.
Required packages
For the functions to work properly, the following packages available in CRAN or Bioconductor should be installed: cluster, ade,

samr, a4, MLP, org.Hs.eq.db, plyr, limma, ggplot2, gplots, lattice, SNFtool, plotriz.

Since the help files are those of the package, from this point onwards, the number of the pages is reset.
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Package ‘IntClust’

September 6, 2014

Type Package

Title Integrative Data Analysis via Clustering

Version 1.0

Date 2014-08-31

Author Marijke Van Moerbeke

Maintainer Marijke Van Moerbeke <vanmoerbeke.marijke@gmail.com>

Description The package contains several integrative data methods to be applied with cluster-
ing. For now, only agglomerative hierarchical clustering is implemented. Visualization func-
tions are available to visualize and compare results of the different methods.

License GPL4

R topics documented:

IntClust-package . . . . . . . . . . . . e 2
ADCIuSt . . . . . . e e e 3
ADECa . . . . . . e e 3
ADECD . . . . . e e e e 4
ADECc . . . . e e e e 5
bioassayMat . . . . . .. e 5
CECa . . . . . e 6
CECb . . . . e 7
CECC . . . e e e 7
CIUSter . . . . . . e e e e e e e e 8
ClusterCols . . . . . . . . e e e e e e e e 9
ClusterDistribution . . . . . . . . . . . . e 10
Clusterplot. . . . . . . . . e 11
Colorpalette . . . . . . . . . . e e 11
ColorsNames . . . . . . . . ot e e e e e e e e e e 12
ComparePlot . . . . . . . . e e 13
DiffGenes . . . . . . . . . e e e 14
DiffGenes.2 . . . . . . . .. e 15
DiffGenesSelection . . . . . . . . . . . ... e 15
distanceheatmaps . . . . . . . .. L. e 16
FindCluster . . . . . . . . . e e e e e e e 17
FindGenes . . . . . . . . . . . e 17



2 IntClust-package
fingerprintMatl . . . . . .. 18
fingerprintMat2 . . . . . .. L 18
Genelnfo . . . . . . e 19
geneMatl . . . . L e e 19
geneMat2 . ... L L e e e e e 19
Genesetantersect . . . . . . ... u e e e e e e 20
Geneset.intersectSelection . . . . . . . ... oL 20
GS . e 21
HeatmapCols . . . . . . . . . e 21
LabelCols . . . . . . . . o e 22
Labelplot . . . . . . 23
MatrixFunction . . . . . . . ... e 23
my_palettel . . . . .. e 24
my_palettela . . . . . ... e 25
my_palette2 . . . . ... e e e e e e e 25
my_palette3 . . . . ... 25
my_palette3a . . . . . ... e 26
my_paletted . . . . ... e 26
Pathways . . . . . . e e 26
Pathways.2 . . . . . . e e 28
Pathwayslter. . . . . . . . . o e 28
PathwayslterSelection . . . . . . . .. . ... L 29
PathwaysSelection . . . . . . .. ... L 30
ProfilePlot . . . . . . . . e 32
ProfilePlotAll . . . . . . . . e 33
Shared . . . . . . . L 33
SharedComps . . . . . . . . . . e 34
SharedLimma . . . . . . . . . oL e 35
SharedMLP . . . . . . . .. e 35
SharedSelection . . . . . . . . . . . L 36
SharedSelectionLimma . . . . . . . . . . .. L 36
SimilarityMeasure . . . . . . . . . ... e 37
SNFa . . . 37
SNEb . . e 38
SNEC . . 39
targetMat . . . ... e e e 39
Ultimate . . . . . . . . 40
WeightedClust . . . . . . . . . .. e 41
WonM . . . e 42

Index 43

IntClust-package Integrative Data Analysis via Clustering

Description

The package contains several integrative data methods to be applied with clustering. For now,
only agglomerative hierarchical clustering is implemented. Visualization functions are available to
visualize and compare results of the different methods.



ADClust 3

Author(s)

Marijke Van Moerbeke
Maintainer: <vanmoerbeke.marijke@gmail.com>

ADClust Aggregated Data Clustering

Description

In order to perform aggregated data clustering, the ADClust function was written. The function
requires as input a list of data matrices of the same type which are combined into a single (larger)
matrix. Hierarchical clustering is performed with the agnes function and ward link on the resulting
data matrix and an applicable distance measure is indicated by the user.

Usage

ADClust(List, distmeasure = "tanimoto”, clust = "agnes”, linkage = "ward")
Arguments

List A list of data matrices containing the data. It is assumed the rows are corre-

sponding with the objects.

distmeasure Choice of metric for the dissimilarity matrix.

clust Choice of clustering function. Defaults to agnes.

linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of ADClust is a list with 3 elements. The first element AllData is the combined data
matrix of all the data sources. The second element DistM is the distance matrix computed from
the combined data matrix with the provided distance measure. The final element is the Clust el-
ement and contains the resulting clustering. This is the element that will be of interest to further
applications.

ADECa Aggregated Data Clustering - version a

Description

Function ADECa performs aggregated data ensemble clustering in which in every iteration the num-
ber of random samples taken is randomly set between m/2 and m-1 with m the total number of
features. Unless the number of features is prespecified by the user.

Usage

ADECa(List, distmeasure = "tanimoto”, t = 10, r = NULL, nclusters = NULL, clust = "agnes”,
linkage = "ward")



4 ADECbD

Arguments
List A list of data matrices of the same type. It is assumed the rows are corresponding
with the objects.
distmeasure The distance measure to be used on the fused data matrix.
t The number of iterations.
r Optional. The number of features to take for the random sample.
nclusters The number of clusters to cut the dendrogram in.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output is a list with 3 elements. The first element AllData is the fused data matrix of the
provided data sources. The second element S is the resulting co-association matrix and the final
element Clust is the result of performing hierarchical clustering on S.

ADECb Aggregated Data Clustering - version b

Description

Function ADECb performs aggregated data ensemble clustering in which in every iteration the total
number of features are used in the clustering procedure. However, the function is capable of cutting
the resulting dendrogram several times, each time into a different number of cluster.

Usage

ADECb(List,distmeasure="tanimoto"”,nclusters=seq(5,25,1),clust="agnes",
linkage="ward")

Arguments
List A list of data matrices of the same type. It is assumed the rows are corresponding
with the objects.
distmeasure The distance measure to be used on the fused data matrix.
nclusters A sequence of the number of clusters to cut the dendrogram in.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output is a list with 3 elements. The first element AllData is the fused data matrix of the
provided data sources. The second element S is the resulting co-association matrix and the final
element Clust is the result of performing hierarchical clustering on S.



ADECc 5

ADECc Aggregated Data Clustering - version ¢

Description

Function ADECc performs aggregated data ensemble clustering in which in every iteration the num-
ber of random samples taken is randomly set between m/2 and m-1 with m the total number of
features. Unless the number of features is fixed beforehand by the user. Further, each resulting
dendrogram can be cut numerous times into a different specific number of clusters.

Usage

ADECc=function(List,distmeasure="tanimoto",t=10,r=NULL,nclusters=NULL,clust="agnes",
linkage="ward")

Arguments
List A list of data matrices of the same type. It is assumed the rows are corresponding
with the objects.
distmeasure The distance measure to be used on the fused data matrix.
t The number of iterations.
r Optional. The number of features to take for the random sample.
nclusters A sequence of the number of clusters to cut the dendrogram in.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output is a list with 3 elements. The first element AllData is the fused data matrix of the
provided data sources. The second element S is the resulting co-association matrix and the final
element Clust is the result of performing hierarchical clustering on S.

bioassayMat Bio-assays score of the Inhousel data.

Description

Bio-assays score of the Inhousel data for 13 variables.

Usage

data(bioassayMat)

Format

The format is: num [1:13, 1:94]57.3457.355 5.6 5.73 6 8.15 8.07 ... - attr(*, "dimnames")=List
of 2 .$ : chr [1:13] "biol" "bio2" "bio3" "bio4" ... .. $ : chr [1:94] "Cpd1" "Cpd2" "Cpd3" "Cpd4"
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CECa Complementary Ensemble Clustering - version a

Description
Function CECa performs complementary ensemble clustering in which in every iteration the number

of random samples taken is randomly set between m/2 and m-1 with m the total number of features.
Unless the number of features is prespecified by the user.

Usage

CECa(List, distmeasure = c("tanimoto”, "tanimoto”), t = 10, r = NULL, nclusters = NULL,
weight = NULL, clust = "agnes”, linkage = "ward”, Clustweight = 0.5)

Arguments

List A list of the data matrices. It is assumed the rows are corresponding with the
objects.

distmeasure A vector of the distance measures to be used on each data matrix.

t The number of iterations.

r Optional. A vector of The number of features to take for each data set.

nclusters Vector of the number of clusters to cut the dendrogram in of each data source.

weight Optional. A specific weight to give to the first co-association matrix. If NULL,
the weight is sequence from O to 1 and a result is produced for each.

clust Choice of clustering function. Defaults to agnes.

linkage Choice of inter group dissimilarity. Defaults to Ward link.

Clustweight A weight for which the result will be put aside of the other results. This was
done for comparative reason and easy access.

Value

The output is a list with 4 elements. The first element Incidence contains the summed incidence
matrices for each data source. The second element is IncidenceComb and contains the result-
ing co-association matrix after a weighted addition of the matrices in Incidence for each specified
weight. Results is the third element and consists of the resulting hierarchical clustering of each
co-association matrix given in IncidenceComb. The final element Clust is the result of CEC for the
weight specified in Clustweight.
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CECb Complementary Ensemble Clustering - version b

Description

Function CECb performs complementary ensemble clustering in which in every iteration the total
number of features are used in the clustering procedure. However, the function is capable of cutting
the resulting dendrogram several times, each time into a different number of cluster.

Usage

CECb(List, distmeasure = c("tanimoto”, "tanimoto”), nclusters=seq(5,25,1), weight = NULL,
clust = "agnes"”, linkage = "ward”, Clustweight = 0.5)

Arguments

List A list of the data matrices. It is assumed the rows are corresponding with the
objects.

distmeasure A vector of the distance measures to be used on each data matrix.

nclusters Sequence of the number of clusters to cut the dendrogram.

weight Optional. A specific weight to give to the first co-association matrix. If NULL,
the weight is sequence from O to 1 and a result is produced for each.

clust Choice of clustering function. Defaults to agnes.

linkage Choice of inter group dissimilarity. Defaults to Ward link.

Clustweight A weight for which the result will be put aside of the other results. This was
done for comparative reason and easy access.

Value

The output is a list with 4 elements. The first element Incidence contains the summed incidence
matrices for each data source. The second element is IncidenceComb and contains the result-
ing co-association matrix after a weighted addition of the matrices in Incidence for each specified
weight. Results is the third element and consists of the resulting hierarchical clustering of each
co-association matrix given in IncidenceComb. The final element Clust is the result of CEC for the
weight specified in Clustweight.

CECc Complementary Ensemble Clustering - version ¢

Description

Function CECc performs complementary ensemble clustering in which in every iteration the number
of random samples taken is randomly set between m/2 and m-1 with m the total number of features.
Unless the number of features is fixed beforehand by the user. Further, each resulting dendrogram
can be cut numerous times into a different specific number of clusters.
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Usage

CECc(List, distmeasure = c("tanimoto"”, "tanimoto"), t = 1@, r = NULL, nclusters = NULL,
weight = NULL, clust = "agnes”, linkage = "ward”, Clustweight = 0.5)

Arguments

List A list of the data matrices. It is assumed the rows are corresponding with the
objects.

distmeasure A vector of the distance measures to be used on each data matrix.

t The number of iterations.

r Optional. A vector of The number of features to take for each data set.

nclusters Sequence of the number of clusters to cut the dendrogram in.

weight Optional. A specific weight to give to the first co-association matrix. If NULL,
the weight is sequence from O to 1 and a result is produced for each.

clust Choice of clustering function. Defaults to agnes.

linkage Choice of inter group dissimilarity. Defaults to Ward link.

Clustweight A weight for which the result will be put aside of the other results. This was
done for comparative reason and easy access.

Value

The output is a list with 4 elements. The first element Incidence contains the summed incidence
matrices for each data source. The second element is IncidenceComb and contains the result-
ing co-association matrix after a weighted addition of the matrices in Incidence for each specified
weight. Results is the third element and consists of the resulting hierarchical clustering of each
co-association matrix given in IncidenceComb. The final element Clust is the result of CEC for the
weight specified in Clustweight.

Cluster Clustering on a single source

Description

The function Cluster was written to perform clustering on a single source of information, i.e one
data matrix. For now, the only option is to carry out agglomerative hierarchical clustering with
the ward link as it was implemented in the agnes function in the cluster library of R. The option
is available to compute the gap statistic to determine the optimal number of clusters. The gap
statistic is determined by the criteria described by the cluster package: firstSEmax, globalSEmax,
firstmax,globalmax, Tibs2001SEmax. The number of iterations is set to a default of 500. The
implemented distances to be used for the dissimilarity matrix are jaccard, tanimoto and euclidean.
The jaccard distances were computed with the dist.binary(...,method=1) function in the ade4
package and the euclidean ones with the daisy function in again the cluster package. The Tanimoto
distances were implemented manually following the formula in the methodology.

Usage

Cluster(Data, distmeasure = "tanimoto"”, clust = "agnes”, linkage = "ward", gap = TRUE,
maxK = 50)
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Arguments
Data A matrix containing the data. It is assumed the rows are corresponding with the
objects.
distmeasure Choice of metric for the dissimilarity matrix.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
gap Logical. Indicator if gap statistics should be computed. Setting to SFALSES$
will greatly reduce the computation time.
maxK The maximum number of clusters to be considered during the gap.
Value

The output will be a list with $2$ components. The first element DistM is the distance matrix to be
used as input for the clustering function. This is provided if another clustering technique is preferred
to the agnes clustering. The second element Clust contains the output from the agnes function and
thus the resulting clustering. If the gap option was indicated to be true, another 3 elements are
joined to the list. Clust\_gap contains the output from the function to compute the gap statistics and
gapdata is a subset of this output. Both can be used to make plots to visualize the gap statistic. The
final component is k which is a matrix containing the optimal number of cluster determined by each
criterion mentioned earlier.

ClusterCols Internal Function of Clusterplot

Description

The ClusterCols function is capable of coloring the leaves of a dendrogram of one method with
the colors (and thus cluster) the compounds had in the clustering of another method. This helps
to see how compounds have changed clusters between these two methods. Given a dendrogram
to color of method 1 and the resulting clustering of method 2 (the output of an agnes function),
each leaf (compound) will be given the color of the cluster it belongs to in method 2. If groups of
compounds with the same color appear in the dendrogram, this implies that the clustering of these
is similar to the original clustering. If method 1 and method 2 are the same, the dendrogram is just
colored by cluster.

Usage

ClusterCols(x, Data, nclusters = 7, cols = my_palette2)

Arguments
X The dendrogram of method 1 to be colored
Data The output of an agnes function, i.e. the resulting clustering of method 2 on
which the colors should be based.
nclusters The number of clusters to cut the dendrogram in.
cols The colors for the clusters.
Value

A dendrogram of method 1 with colored leaves of which the colors are determined by method 2.
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ClusterDistribution

ClusterDistribution Distribution of a Cluster over Methods

Description

It is often desired to track a specific selection of object over the different methods and/or weights.
This can be done with the ClusterDistribution. For every method, it is tracked where the objects
of the selections are situated. This provided with extra information as which compounds of the
original selection can be found in this cluster and which are extra. Further, plots of the distribution
of the compounds can be produced. One plot follows the complete distribution of the cluster while
another one focuses on either the maximum number of compounds or a specific cluster whatever
is specified. It are the number of compounds that are plotted. A table can be produced as well,
that separates the objects that are shared over all methods from those extra in the original selection
and extra for the other methods. The MatrixFunction is applied to make sure that the clusters are
comparable over the methods.

Usage

ClusterDistribution(List, Selection, nrclusters, followMaxComps = FALSE,

Arguments

List

Selection
nrclusters
followMaxComps
followClust
fusionsLog
WeightClust
names

reverse

Plot

Table

CompletePlot

cols

followClust = TRUE, fusionsLog = TRUE, WeightClust = TRUE,
names = NULL, reverse = FALSE, Plot = TRUE, Table = TRUE,
CompletePlot = FALSE, cols)

A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

The selection of objects to follow.

The number of clusters to cut the dendrogram in.

Logical for plot. Whether to follow the maximum of objects.
Logical for plot. Whether to follow the specific cluster.

To be handed to MatrixFunction.

To be handed to MatrixFunction.

Optional. Names of the methods.

Logical. Should the last element of the List be used as reference? Mostly to be
used for CEC or weighted clustering.

Logical. Should a plot be produced. Depending on followMaxComps and fol-
lowClust it focuses on the maximum of compounds or a cluster.

Logical. Should a table with the compounds per method and the shared com-
pounds be produced?

Logical. Should the complete distribution of the selection be plotted?

The colors used for the different clusters.
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Value

The output is a list with an element for every method. This element contains the selection, the
number of clusters the selection is divided over, the minimum and maximum number of compounds
found together and per found cluster also information n which of the selection it contain and which
are extra to this cluster. Depending on whether followMaxComps or followClust is specified, the
cluster of interest is mentioned separately as well for easy access. If the option was specified to
create a table, this can be found under the “Table" element. Each plot that was specified to be
created is plotted in a new window in the graphics console.

Clusterplot Color the Leaves of a Dendrogram

Description

The above described function ClusterCols is used in the function Clusterplot which actually
plots the dendrogram made by ClusterCols. Further, given the outputs of any other functions, it is
capable of selection the elements needed for ClusterCols.

Usage
Clusterplot(Datal, Data2, nclusters = 7, cols = my_palette2, ...)
Arguments
Datal The resulting list method 1 which contains the dendrogram to be colored.
Data?2 The resulting list method 2 , i.e. the resulting clustering on which the colors
should be based.
nclusters The number of clusters to cut the dendrogram in.
cols The colors for the clusters.
Other options which can be given to the plot function.
Value

A plot of the dendrogram of method 1 with colored leaves of which the colors are determined by
method 2.

Colorpalette Colorpalette

Description

In order to facilitate the influence of the different methods on the clustering of the compounds colors
can be used. The function Colorpalette is able to pick out as many colors as there are clusters.
This is done with the help of the colorRampPalette function of the grDevices package

Usage

Colorpalette(colors = c("red”, "green"), ncols = 5)
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Arguments
colors A vector containing the colors of choice.
ncols The number of colors to be specified. If higher than the number of colors, it
specifies ncols in the region between the colors.
Value

A vector containing the hex codes of the chosen colors.

Note

The function cutree is often used to cut the dendrogram into a specific number of clusters. This
function numbers the clusters in the order of the names of the compounds in the data and not in
the ordering in which clusters are formed. Therefore, the ordering of the colors does not agree
to the ordering of the cluster. To make sure that the color number corresponds to the cluster
number, the numbering of the colors was adapted in the visualization functions ClusterCols and
distanceheatmaps.

ColorsNames Internal function of ComparePlot

Description

The ColorsNames function is used on the output of the MatrixFunction and matches the cluster
numbers indicated by the cell with the names of the colors. This is necessary to produce the plot of
the ComparePlot function.

Usage

ColorsNames(MatrixColors, cols = my_palette2)

Arguments

MatrixColors A matrix which is the output of the MatrixFunction function.

cols The hex codes of the colors to be used.

Value

A vector containing the hex code of the color that corresponds to each cell of the matrix. This
function is called upon by the ComparePlot function.
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ComparePlot Comparison of Clustering Results over Multiple Methods

Description

A visual comparison of all methods is handy to see which compounds will always cluster together
independent of the applied methods. To this aid the function ComparePlot has been written.

Usage
ComparePlot(List, nclusters = 7, cols = my_palette2, fusionsLog = FALSE, WeightClust = FALSE,
names = NULL, reverse = FALSE, margins = c(8.1, 3.1, 3.1, 4.1), ...)
Arguments
List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.
nclusters The number of clusters to cut the dendrogram in.
cols The hex codes of the colors to be used.
fusionsLog To be handed to MatrixFunction.
WeightClust To be handed to MatrixFunction.
names Optional. Names of the methods to be used as labels for the columns.
reverse Logical. Should the last element of the List be used as reference? Mostly to be
used for CEC or weighted clustering.
margins Optional. Margins to be used for the plot.
Details

This functions makes use of the functions MatrixFunction and Colorsnames. Given a list with the
outputs of several methods, the first step is to call upon MatrixFunction and to produce a matrix of
which the columns are ordered according to the ordering of the objects of the first method in the list.
Each cell represent the number of the cluster the object belongs to for a specific method indicated
by the rows. The clusters are arranged in such a way that these correspond to that one cluster of
the referenced method that they have the most in common with. The function color2D.matplot
produces a plot of this matrix but needs a vector indicating the names of the colors to be used. This
is where ColorsNames comes in. A vector of the color names of the output of the MatrixFunction
is created and handed to color2D.matplot. It is optional to adjust the margins of the plot and to
give a vector with the names of the methods which will be used as labels for the rows in the plot.
The labels for the columns are the names of the object in the order of clustering of the referenced
method. Further, the similarity measures of the methods compared to the reference will be computed
and shown on the right side of the plot.

Value

A plot which translates the matrix output of the function MatrixFunction in which the columns
represent the objects in the ordering the referenced method and the rows the outputs of the given
methods. Each cluster is given a distinct color. This way it can be easily observed which objects
will cluster together. The labels on the right side of the plot are the similarity measures computed
by SimilarityMeasure.
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DiffGenes Differential Gene Expression

Description

It was decided to use the limma method to find possible genes of interest. The function DiffGenes
will, given the output of a certain method, look for genes that are differentially expressed for each
cluster by applying the limma function to that cluster and compare it to all other clusters simul-
taneously. If a list of outputs of several methods is provided, DiffGenes will perform the limma
function for each method. The function rearranges the clusters of the methods to a reference method
such that a comparison is made easier. Given a list of methods, it calls upon MatrixFunction to
rearrange the number of clusters according to the first element of the list which will be used as the
reference.

Usage

DiffGenes(List, GeneExpr = geneMat, nclusters = 7, method = "limma"”, sign = 0.05,
top = NULL, fusionsLog = TRUE, WeightClust = TRUE, names = NULL)

Arguments

List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

GeneExpr The gene expression matrix of the objects.

nclusters he number of clusters to cut the dendrogram in.

method The method to applied to look for DE genes. For now, only the limma method
is available

sign The significance level to be handled.

top Overrules sign. The number of top genes to be shown.

fusionsLog To be handed to MatrixFunction.

WeightClust To be handed to MatrixFunction.

names Optional. Names of the methods.

Value

The output is a list in which there is element for each method. Per method, there is a list per cluster
and this contains another list of length 2. The first element Compounds contains the objects in said
cluster and the second element Genes the genes that are differentially expressed according to the
specified significance level or a specific number of genes specified with top.
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DiffGenes.?2 DiffGenes.2

Description

Internal function of DiffGenes if only 1 method is specified

Usage
DiffGenes.2(Data, GeneExpr = geneMat, nclusters = 7, method = "limma”, sign = 0.05,
top = NULL)
Arguments
Data Data
GeneExpr The gene expression matrix of the objects.
nclusters he number of clusters to cut the dendrogram in.
method The method to applied to look for DE genes. For now, only the limma method
is available
sign The significance level to be handled.
top Overrules sign. The number of top genes to be shown.
Value

The significant genes per cluster for the method.

DiffGenesSelection Differential Gene Expression for a Selection

Description

The function DiffGenesSelection performs the same procedure as DiffGenes but only for a
specific selection of compounds and only for the cluster that contains the maximum number of
compounds of the selection.

Usage

DiffGenesSelection(List, Selection, GeneExpr = geneMat, nclusters = 7, method = "limma”,
sign = 0.05, top = NULL, fusionsLog = TRUE, WeightClust = TRUE,
names = NULL)
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Arguments

List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

Selection The selection of objects to follow.

GeneExpr The gene expression matrix of the objects.

nclusters he number of clusters to cut the dendrogram in.

method The method to applied to look for DE genes. For now, only the limma method
is available

sign The significance level to be handled.

top Overrules sign. The number of top genes to be shown.

fusionsLog To be handed to MatrixFunction.

WeightClust To be handed to MatrixFunction.

names Optional. Names of the methods.

Value

The output is a list in which there is element for each method. Per method, there is only the cluster
that contains the maximum number of compounds and this contains another list of length 2. The first
element Compounds contains the objects in said cluster and the second element Genes the genes
that are differentially expressed according to the specified significance level or a specific number of
genes specified with top.

distanceheatmaps Internal function of HeatmapCols

Description

Another way to compare to methods is via an adaptation of heatmaps. The input of this function is
the resulting clustering (the Clust element of the list) of two methods and can be seen as: method
1 versus method 2. The dendrograms are cut into a specific number of clusters. Each cluster
of method 2 and its members are given a distinct color represented by a number. These are the
clusters to which a comparison is made. A matrix is set up of which the columns are determined
by the ordering of clustering of method 2 and the rows by the ordering of method 1. Every column
represent one object just as every row and every column represent the color of its cluster. A function
visits every cell of the matrix. If the objects represented by the cell are still together in a cluster, the
color of the column is passed to the cell. This creates the distance matrix which can be given to the
HeatmapCols function to create the heatmap.

Usage

distanceheatmaps(Datal, Data2, names, nclusters = 7)

Arguments
Datal The resulting clustering of method 1.
Data2 The resulting clustering of method 2.
names The names of the objects in the data sets.

nclusters The number of clusters to cut the dendrogram in.



FindCluster 17

Value

A matrix indicating whether or not objects are still in the same cluster in method $1$ compared to
method $2$.

FindCluster Finding Clusters

Description

The FindCluster function is helpful in selecting compounds of a specific cluster. After performing
the MatrixFunction, it will return the compounds in the cluster of the selected row.

Usage

FindCluster(List, nclusters, select = c(1, 4), fusionsLog = TRUE, WeightClust = TRUE,
names = NULL)

Arguments
List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.
nclusters The number of clusters to cut the dendrogram in.
select The row and the number of the cluster to select.
fusionsLog Logical indicator for the fusion of clusters.

WeightClust Optional. To be used for the outputs of CEC or WeightedClust. Then only the
result of the Clust element is considered.

names Optional. Names of the methods.

Value

The compounds of the selected cluster.

FindGenes Find significant Genes

Description

Due to the shifting of compounds over the clusters for the different methods. it is possible that the
same gene is found significant for a different cluster in another method. These can be tracked with
the FindGenes function. Per method and per cluster, it will take note of the genes found significant
and investigate if these were also find for another cluster in another method.

Usage

FindGenes(DatalLimma, names = NULL)
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Arguments
DatalLimma Output of the DiffGenes function
names Optional. Names of the methods.
Value

A list with an element per cluster and per cluster one for every gene. Per gene, a vector is given
which contain the methods for which the gene was found. If the cluster is changed compared to the
reference method of DatalLimma, this is indicated with an underscore.

fingerprintMat1 The fingerprints for the MCF7 data.

Description

The 250 fingerprints for the MCF7 data.

Usage

data(fingerprintMati)

Format

The format is: logi [1:56, 1:250] FALSE FALSE FALSE FALSE FALSE FALSE ... - attr(*, "dim-
names'")=List of 2 ..$ : chr [1:56] "metformin" "phenformin" "phenyl biguanide" "estradiol" ... .. $:
chr [1:250] "-2147375257" "-2147119955" "-2146474760" "-2145840573" ...

fingerprintMat2 The fingerprints for the Inhousel data.

Description

The 324 fingerprints for the Inhousel data.

Usage

data(fingerprintMat2)

Format

The format is: logi [1:324, 1:94] FALSE FALSE FALSE FALSE TRUE FALSE ... - attr(*, "dim-
names")=List of 2 ..$ : chr [1:324] "FP1" "FP2" "FP3" "FP4" ... .. $ : chr [1:94] "Cpd1" "Cpd2"
"Cpd3" "Cpd4" ...
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GeneInfo Gene info

Description

The entrezldentifiers of the used genes in MCF7.

Usage
data(GeneInfo)

Format

The format is: chr [1:2434, 1:3] "10001" "100129361" "10015" "100188893" ... - attr(*, "dim-
names'")=List of 2 ..$ : chr [1:2434] "1" "2" "3" "4" ... .. $ : chr [1:3] "ENTREZID" "SYMBOL"
"GENENAME"

geneMat1 The gene expression for MCF7

Description

The gene expression of 2434 genes for MCF7

Usage
data(geneMat1)

Format

The format is: num [1:2434, 1:56] -0.0772 -0.0698 -0.055 -0.0498 -0.0597 ... - attr(*, "dim-
names'")=List of 2 ..$ : chr [1:2434] "MED6" "LOC100129361" "PDCD6IP" "TOMM6" ... .. $:
chr [1:56] "metformin" "phenformin" "phenyl biguanide" "estradiol" ...

"non "non

geneMat2 The gene expression for Inhousel

Description

The gene expression of 1056 genes for Inhousel.

Usage

data(geneMat2)

Format

The format is: num [1:1056, 1:94] 10.03 4.81 7.76 5.45 7.31 ... - attr(*, "dimnames")=List of 2 ..$ :
chr [1:1056] "Genel" "Gene2" "Gene3" "Gene4" ... .. $ : chr [1:94] "Cpd1" "Cpd2" "Cpd3" "Cpd4"
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Geneset.intersect Intersection over resulting gene sets of Pathwayslter

Description

The function Geneset.intersect puts per method the results of the PathwaysIter function to-
gether for each cluster and takes the intersection over the iterations per cluster per method. This is
to see if over the different resamplings of the data, similar pathways were discovered.

Usage

Geneset.intersect(list.output, sign, names = NULL, seperatetables = FALSE,
separatepvals = FALSE)

Arguments

list.output The output of the PathwaysIter function.
sign The significance level to be handled for cutting of the pathways.
names Optional. Names of the methods.

seperatetables If TRUE, a separate element is created per cluster. containing the pathways for
each iteration.

separatepvals If TRUE, the p-values of the each iteration of each pathway in the intersection
is given. If FALSE, only the mean p-value is provided.

Value

The output is a list with an element per method. For each method, it is portrayed per cluster which
pathways belong to the intersection over all iterations and their corresponding mean p-values.

Geneset.intersectSelection
Intersection over resulting gene sets of PathwayslterSelection

Description

The function Geneset. intersectSelection performs the same procedure as Geneset.intersect
but only for a specific selection of compounds and only for the cluster that contains the maximum
number of compounds of the selection. It works on the output of PathwaysIterSelection.

Usage

Geneset.intersectSelection(list.output, sign, names = NULL, seperatetables = FALSE,
separatepvals = FALSE)
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Arguments

list.output The output of the PathwaysIterSelection function.
sign The significance level to be handled for cutting of the pathways.
names Optional. Names of the methods.

seperatetables If TRUE, a separate element is created per cluster. containing the pathways for
each iteration.

separatepvals If TRUE, the p-values of the each iteration of each pathway in the intersection
is given. If FALSE, only the mean p-value is provided.

Value

The output is a list with an element per method. For each method, it is portrayed for the cluster with
the maximum number of compounds which pathways belong to the intersection over all iterations
and their corresponding mean p-values.

GS GeneSets for the Pathway Analysis of the MCF7 Data

Description

GeneSets for the Pathway Analysis of the MCF7 Data

Usage
data(GS)

Format

The format is: List of 7804 $ GO:0000002: chr [1:17] "291" "1763" "1890" "3980" ...

$ GO:0000723: chr [1:65] "142" "472" "641" "1736" ... [list output truncated] - attr(*, "species")=

chr "Human" - attr(*, "geneSetSource")= chr "GOBP" - attr(*, "descriptions")= Named chr [1:11972]
"mitochondrial genome maintenance" "reproduction” "single strand break repair” "regulation of
DNA recombination” ... .. - attr(*, "names")=chr [1:11972] "GO:0000002" "GO:0000003" "GO:0000012"
"GO0:0000018" ... - attr(*, "class")= chr [1:2] "geneSetMLP" "list"

non non

HeatmapCols Comparing 2 Clustering Results

Description

The HeatmapCols function performs the distanceheatmaps function given the outputs of two
clustering methods and plots the resulting heatmap. The function heatmap.2 is called upon to
make the actual plot of the heatmap. It is noted that for this function the number of colors should
be one more than the number of clusters to color the so calles zero cells in the distance matrix.

Usage

HeatmapCols(Datal, Data2, names = rownames(fingerprintMat), nclusters = 7,
cols = my_palette)
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Arguments
Datal The resulting list of method 1.
Data2 The resulting list of method 2.
names The names of the objects in the data sets.
nclusters The number of clusters to cut the dendrogram in.
cols The colors to be used for the clusters.

Value

A heatmap based on the distance matrix created by distanceheatmaps with the dendrogram of
method 2 on top of the plot and the one from method 1 on the left. The names of the compounds
are depicted on the bottom in the order of clustering of method 2 and on the right by the ordering of
method 1. Vertically the cluster of method 2 can be seen while horizontally those of method 1 are
portrayed.

LabelCols Internal function of Labelplot

Description

Sometimes only one or two particular clusters are of interest if for example these contain an object
of great importance. Then it would be nice not to color all clusters but just the compounds of these
clusters and see where these are now. This can be done with the function LabelCols

Usage

LabelCols(x, Sell, Sel2 = NULL, coll, col2 = NULL)

Arguments
X The dendrogram to be colored.
Sel1l The selection of objects to be colored.
Sel2 An optional second selection to be colored.
coll The color for the first selection.
col?2 The color for the optional second selection.
Value

A dendrogram of which the leaves of the selection(s) are colored.
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Labelplot Coloring Specific Leaves of a Dendrogram

Description

Just as the function ClusterCols, LabelCols as its own plotting function Labelplot which plots
the dendrogram.

Usage
Labelplot(Data, Sell, Sel2 = NULL, coll, col2 = NULL, ...)
Arguments
Data The resulting list of a method which contains the dendrogram to be colored.
Sel1 The selection of objects to be colored.
Sel2 An optional second selection to be colored.
coll The color for the first selection.
col? The color for the optional second selection.
Other options which can be given to the plot function.
Value

A plot of the dendrogram of which the leaves of the selection(s) are colored.

MatrixFunction Rearranging Clusters for Comparison.

Description

When multiple methods are performed on a data set, it is interesting to compare their results. How-
ever, a comparison is not easily done since a different methods leads to a different ordering of the
objects. The MatrixFunction rearranges the cluster to a reference method.

Usage

MatrixFunction(List, nclusters = 7, fusionsLog = FALSE, WeightClust = FALSE,
names = NULL)

Arguments
List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.
nclusters The number of clusters to cut the dendrogram in.
fusionsLog Logical indicator for the fusion of clusters.

WeightClust Optional. To be used for the outputs of CEC or WeightedClust. Then only the
result of the Clust element is considered.

names Optional. Names of the methods.
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Details

It is interesting to compare the results of the methods described in the methodology. All methods
result in a dendrogram which is cut into a specific number of clusters with the cutree function.
This results in an numbering of cluster based on the ordering of the names in the data and not on
the order in which they are grouped into clusters. However, different methods lead to different
clusters and it is possible that cluster $1$ of one method will not be the cluster that has the most in
common with cluster 1 of another method. This makes comparisons rather difficult. Therefore the
MatrixFunction function was written which takes one method as a reference and rearranges the
cluster numbers of the other methods to this reference such that clusters are appointed to that cluster
they have the most in common with. The result of this function is a matrix of which the columns are
in the order of the clustering of the compounds of the referenced method and the rows represent the
methods. Each cell contains the number of the cluster the compound is in for that method compared
to the method used as a reference. This function is applied in the functions SimilarityMeasure,
DiffGenes, Pathways and ComparePlot. It is a possibility that 2 or more clusters are fused together
compared to the reference method. If this is true, the function will alert the user and will ask to put
the parameter fusionsLog to true. Since MatrixFunction is often used as an internal function, also
for visualization, it will print out how many more colors should be specified for those clusters that
did not find a suitable match. This can be due to fusion or complete segregation of its compounds
into other clusters.

Value

A matrix of which the cells indicate to what cluster the compounds belong to according to the
methods.\ The MatrixFunction function was optimized for the situations presented by the data
sets at hand. It is noted that the function might fail in a particular situation which results in a infinite
loop.

my_palettel Colors for the heatmaps of MCF7

Description

Colors for the heatmaps of MCF7

Usage

data(my_palettel)

Format

The format is: chr [1:8] "#8EESEE" "#D2691E" "#EE2C2C" "#EEADOE" "#006400" ...
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my_palettela Colors for the ComparePlot for MCF7

Description

Colors for the ComparePlot for MCF7

Usage

data(my_palettela)

Format

The format is: chr [1:8] "#D2691E" "#EE2C2C" "#EEADOE" "#006400" "#0000EE" ...

my_palette2 Colors for the ComparePlot for MCF7

Description

Colors for the ComparePlot for MCF7

Usage

data(my_palette2)

Format

The format is: chr [1:7] "#D2691E" "#EE2C2C" "#EEADOE" "#006400" "#0000EE" ...

my_palette3 Colors for the heatmaps of Inhousel

Description

Colors for the heatmaps of Inhousel

Usage

data(my_palette3)

Format

The format is: chr [1:11] "#8EESEE" "#D2691E" "#EE2C2C" "#EEADOE" "#006400" ...
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my_palette3a Colors for the ComparePlot for Inhousel

Description

Colors for the ComparePlot for Inhousel

Usage

data(my_palette3a)

Format

The format is: chr [1:13] "#D2691E" "#EE2C2C" "#EEADOE" "#006400" "#0000EE" ...

my_palette4 Colors for the ComparePlot for Inhousel

Description

Colors for the ComparePlot for Inhousel

Usage

data(my_palette4)

Format

The format is: chr [1:10] "#D2691E" "#EE2C2C" "#EEADOE" "#006400" "#0000EE" ...

Pathways Pathway Analysis

Description

Pathway Analysis over the cluster per method.

Usage

Pathways(List, GeneExpr = geneMat, nclusters = 7, method = c("limma”, "MLP"),
ENTREZID = GenelInfo[, 1], geneSetSource = "GOBP", top = NULL,
GENESET = GS, sign = 0.05, fusionsLog = TRUE, WeightClust = TRUE,
names = NULL)
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Arguments
List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.
GeneExpr The gene expression matrix of the objects.
nclusters he number of clusters to cut the dendrogram in.
method The method to applied to look for DE genes. For now, only the limma method
is available
ENTREZID Vector containing the ENTREZID’s of the genes. If not provided, the rownames
of the matrix will be considered.
geneSetSource The source for the getGeneSets function CGOBP’, ’"GOMF’,GOCC’, ’KEGG’
or 'REACTOME").
top Overrules sign. The number of genes to display for each cluster. If not specified,
only the significant genes are shown.
GENESET Optional. Can provide own candidate gene sets.~
sign The significance level to be handled.
fusionsLog To be handed to MatrixFunction.
WeightClust To be handed to MatrixFunction.
names Optional. Names of the methods.
Details

After finding differently expressed genes, it can be investigated whether pathways are related to
those genes. This can be done with the help of the function Pathways which makes use of the MLP
function of the MLP package. Given the output of a method, the cutree function is performed
which results into a specific number of clusters. For each cluster, the limma method is performed
comparing this cluster to the other clusters. This to obtain the necessary p-values of the genes. These
are used as the input for the MLP function to find interesting pathways. By default the candidate gene
sets are determined by the getGeneSets function in the MLP package. The default source will be
GOBP, but this can be altered. Altering the default species of “human"” was not implemented.
Further, it is also possible to provide own candidate gene sets in the form of a list of pathway
categories in which each component contains a vector of Entrez Gene identifiers related to that
particular pathway. The default values for the minimum and maximum number of genes in a gene
set for it to be considered were used. For MLP this is respectively 5 and 100. If a list of outputs
of several methods is provided as data input, the cluster numbers are rearranged according to a
reference method. The first method is taken as the reference and MatrixFunction is applied to get
the correct ordering. When the clusters haven been re-appointed, the pathway analysis as described
above is performed for each cluster of each method.

Value

The output of this function is a list with an element for each method and per method, one for each
cluster. Each element of a cluster has three parts of which the first part Compounds contains the
compounds of the cluster. The second part Genes contains either the significant genes determined
with the parameter sign or a specific number of genes specified with top. The last part Pathways are
the significant pathways found for that cluster. There will be a ranked.genesets.table component in
which one can find a ranked table of all the significant genesets with their corresponding p-values
provided by the MLP output. This table also contains a column with the description of the pathway.
This function is limited to showing the significant pathways but can be altered to show the complete
output of the MLP function.
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Pathways.2 Pathways.2

Description

Internal function of Pathways if only 1 method is specified

Usage

Pathways.2(Data, GeneExpr = geneMat, nclusters = 7, method = c("limma”, "MLP"),
ENTREZID = GenelInfo[, 1], geneSetSource = "GOBP", top = NULL,
GENESET = GS, sign = 0.05)

Arguments
Data Data
GeneExpr The gene expression matrix of the objects.
nclusters he number of clusters to cut the dendrogram in.
method The method to applied to look for DE genes. For now, only the limma method
is available
ENTREZID Vector containing the ENTREZID’s of the genes. If not provided, the rownames

of the matrix will be considered.

geneSetSource The source for the getGeneSets function CGOBP’, ’GOMF’,GOCC’, ’KEGG’
or 'REACTOME’).

top Overrules sign. The number of genes to display for each cluster. If not specified,
only the significant genes are shown.
GENESET Optional. Can provide own candidate gene sets.~
sign The significance level to be handled.
Value

The significant pathways found for each cluster of the method.

PathwaysIter Iteration of Pathway Analysis

Description

The MLP method to perform pathway analysis is based on resampling of the data. Therefore it is
recommended to perform the pathway analysis multiple times to observe how much the results are
influenced by a different resample. The function PathwaysIter performs the pathway analysis as
described in Pathways a specified number of times. The input can be one data set or a list as in
Pathways.
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Usage

PathwaysIter(List, GeneExpr = geneMat, nclusters = 7, method = c("limma”, "MLP"),
ENTREZID = GenelInfol[, 1], geneSetSource = "GOBP", top = NULL,
GENESET = GS, sign = 0.05, niter = 10, fusionsLog = TRUE,
WeightClust = TRUE, names = NULL)

Arguments

List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

GeneExpr The gene expression matrix of the objects.

nclusters he number of clusters to cut the dendrogram in.

method The method to applied to look for DE genes. For now, only the limma method
is available

ENTREZID Vector containing the ENTREZID’s of the genes. If not provided, the rownames
of the matrix will be considered.

geneSetSource The source for the getGeneSets function GOBP’, ’GOMF’,GOCC’, ’KEGG’
or 'REACTOME’).

top Overrules sign. The number of genes to display for each cluster. If not specified,
only the significant genes are shown.

GENESET Optional. Can provide own candidate gene sets.~

sign The significance level to be handled.

niter The number of times to perform pathway analysis.

fusionsLog To be handed to MatrixFunction.

WeightClust To be handed to MatrixFunction.

names Optional. Names of the methods.

Value

The output is a list with an element for each iteration. Per iteration, there is a list for each cluster
of each method containing 3 components. The first component Compounds are the names of the
object belonging to that cluster. The second element Genes are the differentially expressed genes
and the third element Pathways are the pathways to be found significant.

PathwaysIterSelection [Iterations of Pathway Analysis for a Selection.

Description

The function PathwaysIterSelection performs the same procedure as PathwaysIter but only
for a specific selection of compounds and only for the cluster that contains the maximum number
of compounds of the selection.
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PathwaysSelection

PathwaysIterSelection(List, Selection, GeneExpr = geneMat, nclusters = 7,

Arguments

List

Selection
nclusters

method

ENTREZID

geneSetSource

top

GENESET
sign

niter
fusionsLog
WeightClust

names

Value

method = c(”"limma”, "MLP"), ENTREZID = GeneInfo[, 11,
geneSetSource = "GOBP", top = NULL, GENESET = GS,
sign = 0.05, niter = 10, fusionsLog = TRUE,
WeightClust = TRUE, names = NULL)

A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

The selection of objects to follow.
he number of clusters to cut the dendrogram in.

The method to applied to look for DE genes. For now, only the limma method
is available

Vector containing the ENTREZID’s of the genes. If not provided, the rownames
of the matrix will be considered.

The source for the getGeneSets function CGOBP’, ’GOMF’,;GOCC’, ’KEGG’
or 'REACTOME").

Overrules sign. The number of genes to display for each cluster. If not specified,
only the significant genes are shown.

Optional. Can provide own candidate gene sets.~
The significance level to be handled.

The number of times to perform pathway analysis.
To be handed to MatrixFunction.

To be handed to MatrixFunction.

Optional. Names of the methods.

The output is a list with an element for each iteration. Per iteration, there is a list for the cluster with
the maximum number of compounds of each method containing 3 components. The first component
Compounds are the names of the object belonging to that cluster. The second element Genes are
the differentially expressed genes and the third element Pathways are the pathways to be found

significant.

PathwaysSelection

Pathway Analysis for a Selection.

Description

The function PathwaysSelection performs the same procedure as Pathways but only for a specific
selection of compounds and only for the cluster that contains the maximum number of compounds

of the selection.
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Usage

PathwaysSelection(List, Selection, GeneExpr = geneMat, nclusters = 7,

Arguments

List

Selection
GeneExpr
nclusters

method

ENTREZID

geneSetSource

top

GENESET
sign
fusionsLog
WeightClust

names

Value

method = c(”"limma”, "MLP"), ENTREZID = GeneInfol[, 11,
geneSetSource = "GOBP", top = NULL, GENESET = GS,
sign = 0.05, fusionsLog = TRUE, WeightClust = TRUE,
names = NULL)

A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.

The selection of objects to follow.
The gene expression matrix of the objects.
he number of clusters to cut the dendrogram in.

The method to applied to look for DE genes. For now, only the limma method
is available

Vector containing the ENTREZID’s of the genes. If not provided, the rownames
of the matrix will be considered.

The source for the getGeneSets function CGOBP’, ’GOMF’,GOCC’, ' KEGG’
or 'REACTOME").

Overrules sign. The number of genes to display for each cluster. If not specified,
only the significant genes are shown.

Optional. Can provide own candidate gene sets.~
The significance level to be handled.

To be handed to MatrixFunction.

To be handed to MatrixFunction.

Optional. Names of the methods.

The output of this function is a list with an element for each method and per method, one for the
cluster with the maximum number of compounds. Each element of the cluster has three parts of
which the first part Compounds contains the compounds of the cluster. The second part Genes
contains either the significant genes determined with the parameter sign or a specific number of
genes specified with top. The last part Pathways are the significant pathways found for that cluster.
There will be a ranked.genesets.table component in which one can find a ranked table of all the
significant genesets with their corresponding p-values provided by the MLP output. This table also
contains a column with the description of the pathway. This function is limited to showing the
significant pathways but can be altered to show the complete output of the MLP function.
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ProfilePlot

ProfilePlot

Plotting a Gene Profile

Description

The function ProfilePlot shows the gene expression of a specific gene over the objects of the
data set and has the ability to separate the values a set of objects from the others. It can be used
for example to investigate the gene expression of a gene that was found to be shared between the
clusters over the methods. The values of the shared objects of these clusters are then plotted in red
at the left side of the plot while the other values gained a blue color and are put to the right. Further,
it is optional to give the objects that belong to these clusters but are not common to the cluster over
the methods, a specific color for each method. This way, it is known how much the gene expression
of these objects resembles those of the shared components.

Usage

ProfilePlot(Gene, Comps = Comps, GeneExpr = geneMat, Clusters = NULL, cols = NULL,

Arguments
Gene
Comps
GeneExpr

Clusters

cols
AddLegend

names

margins

extra

Value

AddLegend = TRUE, names = NULL, margins = c(8.1, 4.1, 1.1, 6.5),
extra, ...)

The gene to be plotted.
The objects to be plotted or to be separated from the other objects.
The gene expression matrix of the objects.

Optional. A list of clusters to which Obs belongs for each method considered.
The observations that are not part of Comps will be given a different color per
method.

Optional. The color to use for the objects in Clusters for each method.
Optional. Whether a legend of the colors should be added to the plot.

Optional but necessary when Addlegend=TRUE. Indicates the labels in the leg-
end.

Optional. Margins to be used for the plot.
The space between the plot and the legend.

Optional parameter to be handed to the plot function.

A plot of the gene profile. A distinction is made by the use of different colors if not all objects are
listed in the parameter Comps.
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ProfilePlotAll Plotting Multiple Gene Profiles

Description

In ProfilePlotAll, the gene profiles of the significant genes for a specific cluster are shown on
$183 plot. Therefore, each gene is standardized by subtracting the mean for each gene.

Usage
ProfilePlotAll(Genes = Genes, Comps = Comps, GeneExpr = geneMat, Order = NULL,
Clusters = NULL, cols = NULL, AddLegend = TRUE, margins =
c(8.1, 4.1, 1.1, 6.5), extra =15, ...)
Arguments
Genes The genes to be plotted.
Comps The objects to be plotted or to be separated from the other objects.
GeneExpr The gene expression matrix of the objects.
Order Optional. If the compounds are to set in a specific order of a specific method.
Clusters Optional. A list of clusters to which Obs belongs for each method considered.
The observations that are not part of Comps will be given a different color per
method.
cols Optional. The color to use for the objects in Clusters for each method.
AddLegend Optional. Whether a legend of the colors should be added to the plot.
margins Optional. Margins to be used for the plot.
extra The space between the plot and the legend.
Optional parameter to be handed to the plot function.
Value

A plot which contains multiple gene profiles. A distinction is made between the values for the
objects in Comps and the others.

Shared Shared genes and pathways over the methods

Description

It is interesting to investigate exactly which and how many differently expressed genes and path-
ways are shared by the clusters over the different methods. The function Shared will provide this
information. Given the outputs of the DiffGenes function and/or the PathwaysIter function, it
investigates how many genes and/or pathways are expressed by each cluster per method, how many
of these are shared over the methods and which ones are shared including their respective p-values
of each method and a mean p-value. This is very handy to look into the shared genes and pathways
of clusters that share many objects but also of those that only share only a few. Further, the result
also includes the number of compounds per cluster per method and how many of these are shared
over the methods.
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Usage

Shared(DataLimma = NULL, DataMLP = NULL, names = NULL)

Arguments
DatalLimma The output of DiffGenes function
DataMLP The output of Geneset.intersect function.
names Optional. Names of the methods.

Value

The result of the Shared function is a list with 2 elements. The first element Table is a table
indicating how many genes and/or pathways were found to be differentially expressed and how
many of these are shared. The table also contains the number of compounds shared between the
clusters of the different methods. The second element Which is another list with a component per
cluster. Each component consists of 3 vectors: sharedcomps indicating which objects were shared
across the methods, sharedgenes represents the shared genes and the last one sharedpaths shows the
shared pathways. The elements pvalsgenes and pvalspaths contain the mean p-values of the shared
genes and pathways.

SharedComps Finding Shared Commpounds over the Methods

Description

The SharedComps function is an easy function to select the compounds over a number of methods.
To be used on cluster elements of the DiffGenes elements.

Usage

SharedComps(List)
Arguments

List A list of the outputs of a cluster for different methods.
Value

The shared compounds of all listed elements.
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SharedLimma Internal function of the Shared function.

Description

Finds the shared genes of outputs of the DiffGenes function.

Usage

SharedLimma(DataLimma, names = NULL)

Arguments
DatalLimma The output of DiffGenes function
names Optional. Names of the methods.
Value

The genes and shared genes over the methods per cluster.

SharedMLP Internal function of the Shared function.

Description

Finds the shared pathways of outputs of the Geneset.intersect function.

Usage

SharedMLP (DataMLP)
Arguments

DataMLP The output of Geneset.intersect function.
Value

The pathyways and shared pathways over the methods per cluster.
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SharedSelection Shared genes and pathways over the methods for a Selection

Description

The function SharedSelection performs the same procedure as Shared but only for a specific se-
lection of compounds and only for the cluster that contains the maximum number of compounds of
the selection. It works on the output of DiffGenesSelection and Geneset.intersectSelection.

Usage
SharedSelection(DataLimma = NULL, DataMLP = NULL, names = NULL)

Arguments
DatalLimma The output of DiffGenesSelection function.
DataMLP The output of Geneset.intersectSelection function.
names Optional. Names of the methods

Value

The result of the Shared function is a list with 2 elements. The first element Table is a table indi-
cating how many genes and/or pathways were found to be differentially expressed and how many
of these are shared. The table also contains the number of compounds shared between the cluster of
the different methods. The second element Which is another list with one component. It consists of
$3$ vectors: sharedcomps indicating which objects were shared across the methods, sharedgenes
represents the shared genes and the last one sharedpaths shows the shared pathways. The elements
pvalsgenes and pvalspaths contain the mean p-values of the shared genes and pathways.

SharedSelectionLimma Internal function for the SharedSelection function

Description

Finds the shared genes of outputs of the DiffGenesSelection function.

Usage

SharedSelectionLimma(DataLimma = NULL, names = NULL)

Arguments
DatalLimma The output of DiffGenesSelection function.
names Optional. Names of the methods

Value

The genes and shared genes over the methods per cluster.
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SimilarityMeasure Similarity Measures

Description

The function SimilarityMeasure computes the similarity of the methods. Given a list of outputs as
input, the first element will be seen as the reference. Function MatrixFunction is called upon and
the cluster numbers are rearranged according to the reference. Per method, SimilarityMeasure
investigates which objects have the same cluster number in reference and said method. This number
is divided by the total number of objects and used as a similarity measure.

Usage

SimilarityMeasure(List, nclusters = 7, fusionsLog = TRUE, WeightClust = TRUE,
names = NULL)

Arguments
List A list of the outputs from the methods to be compared. The first element of the
list will be used as the reference.
nclusters The number of clusters to cut the dendrogram in.
fusionsLog To be handed to MatrixFunction.

WeightClust To be handed to MatrixFunction.

names Optional. Names of the methods.

Value

A vector of similarity measures, one for each method given as input.

SNFa Similarity Network Fusion - version a

Description

Function SNFa calls upon the functions affinityMatrix and SNF of the SNFtool package.

Usage

SNFa(List, distmeasure = c("tanimoto”, "tanimoto”), NN = 20, alpha = 0.5, T = 20,
clust = "agnes"”, linkage = "ward")
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Arguments
List A list of data matrices of the same type.It is assumed the rows are corresponding
with the objects.
distmeasure A vector of the distance measures to be used on each data matrix.
NN The number of neighbours to be used in the procedure. The number is advised
to be between 10 and 50.
alpha The parameter epsilon. The value is recommended to be between 0.3 and 0.8.
T The number of iterations.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of SNFa is a list with 2 elements. The first element SNF\_FusedM contains the fused
similarity matrix and the second element Clust represents the results of performing hierarchical
clustering on the fused matrix.

SNFb Similarity Network Fusion - version b

Description

Function SNFb, performs SNF but first determines the subsets of neighbours and then normalization
is performed on the neighbours only.

Usage
SNFb(List, distmeasure = c("tanimoto”, "tanimoto”), NN = 20, alpha = 0.5, T = 20,
clust = "agnes"”, linkage = "ward")
Arguments
List A list of data matrices of the same type.It is assumed the rows are corresponding
with the objects.
distmeasure A vector of the distance measures to be used on each data matrix.
NN The number of neighbours to be used in the procedure. The number is advised
to be between 10 and 50.
alpha The parameter epsilon. The value is recommended to be between 0.3 and 0.8.
T The number of iterations.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of SNFb is a list with 2 elements. The first element SNF\_FusedM contains the fused
similarity matrix and the second element Clust represents the results of performing hierarchical
clustering on the fused matrix.
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SNFc Similarity Network Fusion - version ¢

Description

Function SNFc, performs SNF but first a normalization over all objects is performed before taking
the k neighbours of each object as a subset in obtaining the kernel matrix.

Usage
SNFc(List, distmeasure = c("tanimoto”, "tanimoto”), NN = 20, alpha = 0.5, T = 20,
clust = "agnes"”, linkage = "ward")
Arguments
List A list of data matrices of the same type.It is assumed the rows are corresponding
with the objects.
distmeasure A vector of the distance measures to be used on each data matrix.
NN The number of neighbours to be used in the procedure. The number is advised
to be between 10 and 50.
alpha The parameter epsilon. The value is recommended to be between 0.3 and 0.8.
T The number of iterations.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of SNFc is a list with 2 elements. The first element SNF\_FusedM contains the fused
similarity matrix and the second element Clust represents the results of performing hierarchical
clustering on the fused matrix.

targetMat The target predictions for the MCF7 data

Description

The 477 target predictions for the MCF7 data

Usage

data(targetMat)

Format

The format is: num [1:56, 1:477100000000 0 0 ... - attr(*, "dimnames")=List of 2 ..$ :
chr [1:56] "metformin" "phenformin" "phenyl biguanide" "estradiol" ... .. $ : chr [1:477] "Arachido-
nate_15.lipoxygenase" "Estradiol_17.beta.dehydrogenase_2" "Estradiol_17.beta.dehydrogenase_1"
"Lanosterol_synthase" ...

nun
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Ultimate Wrapper function for the Methods

Description

The function Ultimate has the ability to perform multiple of the methods listed above simulta-
neously. The only necessary input are the data matrices and specification of the options. First,
clustering is based on each data matrix separately after which the specified integrative analysis
methods are conducted. A plot comparing the results is made automatically with ComparePlot. If
weights are involved in the method, a comparison plot of the results for these weights is made as
well.

Usage

Ultimate(List, distmeasure, NN = 20, alpha = 0.5, T =20, t =10, r = NULL, nclusters = 7,
nclusterssep = c¢(7, 7), nclustersseq = NULL, weight = NULL, Clustweight = 0.5,
clust = "agnes"”, linkage = "ward”, gap = FALSE, maxK = 50, IntClust = c("ADC",
"ADECa”, "ADECb”, "ADECc"”, "WonM", "CECa", "CECb", "CECc", "WeightedClust”,

"SNFa", "SNFb", "SNFc"), fusionsLog = TRUE, WeightClust = TRUE,

PlotCompare = FALSE, cols = my_palette2, ...)
Arguments

List A list of data matrices.

distmeasure A vector of the distance measures to be used on each data matrix.

NN The number of neighbours to be used in SNF.

alpha The parameter epsilon in SNF.

T The number of iterations in SNF.

t The number of iterations in ADEC and CEC.

r Optional. The number of features to take for the random sample in ADEC and
CEC.

nclusters The number of clusters to cut the dendrogram in for ADEC and the plot.

nclusterssep  Optional.Vector of the number of clusters to cut the dendrogram in of each data
source. If NULL, the value of nclusters is used for each.

nclustersseq The sequence of number of clusters to cut the dendrogram in for ADECb, CECb
and WonM.

weight The weights to be used in CEC and WeightedClust.

Clustweight Optional. To be used for the outputs of CEC or WeightedClust. Then only the
result of the Clust element is considered.

clust Choice of clustering function. Defaults to agnes

linkage Choice of inter group dissimilarity. Defaults to Ward link.

gap Logical indicator if gap statistics should be computed. Setting to FALSE will
greatly reduce the computation time.

maxK The maximum number of clusters to be considered during the gap.

IntClust Specification of the methods to be applied.

fusionsLog

To be handed to MatrixFunction.
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WeightClust To be handed to MatrixFunction.
PlotCompare Logical. Should the plot over the methods and weight be produced?
cols Color scheme to be used in the plots.

Options to be given to ComparePlot.

Value

The output of Ultimate is a list . The first element contains the results of the clustering of the
first data source and the last element on the second data source . In between are the results of the
integrative methods.

WeightedClust Weighted Clustering

Description

Weighted clustering is performed with the function WeightedClust. Given a list of the data matri-
ces, a dissimilarity matrix is computed of each with the provided distance measures. These matrices
are then combined resulting in a weighted dissimilarity matrix. Hierarchical clustering is performed
on this weighted combination with the agnes function and the ward link.\

Usage

WeightedClust(List, distmeasure = c("tanimoto”, "tanimoto"), weight = seq(1, 0, -0.1),
Clustweight = 0.5, clust = "agnes"”, linkage = "ward")

Arguments
List A list of data matrices of the same type.It is assumed the rows are corresponding
with the objects.
distmeasure A vector of the distance measures to be used on each data matrix.
weight The weight is a sequence from O to 1 and a result is produced for each by default.

A specific weight can be provided by the user.

Clustweight A weight for which the result will be put aside of the other results. This was
done for comparative reason and easy access.

clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of WeightedClust is a list with 4 elements. The element DistM contains the distance
matrices for each data matrix while WeightedDist contains the weighted distance matrices computed
for each provided weight. Results consists of the resulting hierarchical clustering of each weighted
dissimilarity matrix. The final element Clust is the result for the weight specified in Clustweight.
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WonM Weighting on Membership

Description

Weighting on membership is performed with the WonM function. The first step is to compute the
appropriate distance matrices for each data source and to use these for hierarchical clustering. This
is executed with the agnes function and the ward link. The user may specify a range of values for
the number of clusters to cut the resulting dendrograms in. For each value of number of clusters,
an incidence matrix is computed and these are added for each data source separately. Eventually,
the sums of the incidence matrices are joined together as well, resulting in 1 consensus matrix.
Hierarchical clustering is performed on the consensus matrix to obtain the final clustering result.

Usage
WonM(List, distmeasure = c("tanimoto”, "tanimoto"), nclusters = seq(5, 25, 1),
clust = "agnes"”, linkage = "ward")
Arguments
List A list of data matrices of the same type.lt is assumed the rows are corresponding
with the objects.
distmeasure A vector of the distance measures to be used on each data matrix.
nclusters A sequence of the number of clusters to cut the dendrogram in.
clust Choice of clustering function. Defaults to agnes.
linkage Choice of inter group dissimilarity. Defaults to Ward link.
Value

The output of WonM is a list with 4 elements. The element DistM contains the distance matrices
of each data source and ClustSep the results of the hierarchical clustering performed on each. The
computed consensus matrix over all data sources can be found in Consensus and the final clustering
result is contained in the Clust element.
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