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Abstract

Mathematical models provide important practical insights into the epidemiology of in-

fectious diseases, and concepts derived from such models are widely used in the design

of infection control programmes. This project was aimed at directly estimating the pa-

rameters of a dynamic transmission model using likelihood-based estimation methods,

by fitting the model to age-specific influenza-like-illness (ILI) incidence over multiple in-

fluenza seasons. In an attempt to achieve the goal of this project, the dynamic transmis-

sion model for seasonal influenza of Vynnycky et al. (2008) was adopted and the various

model parameters estimated. Weighted Least Squares and Maximum Likelihood esti-

mation methods were applied for the model parameters estimation. From the obtained

estimates of these parameters, estimates for the average basic reproduction numbers,

which is an important measure used in infectious disease control, immunization and

eradication programmes, were also derived. This modelling approach is an improvement

to the previous approaches where the parameter values of seasonal influenza models

were commonly chosen ad hoc though projections based on such models heavily rely on

the assumed input parameter values. Moreover, there exists considerable uncertainty

over the most appropriate values for parameters for such models. The importance of

parameter estimation and accounting for uncertainty when using dynamic transmission

model outcomes as input for economic evaluations related to infectious diseases have

already been highlighted by several previous studies [3, 12].

vii



Introduction

Influenza is a viral infection which affects human populations both through regular sea-

sonal epidemics and occasional pandemics. Seasonal influenza is a contagious respiratory

illness that strikes every year while pandemic influenza is a global outbreak. In temper-

ate regions, seasonal influenza tends to occur as one annual epidemic that occurs in the

winter months i.e. December to March in the Northern Hemisphere and June to Septem-

ber in the Southern Hemisphere [16]. In Europe and in Belgium, annual epidemics of

influenza occur mostly during the winter months, usually between week 40 and week

20 of the following year. However the patterns of these epidemics are highly variable

from year to year in terms of the beginning of the epidemic, its duration, intensity, and

influenza strains that circulate. Thus, numbers of cases and deaths from influenza, as

well as the most affected age groups, vary each season [11].

Seasonal influenza is a major burden on public health worldwide. In 2012, WHO es-

timated that annually it attacks 5-10% of adults and 20-30% of children globally and

causes significant levels of illness, hospitalization and death [20]. Hanquet et al. (2011)

noted that the clinical and economic burden of seasonal influenza is frequently underesti-

mated, as cases and deaths caused by influenza are rarely identified or coded as influenza

outcomes, and only a minority of cases is confirmed by laboratory testing. The most

common influenza-related outcomes are influenza-like illnesses (ILI), acute respiratory

infections, pneumonia and all-cause deaths.

Vaccination is the most common and most effective public health responses to influenza

though there exists other non-pharmaceutical interventions for the prevention and con-

trol of influenza infection such as mask use, hand hygiene, and social isolation. The

effectiveness of these non-pharmaceutical interventions is uncertain and depends on be-

havioral responses in the general population which may vary across settings [15]. In

addition, such measures are unlikely to be sufficient to prevent sustained influenza trans-

mission both in pandemic and seasonal epidemic years [1]. Vaccination protects against

influenza by stimulating an antigen-specific immune response. Two different types of

influenza vaccine are available: the trivalent inactivated influenza vaccine (TIV) and the

1



Introduction 2

trivalent live-attenuated influenza vaccine (LAIV). TIV is administered via intramuscu-

lar or intradermal injection while LAIV is administered intranasally via a sprayer. The

current Health Council recommendations for seasonal influenza vaccination in Belgium

is limited to persons at higher risk of influenza complications, including, persons aged

above 50 years, health care workers, pregnant women and poultry and pork farmers [5].

Various studies have been conducted to evaluate the impact of various childhood vac-

cination strategies. For instance, Vynnycky et al. (2008) applied an age-structured

model to estimate the long-term impact of vaccinating children of either pre-school or

school age on the burden of seasonal influenza (A and B) in the United Kingdom and

to assess the effects of different contact patterns between children and adults. Beutels

et al. (2013) and Goeyvaerts et al. (2014) developed a dynamic transmission model

for seasonal influenza to evaluate the impact of various childhood vaccination strate-

gies by fitting to observed age and time specific Influenza-Like-Illness (ILI) incidence

in Belgium. The dynamic model was implemented in MATLAB and a global search

algorithm was used to estimate the model parameters by minimizing a weighted least

squares criterium for the ILI data. This procedure turned out to be highly sensitive to

the initial values and was only able to identify local optima. The goal of this project

is to explore alternative estimation methods for the influenza model parameters in the

free statistical programming language R. In this regard, we apply the Weighted Least

Squares and Maximum Likelihood estimation methods.



Methodology

2.1 Data

Weekly data on Influenza-Like-Illness (ILI) are collected from a sentinel network of

General Practitioners (GPs) in Belgium coordinated by the Scientific Institute of Public

Health. In 2009, the network involved around 200 GPs, representing approximately 1.8%

of all Belgian GPs, reporting on ILI consultations [11]. The GPs report weekly, on a

standardised paper form, every patient with an influenza-like illness. For every patient,

age group (<5, 5-14, 15-64, 65-84, >84), hospitalisation, antiviral treatment (as of week

35), delivery of absence from work certificate, and seasonal and pandemic vaccination

status (as of week 42) are also recorded [17].

In this project, the dynamic model is fitted to ILI incidence data from week 40 of year

2003 to week 35 of year 2009. It is assumed that the ILI incidence is representative of the

true influenza incidence, and that there is no time or age bias. Belgian demographic data

for year 2009 obtained from Eurostat [7] are used to determine the initial age-specific

population distribution and to estimate an age-specific annual mortality rates.

2.2 Dynamic transmission model

Mathematical models provide important practical insights into the epidemiology of in-

fectious diseases, and concepts derived from such models are widely used in the design of

infection control programmes. The basic idea in infectious disease modelling is that the

population is divided into disjoint groups, according to a few key characteristics which

are relevant to the disease under consideration. Then the progress of an epidemic is

modelled by keeping track of the number of individuals within each subgroup, which are

called compartments. In a dynamic model there are transition processes between the

compartments that specify the rate at which individuals move from one compartment

to the other. The models are typically formulated as systems of differential equations.

3



Methodology 4

2.2.1 The dynamic model structure

In order to model the progress of an epidemic in the population, the population diversity

must be classified into a few key characteristics which are relevant to the infection under

consideration. In this project, the model of Vynnycky et al. (2008) is adopted. The

model is an age-stratified SEIRS model with vaccination. The population is classified

into compartments Sa(t) = number of susceptible individuals aged a years at time t,

Ea(t) = number of exposed individuals aged a years at time t, Ia(t) = number of

infectious individuals aged a years at time t, Ra(t) = number of recovered individuals

aged a years at time t, and Va(t) = number of vaccinated individuals aged a years

at time t. In this case, the infection has a significant latent period during which the

individual who has been infected is not yet infectious to others. During this period

the individual is in compartment E (for exposed). Both the recovered and vaccinated

individuals are assumed fully protected after infection and vaccination, respectively, until

their immunity wanes [10].

We define age groups, a, of length 1 year such that we have individuals who are aged

<1, 1 - <2, 2 - <3, . . . , 99 - <100. The population size and the age-specific mortality

rates were assumed to be constant to avoid complications associated with modelling

population growth. The model is dynamic in that the number of individuals in each

compartment may fluctuate over time. Figure 2.1 presents the age-stratified SEIRS

model with vaccination. The dynamic model states are defined in Table A.1 and the

system of ordinary differential equations that characterize the model is given in (A.1) in

the appendices. The model parameters are defined in Table 2.1.

A Realistic Age-Structured (RAS) model was assumed in which all individuals move to

the next age group on August 31 of each year [10]. Individuals are born into the first

stratum on August 31 of each year. Though this approach for introducing newborns

into the population may be less “natural” than allowing newborns to enter the first age

stratum continuously, it facilitates tracking the exact time when individuals reach the

earliest age at vaccination (6 months of age) [18]. To ensure that the population size

remains constant, the individuals in the last age group are removed from the population

and as many births as deaths in the preceeding year are introduced into the population.

Similarly, vaccination of a proportion of individuals in any age group is assumed to be

completed on time tvacc of each year. The influenza vaccination is given to the individuals

irrespective of their vaccination or disease history. The transmission of influenza is

ensured to continue each year by seeding a fraction of the susceptibles in each of the age

groups as newly infectious individuals at time tseed. The two rates at which individuals

lose their immunity, wi and wv, are assumed to be equal and age-independent. In

the model representation, the single arrows indicate time continuous transitions while



Methodology 5

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 
 

wi 

Aug 31 

 𝝀99(t)  f  r  wv 

… … … … … 

A

G

I

N

G 

R0(t) 
 

E0(t) 
 

I0(t) 
 

V0(t) 
 

S0(t) 
 

Vacc 
 

 tvacc 
 f  wv  𝝀0(t)  r 

Seeding 
 

tseed 

Birth 
 

Aug 31 

R1(t) 
 

E1(t) 
 

I1(t) 
 

V1(t) 
 

S1(t) 
 

Vacc 
 

 tvacc 
 f  wv  𝝀1(t)  r 

Aug 31 
wi 

m0 m0 m0 m0 m0 

m1 m1 m1 m1 m1 

Aug 31 

V99(t) 
 

S99(t) 
 

E99(t) 
 

I99(t) 
 

R99(t) 
 

Vacc 
 

 tvacc 

wi 

Removed 

Figure 2.1: Age-stratified SEIRS model with vaccination.

Parameter Definition

λa(t) The force of infection for individuals of age a at any time t during a year

R0 The average basic reproduction number measured at reference time t0
δ Amplitude of the sinusoidal seasonality function z(t)
t0 Reference time for the seasonality function z(t), at which the basic re-

production number equals R0

ma Yearly mortality rates of individuals of age a
f The daily progression rate from exposed (latent) to infectious, (1/aver-

age latent period)
r Daily rate at which infectious individuals recover and become immune,

(1/average infectious period)
tvacc Time of vaccination each year
tseed Time of the year at which newly infectious individuals are introduced

as a seed into the population.
wv Yearly rate at which vaccinated individuals lose their immunity (1/av-

erage duration of protection)
wi Yearly rate at which naturally infected individuals lose their immunity,

(1/average duration of immunity)

Table 2.1: Definition of the model parameters
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double arrows indicate instantaneous transitions on August 31 of each year. The arrows

indicating influx compartments for vaccination and seeding are suppressed from the

display.

The force of infection for individuals of age a at any time t during a year, is related to

the seasonally forced age-specific transmission rates by:

λa(t) = Z(t)
∑

a′
βa,a′Ia′(t), (2.1)

where Z(t) denotes a sinusoidal seasonality function [10], given by:

Z(t) = 1 + δ ∗ sin
(

2π(t− t0)
365

)
.

Here, βa,a′ denotes the average daily per capita rate at which an individual of age a′

makes effective contact with a person of age a while Z(t) reflects the relative change

of the basic reproduction number at time t, R0(t), from the average basic reproduction

number, R0, measured at reference time t0. The seasonal peak of transmission occurs

three months after the reference time t0. The amplitude of the seasonality function Z(t)

is bounded 0 ≤ δ ≤ 1 to ensure that Z(t) ≥ 0, ∀ t. It determines the peak value of the

basic reproduction number. The basic reproduction number at time t, R0(t) = R0Z(t).

The average basic reproduction number can be defined as the average number of new

infections caused by a single infected individual when introduced into a wholly suscepti-

ble population at reference time t0 over the course of the infection of this individual. In

an age-stratified population the basic reproduction number depends on the duration of

the infectious period, the probability that a contact between an infected and a suscepti-

ble individual leads to an infection, the contact rate, and the constant age distribution

of the population. It is calculated as the dominant eigenvalue of the next generation

matrix with elements Naβ(a,a′)
r . In general, the basic reproduction number quantifies

the transmission potential of the disease such that, if it falls below one (R0 < 1) the

infection eventually dies out. If R0 > 1 there is an epidemic in the population, whereas

in the case where R0 = 1, the disease becomes endemic, meaning the disease remains in

the population at a consistent rate since one infected individual transmits the disease

to only one susceptible on average.

2.2.2 Social contacts

Modelling the spread of infectious diseases requires assumptions to be made regarding

the underlying transmission process. Influenza is transmitted mainly through social

interactions of which the frequency and intensity typically depend on age. To this
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purpose, daily rates of close contacts >15 minutes by 1-year age intervals (starting from

age 0), estimated by Goeyvaerts et al. (2010) from the Belgian POLYMOD contact

survey conducted in 2006, were used in this project.

The age-specific transmission rates, β(a, a′), are assumed to be directly proportional

to the age-specific rates of making social contact. This concept is known as the social

contact hypothesis introduced by Wallinga et al. (2006):

β(a, a′) = q.c(a, a′), (2.2)

where q is a constant proportionality factor which measures the disease-specific infectiv-

ity.

2.2.3 Vaccination

As noted earlier in the introduction, vaccination is generally considered to be an effective

tool to protect against influenza disease and its complications. Although two different

types of influenza vaccine are available: the trivalent inactivated influenza vaccine (TIV)

and the trivalent live-attenuated influenza vaccine (LAIV), it is not until 2011 that LAIV

became authorized in the European Union. Thus it was not on the Belgian market during

the study period considered in this project. Therefore, all references on vaccination in

this project are based only on TIV.

Our model assumed an all-or-none effect of vaccine. With an all-or-none effect of vac-

cine, the vaccine efficacy V E means that the vaccine is 100% efficacious in fraction V E

of individuals who are vaccinated and has no effect on the remaining fraction (1−V E).

The effective vaccination coverage is thus the product of the vaccine efficacy and vac-

cine coverage and determines the proportion of individuals that move to the vaccinated

state each year. Goeyvaerts et al. (2014) obtained literature-based estimates of the TIV

vaccine efficacy for influenza-confirmed ILI from randomized controlled trials and obser-

vational studies as proxies for V E. The estimates classified by age and type of season

are summarized in Table A.2 in the appendices. The type of season is then classified by

influenza intensity and the degree of matching between the vaccine and the circulating

viral strain. The following age-stratified vaccination coverage estimates obtained from

the Belgian Health Interview Survey of 2008 conducted by the Scientific Institute of

Public Health were used: 0.066% for 6 months - 17 years (arising from a 1% coverage in

children with co-morbidities), 11% for 18-49 years, 28% for 50-64 years, 50% for 65-74

years, and 71% for ≥ 75 years [2, 10, 11].
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2.3 Estimation of the dynamic model parameters

To estimate the values of the unknown parameters that are applied in the SEIR model,

different approaches outlined below were used.

2.3.1 Weighted Least Squares approach

The Weighted Least Squares (WLS) technique involves least squares fitting, where the

values of the model parameters which minimize the weighted squared differences between

model predictions and the observed ILI incidence data are sought.

We assume that the epidemiological system is exactly described by a dynamic model

together with some set of parameters, but the observed data arises from some deviation

of the output of this system by observational errors. The parameter set is written as the

p-element vector θ. Ca(wi) denote the number of reported ILI cases of age a in calendar

week i and Pa(wi) denote the corresponding denominator, i.e. the number of individuals

of age a covered by the sentinel network in calendar week i. The observed age-specific

ILI incidence rate in calendar week i can then expressed as: Ya(wi) = Ca(wi)/Pa(wi).

Thus, we can assume that the statistical model can be written as:

Yi = M(ti; θ) + Ei (2.3)

where Mi is the dynamic model for the incidence evaluated at the true parameter value,

θ, and the Ei depict the errors. Letting I∗a(t) denote the number of newly infectious

individuals of age a at time t, and Na(t) denote the total number of individuals of age

a at time t as predicted by the model, the model-based age-specific incidence rate in

calendar week i is given as:

Za(wi) =

∑
t∈wi

I∗a(t)

1
7

∑
t∈wi

Na(t)
(2.4)

For known values of the weights, estimation of the model parameters proceeds by mini-

mizing the weighted sum of squared differences between the observed ILI incidence rate

and the scaled model-based incidence rate in (2.5).

4∑
j=1

∑
i

vaj (wi)
(
Yaj (wi)− αZaj (wi)

)2
(2.5)



Methodology 9

The weights, vaj (wi), are taken to be proportional to the corresponding denominator

Paj(wi). They account for the unequal population sizes represented by the different

age groups. The scale factor α which calibrates the model-based incidence rate to the

observed ILI incidence rate may absorb several effects such as the probability for an

infected individual to show symptoms, the GPs consultation rate and ILI cases reporting

rate. The weighted sum is taken over all weekly ILI observations, from week 40 in 2003

to week 35 in 2009, per age group aj : 0− 4, 5− 14, 15− 64 and ≥ 65 years.

2.3.2 Maximum Likelihood approach

In statistics, each population is identified by a corresponding probability distribution.

Associated with each probability distribution is a unique set of the model’s parameters.

As the parameters change in value, different probability distributions are generated.

Thus a model is defined as the family of probability distributions indexed by the models

parameters. The likelihood is the probability of observing the data given the model and

parameter values for the model. The basic idea of maximum likelihood estimation is to

find the parameter set that maximizes the likelihood of observing your data.

2.3.2.1 Maximum likelihood estimation

Let f(y|θ) = f(y1, y2, . . . , yn|θ) =
∏n
i=1 fi(yi|θ) denote the probability density function

(pdf) that specifies the probability of observing data vector y given a vector of parame-

ters θ. The individual observations, yi’s, are assumed independent of one another. The

likelihood function is defined as L(θ|y) = f(y|θ) and represents the likelihood of the

parameters θ given the observed data y and as such is a function of θ.

A maximum likelihood estimator (MLE) of the parameter set θ based on the observed

data y is a parameter vector at which L(θ|y) attains its maximum as a function of θ, with

y being held fixed. In maximum likelihood estimation we seek the value of the parameter

vector that maximizes the likelihood function L(θ|y). The resulting parameter vector,

which is sought by searching the multidimensional parameter space, is called the MLE,

and is denoted by θ̂ = θ̂1, θ̂2, . . . , θ̂k. For computational convenience, the MLE estimate

is obtained by maximizing the log-likelihood function, ln(L(θ|y)) ≡ l(θ|y). This is

because the two functions, l(θ|y) and L(θ|y) are monotonically related to each other so

the same MLE estimate is obtained by maximizing either of the two.
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2.3.2.2 Application to the data

The observational model is given by:

Ca(wi) ∼ Binomial
(
n , α

)
(2.6)

where n = Pa(wi)
Na(wi)

∗ I∗a(wi) and α is a scale factor.

Since n is large, this distribution can be approximated by a Poisson distribution. Because

of overdispersion of the data, this can further be generalized to an overdispersed Poisson

or a Negative Binomial distribution. In this project, the Negative Binomial distribution

was considered which is given as:

Ca(wi) ∼ NegativeBinomial
(
µa(wi) , µa(wi) +

1

k
µa(wi)

2
)
, (2.7)

where: µa(wi) = E(Ca(wi)) = Pa(wi) × E(Ya(wi)) = Pa(wi) × αZa(wi) and 1
k > 0

denotes the overdispersion parameter. If 1
k = 0, there is no overdispersion and the

Negative Binomial distribution simplifies to a Poisson distribution.

In terms of the standard parameterization of the Negative Binomial distribution using

the parameters r, number of events until the experiment is stopped, and p, probability

of success in each trial, where r = k and p = 1/(1 + 1
kµa(wi)), the distribution (2.7) can

be written as:

Ca(wi) ∼ NegativeBinomial
(
r = k , p =

1

1 + 1
kµa(wi)

)
. (2.8)

Considering the value of the parameters r and p, and given the vector of observed data,

y, the log-likelihood function is the same function as the logarithm of the probability

density (2.9).

l(r, p|y) =
∑
a

∑
i
l(r, p|Ca(wi))

=
∑
a

∑
i

ln
(

Γ(r + Ca(wi))
)

+ rln
(
p
)

+ Ca(wi)ln
(

1− p
)
− ln

(
Γ(r)

)
− ln

(
Γ(Ca(wi) + 1)

) (2.9)

The general mathematical technique for solving for MLEs involves differentiating the

log-likelihood function with respect to the parameter vector, set the resulting gradient

vector to zero and then solve the system of equations. But this method only works

if there is an analytical solution. Another possibility is the grid search method which

involves finding the maximum of the log-likelihood function by repeated approximation

and iteration. However, this method is also not practical in most cases and becomes
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much more difficult when the number of parameters increases beyond one or two. As a

result, most statistical packages employ some kind of numerical maximization method.

In this method one essentially feeds the computer with a set of starting values and

let algorithms such as Newton-Raphson, Nelder-Mead, quasi-Newton and conjugate-

gradient find the maximum.
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Results

3.1 Exploratory results

Figure 3.1a displays the contact rate matrix estimated by Goeyvaerts et al. (2010) from

the Belgian POLYMOD contact survey conducted in 2006 (technical details on the esti-

mation are provided in Goeyvaerts et al., JRSS-C 2010). From the plot, high rates are

observed on the diagonal indicating that people mostly mix with people of the same age

class, particularly among the children and young adults (assortative mixing). In addi-

tion, an off-diagonal parent-child component is observed, though of weaker magnitude

than the assortative structure.

(a) Daily close contact rates of >15 minutes (b) Age-specific yearly mortality rates

Figure 3.1: Daily rates of close contacts >15 minutes as estimated by Goeyvaerts et
al. (2010) and yearly mortality rates by age estimated from Eurostat data

The population size and mortality rates data for Belgium in 2009 obtained from Eurostat

was stratified by age. Data for up to age 99 years were used for analysis in this report.

This is motivated by the fact that, individuals aged 99 years and above are assumed to

be removed from our population. The total Belgian population size from age 0 to 99

13
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years was 10,751,601. The mortality rates estimated from Eurostat demographical data

are shown in Figure 3.1b.

Figure 3.2 presents plots of the weekly observed ILI incidence rates stratified by age

groups in Belgium. The data available was for the seasons from week 40 of year 2003

to week 35 of year 2009. Most of the data represented the weeks when an influenza

epidemic can be expected (week 40 up to week 20 of the following year). The plots show

similar trends in all the age groups for each influenza season but ILI incidence rates are

higher for the age group 0− 14 years than the other age groups. The incidence rates for

the last age group (≥ 65) are the lowest compared to the other age groups. 2003− 2004

on average had the highest observed ILI incidence rates while 2007−2008 had the lowest

rates. Similar observations are made for the total population as shown in Figure A.1 in

the appendices.

(a) Incidence rates for age group 0− 4 years (b) Incidence rates for age group 5− 14 years

(c) Incidence rates for age group 15−64 years (d) Incidence rates for age group ≥65 years

Figure 3.2: Observed ILI incidence rates stratified by age groups in Belgium 2003−
2009
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3.2 Dynamic model parameters estimation

The main parameters driving goodness-of-fit to the ILI incidence data as identified

by Goeyvaert et al. (2014) include: the average basic reproduction number (R0), the

amplitude (δ), the immunity waning rates (wi, wv), and the scale factor (α). Also, some

of the less influential parameters include: time point of vaccination (tvacc), time point

at which infectious individuals are seeded into the population (tseed), rate at which the

exposed individuals become infectious (f), and recovery rate (r).

It was assumed that vaccination took place the same time as the spontaneous transition

on August 31 each year. To ensure that transmission of influenza continued each year,

200 infectious individuals were seeded in each age class of 5-50 years at time point tseed.

Individuals outside this age group were not included in the seed. Vynnycky et al. (2008)

argued that in previous influenza pandemics, very few of the earliest cases occurred in

this age range and that older individuals (arbitrarily taken to be those aged >50 years)

are unlikely to be the first cases during a typical influenza season, given some immunity

to circulating strains resulting from exposure to related strains.

Some parameter values such as the average duration of the latent period and the average

duration of the infectious period could be assumed with reasonable confidence from

empirical studies. Glasser et al. (2010) suggested an average latent period of 1 day and

an average infectious period of 3.8 days. Similarly, Cauchemez et al. (2004) estimated

the mean duration of infectiousness to be 3.8 days with a 95% credible interval of [3.1,

4.6]. However, there is still considerable uncertainty over the most appropriate values for

some parameters in our model: the average basic reproduction number, the amplitude

of seasonal forcing, the average duration of effective immunity, and the scale factor.

Therefore, solutions to the SEIRS model in Figure 2.1 were used to estimate values for

these parameters so that the resulting dynamics exhibit the characteristics of seasonal

influenza. Some of which being: the amplitude of seasonal forcing to be sufficiently

strong that there is a genuine off-season with very little transmission, and that the

amplitude of seasonal forcing is weak enough that the system settles down into regular

annual cycles: if seasonal forcing is too strong, there are frequent years with no infections

[14].

Because the timing of the epidemic peak differs substantially between seasons, the ref-

erence and seeding time points t0 and tseed, were retained as season-specific parameters.

The parameters related to the characteristics of seasonal influenza, including the am-

plitude of seasonal forcing and the immunity waning rates were assumed constant over
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the seasons. The scale factor (α) was also assumed constant over the course of the sea-

son (not allowed to change during an epidemic season), by age and across the various

seasons.

3.2.1 Weighted least squares estimation

The model was pre-run over a burn-in period of five influenza seasons to generate back-

ground immunity due to historical infection or vaccination. A season-based year of 364

days per year which is equivalent to 52 seven-day weeks was implemented with t = 0

being on September 1.

The dynamic model was simulated using a set of starting values (initial parameter

guesses) and R function optim() was used in the optimization using SANN optimization

method with iteration count as 10,000. SANN method performs an optimization using a

stochastic optimization algorithm known as simulated annealing which is an adaptation

of the Metropolis-Hastings algorithm (a Monte Carlo method) [13]. This algorithm can

overcome the problem of local maxima, although the algorithm may not be a feasible

option as it may take unrealistically long time to find the solution.

The Nelder-Mead algorithm was then run until convergence using the estimates from

the SANN method as starting values. The Nelder-Mead method work reasonably well

for non-differentiable functions but though it is relatively slow, convergence is attained

relatively faster as compared to the SANN method. The weighted least squares function

used enabled estimation by finding parameter values minimizing the weighted sum of

squared differences between the observed ILI incidence rate and the scaled model-based

incidence rate given in (2.5). Table 3.1 shows the parameter estimates obtained. The

dynamic model was then resimulated using the parameter estimates and Figure 3.3

shows the fit of the dynamic model to the age-stratified ILI incidence data.

Season
Parameters

δ wv = wi α t0 tseed q R0

2003 - 2004 0.201 0.440 0.212 Oct 05 Sept 21 0.170 5.002
2004 - 2005 ′′ ′′ ′′ Sept 17 Sept 14 0.120 3.530
2005 - 2006 ′′ ′′ ′′ Sept 01 Oct 11 0.101 2.942
2006 - 2007 ′′ ′′ ′′ Sept 30 Sept 02 0.140 4.119
2007 - 2008 ′′ ′′ ′′ Sept 07 Nov 15 0.110 3.236
2008 - 2009 ′′ ′′ ′′ Oct 26 Sept 04 0.160 4.707

Table 3.1: Weighted Least Squares estimates for the dynamic transmission model
parameters.
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(a) Incidence rates for the total population

(b) Incidence rates for age group 0-4 years

(c) Incidence rates for age group 5-14 years

(d) Incidence rates for age group 15-64 years

(e) Incidence rates for age group ≥65 years

Figure 3.3: Observed ILI incidence rates and the corresponding model-based esti-
mates (using WLS parameter estimates) in Belgium 2003 - 2009
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3.2.2 Maximum likelihood estimation

As was the case in the weighted least squares approach, a function for simulating the

dynamic model was used. In addition, a function to return the log-likelihood of the

data, (2.9), given some combination of parameters was also used. The optimization

procedure used in the weighted least squares estimation was followed. In this scenario,

maximizing the likelihood function determines the parameters that are most likely to

produce the observed data. The parameter estimates obtained are given in Table 3.1.

Figure 3.4 shows the fit of the dynamic model to the age-stratified ILI incidence data

after resimulating the dynamic model using the parameter estimates obtained.

Season
Parameters

δ wv = wi α t0 tseed q R0

2003 - 2004 0.210 0.439 0.230 Oct 05 Sept 24 0.168 4.943
2004 - 2005 ′′ ′′ ′′ Sept 13 Sept 27 0.116 3.413
2005 - 2006 ′′ ′′ ′′ Sept 02 Oct 29 0.100 2.942
2006 - 2007 ′′ ′′ ′′ Oct 05 Sept 03 0.140 4.119
2007 - 2008 ′′ ′′ ′′ Sept 11 Dec 05 0.110 3.236
2008 - 2009 ′′ ′′ ′′ Oct 26 Sept 05 0.161 4.737

Table 3.2: Maximum likelihood estimates for the dynamic transmission model pa-
rameters.

Based on the model under consideration, and conditionally on the values of the other

parameters obtained, it takes approximately 2.27 years for naturally infected and vacci-

nated individuals to lose immunity and become susceptible again. As mentioned earlier

in this report, the scaling factor may absorb several effects such as ILI cases reporting

rate, the probability for an infected individual to show symptoms, the GP consultation

rate and also it might also absorb incorrect modelling assumptions. The R0 is estimated

to be highest in 2003 − 2004 and lowest in 2005 − 2006, which very well corresponds

with the seasonal classification of influenza intensity in Table A.2. The peak value of

the basic reproduction number, determined by δ is estimated to be approximately 1.21

or 1.20 times the average basic reproduction number using the maximum likelihood and

weighted least squares approaches respectively. The reference time is estimated to be in

September - October for the different seasons, which means that the seasonal peak of

transmission would occur in December-January since the seasonal peak of transmission

occurs three months after the reference time. The estimated seeding time is mainly

September-October for the different seasons.

From Figure 3.3 and Figure 3.4 it is clear that the dynamic model tend to very well

approximate the incidence rates for the total population. Similarly, the incidence rates

for the age group of 15−64 years are also very well approximated by the model. On the
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other hand, the model tend to underestimate the total incidence for individuals aged

0− 14 years.

(a) Incidence rates for the total population

(b) Incidence rates for age group 0-4 years

(c) Incidence rates for age group 5-14 years

(d) Incidence rates for age group 15-64 years

(e) Incidence rates for age group ≥65 years

Figure 3.4: Observed ILI incidence rates and the corresponding model-based esti-
mates (using ML parameter estimates) in Belgium 2003 - 2009
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Discussion and conclusions

Since influenza is transmitted mainly through social interactions of which the frequency

and intensity typically depend on age, the daily rates of close contacts >15 minutes by

1-year age intervals estimated by Goeyvaerts et al. (2010) from the Belgian POLYMOD

contact survey were used. These estimates depicted an assortative mixing especially

among the children and young adults. In addition, an off-diagonal parent-child compo-

nent was observed, though of weaker magnitude than the assortative structure. Belgian

demographic data on population size and mortality rates for year 2009 obtained from

Eurostat were also used to determine the initial age-specific population distribution and

to estimate age-specific annual mortality rates. The total Belgian population size from

age 0 to 99 years was 10,751,601. Data on the weekly observed ILI incidence rates strat-

ified by age groups showed that ILI incidence rates are highest for the age group 0-14

years and lowest for age group ≥ 65 years. In addition, 2003 - 2004 on average had the

highest observed ILI incidence rates while 2007 - 2008 had the lowest rates.

To estimate the values of the unknown parameters of the dynamic model, Weighted Least

Squares and Maximum Likelihood estimation methods were applied. In the Weighted

Least Squares method, we assumed that the epidemiological system is exactly desribed

by a dynamic model together with some set of parameters but the observed data arises

from some deviation of the output of this system by observational errors. Then the

values of the model parameters which minimizes the weighted squared errors (differences

between the model predictions and the observed ILI incidence data) were sought, with

the weights taken to be proportional to the corresponding denominator in each age group

to account for the unequal population sizes represented by the different age groups. In

the Maximum Likelihood estimation methods, it was assumed that the observations are

Negative binomial distributed. This seemed appropriate since though it is natural to

approximate a Binomial distribution by a Poisson distribution, the Poisson distribution

can further be generalized to a Negative Binomial distribution for overdispersed data.

Maximizing the likelihood function determines the parameters that are most likely to

produce the observed data.

21
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Depending upon the choice of the initial parameter values, the Nelder-Mead algorithm

could prematurely stop and return a sub-optimal set of parameter values. Thus the

dynamic model was first simulated using a set of starting values and SANN optimiza-

tion method. This method is advantageous since it can overcome the problem of local

maxima. In contrast, the algorithm may not be a feasible option as it may take unrealis-

tically long time to find the solution. Thus the iteration count for the algorithm was set

to 10,000. The Nelder-Mead algorithm was then run until convergence using estimates

obtained using the SANN method as starting values. This optimization procedure was

employed in both estimation approaches.

The parameter estimates obtained using the two different approaches did not differ

much. Indeed, the values obtained for the amplitude, immunity waning rates and the

proportionality factor were approximately the same. Though some differences were

observed in the parameter estimates for the scaling factor, reference time and the seeding

time, the differences were not so much pronounced. Thus the choice between the two

methods of estimation can have non-trivial consequences.



Appendices

A.1 Model states definition

State Definition

Sa(t) Number of susceptible individuals aged a years at time t
Ea(t) Number of infected (but not infectious) individuals aged a years at time t
Ia(t) Number of infectious individuals aged a years at time t
Ra(t) Number of individuals aged a years at time t who have recovered from the

circulating strain as a result of natural infection
Va(t) Number of individuals aged a years at time t who are immune to the

circulating strain as a result of vaccination.

Table A.1: Definition of the model states

A.2 Differential equations of the dynamic model

For a = 0, 1, ..., 99 years:

dSa(t)

dt
= −λa(t)Sa(t)−maSa(t) + wvVa(t) + wiRa(t)

dEa(t)

dt
= λa(t)Sa(t)−maEa(t)− fEa(t)

dIa(t)

dt
= fEa(t)−maIa(t)− rIa(t) (A.1)

dRa(t)

dt
= rIa(t)−maRa(t)− wiRa(t)

dVa(t)

dt
= −wvVa(t)−maVa(t)

23
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A.3 Literature-based estimates of the TIV vaccine efficacy

for influenza-confirmed ILI

Age group
6 months - 17 yrs 18 - 64 yrs ≥ 65 yrs

Seasons: 04 - 05, 06 - 07, 08 - 09
65% 65% 60%Intensity: High - Medium

Match: Good - Relative

Season: 03 - 04
48% 60% 55%Intensity: High - Medium

Match: Poor

Season: 07 - 08
30% 45% 42%Intensity: Low

Match: Good - Relative

Season: 05 - 06
16% 22% 20%Intensity: Low

Match: Poor

Table A.2: Summary of TIV vaccine efficacy (Goeyvaerts et al. (2013))

A.4 Observed ILI incidence rates for the total population

Figure A.1: Observed ILI Incidence rates for the total population
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