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ABSTRACT 

Many randomized clinical trials includes right censored time to event data, comparing an 

experimental treatment with a standard treatment or placebo control. In this comparison, one 

tests whether the two treatments have the same survival function or equivalently the same 

hazard function over a given time period in order to evaluate effect of treatment.  The 

methodological development of survival analysis for randomized clinical trials with right-

censored data that have had the most profound impact are the log-rank test for comparing 

the equality of two or more survival distributions, and the Cox proportional hazards model 

for examining the covariate(s) effects on the hazard function. However, when comparing 

treatments in terms of their time to event distribution, there may be reason to believe that the 

hazard curves will cross, and in such cases standard comparison techniques could lead to 

misleading results (Logan et al, 2008).   Hence, in this study, the performance of  new 

methods proposed by Callegaro et al (2014) for testing treatment effect on randomized 

clinical trials when the proportional hazards assumption is in doubt was evaluated based on 

simulation studies and on two real datasets. New proposed methods are based on 

combination of early/late treatment effects obtained from stopped/left truncated Cox or 

equivalently from extended Cox and the overall treatment effect from Cox proportional 

hazards model. These methods were compared with Cox (1972) proportional hazards model, 

pseudo values regression approach based on mean restricted survival time proposed by 

Andersen et al (2004) and Klein et al (2007) and extended Cox for the time dependent 

treatment effect proposed by Putter et al (2005). Type I error rate and power of the proposed 

tests were illustrated based on simulated data under five possible treatment effect.  The 

results of simulations and real data examples on cancer clinical trials showed that the new 

proposed methods performed reasonably well in case of crossing survival curves compared 

to Cox proportional hazards model and pseudo values regression approach based on 

restricted mean survival time.  However, they performed about the same compared to 

extended Cox model. Furthermore, they performed about the same compared to Cox 

proportional hazards model and extended Cox under the late treatment effect. Using the 

proposed methods under proportional hazards alternative did not generally yield dramatic 

decrease in power compared to the Cox model and they allow to adjust for covariate(s). 

KEY WORDS: Simulation, Stopped Cox, Kaplan-Meier method, Cox proportional hazards, 

pseudo values regression approach, extended Cox model 
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1. INTRODUCTION 

1.1. Background 

Survival analysis has become one of the most widely used statistical tools for analyzing 

clinical research data. It is specifically concerned with time to event data and is of particular 

value because of its intrinsic ability to handle censored observations.  In the literature, many 

randomized clinical trials includes right censored time to event data, comparing an 

experimental treatment with a standard treatment or placebo control in order to evaluate 

treatment effect (Bain and Engelhardt (1991), Klein and Moeschberger (1997)).   In this 

comparison, one tests whether the two treatments have the same survival function or 

equivalently the same hazard function over a given follow up time (Zhang and Klein, 1998). 

The log-rank test is commonly used test statistic for the comparison.  Often in these trials, 

characteristics of the patient and of the tumours that are known before treatment are also 

recorded.  Hence, to study the effect of treatment, Cox proportional hazards model is the most 

popular choice with advantages of adjusting for baseline and prognostic  covariate(s) (Logan 

et al, 2008).  

One of the assumptions underlying the Cox model is the assumption of proportional hazards, 

meaning that the ratio of the hazards for treatment versus control is constant over time (Cox, 

1972). Then, the hazards ratio can be expressed as a single number; the hazards ratio of 

treatment over control.  Although not as implicitly assumed as in the Cox regression model, 

the validity of the log-rank test is also sensitive to the assumption that the hazard ratios for 

treatment versus control do not change appreciably over time (Putter et al, 2005). When 

studying survival data over a short period of time, the proportional hazards assumption is 

often a reasonable one. However, in cancer clinical trials with long-term follow-up, it often 

happens that the hazard ratio changes over time. In the beginning of the study for instance, 

the experimental treatment may yield better survival, but this effect may be reversed after 

some time or vice versa (Logan et al, 2008). In such a case,  the log-rank test for the 

difference in survival ratios between the treatments will most likely not be significant, 

because of the contrasting early and late effects of the treatments. If the proportional hazards 

assumption fails to hold for the treatment or for one or more of the covariates, the results of a 

Cox model will be misleading. In addition, it is not easy to interpret the hazards ratio 

resulting from the Cox proportional hazards model because it is a weighted average hazards 
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ratio over the observed follow-up time (Schemper et al, 2009, Royston and Parmar, 2011 and 

Oquigley and  Pessione, 1991).  

In the literature, to deal with the issues of non-proportional hazards, Putter et al (2005) 

proposed to model the Cox regression model with time-dependent treatment effects. Klein et 

al (2007) proposed to compare survival curves at one fixed time point. Royston and Parmar 

(2011) proposed to compare restricted mean survival time at a pre-specified fixed time point.  

Chen and Tsiatis (2001) studied methods for comparing covariate-adjusted restricted mean 

survival times between two treatment groups. Yang et al (2007) proposed testing treatment 

effect by combining weighted log-rank tests and using empirical likelihood. Logan et al 

(2008) proposed to test two subhypothesis: the hypothesis of equality of Kaplan-Meier 

survival difference at a pre-specified time point (  ) and the hypothesis of no difference in the 

hazards after   . Callegaro et al (2014) proposed testing treatment effect based on the 

combination of early (late) and overall treatment effects. 

1.2. Statement of the Problem 

As many studies indicated, the Cox proportional hazards model is the standard for evaluation 

of treatment effects on clinical trial data, but when hazards are not proportional, the Cox may 

not be powerful. Consequently, different approaches have been proposed as alternative to the 

Cox model in the case of non-proportional hazards. Therefore, this study has attempted to 

answer the following scientific questions: 

a) What are the alternative methods to test the effect of treatment in randomized clinical trial 

when proportional hazards assumption is in doubt? 

b) How is the performance of new methods proposed by Callegaro et al (2014) compared to 

Cox proportional hazards model, pseudo values regression approach based on restricted 

mean survival time and extended Cox in the situation where proportional hazards 

assumption is in doubt? 

1.3.  Objectives of the Study 

A comprehensive review of the existing methods for dealing with the problem of non-

proportional  hazards is provided. It is stressed in the literature that the log-rank or Cox test 

has optimal power to detect differences in the hazard rates, when the hazard rates are 

proportional (Klein, Moeschberger,  1997). When these tests are applied to  samples from 

populations where the hazard rate cross, they lack power.  Therefore, the main objective of 

this thesis was to evaluate the  performance of newly proposed methods by Callegaro et al 
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(2014)  (i.e. methods based on the combination of treatment effects) compared to tests 

obtained from Cox proportional hazards model,  pseudo values regression approach based on 

restricted mean survival time proposed by Royston and Parmar (2011) and Andersen et al 

(2004) and extended Cox model proposed by Putter et al (2005) in order to test treatment 

effect in randomized clinical trials with possible non-proportional hazards with and without 

including covariate(s) in the models. This was studied by simulations and two popular real 

datasets from randomized cancer clinical trials.  

1.4. Significance of the Study 

This study evaluates the performance of newly proposed methods and offers a breakthrough 

in the new methods of testing treatment effects in the situations where proportional hazards is 

in doubt.  Therefore, this will increase the bank of knowledge in the field of survival analysis. 
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2. METHODOLOGY 

2.1. Description of the Data 

2.1.1.  Dataset on gastric cancer trial  

In addition to simulations, to illustrate efficiency of newly proposed methods two popular 

real datasets were considered. Both datasets are taken from the R package survival.  The first 

dataset was on gastric cancer (Stablein, Carter, and Novak 1981) which comes from a 

controlled clinical trial in patients with advanced non-resectable gastric carcinoma. It was 

analyzed by MacKenzie and Ha (2007) and Klein and Moeschberger (1997)  to exemplify 

crossing hazards scenario. In this dataset there are two treatment arms: chemotherapy plus 

radiation and chemotherapy without radiation.  There are a total of 90 patients involved in the 

study and 79 of them are observed events resulting to 12% censoring. The outcome of interest 

was overall survival time and  the objective of the trial was  to test if chemotherapy plus 

radiation is better than chemotherapy without radiation. This dataset was used to exemplify 

crossing survival curves. 

2.1.2. Dataset on bladder cancer trial   

The second dataset that was considered to illustrate new proposed methods was coming from 

a study by Byar (1984) and included patients with superficial bladder tumors removed by 

transurethral resection. Many patients had multiple tumor recurrences (up to a maximum of 

9) during the study, and new tumors were removed at each visit.  However, in this study data 

from 85 individuals in the placebo and thiotepa treatment groups with only the first 

recurrence was considered and 45% of them are censored. The covariates that were 

considered are the initial number of tumours and the size (cm) of largest initial tumour. This 

dataset was used to exemplify the late treatment effect. 

2.1.3.  Simulation Design  

A simulation study was designed to compare the performance of the  new proposed methods 

in terms of their type I error rate and power.  Callegaro et al (2014) conducted a simulation 

study to examine the statistical power of their proposed test statistics under a variety of 

possible situations. They claimed that their proposed test statistics can be used in testing 

treatment effect, whether or not the underlying proportional hazards assumption was met. 

Therefore, in this study, a similar simulation setting was carried out to evaluate the power of 

their proposed test statistics under different possible  scenarios and they were compared with 

some of the existing methods such as pseudo values regression approach based on restricted 
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mean survival time and extended Cox model for time dependent treatment effect.  In the 

simulation design, survival times for treatment groups were generated independently for 

samples of size 200 subjects per treatment group with 30% of administrative censoring 

(censoring due to termination of study) using true survival functions presented in Figure 1. 

This was done under five different scenarios such as: in scenario 1) survival curves are 

assumed to be identical (i.e., no treatment effect under the null hypothesis), 2)  survival 

curves are assumed to have proportional hazards, 3) survival curves are assumed identical at 

the beginning, then separate as time goes on (late treatment effect), 4)  the two survival 

curves are separate at beginning, but identical as time goes on (early treatment effect) leading 

to crossing hazards, and 5) survival curves are assumed to cross.  In all scenarios survival 

times are simulated conditioning on the binary covariate which was generated from Bernoulli 

distribution considering the follow up period of five years and independent of the censoring 

times.  For each scenario, the data are replicated 1000 times which is the most common 

choices (Burton et al, 2006). The type I error rate and empirical power of the tests are 

calculated as the proportion of 1000 repeated random samples in which the null hypothesis is 

rejected at the nominal alpha of 5% with one-sided test statistics under identical survival 

curves and four different alternative scenarios, respectively with and without including the 

covariate in the models. Simulations and analyses were done using R software version of 

R3.1.0. 

2.2. Method of Statistical Analysis  

2.2.1. Testing for the Treatment Effect based on Pseudo-Values Regression Approach  

In survival analysis, regression models are often specified using the hazard function and 

relationships are expressed using hazards ratio. However, in cases when the proportional 

hazards assumption is in question, it would be useful to be able to express the effect of 

covariates on a restricted mean survival time, in a manner similar to classical regression 

analysis which is focused on the mean of an outcome variable. Pseudo-values allow for this 

by replacing censored observations and event times with “leave-one-out” estimates at a given 

time (Andersen et al, 2003). Later, Andersen et al (2004) described the use of  pseudo values 

as a route to assessing the effects of covariate(s) on restricted mean survival time.  Royston 

and Parmar (2011) also provided a convincing argument for the use of a restricted mean 

when the proportional hazards assumption is in doubt. A restricted mean can be used where 

either the last observation is treated as an event or the investigator can assign an interval 

which is assumed to be the longest possible survival time for that study. Another version of 
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the restricted mean is to assume the last event time as the last observed time regardless of 

later censored observations (Sheldon, 2006). In general,  the choice of this point appears to be 

arbitrary and in all of the literature researched for this work, very little guidance is given or 

attention is paid to the choice of time point  . Andersen  et al (2004) performed simulation 

study for the choice of time point   at 75
th

  and 95
th

 percentile of event time and reported that 

the biases are quite small for one of the choices. Therefore, to test the treatment effect with 

the presence of additional covariate(s), pseudo values regression approach based restricted 

mean survival time at 80th percentile of event time point was considered as an alternative and 

compared with new methods proposed by Callegaro et al (2014).   

 The restricted mean survival time    of a random variable   is the mean of         ; it is 

the area under the survival curve      up to time   and is given by: 

               

      
 

 

   

and can be estimated by:  

                                                                           
 

 
   

, where       is the Kaplan Meier (1958) estimator and  when   is the time to death,    might 

be interpreted as the   year life expectancy (Royston et al, 2011). For a given restricted mean 

survival time point  , let        be pooled sample Kaplan–Meier estimator, based on all 

observations and     
       be the Kaplan–Meier estimator based on the     observation 

removed. Then the     pseudo values restricted at time   is defined by: 

                       
 

 
               

        
 

 
 ,   =1,2,...,n. 

, where Kaplan–Meier (1958)  estimator of survival in the       treatment group at event time 

   can be given as: 

           
   

   
     
  

and its variance estimated by Greenwood's formula (Greenwood,  1926) has the form: 

                     
 

   
   

       
 

    

 

, where            are distinct event times,      denote the number of events, and      

denote the number of subjects at risk in the     treatment group at event time    and    is the 

number of subjects in the     treatment group for     for experimental (E) treatment and 0 
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for control (C) group.  Once pseudo values are computed, then they can be used to model the 

effect of covariate(s) on the outcome (Klein et al, (2007), Logan et al (2008) and Andresen et 

al (2004)). The model based on these pseudo values restricted at time   has the form: 

                  ,  for    =1,2,...,  

, where    is treatment indicator (1 for experimental (E) treatment or 0 for control (C) group),  

X is vector of covariate(s) and      is the identity link function. Then, the null hypothesis of 

equality survival for patients in the treatment and control group is equivalent to testing 

        against one-sided alternative that experimental treatment increases survival time 

i.e.        .  Inference on    was performed using generalized estimating equations 

(Liang and Zegere, 1986) and the estimating equation to be solved has the form: 

  
 

    
                 

 

  
     

 

                 

 

        

, where       is a independence working covariance matrix,      is the model based predicted 

values of    . Let    be the solutions to this equation then according Liang and Zeger (1986), 

under standard regularity conditions,           is asymptotically multivariate normal with 

zero mean vector and covariance that can be estimated consistently by a "sandwich" 

estimator. Then the null hypothesis of no difference in survival times between treatment 

groups i.e.          against one-sided alternative that experimental treatment increases 

survival time i.e.         can be tested by: 

        
   

          

 

Under the null hypothesis,         statistic assumed to follow a standard normal distribution 

for a large samples. 

2.2.2. Testing for the Treatment Effect based on Extended Cox Model 

Under the proportional hazards assumption, crossing of the survival curves is impossible. 

Thus, in a study where the patient groups do not differ between the treatments,  crossing of 

the survival curves implies a violation of the proportional hazards assumption. If the 

proportional hazards assumption fails to hold for the treatment or for one or more of the 

covariates, the results of a Cox proportional hazards model will be misleading. Putter et al 

(2005) suggested a way of studying the effect of treatment changes over time  by adding a 

time dependent treatment effects in a Cox proportional hazards model. The most 
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straightforward way to model a time dependent treatment effect is by adding interaction 

terms of the treatment group with      as                , where      is the function of 

time t with its popular choice can be   or         or heaviside function that take value 1 for all 

time point greater than or equal to pre-specified time    or zero otherwise.  In this study, for 

the practicality and comparability of results, heaviside function which is conceptually related 

with stopped Cox and defined on the median of observed events (  ) was adopted. In the 

literature it is stated that, if there is no information about  crossing point for hazards the 

recommended choice is the time point where half of the expected number of event are 

observed (Zhou, 2006).   Gillen and Emerson (2005) also suggested the use of equally spaced 

information time with the goal of balancing loss of statistical power against the potential for 

early stopping in the situation where there is no prior knowledge of a time varying treatment 

effect. These are considered as motivations for the choice of time point    in this study. The 

general form of the extended Cox model with time dependent treatment effect can be written 

as:     

                                          ,  where 

      
      
      

  is called heaviside (step) function,   is treatment groups (1 for treated and 

0 for control),    are additional baseline covariate(s),   ,    and    are parameters to be 

estimated representing early, late treatment effects and baseline covariate(s) effects, 

respectively. The parameters of the model were estimated by maximizing logarithm of partial 

likelihood via Newton-Raphson iterative procedure (Klein and Moeschberger, 1997). Lets 

denote             and            as one-sided p-value to test for the early and late 

treatment effect with hypothesis          versus          and          versus 

         , respectively. Since early and late treatment effects are independent, the null 

hypothesis of                can be tested by combining two sub hypothesis by Fisher 

(1925) combining method as:                                     which is distributed 

chi-square with 4 degrees of freedom for two independent tests. The      tests if there is an 

early or a late treatment effect. 
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2.2.4. Testing for  the Treatment Effect based on Combination of Treatment Effects 

from stopped/left truncated Cox and Cox proportional hazards Models 

2.2.4.1.  Cox Proportional hazards Model  

In this section, the newly proposed methods by Callegaro et al (2014) to test for treatment 

effect based on Cox model, but stopped at different administratively censored time is 

described. It is well known that the proportional hazards model operates under the 

proportional hazards assumption, that the hazard for an individual in one treatment group at a 

given time is proportional to the hazard of a similar individual in the control group, and this 

proportion remains constant over time (Cox, 1972). Suppose that there is a total sample of n 

individuals with the survival time t and  let   be treatment groups (1 for treated and 0 for 

control). Let    be set of additional baseline covariate(s), putting all of these elements 

together, the general form of the Cox (1972) proportional hazards model can be written as: 

                         

, where       denote the hazard function for an individual on the control with covariate 

values all equal to zero, which is also known as the baseline hazard function. The parameters 

of the model were estimated by maximizing the logarithm of partial likelihood via Newton-

Raphson iterative procedure (Klein and Moeschberger, 1997). From Cox proportional 

hazards model, the null hypothesis of no difference between treatments ( i.e.,        ) 

versus one-sided alternative that the treatment is better (i.e.,        ) can be tested using:  

     
   

          

 

Under the null hypothesis, this statistic follows a standard normal distribution for a large 

samples. In the frame of Cox proportional hazards model, a Cox model stopped at    is a Cox 

model fitted on the data with additional administrative censoring at time    in order to study 

short term treatment effect.  Van Houwelingen and Putter (2011) showed that the predictions 

based on the stopped Cox model are very accurate at the beginning of the follow-up and later 

in 2014 they concluded that stopped Cox works well for follow-up which is not too long. 

Furthermore, left truncated Cox model is also in the frame of Cox proportional hazards model 

fitted on the data left truncated at time   .  To develop test statistics based on early effect or 

late effect and overall treatment effect, let     denote the treatment effect estimated by the 

stopped Cox model (early treatment effect),   or     denote the treatment effect estimated by 

left truncated Cox (late treatment effect) or equivalently estimated from extended Cox model 
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by using heaviside function and     represent overall treatment effect. According to Callegaro 

et al (2014), the effect of treatment can be tested by the sum of early (late)  treatment effects 

and overall treatment effect and the test statistics has the form: 

       
       

                     

 

or  

       
       

                     

 

Under the null hypothesis,       and        statistics follow a standard normal distribution 

for  large samples.        tests whether there is an overall or early treatment effects and 

       tests whether there is an overall or late treatment effects. They combines the two log 

hazards ratio by taking into account the dependence of the tests through covariance.  

Callegaro et al (2014) suggested to use the covariance between          and     as  the 

variance of     and its theoretical derivation is related with theory of log-rank test (Mantel, 

1966).  In general, to compute        or        statistics, first the early, late and the overall 

treatment effects should be estimated in a way that the early and late treatment effect can be 

estimated by fitting the Cox model on data administratively censored at    (the median of the 

observed event times) and  left truncated Cox proportional hazards model after time   , 

respectively. Equivalently early and late treatment effects can be estimated from extended 

Cox model by using heaviside function. In this way, half of the events are used to estimate 

the early and late treatment effects. In general, the way to compute    must be pre-specified 

in the protocol. The overall treatment effect can be estimated from Cox proportional hazards 

model. Another alternative is to combine two test statistics from early or late and the overall 

treatment effects using a group sequential like methodology. The global null hypothesis, that 

there is no treatment effect in the overall population (i.e.,         ) nor in the subgroup 

(i.e.,          or       ) is given by:             . The test statistics for group 

sequential like method have the form: 

                                                                                   or 

                                                        

, where               ,              and             are p-values from overall, early and 

late treatment effects, respectively.   The significance levels are denoted by    and   .  To 

control the family wise error rate below a value   for a pre-specified significance level   ,    
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is defined in such a way that prob                          .  Spiessens and  Debois 

(2010) showed that    can be determined by solving the equation: 

   
        

    
 

   

  

           

, where   is the information fraction in the subgroup and is given by:    
         

             
 .  The 

level of significance    was used in group sequential method under overall treatment effect 

from Cox proportional hazards model and    was used for early or late treatment effects. For  

administratively censored time point    for which about half of the observed events are 

censored             and for fixed         significance level,    was calculated to be 

0.017 which was computed by using standard package for group sequential design in R.  In 

general, test statistics from group sequential like method i.e.,       or       combines the 

two p-values from early and overall treatment effects or late and overall treatment effects, 

respectively. This method takes dependence of the tests into account by group-sequential like 

approach i.e., by splitting significance level. 

Finally, another proposed test statistic was to choose the time point    which maximizes the 

treatment effect of the extended Cox model and has the form: 

                                                                  

, where      is test statistic in which the maximum of the treatment effect is observed. The 

treatment effect is estimated by fitting the extended Cox model with heaviside function at the 

event time   , for  = 1,...,  . The      statistic is the maximum of the K estimated treatment 

effects and its distribution under the null hypothesis is not known.   In this case a permutation 

test, where the treatment label is permuted was used to derive the p-value. In order to perform 

the permutation test,  compute test statistic for the actual data (      from event time   , for 

 = 1,...,   and calculate the values of the same statistic for each of the possible assignments 

of the treatment labels of the total   observations by permuting treatment label.  Finally, the 

proportion of these values that are equal to or greater than the value of the statistic for the 

actual data is the desired p-value. In this study, due to computational intensive nature of the 

test, 300 random possible arrangements of the treatment label was adopted. 
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3. RESULTS  

3.1. Simulation Results 

In order to evaluate the performance of newly proposed methods for testing the effect of 

treatment in randomized clinical trial when proportional hazards assumption is in doubt, 

survival data was simulated from a population exhibiting different possible treatment effects 

as displayed in Figure 1.  

 

Figure 1: True survival curves used to simulate the data under different scenarios 

Figure 1 displays true survival curves that were used to simulate sample data under five  

possible treatment effects such as: a) no treatment effect (under the null), b) constant 

beneficial effect (proportional hazards alternative), c) no initial effect but a gradually 

increasing beneficial effect, d) an initial beneficial effect that diminishes long-term and e)  an 

initial harmful and late beneficial effect of treatment.  The sample data was replicated 1000 

times under different scenarios containing a total of 400 subjects with one to one 

randomization and 30% administrative censoring. The average estimated treatment effects 

from the simulated data with and without covariate in the models is presented in the Table A1 

and A2 in the Appendix. 
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Table 1:  Estimated type I error rate and Power of the tests based on the simulations under different 

scenarios for different methods without including covariate in the models 

Under 

Methods  

                                                

Null Hypothesis 0.059 0.055 0.059 0.055 0.050 0.054 0.057 0.058 

     of PH Assumption 0.724   0.514 0.701 0.658 0.753 0.743    0.679 0.714 

   of Late Treatment  0.670   0.943 0.831 0.922 0.979 0.892    0.405 0.909 

   of Early Treatment 0.872   0.005 0.954 0.207 0.948 0.266    0.933 0.896 

     of Crossing Survivals 0.236   0.779 0.444 0.741 0.939 0.540    0.030 0.675 

     represents test statistic from Cox proportional hazards model,        (      ) is test based on sum of early and overall  treatment 

effects( sum of late and overall  treatment effects),         (     ) is from group sequential method based on test statistics from early and 

overall  treatment effects (late treatment  and overall  treatment effects),       is maximum of test statistics from all distinct event time 

points by permutation,           is  from pseudo values regression approach based on restricted mean survival time  and      is from 
extended Cox model.  

 

Table 1 displays simulation results of the estimated type I error rate and  power of newly 

proposed tests,  test from Cox proportional hazards, pseudo values  regression approach 

based on restricted mean survival time and extended Cox without including the covariate in 

the models. From Table 1, it can be observed that under  the null hypothesis all methods 

controlled a type I error rate stabilizing around the targeted 0.05 level of significance and this 

was expected in order for the test method to be efficient. The power of the various procedures 

is expected to depend heavily on the scenarios, for instance, the test from Cox proportional 

hazards model is expected to perform well in case of proportional hazards alternative. 

However, it can be seen that the newly proposed tests as well as test from extended Cox 

model performed about the same as compared to the test from Cox proportional hazards 

model. Under proportional hazards alternative, the test from pseudo values regression 

approach based on restricted mean survival time had less power compared to test from Cox 

proportional hazards model.  It was also seen that in the case of late treatment effect, the test 

from Cox proportional hazards model, test statistics based on the sum of late and overall 

treatment effects, group sequential like method based on late and overall treatment effects, 

permutation test based on maximum treatment effect and test from extended Cox model 

performed reasonably well under this scenario.  As was expected, in the situation where two 

survival curves are separate at the beginning and then close as time goes on (i.e., early 

treatment effect) and crossing survival curves, the tests for treatment effect from Cox 

proportional hazards model had  less power and this might be due to the contrasting early and 

late effects of the treatments. From newly proposed methods, test statistics based on the sum 

of early  and overall treatment effects, group sequential like method based on early  and 
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overall treatment effects, permutation test based on maximum treatment effect had better 

performance under early treatment effect in which hazards are expected to cross. They 

performed  about the same compared to pseudo values  regression approach based on 

restricted mean survival time and extended Cox model under this scenario. On the other hand, 

test statistics based on the sum of late  and overall treatment effects, group sequential like 

method based on late  and overall treatment effects, permutation test based on maximum 

treatment effect had better performance under the crossing survival curves. They performed 

about the same compared to test from extended Cox model and better compared to pseudo 

values regression approach based on restricted mean survival time.  Overall, from new 

methods, permutation test statistic showed better performance under all alternative scenarios 

although it is computational intensive.  

Table 2: Estimated type I error rate and power of the tests based on the simulations under different 

scenarios for different methods with including covariate in the models 

Under 

Methods  

                                                

Null Hypothesis 0.058 0.050 0.055 0.051 0.050 0.059 0.058 0.057 

     of PH Assumption 0.728    0.721 0.757 0.747 0.739 0.800    0.646 0.771 

   of Late Treatment  0.306   0.948 0.757 0.942 0.982 0.830    0.103 0.915 

   of Early Treatment 0.977    0.013 0.997 0.402 0.983 0.495   0.994 0.985 

     of Crossing Survivals 0.006    0.885 0.224 0.970 0.964 0.311   0.001 0.937 

     represents test statistic from Cox proportional hazards model,        (      ) is test based on sum of early and overall  treatment 

effects( sum of late and overall  treatment effects),         (     ) is from group sequential method based on test statistics from early and 

overall  treatment effects (late treatment  and overall  treatment effects),       is maximum of test statistics from all distinct event time 

points by permutation,           is  from pseudo values regression approach based on restricted mean survival time  and      is from 
extended Cox model.  

 

Table 2 displays simulation results of the estimated type I error rate and  power of newly 

proposed tests, test from Cox proportional hazards model, pseudo values  regression approach 

based on restricted mean survival time and extended Cox with the presence of covariate in 

the models. In general, when covariate is introduced into the models the pattern of results in 

terms of maintaining type I error and the power of the tests was similar to the results obtained 

without covariate in the models (Table 1). However, there was a gain in power for most of 

methods when covariate is included in the models.  Specifically, in contrast to the Cox 

proportional hazards model, test statistics based on sum of early and overall treatment effect, 

group sequential like method  based on early and overall and permutation test in which the 

effect of  treatment maximized were powerful in the case of early treatment effect where 

hazards are expected to cross. They also perform similarly compared to  pseudo values 
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regression approach based on restricted mean survival time and extended Cox model under 

this scenario. 

 On the other hand, test statistics based on the sum of late and overall treatment effects, group 

sequential like method based on late and overall treatment effect and permutation test were 

powerful in the case of crossing survival curves whereby there is an  initial harmful and late 

beneficial effects of the experimental treatment. Furthermore, in case of proportional hazards 

alternative, using the newly proposed methods did not yield dramatic decrease in statistical 

power compared to the Cox proportional hazards model.  

3.2. Implementation of the Methods on the Real Datasets 

To evaluate the performance of newly proposed methods, two dataset on crossing survival 

curves and late treatment effects were analyzed and results are displayed in the subsequent 

sections. The detail description about dataset is given in section 2.1.  Kaplan Meier survival 

curves were used as an exploratory tool in order to describe  the data. 

3.2.1.  Gastric cancer  dataset 

 

Figure 2:  Kaplan-Meier estimated survival curves for the gastric cancer data-set by treatment groups 

Figure 2 displays Kaplan Meier plots of overall survival curves by treatment group. Clearly 

from Figure2,  it can be seen that the treatment effect (chemotherapy plus radiation) was  

initially unfavorable and later became advantageous over control (chemotherapy without 

radiation). The two curves of the treatment group crossed after about 2.5 years. From log-log 

survival plot in Figure 3, it can be seen that two survival curves are not parallel. The crossing 

survival curves  and lack of parallelism on log-log plot are a clear sign of non-proportionality 
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in which Cox proportional hazards model might not work well.  The dashed vertical lines on 

the plot represent the medians of the observed event time point (       ).  

 

Figure 3: Log-log survival plot for gastric cancer dataset by treatment groups 

 
Table  3: P-values from  one-sided test statistics to test treatment effect under crossing survival curves 

 Methods 

                                                                       

P-values 0.976 0.204 0.993/0.733 0.049/0.733 0.197 0.733 0.995 0.197 
     represents test statistic from Cox proportional hazards model,        (      ) is test based on sum of early and overall  treatment 

effects( sum of late and overall  treatment effects),        is maximum of test statistics from all distinct event time points by permutation,   

        is  from pseudo values regression approach based on restricted mean survival time ,      is from extended Cox model. and P-values 

reported for       and        are from early/overall and late/overall treatment effects, from group sequential like method,  respectively. 

 

Table 3 shows one-sided p-values of the test statistics from new proposed methods,  Cox 

proportional hazards model, pseudo values regression approach based on restricted mean 

survival time and extended Cox model to test for the effect of treatment.  From the results, 

newly proposed test statistics based on sum of late and overall treatment effects and 

permutation test performed about the same compared to extended Cox, but better than test 

from Cox proportional hazards model and pseudo values regression approach based on 

restricted mean survival time. Moreover, there was late beneficial treatment effect as p-value 

from the test statistic from group sequential like method at late treatment was small as 

compared to test statistic based on early treatment effect although it was statistically 

insignificant at 2% level of significance from group sequential like method to test for early 

(late) treatment effects (i.e., 0.049 >0.02). This was also reflected through one-sided p-values 
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from test statistic based on the sum of late and overall treatment effects.  These results are 

consistent with the findings of the simulation studies under crossing survival curves.  

 3.2.2.  Bladder cancer dataset 

In order to describe  survival distribution of treatment groups for bladder cancer dataset, 

Kaplan Meier survival curves were used  as presented in Figure 4. 

 

Figure 4: Kaplan-Meier survival curves for the bladder cancer dataset by treatment groups 

Figure 4 displays the plots of Kaplan Meier estimated survival probabilities by treatment 

groups.  From the figure, it can be seen that there was delay in the effect of the treatment as 

Kaplan Meier survival curves are start to diverge after half of the observed event time point. 

The dashed vertical lines on the plot represent the medians of the observed event time point 

(       ) and clearly the data exemplify the late treatment effect. 

Table 4: Parameter estimates (standard errors) obtained from Cox proportional hazards model and stopped Cox 

at 0.41 years under late treatment effect 

  Cox PH Model Stopped Cox Model 

Effects  Coeff. (se. coeff)    P-values Coeff. (se. coeff) P-values 

Treatment  -0.5260 (0.3158) 0.0479* -0.2351 (0.465) 0.3067 

Initial number of tumors 0.2382 (0.0759) 0.0017* 0.2403 (0.104) 0.0210* 

Size of tumors 0.0696 (0.1016) 0.4900 0.0441 (0.155) 0.780 
* Statistically significant at 5% level of significance,  Coeff. represent estimated  parameters,  se. coeff is standard errors of estimated  
parameters. 

 

Table 4 displays the parameter estimates (standard errors) and their corresponding p-values 

from Cox proportional hazards and stopped Cox models.  From the Table 4, the initial 

number of tumors was  significantly associated with death among bladder cancer patients.  

The effect of treatment was statistically not significant in stopped Cox (one-sided p-
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value=0.3067), but borderline significant in Cox proportional hazards model (one-sided p-

value=0.0479). The treatment effect stopped at 0.41 years was lower than the overall 

treatment effect from Cox proportional hazards model with higher standard error. As was 

expected from the simulation results under late treatment effect, the p-value of the classical 

Cox model is smaller than the p-value of the stopped Cox model.  

Table 5: Parameter estimates (standard errors) obtained from  regression approach based on restricted mean 

survival time at 80% of observed event time under late treatment effect 

Effects Coeff. SE.coeff. P-values 

Intercept 1.1516 0.1572 <0.0001* 

Treatment 0.1348 0.1169 0.1244 

Initial number of tumors -0.0890 0.0392 0.0130* 

Size of tumor -0.0236 0.0473 0.5950 
* Statistically significant at 5% level of significance, Coeff. represent estimated  parameters,  se. coeff. is standard errors of estimated 

parameters. 

 

Table 5 shows estimated parameters and their standard errors from pseudo values regression 

approach based on mean restricted survival time on the 80% event observed time point. From 

the results,  it was seen that survival time of patients significantly related with the initial 

number of tumors. So, for a unit increase in initial number of tumors, the mean restricted 

survival time of the patients decrease by 0.089 years.   Comparing results from stopped Cox 

and pseudo values regression approach based on the restricted mean survival time with Cox 

proportional hazards model, they produced higher one-sided p-values for the treatment effect. 

This was not surprising  as it was evident from simulation results that the Cox  proportional 

hazards model works reasonable well under late treatment effect.   

Table 6: Parameter estimates (standard errors) obtained from extended Cox model under late treatment effect 

Effects           Coeff. SE.coeff. P-values 

Early Treatment -0.2696 0.4269 0.2638 

Late Treatment -0.7966 0.4513 0.0388* 

Initial number of tumors 0.2351 0.0760 0.0020* 

Size of tumor 0.0735 0.1014 0.4682 
* Statistically significant at 5% level of significance, Coeff. represent estimated  parameters,  se. coeff. is standard errors of estimated 

parameters. 

 

Table 6 displays the parameter estimates (standard errors) obtained from extended Cox  

model. By combining one sided p-values of  early and late treatment effect,  the p-value from 

extended Cox model was found to be 0.057 which is borderline significant. However, the risk 

of dying was significantly lower for patients in the treatment group compared to control 

group after the median of observed event time point (one-sided p-value=0.038). As before,  

the initial number of tumors had statistically significant effect on the risk of dying. Moreover, 

to illustrate the performance of newly proposed methods compared to Cox proportional 
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hazards model, pseudo values regression approach based on restricted mean survival time and 

extended Cox model, one  sided p-values of the test statistics are given in Table 7. 

Table  7: P-values from one-sided test statistics to test for treatment effect with and without including the 

covariates in the models under late treatment effect 

Without including the covariates in the models 

                                                

P-values 0.246 0.064 0.415/0.110 0.065/0.110 0.116 0.110 0.193 0.124 

With including the covariates in the models 

P-values 0.126 0.0310* 0.264/0.048 0.039/0.048 0.053 0.048 0.124 0.057* 
     represents test statistic from Cox proportional hazards model,        (      ) is test based on sum of early and overall  treatment 

effects( sum of late and overall  treatment effects),        is maximum of test statistics from all distinct event time points by permutation,   

        is  from pseudo values regression approach based on restricted mean survival time ,      is from extended Cox model. and P-values 

reported for       and        are from early/overall and late/overall treatment effects  from group sequential like method,  respectively. 

 

Table 7 displays one-sided p-values from newly proposed methods, Cox proportional hazards 

model, pseudo values regression approach based on restricted mean survival time and 

extended Cox with and without including covariates in the models. From the Table 7, in the 

presence of covariates in the models, the effect of treatment was borderline significant in the 

Cox proportional hazards model, extended Cox  and permutation test. As was expected, from 

new proposed methods, test statistic based on sum of late and overall treatment effects and 

permutation test performed about the same compared to the test from Cox proportional 

hazards and extended Cox models, but perform better compared to pseudo values regression 

approach based on restricted mean survival time. However, test statistics based on sum of 

early and overall treatment effects had less power compared to Cox proportional hazards and 

extended Cox models. These results are consistent with the findings of the simulation study 

under late treatment effect. 
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4. DISCUSSION AND CONCLUSIONS 

The Cox proportional hazards model is the standard approach to evaluate the treatment effect 

on clinical trial data. When non-proportional hazards is present Cox model may not be 

powerful, especially in the case of crossing hazards. In such a case, the test for the difference 

in hazard rates between the treatments will most likely not be significant, because of the 

contrasting early and late effects of the treatments. Different approaches have been proposed 

as alternative to the Cox proportional hazards model in the case of non-proportional hazards. 

Therefore, the main purpose of this thesis was to evaluate the performance of one sided 

newly proposed methods by Callegaro et al (2014) for testing the treatment effect in 

randomized clinical trials when proportional hazards assumption is in doubt. They were 

compared with Cox proportional hazards model,  pseudo values regression approach based on 

restricted mean survival time and extended Cox model. This was done based on simulations 

and two popular real datasets exhibiting crossing survivals curves and late treatment effect.  

Performance of new proposed methods were evaluated in terms of maintaining nominal level 

of significance and empirical power. From simulation results, it was seen  that all methods 

controlled the type I error rate accurately in a sense that empirical type I errors were close to 

the targeted 0.05 level of significance with and without including covariates in the models. 

Hence, the normal distribution seems an adequate approximation for the sample sizes 

investigated.  As was expected, the performance of the Cox proportional hazards model for 

testing treatment effect generally lacks power in situations where there is early treatment 

effect and two survival curve cross. Simulation results showed that the newly proposed 

methods of testing treatment effect; test statistics based on  sum of early and overall treatment 

effects, group sequential tests based on early and overall, and permutation test based on 

maximum treatment effect performed reasonably well compared to Cox proportional hazards 

model under early treatment effect where hazards are expected to cross.  They also performed 

about the same compared to pseudo values regression approach based on restricted mean 

survival time at 80% of the observed event time and extended Cox model in the case of early 

treatment effect.  It was seen that permutation test had better results under four alternative 

scenarios compared to the power of other newly proposed test statistics. These results are 

similar to the  finding by Callegaro et al  (2014).  

In general, using the newly proposed methods under proportional hazards alternative did not 

yield decreases in statistical power compared to the Cox proportional hazards model,  pseudo 

values  regression approach based on restricted mean survival time and extended Cox model. 



22 
 

It should be noted that the performance of test statistics based on sum of early (late) and 

overall treatment effects, group sequential like method based on early (late) and overall 

treatment effects, pseudo values regression approach based on restricted mean survival time 

and extended Cox depends on choice of time points. Hence,  the way to compute time point 

   must be pre-specified in the protocol. The advantage of the test statistic based on 

maximum treatment evaluated at all event times with respect to the other test statistics is that 

its results do not depend on a pre-specified time point   .  However, its drawback is that the 

distribution of the test statistic is unknown. Hence, a permutation test was used to compute 

the p-value which is computational intensive. As indicated in the simulation studies, new 

methods proposed by Callegaro et al (2014) reject the null hypothesis if a beneficial 

treatment effect is observed at a certain time point, irrespective of possible harmful treatment 

effects observed at other time points. In conclusion, new proposed methods are 

straightforward to implement in most statistical packages and allow to adjust for covariates as 

they performed reasonable well with the presence of covariate(s) in the models. They are 

useful for testing the treatment effect in randomized clinical trials when the proportional 

hazards assumption is in doubt. The proposed methods can be particularly useful in cancer 

clinical trials with long-term follow-up as they are powerful in case of crossing survival 

curves whereby there is an  initial harmful and late beneficial effects of the experimental 

treatment.   

There was a few limitation to this simulation studies. This include: the study considered 

simulation setting for a sample of 200 subjects per treatment group with 30% administrative 

censoring, in the future work, one can investigate the different censoring rates and sample 

size effects to see how that would directly affect the results of the power and type I error rate 

of the newly proposed test statistics.  
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6. APPENDIX 

Table A1: Estimated treatment effects based on the simulations under different scenarios with 30% 

administrative censoring for a sample of size 200 per group without including the covariate in the 

models 

Under 

Treatment effects(log-hazards ratio)  

                               

Null Hypothesis -0.001   -0.004 0.001 -0.005 -0.000 0.003 

     of PH assumption -0.249   -0.305   -0.193 -0.553 -0.442 0.316 

   of Late Treatment  -0.269   -0.201   -0.337 -0.469 -0.606 0.244 

   of Early Treatment -0.122  -0.629   0.388 -0.751 0.267 0.195 

     of crossing survivals -0.178  -0.016   -0.345 -0.194 -0.524 -0.047 

   represents overall from Cox PH model,     and    are is early and late treatment effects from extended Cox,        is sum of early 

and overall treatment effects from Cox and extended Cox,        is  sum of late and overall  treatment effects from Cox and extended 

Cox and           is overall treatment effects  from pseudo values regression approach based on restricted mean survival time.  

 
Table A2: Estimated treatment effects based on the simulations under different scenarios with 30% 

administrative censoring for a sample of size 200 per group with including covariate in the models 

Under 

Treatment effects (log-hazards ratio)  

                               

Null Hypothesis -0.002   -0.006 0.001 -0.008 -0.001 0.003 

     of PH assumption -0.305   -0.306   -0.304 -0.611 -0.609 0.231 

   of Late Treatment  -0.307   -0.001   -0.625 -0.309 -0.932 0.045 

   of Early Treatment -0.197   -0.798   0.409 -0.995 0.212 0.954 

     of crossing survivals -0.126   0.415   -0.690 0.288 -0.816 -0.243 

   represents overall from Cox PH model,     and    are is early and late treatment effects from extended Cox,        is sum of early 

and overall treatment effects from Cox and extended Cox,        is  sum of late and overall  treatment effects from Cox and extended 

Cox and           is overall treatment effects  from pseudo values regression approach based on restricted mean survival time.  

 
Table A3: R-code to simulated sample data under five different scenarios conditioning on the covariates 

####################################################################################### 

# Function to simulate Sample data from the true survival curves under different Scenarios 

####################################################################################### 

simulate.data<-function(n,prop.obs=0.7,config=0, beta.z=0.5){ 

time=seq(0,5,length=1000) 

z=rbinom(n, size=1, prob=0.5) 

####################################################################################### 

 # Survival functions under null hypothesis 

####################################################################################### 

if (config==0) surv1=surv0=1-.15*time   

##################################################################### ################## 

 # Survival functions under Proportional assumption 

####################################################################### ##### ###### ####           

if (config==1) {                                   

surv1=(1-.15*time)^exp(-0.3);   

surv0=(1-.15*time);  

} 

####################################################################################### 

 #Survivalfunctions under the late treatment effect alternative 

####################################################################################### 
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if (config==2) {                                   

surv1=surv0=numeric() 

sel=time<=2.5 

surv1[sel]=surv0[sel]=(1-.15*time[sel])  

sel=time>2.5 

surv1[sel]=(.8-.07*time[sel]) 

surv0[sel]=(1-.15*time[sel]) 

} 

####################################################################################### 

 #Survival functions under Crossing hazards/Early treatment Effect 

####################################################################################### 

if (config==3) {                               

surv1=surv0=numeric() 

 surv0[time<1]=1-.4*time[time<1] 

 surv0[time>1 & time<2]=.8-.2*time[time>1 & time<2] 

 surv0[time>=2]=0.605-0.1*time[time>=2] 

 surv1[time<1]=1-.2*time[time<1] 

 surv1[time>1 & time<2]=1.2-.4*time[time>1 & time<2] 

 surv1[time>=2]=0.605-0.1*time[time>=2] 

 

} 

######################################################################################## 

 #Survival functions under Crossing Survival Curves 

######################################################################################## 

if (config==4) {                                   

surv1=surv0=numeric() 

tt0=0.5 

sel=time<=tt0 

surv0[sel]=(1-.15*time[sel])  

surv1[sel]=(1-.45*time[sel])  

sel=time>tt0 

surv1[sel]=(.81-.08*time[sel]) 

surv0[sel]=(1-.15*time[sel]) 

} 

######################################################################################## 

# To generate random variable from uniform to simulate random survival times and covariates 

######################################################################################## 

z=rbinom(n, size=1, prob=0.5) 

surv1.z=surv1^exp(beta.z) 

surv0.z=surv0^exp(beta.z) 

u1=runif(n);u0=runif(n) 

t1=t0=numeric() 

##################################################################################### 

# Kind of Inversion Method to generate random survival times conditioning on covariate 

##################################################################################### 

for(i in 1:n){ 

if(z[i]==0){ 

    t1[i]=max(time[abs(surv1-u1[i])==min(abs(surv1-u1[i]))]) 

    t0[i]=max(time[abs(surv0-u0[i])==min(abs(surv0-u0[i]))]) 

    } 

if(z[i]==1){ 

    t1[i]=max(time[abs(surv1.z-u1[i])==min(abs(surv1.z-u1[i]))]) 

    t0[i]=max(time[abs(surv0.z-u0[i])==min(abs(surv0.z-u0[i]))]) 

    } 

} 

t=c(t1,t0) 

####################################################################################### 

# For administered censoring (censoring due to end of the study) 

###################################################################################### 

thr=quantile(t,prob=prop.obs) 
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status=numeric() 

status[t>thr]=0 

status[t<=thr]=1 

tt=t 

tt[t>thr]=thr 

oo=data.frame(tt, status, c(rep(1,n),rep(0,n)),z) 

colnames(oo)=c('time','event','G','z') 

oo 

} 

######################################################################################### 

#Functions for Group Sequantial design to compute alphas and for other methods 

######################################################################################### 

find.alpha2.twosided<-function(alpha1,alpha,tau, interval=c(-3, 3)){ 

f<-function(z1,z.alpha2,alpha,alpha1,tau){ 

z=(z.alpha2-sqrt(tau)*z1)/sqrt(1-tau) 

pnorm(z)*dnorm(z1) 

} 

f2<-function(z.alpha2,alpha1,alpha,tau){ 

integrate(f,lower=-Inf, upper=qnorm(1-alpha1),z.alpha2=z.alpha2,alpha=alpha,alpha1=alpha1,tau=tau) 

} 

f3<-function(z.alpha2,alpha1,alpha,tau){ 

f2(z.alpha2=z.alpha2,alpha=alpha,alpha1=alpha1,tau=tau)$value-(1-alpha) 

} 

alpha1=alpha1/2 

alpha=alpha/2 

z.alpha2=uniroot(f3,interval,alpha1=alpha1,alpha=alpha,tau=tau)$root 

2*(1-pnorm(z.alpha2)) 

} 

######################################################################################## 

#Function to apply Cox model on censored data-set (one-sided) 

######################################################################################## 

stopped.cox<-function(data,t0){ 

data0=data 

sel=data0$time>=t0 

data0$event[sel]=0 

data0$time[sel]=t0 

cc=coxph(Surv(time, event)~G+z, data0) 

beta=coefficients(summary(cc))[1,1] 

sd.beta=coefficients(summary(cc))[1,3] 

pvalue.beta=pnorm(beta/sd.beta) 

list(beta=beta,sd.beta=sd.beta,pvalue=pvalue.beta) 

} 

##################################################################################### 

# To create distinct Event time for stopped Cox Model and Max Permutation test 

###################################################################################### 

min.pv.calculation<-function(data, p=seq(0.3,1,by=0.1)){ 

t0=quantile(unique(data$time[data$event==1]), prob=p) 

K=length(t0) 

pv=numeric() 

for(j in 1:K) pv[j]=stopped.cox(data,t0=t0[j])$pvalue 

list(pv=min(pv),t0=t0[which.min(pv)]) 

} 

####################################################################################### 

# To Simulate and Replicate the Data 

####################################################################################### 

BB=1000 # Number of data replication 

results=array(, dim=c(BB,10,5)) # To store one sided P-values of all test statistics 

Betasss=array(, dim=c(BB,6,5))#To store treatment effects from different models 

for(conf in 0:4) # Number of scenarios 

for(bb in 1:BB){ 
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print(bb) 

data=simulate.data(n=200,prop.obs=0.7,config=conf, beta.z=0.5)  #If beta.z=0 there are no covariates! 

######################################################################################## 

#One-sided Overall Treatment and Covariate Effect from Cox PH model 

######################################################################################## 

fit.overall=coxph(Surv(time, event)~G+z,data) 

beta=coefficients(summary(fit.overall))[1,1] 

sd.beta=coefficients(summary(fit.overall))[1,3] 

#pvalue.beta=coefficients(summary(fit.overall))[5] 

pvalue.beta=pnorm(beta/sd.beta) 

results[bb,1,conf+1]=pvalue.beta 

Betasss[bb,1,conf+1]=beta 

########################################################################################## 

# EARLY: one-sided Early treatment effect from Stopped Cox at median of event times 

########################################################################################## 

t0=median(data$time[data$event==1]) 

ss=stopped.cox(data,t0=t0)           

beta.t0=ss$beta 

sd.beta.t0=ss$sd.beta 

pvalue.beta.t0=ss$pvalue 

######################################################################################### 

# One sided Test Statistic based on Sum of Early and overall treatment Effect  

######################################################################################### 

Z.sum=(beta+beta.t0)/sqrt((sd.beta.t0^2)+3*(sd.beta^2))    

results[bb,2,conf+1]=pnorm(Z.sum) 

######################################################################################### 

# EARLY+LATE: Adding a time-dependent treatment in a Cox PH model by heavside function 

######################################################################################### 

t0=median(data$time[data$event==1]) 

data2=survSplit(data,cut=t0,end="time",event="event",start="start") 

data2$gt=(data2$start==t0)+0    #create Heaviside function 

fit.td<-coxph(Surv(start,time,event)~G:I(1-gt)+G:gt+z,data=data2)   

b=coefficients(summary(fit.td))[-1,1] 

s=coefficients(summary(fit.td))[-1,3] 

z=coefficients(summary(fit.td))[-1,4] 

pv=pnorm(z) 

beta.t0=coefficients(summary(fit.td))[2,1] 

beta.t0LT=coefficients(summary(fit.td))[3,1] 

beta.LT=beta+beta.t0LT 

beta.ET=beta+beta.t0 

sd.beta.t0LT=coefficients(summary(fit.td))[3,3] 

Betasss[bb,2,conf+1]=beta.t0 

Betasss[bb,3,conf+1]=beta.t0LT 

Betasss[bb,4,conf+1]=beta.ET 

Betasss[bb,5,conf+1]=beta.LT 

###################################################################################### 

# One sided Test Statistic based on Sum of late and overall treatment Effect  

###################################################################################### 

Z.sumLT=(beta+beta.t0LT)/sqrt((sd.beta.t0LT^2)+3*(sd.beta^2))    

results[bb,3,conf+1]=pnorm(Z.sumLT) 

####################################################################################### 

#a) EARLY: one-sided Early treatment effect from Extended Cox/Stopped Cox at median of event times 

####################################################################################### 

results[bb,4,conf+1]=pv[1] 

######################################################################################## 

###b) LATE: one-sided treatment effect from extended Cox/ Left truncated Cox 

######################################################################################## 

results[bb,5,conf+1]=pv[2] 

####################################################################################### 

#c) EARLY+LATE: Fisher method of Combining one sided P-values from Extended Cox 
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######################################################################################## 

Fisher.test <- function(p) { 

  Xsq <- -2*sum(log(p)) 

  p.val <- 1-pchisq(Xsq, df = 2*length(p)) 

  return(c(Xsq = Xsq, p.value = p.val)) 

} 

results[bb,6,conf+1]=Fisher.test(p = pv)[2] 

########################################################################################## 

# EARLY+OVERALL: One Sided Group sequential design based on  Pvalues from Cox PH and Stopped Cox 

######################################################################################### 

tau=(sd.beta^2)/(s[1]^2) 

alpha=0.05 

alpha1=0.03 

alpha2=find.alpha2.twosided(alpha1=alpha1,alpha=alpha,tau=tau)   

results[bb,7,conf+1]=ifelse(pvalue.beta<alpha1 | pv[1]<alpha2,0,1)   

########################################################################################## 

# LATE+OVERALL: One Sided group sequential design based on P-values from Cox PH and extended Cox 

######################################################################################### 

tau=(sd.beta^2)/(s[2]^2) 

alpha=0.05 

alpha1=0.03 

alpha2=find.alpha2.twosided(alpha1=alpha1,alpha=alpha,tau=tau)   

results[bb,8,conf+1]=ifelse(pvalue.beta<alpha1 | pv[2]<alpha2,0,1)    

########################################################################################## 

#One Sided: Maximum of Test statistics from distinct 10 event time points based on Permutation test  

########################################################################################## 

Cox.TD<-function(data, prob=seq(0.3,1, length=10)){ 

seq.t0<-as.numeric(quantile(data$time[data$event==1], prob)) 

pval=numeric() 

for(k in 1:length(seq.t0)){ 

data2=survSplit(data,cut=seq.t0[k],end="time",event="event",start="start") 

data2$gt=(data2$start==seq.t0[k])+0    #create Heaviside function 

fit.td<-coxph(Surv(start,time,event)~G:I(1-gt)+G:gt+z,data=data2)  

b=coefficients(summary(fit.td))[-1,1] 

s=coefficients(summary(fit.td))[-1,3] 

z=coefficients(summary(fit.td))[-1,4] 

pv=pnorm(z) 

pv[is.na(pv)]=0.5  #overall Cox: prob=1 

pval[k]=Fisher.test(p = pv)[2] 

} 

opt.pval=min(pval) 

} 

pv.obs=Cox.TD(data) 

PP=300 

pv.perm=numeric() 

data.perm=data 

for(pp in 1:PP){ 

data.perm$G=sample(data$G) 

pv.perm[pp]=Cox.TD(data.perm) 

} 

results[bb,9,conf+1]=mean(pv.perm<pv.obs) 

print(results[bb,,conf+1]) 

########################################################################################## 

# Pseudo values Regression Approach based Restricted mean Survival time  

########################################################################################## 

library("KMsurv") 

library("pseudo") 

######################################################################################### 

#  To calculate pseudo-values based  mean restricted survival times at 80 percentiles of observed event time 

######################################################################################### 
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rms.time=quantile(data$time[data$event==1],0.8) 

a <- cbind(data,pseudo=pseudomean(data$time, data$event,tmax=rms.time),id=1:nrow(data)) 

library("geepack") 

fit22<- geese(pseudo ~ data$G+data$z, data = a, id=id, jack =T, family=gaussian, corstr="independence", 

scale.fix=F) 

beta=as.numeric(summary(fit22)[[1]][2,1]) 

std.beta=as.numeric(summary(fit22)[[1]][2,3]) 

Zpv = beta/std.beta 

results[bb,10,conf+1]=1-pnorm(Zpv) 

Betasss[bb,6,conf+1]=beta 

} 

colnames(results)<-

c('Cox','Z.sum','Z.sumlate','ET','LT','ET+LT(TDTRT)','ET+OT(GS)','LT+OT(GS)','Max.t0','PRMS') 

colnames(Betasss)<-c('CoxBeta','Beta.t0','Beta.t0LT','Beta.E+T','Beta.L+T','PRMSBeta') 

######################################################################################## 

#  Summaries of one sided p-values from Simulations 

######################################################################################## 

alpha=0.05 

rr=rbind(apply(results[,,1]<alpha,2,mean,na.rm=TRUE), 

apply(results[,,2]<alpha,2,mean,na.rm=TRUE), 

apply(results[,,3]<alpha,2,mean,na.rm=TRUE), 

apply(results[,,4]<alpha,2,mean,na.rm=TRUE), 

apply(results[,,5]<alpha,2,mean,na.rm=TRUE)) 

round(rr,3) 

######################################################################################## 

# Estimated average treatment effects from Simulations 

######################################################################################## 

Trteft=rbind(apply(Betasss[,,1],2,mean,na.rm=TRUE), 

apply(Betasss[,,2],2,mean,na.rm=TRUE), 

apply(Betasss[,,3],2,mean,na.rm=TRUE), 

apply(Betasss[,,4],2,mean,na.rm=TRUE), 

apply(Betasss[,,5],2,mean,na.rm=TRUE)) 

round(Trteft,3) 

##########################End########################################################## 
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