
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

2013•2014
FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Estimate of treatment effect when the treatment changes in time.

Promotor :
Prof. dr. Geert MOLENBERGHS

Promotor :
BART GERRITSE

Transnational University Limburg is a unique collaboration of two universities in two countries:
the University of Hasselt and Maastricht University.

Gilbert Rukundo 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics



2013•2014
FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Estimate of treatment effect when the treatment 
changes in time.

Promotor :
Prof. dr. Geert MOLENBERGHS

Promotor :
BART GERRITSE

Gilbert Rukundo 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics





Estimates of the Treatment Effect when the Treatment

Changes in Time

Masters Thesis

October 21, 2013



.

In memory of my Mom & Dad.



Acknowledgment

The success and final outcome of this project required a lot of guidance and assistance from

many people and I am extremely fortunate to have got this all along the completion of my

project work. Whatever I have done is due to such guidance and assistance and I would not

forget to thank them.

I would like to express my deepest appreciation to my internal supervisor, Prof. dr. Geert

Molenberghs who was abundantly helpful and offered invaluable assistance, support and guid-

ance. I owe my profound gratitude to my external supervisors Dr. Bart Gerritse and Dr. Teena

Bonizzi from Medtronic Bakken Research Center (Maastricht), who guided me all along till the

completion of this project work by providing all the necessary information and explanation for

developing a good system.

I recognize the financial support from the Flemish Inter-university Council(VLIR) which has

enabled me to be among those that benefited from the scholarship grant to pursue this valuable

Masters program. I am thankful to constant encouragement, support and guidance from all

teaching staffs at Center for Statistics for imparting part of their statistical knowledge on me. I

also thank my graduates colleagues (Sept 2013), friends as well as the Uhasselt community for

their friendship, love, advice, encouragement, and support during the past two years.

Thanks God, for every blessing you gave me.

Gilbert Rukundo

University of Hasselt, Belgium, October 2013.

ii



Contents

page

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Medical Background and MVP Feature . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenges in the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data Description 5

2.1 Population and Variable Description . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Patients Characteristics and Risk Factors by Outcome . . . . . . . . . . . . . . 6

2.3 Software Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 9

3.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Intention-to-Treat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Per-protocol Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Unweighted Marginal Model (GEE) . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Weighted Cox Proportional Hazard Model with Inverse Probability of Censoring

Weight(IPCW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results 15

4.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Treatment Switch Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Kaplan-Meier Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



4.2.1 Cox Proportional Hazard Model with Treatment at Baseline as the Only

Covariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Cox Proportional Hazard Model with Age, Gender, and Randomization

as Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 Unweighted Marginal Model (GEE) . . . . . . . . . . . . . . . . . . . . . 20

4.2.4 Inverse Probability of Censoring (=Switching) Weights (IPCW) . . . . . 21

4.2.5 Comparison of the considered methods . . . . . . . . . . . . . . . . . . . 22

5 Discussion and Conclusion 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Appendix 31

iv



List of Figures

4.1 Incidence of persistent AF/AT . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Boxplot: Distribution of weights by visit . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Forest plot, hazard ratios and their 95% CI for VISIT*TRT estimates; Model1:

Unweighted GEE Model with outcome as had an event (AT/AF) or no event given

age and gender covariates and randomized treatment; Model2: Unweighted GEE

model with outcome as had an event(AT/AF) or no event given age and gender

covariates and treatment history; Model3: Robust estimates from a weighted Cox

PH model with weights based on age and gender covariates and treatment history. 22

List of Tables

2.1 Variable description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Patients characteristics (N=605) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Treatment switch descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Cox PH model estimate for time to AF/AT by randomized arm. In the hazard

ratio the numerator is the hazard rate of MVP ON and the denominator is the

hazard ratio of MVPOFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 ITT: Cox PH model estimates for time to AF/AT with age and gender variables

and randomization as covariates. In the hazard ratio the numerator is the hazard

rate of MVP ON and the denominator is the hazard ratio of MVP OFF . . . . . 19

v



4.4 Subset Analysis: Cox PH model estimates for time to AF/AT with age and gender

variable and randomization as covariates. In the hazard ratio the numerator is

the hazard rate of MVPON and the denominator is the hazard ratio of MVPOFF 20

6.1 GEE parameter estimates (Empirical standard errors): Model (randomized treat-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 GEE parameter estimates (Empirical standard errors): Model (treatment history) 31

6.3 Pooled logistic regression model for switching probability . . . . . . . . . . . . . . 32

6.4 Weighted Cox PH model: Parameter estimates (Empirical standard errors):

Model (received treatment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



Abbreviations

AAIR: Adaptive Atria Pacing

AF: Atria Fibrillation

AT: Atria Tachycardia

AV: Atria Ventricular

DDDR: Rate Modulated Dual-chamber Pacing

GEE: Generalized Estimating Equation

ICD: Implantable Cardioverter-Defibrillator

IPCW: Inverse Probability of Censoring Weights

ITT: Intention-to-Treat

LVEF: Left Ventricular Ejection Fraction

MVP: Managed Ventricular Pacing

NYHA: New York Heart Association

PP: Per-Protocol

PreFER: Prefer for Elective Replacement

RV: Right Ventricular

vii



Abstract

Estimation of treatment effect in observational studies is not straightforward due to lack of

randomization. As a result blind comparison of treatment effects will lead to biased estimates.

In this study, treatment switch was a main challenge, though some patients switched treat-

ments. Therefore an analysis that does not account for treatment switch may result into biased

estimates. The aim of this study was to estimate the difference in proportion of patients who

experienced Atrial Fibrillation (AF) or Atria Tachycardia (AT) with Managed Ventricular

Pacing (MVP) programmed ON compared to patients with MVP OFF and common device

programming where the endpoint was the time to first event of a persistent AF/AT.

Different methods were proposed for estimating treatment effect in observational studies. For

this study, Intention-to-Treat (ITT), Per-Protocol (PP), and Inverse Probability of Censoring

weights (IPCW) methods were applied. ITT analysis maintains balance generated from the

original random treatment allocation by ignoring anything which happens after randomization.

PP restricts analysis to patients who adhered to their assigned treatment in a randomized

trial. For these two analyses an ordinary Cox proportional hazard model was fitted in order to

estimate the treatment effect. Finally, IPCW was fitted as a most plausible way of estimating

treatment effect in presence of treatment switch bias, this method adjusts for bias by creating a

pseudo population that would be studied had no selective switch occurred.

The Kaplan-Meier curve shows steep increase in the incidence of persistent AF/AT in the MVP

ON arm, when compared to MVP OFF arm. The difference in persistent AF/AT development

starts early after enrollment, but remains the same during the follow-up period. The ITT model

and PP analysis where 127 patients who switched treatment were excluded in the analysis lead

to the same conclusion of no treatment effect (p = 0.07 and p = 0.14), adjusting for age and

gender. Although method like IPCW method correct for confounding induced by the treatment

switch, this model also fail to detect a significant effect of the treatment over time (p = 0.22).

For all the considered methods, the difference between the two randomization arms during

the 2 years follow-up period is not statistically significant. Therefore, based upon these data,

MVP ON is not shown to be superior to MVP OFF and common device programing in terms

of freedom from persistent AF/AT.



CHAPTER 1

INTRODUCTION

1.1 Problem Description

The Medtronic Bakken Research Center in Maastricht, the Netherlands, supplied us with the

data of a longitudinal observational study (PreFER MVP), in which patients were assigned

randomly to one of the two programming modes of an implantable device. However, patients

were allowed to switch to a different treatment (non-randomized) for clinical and technical

reasons. This presents a challenge since programming modes comparison cannot be accounted by

simple statistical methods. As a result, comparing treatments in this nature of data may simply

reflect the underlying difference between treatment groups and not treatment effect (Curtis et

al., 2007). Estimating the effect of a programming mode presents challenges; including the need

to address switching program and time-dependent confounders (Faries et al., 2010; Hernan et

al., 2000, 2004). Therefore, it is difficult to know the actual effect of a certain programming

mode if these challenges are not controlled for during estimation of programming mode effect.

The aim of this thesis is to:

• Estimate the difference in proportion of patients experienced Atrial Fibrillation (AF)

or Atria Tachycardia (AT) with Managed Ventricular Pacing (MVP) programmed ON

compared to patients with MVP OFF and common device programming where the

endpoint was the time to first event of a persistent AF/AT.
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1.2 Medical Background and MVP Feature

A number of clinical studies (Andersen et al., 1997; Nielsen et al., 1998) over the past few

years have shown that, in patients with intact Atria Ventricular (AV) conduction, unnecessary

chronic right ventricular (RV) pacing can cause a variety of detrimental effects, including

Atrial Fibrillation (AF) or Atria Tachycardia (AT). These effects are believed to result from

the mechanical dysynchrony and ventricular chamber dysfunction that occurs with chronic,

single-site, apical ventricular stimulation.

Therefore a new pacing modality, Managed Ventricular Pacing (MVP), was designed to give

preference to natural heart rythm by minimizing right ventricular pacing. This is accomplished

by automatically switching between single chamber atria and dual-chamber pacing based

on specific patient needs. MVP is an atrial-based dual chamber pacing mode that provides

functional AAI/R pacing with ventricular monitoring and back-up DDD/R pacing only as

needed during episodes of AV block.

The reversibility of the detrimental effect caused by ventricular pacing has been initially

investigated in small patient populations with short pacing duration in AAI and needs further

investigation. MVP was developed to address the inherent limitations of AAI/R pacing and

dual chamber modes that incorporate a fixed or unnecessary right ventricular pacing. MVP

provides atrial based pacing with ventricular backup. In case of loss of AV conduction the

device switches to DDDR or DDD mode. Periodic checks are performed, and if AV conduction

resumes, the device switches back to AAIR or AAI mode. The Medtronic ICD and pacemaker

models used in this study are all equipped with the MVP feature (Garutti & Vainer, 2012).

1.3 Challenges in the Analysis

One of the main difficulties in estimating the effect of the treatment in randomized observational

studies is the confounding caused by treatment switch. It is common to allow patients from one

programming mode to switch to the other programming mode if necessary and for clinical or

technical reasons. Thus, the overall advantage associated with the experimental programming

mode cannot be estimated with confidence based on the Intention-to-Treat (ITT) data, because

a proportion of the patients randomized to the control programming mode will have shifted to

the experimental programming mode and vice-versa. Equally a subset analysis approach where

2



patients who switched program are excluded from the analysis at the time of switching is also

likely to be confounded because program switching is unlikely to have occurred at random. In

such circumstances censoring is informative and the randomization of the trial is compromised.

Treatment switch has been an important issue in the analysis of clinical trials but the methods

used to account for the impact switching on the treatment effect have generally been simplistic.

Most regularly censoring approaches have been used but often the switch has been ignored

and standard ITT analysis is conducted which produce heavily biased results. More recently,

statistical techniques to address the switching treatment problem have been developed.

1.4 Outline

In the second chapter the data are introduced. This includes: the population and variable

description followed by a summary of the patients’ baseline characteristics. In the third

chapter, we address the methods which will be used for analysis. These methods include:

Intention-to-treat (ITT) which analyses the data based only on their initial assignment. Subsets

analysis are done where information from patients who switched program mode are excluded

from the analysis, as well as unweighted Generalized Estimating Equation (GEE) and weighted

Cox Proportional Hazard Models where the basic idea is to weight the data by the Inverse

Probability of Censoring (=switching) Weights (IPCW). In Chapter 4, we present the results

obtained by using the above mentioned methods followed by a comparison between them.

Finally, Chapter 5 provides a summary discussion of the results of this study and ends with

limitations and recommendations for further research.
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CHAPTER 2

DATA DESCRIPTION

2.1 Population and Variable Description

The data set used in this study comes from an observational longitudinal study (PreFER

MVP) with a survival endpoint, namely time to first event of persistent AF/AT. It consists

of 605 patients who were enrolled from 75 different medical sites around the globe, including:

Europe, Canada, the Middle East and Australia. All the considered patients had an implantable

device (Pacemaker or ICD), equipped with MVP feature. Patients were randomized into two

different groups; experimental group and control group with MVP programmed ON and MVP

programmed OFF respectively.

The follow-up time was a duration of two years, starting from 2006 where measurements were

recorded by the device on a daily basis. These patients could continue in the study until they

experienced persistent AF/AT or if they met any of the exclusion criteria; see Garutti and

Vainer (2012) for details. The time to persistent AF/AT will be used as response variable for

estimating the effect of MVP program modes.

Several variables were considered in this study. These variables include: the response variable:

time to first event of persistent AF/AT and baseline covariates. Table 2.1 presents a full list of

variables considered in the analysis.
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Table 2.1: Variable description

Variable Description Code/Value

PatID Patient Identification number

MV P ∗ Actual MVP programming 0=MVPoff, 1=MVPon

Randomization Randomization 0=MVPoff, 1=MVPon

Day Day from Implant days

DurSE2 Time to persistent AF/AT or last visit days days

SE2 Had persistent AF/AT 0=no, 1=yes

GEN Gender 0=Male, 1=Female

Age Age of the patient years years

Country Country(ies) of origin Name(character)

∗=Time-varying

2.2 Patients Characteristics and Risk Factors by Out-

come

Descriptive statistics were used to give a first insight into the distribution of the variables.

Summaries of patients’ characteristics in the treatment groups are shown in Table 2.2. There

were no missing data for the covariates age and gender, two patients had only one observation

each and another 14 had missing observations on the response variable. A total of 605 patients

were enrolled in the trial with almost equal number of patients over the treatment groups and

almost equal number of males and females by treatment program. The number of events for the

response of interest was a bit higher in patients who were in the MVP programmed ON arm

(14%) as compared to MVP programmed OFF arm (10%). There was a remarkable difference

in median follow-up time to persistent AF/AT among the two treatments program modes, i.e.,

MVP ON (397 days) and MVP OFF (487 days), with the over all median follow-up period of

441 days for total cohort. More than 75% of the patients considered in this study had more than

75 years of age at the start of the study. There was no big difference in the number of patients

who switched treatments and no difference in the number of patients who had persistent AF/AT

in the two treatment arms respectively.
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Table 2.2: Patients characteristics (N=605)

Baseline

MVP ON MVP OFF

Variable number number Total

Number of Patients 299 306 605

Gender

Males (%) 174 (58.20) 191 (62.42) 365 (60.33)

Female (%) 125 (41.80) 115 (37.58) 240 (39.67)

Median Age 76.92 75.49 76.74

Median DurSE2 397 487 441

After 2 years follow-up period

Switched Program (%) 71 (23.75) 56 (18.30) 127 (20.99)

Persistent AF/AT (%) 41 (13.71) 30 (9.80) 71 (11.74)

2.3 Software Used

The statistical analysis was performed using SAS version 9.3. All statistical tests were performed

at 5% level of significance unless stated otherwise.
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CHAPTER 3

METHODOLOGY

3.1 Statistical Analysis

Various methods have been proposed for analysis in the literature and situations where patients

depart from their randomized treatment (Morden et al., 2011; Rimawi & Hilsenbeck, 2012).

We refer to them here as simple methods, which tend to involve only small adjustments to

standard survival techniques. This section will focus on three of these: intention-to-treat, per-

protocol analysis, which excludes patients if they switched treatment, and Inverse Probability of

Censoring Weights (IPCW). Complex observation-based methods such as Marginal Structural

Models (MSM) also exist (Faries et al., 2010; Westreich et al., 2010). For this analysis, the

later method (MSM) will not be considered here due to lack of time dependent covariates

with sufficient observations. Methods not accounting for treatment switch are discussed before

proceeding to IPCW method. They represent simple techniques that have often been used to

analyze data in which a treatment switch has occurred. These methods were included in the

analysis to allow comparisons with IPCW method. The original data set had a survival data

structure with one observation per subject. Due to the nature of the weights to be estimated

(time specific) standard software for fitting Cox regression model cannot be used for this type

of analysis. In order to fit the weighted Cox proportion hazard model with this type of weights,

survival data structure needs to be transformed into panel (longitudinal) data (Hernan et al.,

2000). In this study, data transformation was done based on the observed time to event.
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3.2 Intention-to-Treat

Randomized trials often suffer from different kinds of complication. These include: noncompli-

ance and missing outcomes. One potential solution to this problem is a statistical concept called

Intention-to-Treat (ITT) analysis (Fergusson et al., 2002). ITT analysis includes every subject

who is randomized according to randomized treatment assignment, it ignores noncompliance,

protocol deviations, withdrawal, and anything that happens after randomization. ITT analysis

maintains balance generated from the original random treatment allocation. In this analysis

method, the estimate of treatment effect is generally conservative and the obtained results from

an ITT population in a superiority trial tend to shift toward the null hypothesis and reduce

chances of false-positive conclusions (Type I error) (White, 2012).

In this study, an intention-to-treat analysis was done by fitting a multivariate Cox proportional

hazards regression model of the form:

hi(t|Xi, T rti) = ho(t) exp(βXi + γTrti), (3.1)

where:

• h0(t) is the baseline hazard function of a patient in the control group when all the

covariates (Xi) are zero;

• Trti is the treatment (0= MVPOFF , 1= MVPON);

• X is the vector of regression parameters and exp(β) is the hazard ratio (HR);

• γ is the log hazard for the treatment.

The Cox proportional hazard model, which is a regression method for survival data, provides

an estimate of the hazard ratio and its confidence interval. The hazard ratio is an estimate

of the ratio of the hazard rate in the treated versus the control arm. The hazard rate is the

probability that if the event in question has not already occurred, it will occur in the next time

interval, divided by the length of that interval. The time interval is made very short, so that in

effect; the hazard rate represents an instantaneous rate. An assumption of proportional hazards

regression is that the hazard ratio is constant over time (Spruance et al., 2004).
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3.3 Per-protocol Analysis

When patients deviate from their randomized treatment, an analysis restricted to patients who

adhered to their assigned treatment in a randomized trial (omitting patients who dropped out

of the study or switched treatment for any reason) might be performed. Though a per-protocol

analysis may be appropriate in some settings, it should be properly labeled as a non-randomized

observational comparison and any exclusion of patients from the analysis compromises the

randomization may lead to bias in the results since all patients randomized are no longer included.

This raises concerns about whether important unknown factors that influence outcome are

equally distributed across comparison arms. In theory, random switch of treatment would

tend to have no effect, preserving the true effects of the treatment but problems arise when

the switching is not random. The per-protocol analysis was done by fitting a multivariate

Cox proportional hazard regression model (3.1). However, as Morden et al. (2011) noted, this

analysis should not be done alone, it has to be compared to other methods.

3.4 Unweighted Marginal Model (GEE)

Two Generalized Estimating Equations (GEE) (Zeger & Liang, 1986; Liang & Zeger, 1986)

models which use treatment as a time varying covariate were considered, these include: a

model with outcome as had an event (AT/AF) or not given baseline covariates and randomized

treatment and a model with outcome as had an event (AT/AF) or no event given baseline

covariates and treatment history. The term marginal in this context indicates that the model

for the mean response depends only on the covariates of interest, and not on any random effects

or other responses. The marginal model is used when the researcher investigates the overall

population average trend as a function of the covariates while accounting for the correlations

in the data. The association structure is then typically captured using a set of association

parameters, such as correlations, odds ratios, etc (Molenberghs & Verbeke, 2005).

Suppose that Yij is a binary response, taking the value of 0 denoting failure (no AF/AT) or 1

denoting success (had AF/AT), and it is of interest to relate change in E(Yij) = Pr(Yij = 1) to

the covariate. With binary response, the distribution of each Yij is Bernoulli and the probability

of success is often modeled using a logit link function. The marginal expectation of the response

E(Yij) = µij depends on the covariate Xij through a know link function g(µij)=X
′
ijβ. The GEE
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estimator of β for marginal models can be thought of as arising from minimizing the following

objective function (Liang & Zeger, 1986).

N∑
i=1

{Yi − µi(β)}′V −1i {Yi − µi(β)}, (3.2)

with respect to β where Vi = A
1
2
i Corr(Yi)A

1
2 is the marginal covariance matrix of Yi which is

treated as known (by ignoring its dependence on β through µi), µi = µi(β) = Xiβ is the vector

of mean response and Corr(Yi) is the marginal correlation matrix. Using calculus, it can be

shown that if the minimum of the function given by (3.2) exists, then, the regression parameters

β are estimated by solving the estimating equation:

N∑
i=1

∂µij

∂βk
V −1i {Yi − µi(β)} = 0. (3.3)

In this study, these two models will be used to allow a comparison with a weighted model.

3.5 Weighted Cox Proportional Hazard Model with In-

verse Probability of Censoring Weight(IPCW)

Some arguments against ITT analysis appear valid. To begin with, if a subject who actually

did not receive any treatment is included as a subject who received treatment, then it indicates

very little about the efficacy of the treatment. Also, heterogeneity might be introduced if

noncompliants, dropouts, and compliant subjects are mixed together in the analysis and for

this reason, interpretation might become difficult if a large proportion of participants switched

to the opposite treatment arm. A more used alternative method is the Inverse Probability

of Censoring (=Switching) Weights (IPCW). This method adjusts for bias associated with

time-dependent confounders that are affected by prior treatment or exposure (e.g., dropout due

to adverse effects). However, this method has also been applied to control for selective switch

which is more likely among high risk subjects (Cain & Cole, 2009). IPCW analysis attempts to

create a pseudo population that would be studied had no selective switch occurred (Rimawi &

Hilsenbeck, 2012). This pseudo population is created by weighting each not artificially censored

patient’s contribution to a given risk set. Specifically at time t(i), each patient is assigned weight

of Wt(i) that is inversely proportional to the estimated conditional probability that the patient

remained not artificially censored through time t(i). The conditional probability and weight

12



W(t(i)) are estimated by fitting a discrete-time pooled logistic regression model for artificial

censoring, in which the common predictors of the endpoint of interest and the artificial censoring

mechanism are included as covariates in the model.

logitP (Cij = 0|Xi) = β0 + βXi (3.4)

where: Cij represents status of switching for ith patient at jth time point with Cij = 0 for

patients who switched treatment, whereas Xi represents a vector of covariates for patient i.

The ability of the IPCW method to create the pseudo population that would exist in the

absence of artificial censoring depends on whether the assumptions of exchangeability and

correct model specification are met. Estimated weights that are extreme in value indicate

model misspecification or nonpositivity. In turn, an estimate of the survival function based on

such weights may fail to correct for the bias introduced by the treatment switch. Whether the

weights are extreme because of model misspecification or non-positivity cannot be known with

certainty (Howe et al., 2011).
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CHAPTER 4

RESULTS

4.1 Exploratory Data Analysis

4.1.1 Treatment Switch Statistics

The dataset used in thi study, combined the information obtained from 605 patients, these

patients were randomized into two treatment arms: MVP OFF (n = 305) and MVP ON

(n = 299). After a follow-up period of two years, only 127 (21.49%) patients had deviated from

their initial treatment with 71 (12.01%) patients switched treatment to MVP ON from MVP

OFF and 56 (9.48%) patients switched to MVP OFF from MVP ON. Switching treatment had

been considered to confound the interpretation of long-term follow-up data and raise the issue

of how to deal with the deviation from randomized treatment in general. Table 4.1 shows the

proportion of patients who switched from one treatment to another. This table exhibits that

there is a considerable difference in the number of patients who experienced persistent AF/AT

between the two switching modes, i.e., 13 (18.30%) for patients who switched and 58 (81.70%)

for patients who did not switch. Almost a quarter of all patients switched treatment and one

would wonder if this number is enough to alternate the results which would be obtained if this

treatment switch is ignored (ITT).
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Table 4.1: Treatment switch descriptive statistics

Randomized to MVP OFF Randomized to MVP ON Total

Switched Stayed Switched Stayed Switched Stayed

Number n = 71 n = 230 n = 56 n = 234 n = 127 n = 464

Gender

Male 43 146 32 135 75 281

Female 28 84 24 99 52 183

Median age 75.39 77.48 81.33 77.38 77.24 77.46

Median DurSE2 682 412 354 440 632 430

Persistent AF/AT 7 23 6 35 13 58

Missings = 14

4.1.2 Kaplan-Meier Curve

Kaplan-Meier estimate is one of the best options to be used to measure the fraction of subjects

living for a certain amount of time after treatment (Goel et al., 2010). In clinical trials, the effect

of an intervention is assessed by measuring the number of patients who have not experienced

the event of interest after that intervention over a period of time. Despite difficulties associated

with patients or situation, the Kaplan-Meier estimate is the simplest way of computing the

survival/incidence over time. One of its advantages is that it requires only very weak assumptions

and utilizes the information content of both: full observed and right censored data. In this

study, the Kaplan-Meier curve was used in order to get insight into the shape of the incidence

function for each treatment arm. Figure 4.2 shows that there seems to be an increase in the

incidence of persistent AT/AF in the MVP ON arm, when compared to the MVP OFF arm.

The difference in persistent AF/AT development starts early after enrollment, but remains the

same during the follow-up period.
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Figure 4.1: Incidence of persistent AF/AT

MVP ON arm showed a steep increase in persistent AT/AF development directly after enrollment,

which may be explained by the fact that AT/AF was not documented/known at baseline, but

immediately as such documented in the new device and patients were having a device replaced.

This means that, patients may be more predisposed to tolerating ventricular pacing, so when

we implant device which minimize ventricular pacing; maybe this causes some remodeling or

change in the heart. Note that, in both endpoints (2 years follow up period) incidence curves

were not touching each other. Moreover these plots also showed no lack of proportionality in

estimated curves, which suggests a validation of proportional hazards assumption.
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4.2 Statistical Analysis

4.2.1 Cox Proportional Hazard Model with Treatment at Baseline

as the Only Covariate

Whereas the Kaplan-Meier method with log-rank test is useful for comparing survival curves in

two or more groups, Cox proportional hazards regression model allows analyzing the effect of

risk factors on survival. The most naive model that only includes treatment at randomization

shows that the difference between the two randomization arms is not statistically significant

for neither considered follow-up period (one year and two years; p = 0.133 and p = 0.078).

Therefore, based on the given data and the method used so far, the MVP ON does not appear

to be superior to MVP OFF and common clinical device programing in terms of freedom from

AF/AT. The Table 4.2 below presents the hazard ratio together with the confidence interval

associated to the model with randomization as the only covariate.

Table 4.2: Cox PH model estimate for time to AF/AT by randomized arm. In the hazard

ratio the numerator is the hazard rate of MVP ON and the denominator is the hazard ratio of

MVPOFF

Parameter Pr> ChiSq Hazard Ratio 95% Hazard Radio C.I

After one year follow up period

Randomization 0.133 1.564 [0.873 ; 2.800]

After two years follow-up period

Randomization 0.078 1.521 [0.954 ; 2.424]

4.2.2 Cox Proportional Hazard Model with Age, Gender, and Ran-

domization as Covariates

Intention-to-treat (ITT) Analysis

In the ITT analysis, using a standard Cox proportional hazards model with age, gender, and

treatment at randomization as covariates, the hazard ratio shows that female patients are less

likely to experience persistent AF/AT, adjusting for treatment and age for one year follow

up time 0.521 (95% C.I: 0.274;0.989). Results in Table 4.3 indicate that there was no signif-
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icant effect of the treatment on neither follow-up time (one year and two years; p = 0.116

and p = 0.058). While analysis of this type is valid, it may underestimate the appropriate

effectiveness of a treatment. For example, if the experimental treatment (MVP ON) truly is

superior to the control treatment (MVP OFF), and some patients have switched from control

to experiment, and are therefore receiving the benefits of this, using an ITT analysis will make

the treatments appear more similar than they really are. The benefit of this type of analysis is

that randomization balance between treatment arms is maintained.

Table 4.3: ITT: Cox PH model estimates for time to AF/AT with age and gender variables and

randomization as covariates. In the hazard ratio the numerator is the hazard rate of MVP ON

and the denominator is the hazard ratio of MVP OFF

Parameter Pr> ChiSq Hazard Ratio 95% Hazard Radio C.I

After one year follow up period

Age 0.230 1.018 [0.989 ; 1.049]

GEN(Female) 0.046 0.521 [0.274 ; 0.989]

Randomization 0.116 1.598 [0.891 ; 2.867]

After two years follow-up period

Age 0.285 1.012 [0.990 ; 1.035]

GEN (female) 0.149 0.699 [0.430 ; 1.136]

Randomization 0.070 1.542 [0.966 ; 2.463]

Subset (Per-protocol) Analysis Model

Per-protocol analysis compares treatment arms and includes only those participants who

completed the treatment protocol originally allocated. In this paragraph, patients who switched

treatment, were excluded from the analysis and results showed a non-significant treatment effect

(p = 0.111; Table 4.4). However, if done alone, results obtained from this method may lead

to bias. By comparing the results from the intention-to-treat and per-protocol analyses, the

potential bias of confounding in the estimate of treatment effectiveness indicated by per-protocol

analysis can be estimated. The results of the two analyses were similar, which suggests that

non-adherence to randomized treatment was limited. Moreover, both models show no lack of

proportionality.
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Table 4.4: Subset Analysis: Cox PH model estimates for time to AF/AT with age and gender

variable and randomization as covariates. In the hazard ratio the numerator is the hazard rate

of MVPON and the denominator is the hazard ratio of MVPOFF

Parameter Pr> ChiSq Hazard Ratio 95% Hazard Radio C.I

After one year follow up period

Age 0.310 1.018 [0.983 ; 1.055]

GEN(Female) 0.059 0.481 [0.225 ; 1.028]

Randomization 0.121 1.722 [0..866 ; 3.424]

After two years follow-up period

Age 0.216 1.017 [0.990 ; 1.044]

GEN(Female) 0.364 0.780 [0.456 ; 1.334]

Randomization 0.138 1.491 [0.879 ; 2.527]

4.2.3 Unweighted Marginal Model (GEE)

To perform this analysis, given data were transformed into panel data so that the treatment

variable could be used as a time varying covariate, this was done based on the variable indicating

the time to event (DurSE2). GEE was chosen as an alternative to the above methods ( see

sections 4.2.1 and 4.2.2 ) that account for the correlation in the data. For simplicity, we

assumed an independence working correlation matrix. This choice is justified since the GEE

method is robust against misspecification of the working correlation structure and it provides

efficient parameter estimates as longer as the mean model is well specified. The first model

(Model1) considered had binary response variable 0 as ‘fail’ (No AF/AT) or 1 as ‘success’ (had

AF/AT) together with visit, treatment at randomization, age and gender variables as covariates

(Table 6.1) whereas the second model (Model2) had treatment history, visit, age and gender

variables as covariates. Model1 showed no significant effect associated to the treatment over

time (p = 0.564). An improvement was made to Model1 where the treatment at randomization

was replaced by the received treatment in Model2. However, no treatment effect was observed

in this case neither (p = 0.280).
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4.2.4 Inverse Probability of Censoring (=Switching) Weights (IPCW)

Pooled logistic regression model for switching indicator

Results from the pooled logistic regression model for the probability of switching given past

treatment history, age and gender covariates showed that gender and previous treatment (given

the day of visit) were higher predictors of the treatment switch (p < 0.001 for both; Table6.3).

The boxplot of the weights (Figure:4.3) shows a decrease in the mean and the variance of

weights over time. Note that patients who did not switch treatment and had similar history as

those that switched treatment got bigger weights, i.e., these patients were ‘counted’ more than

once to make up for people like them that were censored due to switch. Thus the reweighted

population is no longer a biased sample.

Figure 4.2: Boxplot: Distribution of weights by visit

Inverse Probability of Censoring (=Switching) Weights (IPCW)

To adjust for confounding due to treatment switch, the parameter of the treatment effect was

estimated by fitting a weighted Cox proportional hazards model where weights were calculated

based on the individual probability of switching treatment given age and gender covariates

and treatment taken up to time j. The results obtained from this model show no significant

effect of the treatment over time. Thus, on average, over the considered time period, the
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treatment administrated to a patient does not influence the occurrence of the persistent AF/AT

(p = 0.224; Table 6.3). On the other side, no significant effect of gender or age observed after

a follow-up period of two years. Artificial censoring correction using IPCW might fail when

data that violate the exchangeability assumption are used. With the current data, it was not

easy to verify this assumption since this would require additional data. Finally, for GEE and

weighted Cox proportional hazard fitted models, results from the parameter estimates of interest

(VISIT*TRT) were combined in one plot (Figure 4.3) to help for an easy comparison of these

models.

Figure 4.3: Forest plot, hazard ratios and their 95% CI for VISIT*TRT estimates; Model1:

Unweighted GEE Model with outcome as had an event (AT/AF) or no event given age and

gender covariates and randomized treatment; Model2: Unweighted GEE model with outcome

as had an event(AT/AF) or no event given age and gender covariates and treatment history;

Model3: Robust estimates from a weighted Cox PH model with weights based on age and gender

covariates and treatment history.

4.2.5 Comparison of the considered methods

Figure 4.4 combines the hazard ratio and 95% CI for different models. The ITT model which

is a Cox proportional hazard model and the subset analysis where 127 patients who switched

treatment were excluded in the analysis lead to the same conclusion in both follow-up duration.

That is, there is not enough evidence to conclude that MVP ON is superior to MVP OFF in
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terms of freedom from persistent AF/AT. This implies that maybe the treatment switch has no

big impact on the true treatment effect in this study. Although methods like IPCW correct for

confounding induced by the treatment switch, this model failed to detect a significant effect

of the treatment over time. It can be noted that all the methods used present a consistent

message, i.e., based on the data considered in this study, MVP ON is not shown to be superior

to MVP OFF and common clinical device programming in terms of freedom from persistent

AF/AT.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The objective of this study was to estimate the difference in proportion of patients experienced

Atria Fibrillation (AT) or Atria Tachycardia (AT) with managed ventricular pacing (MVP)

programmed ON as compared to patients with MVP OFF and common device programming

based on a large dataset from a prospective observational study. The main challenge in this

study was to compare different kind of the methods, these included, ordinary Cox proportional

hazard model, unweighted GEE models and weighted Cox proportional hazard model. To fit

the latter two models data were transformed into a longitudinal sequence in order to estimate

the treatment effect. Time to event outcome measures are not generally affected by treatment

switch in cases where switch is only done after an event had occurred. This was not the case in

this study as some of the patients switched treatment before experiencing a persistent AF/AT

(n = 127). Thus, the survival estimates were adjusted for treatment switch.

From the Kaplan-Meier plot in exploratory data analysis, it is observed that MVP ON arm

showed a steep increase in persistent AT/AF development directly after enrollment, which may

be explained by the fact that AF/AT was not documented known at baseline, but immediately

as such documented in the new device. Whereas the Kaplan-Meier method with log-rank test

is useful for comparing survival curves, Cox proportional hazards regression allows to analyze

the effect of several risk factors on survival. With an ITT method, the Cox proportional hazard

model compares the two treatment arms based on the treatment originally allocated. This is

regardless of whether the patient began the treatment allocated, subsequently withdrew from
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the trial, did not adhere to the protocol of the allocated treatment, or received a different

treatment from that originally allocated. In this trial, an ITT analysis indicated that 30 of

306 (9.8%) patients treated with MVP OFF and common clinical device programming had

experienced persistent AF/AT after a follow up duration of two years as compared with 41 of

299 (13.7%) treated with MVP ON. The estimated hazard ratio from this method showed a non

significant difference between the two randomization arms. Although ITT analysis preserves

the sample size, i.e keep the statistical power, it has been criticized for being too cautious and

thus being more susceptible to type II error (Hollis & Campbell, 1999). One most common

alternative to ITT analysis is the per-protocol analysis also know as modified ITT analysis

which restricts the comparison of the treatments arms to the ideal patients, results from this

model agree with those obtained from the ITT analysis, that there seems to be no statistically

significant difference between the two randomized arms. Though a per-protocol analysis may be

appropriate in some settings, it should be properly labeled as a non-randomized, observational

comparison. Any exclusion of patients from the analysis compromises the randomization and

may lead to bias in the results.

To adjust for confounding due to treatment switch, a weighted Cox proportional hazard model

was applied. The weights were calculated to represent the inverse probability of censoring given

factors affecting the treatment switch. Due to treatment switch, the hazard ratios calculated

from the models which do not take into account switching are biased. Although not significant,

the results obtained from the IPCW model showed a small improvement as compared the

preceding models, this is shown by a significant treatment effect and a significant visit effect

individually. However, due to the presence of interaction term between visit and treatment

(VISIT*TRT) which is not significant, no conclusion can be made from the main effect of these

covariates.

As a summary of this discussion, all the considered methods lead to the same conclusion that:

based upon these data, MVP ON is not shown to be superior to MVP OFF and common clinical

device programming in terms of freedom from persistent AF/AT.

Comparing results of this study to other studies that have used statistical techniques to account

for treatment switch; a number of randomized trials have compared common clinical pacemakers

and MVP mode. Although some trials have demonstrated that MVP ON mode significantly
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reduced the frequency of ventricular pacing in patients with sinus node disease and AV block

(Gillis et al., 2006), others have demonstrated only modest (Brignole et al., 2005) or no benefit

at all (Sweeney et al., 2003; Albertsen et al., 2008).

Study Limitations

The following limitations can be noted:

• Atria passing percentage was not collected at baseline.

• Missing device data: 25% of the visit Case Report Forms were sent without a save to disk.

This affected the analysis of our data since methods which correct for missingness may

not work properly in presence of such amount of missing data. Therefore some covariates

were excluded from the analysis due to a huge number of missing measurements, this is

the case of two time varying covariates: LVEF and NYHA.

• The longer follow up period for the MVP ON randomized patients, as a result of the 2:1

randomization in the first 1.5 year. the mean extra follow up time for MVP ON patients,

compared to the MVP OFF randomized patients was 2 months.
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CHAPTER 6

APPENDIX

Table 6.1: GEE parameter estimates (Empirical standard errors): Model (randomized treatment)

Parameter Estimate (S.E) 95% Confidence Limits Z Pr> |Z|

INTERCEPT 0.173(0.920) [-3.542 ; 0.064] -1.890 0.059

VISIT -0.003(0.001) [-0.006 ; -0.001] -2.580 0.010

AGE 0.010(0.011) [-0.011 ; 0.032] 0.930 0.354

GEN( Female) -0.439(0.310) [-1.047 ; 0.169] -1.420 0.157

TRT RAND (0) -0.887(0.522) [-1.909 ; 0.135] -1.700 0.089

VISIT*TRT RAND(0) 0.001(0.002) [-0.002 ; 0.004] 0.580 0.564

Table 6.2: GEE parameter estimates (Empirical standard errors): Model (treatment history)

Parameter Estimate (S.E) 95% Confidence Limits Z Pr> |Z|

INTERCEPT -1.720(0.916) [-3.515 ; 0.074] -1.88 0.060

VISIT -0.004(0.001) [-0.006 ; -0.001] -2.76 0.006

AGE 0.011(0.011) [-0.010 ; 0.033] 1.02 0.308

GEN -0.470(0.309) [-1.074 ; 0.135] -1.52 0.128

TRT -1.119(0.509) [-2.116 ; -0.123] -2.20 0.028

VISIT*TRT 0.002(0.002) [-0.001 ; 0.005] 1.08 0.280
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Table 6.3: Pooled logistic regression model for switching probability

Effect Wald ChiSq PrÂ >Â ChiSq

VISIT 313.541 <.0001

PR TRT 917.823 <.0001

GEN 44.116 <.0001

AGE 3.252 0.071

VISIT*PR TRT 22.519 <.0001

Table 6.4: Weighted Cox PH model: Parameter estimates (Empirical standard errors): Model

(received treatment)

Parameter Estimate (S.E) 95% Confidence Limits Z Pr> |Z|

INTERCEPT -1.634(0.933) [-3.462 ; 0.194] -1.750 0.080

VISIT -0.004(0.001) [-0.007 ; -0.001] -2.870 0.004

AGE 0.011(0.011) [-0.011 ; 0.034] 0.980 0.325

GEN -0.505(0.322) [-1.136 ; 0.127] -1.570 0.117

TRT -1.184(0.512) [-2.188 ; -0.180] -2.310 0.021

VISIT*TRT 0.002(0.002) [-0.001 ; 0.005] 1.220 0.224
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