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Abstract

Individual heterogeneity in the acquisition of infectious diseases is recognized
as a key concept, which allows improved estimation of important epidemiological
parameters. Frailty models allow to represent such heterogeneity. Coull et al.
(2006) introduced a computational tractable multivariate random effects model for
clustered binary data. The objective of this report was to apply and modify the
proposed model, and compare to the shared and correlated gamma frailty mod-
els in the context of the analysis of multivariate current status data. The models
were applied to the bivariate current status data on Varicella-Zoster Virus and
Parvovirus B19 using different baseline hazard functions for the force of infection.
The findings revealed that the proposed model which is called in this report as new
correlated gamma frailty model is closely related to existing frailty models. The
main difference is the way the multivariate gamma is introduced in the model, and
the indirect way to specify the baseline hazard function. In terms of construction,
a frailty model is typically formulated based on specification of the proportional
hazard function, whereas the new correlated gamma frailty model is built using a
classical generalized linear mixed model for clustered binary data. Furthermore, in
the new model the variances of the frailties are assumed to be identical, whereas in
case of the frailty model, the variances can be different or identical and the corre-
lation is constraint by the ratio of the variances.

Keywords: Multivariate current status data; multivariate serological data; new
correlated gamma frailty model; shared and correlated gamma frailty models; in-
dividual heterogeneity.
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1 Introduction

Current status data arise in studies where the target measurement is the time of occur-
rence of some event, but observations are limited to indicators of whether or not the
event has occurred at the time the sample is collected - only the current status of each
individual with respect to event occurrence is observed (Shiboski 1998, Hens et al. 2009,
and Chen et al. 2009).
The term current status data arose in the field of demography (Diamond et al. 1986,
cited by Shiboski 1998), where interest often focuses on the age that some landmark event
occurs, such as weaning. Because such events are rarely observed prospectively, studies
must either rely on retrospective information, which may be unreliable, or use the current
status information collected when subjects enroll (Shiboski 1998).
Current status data also arise naturally in epidemiological studies of infectious diseases
(Shiboski 1998), where serological samples are used to investigate the epidemiology of
infectious diseases and to estimate important parameters such as the force of infection
(Farrington and Kanaan 2001 and Hens et al. 2012).
In this perspective, serological samples taken at a certain time point provide information
about whether or not the individual has been infected before that time point (Hens et al.
2012). Moreover, for feasibility and economical reasons, serum samples are often tested
for more than one antigen (Farrington and Kanaan 2001 and Hens et al. 2012). In this
way, the (past) disease status of individuals on multiple diseases is known, and allows
studying the association in acquisition between several infections. Under the assumption
of lifelong immunity and that the epidemic is in a steady state (i.e., at equlibrium), im-
portant epidemiological parameters can be estimated from such data (Hens et al. 2012).
In the estimation of epidemiological parameters, Hens et al. (2012) pointed out that
individuals are dissimilar in the way they acquire infectious. Some individuals are more
susceptible than others and will experience infections earlier. Thus, individual hetero-
geneity in the acquisition of infectious diseases is recognized as a key concept on the
estimation of such epidemiological parameters (Hens et al. 2012). In the context of cur-
rent status data on infectious diseases, such individual heterogeneity is expressed in terms
of the age-dependent force of infection (FOI) through the multiplicative frailty models
(Hens et al. 2012 and Enki et al. 2014).
Hens et al. (2009, 2012) considered correlated and shared gamma frailty models in
the context of bivariate current status data to represent such heterogeneity. Coull et
al. (2006) introduced a computationally tractable multivariate random effects model for
clustered binary data that is useful when interest focuses on the association structure
among clustered observations.
In this report, the objectives were to apply and modify the proposed model and compare
it to the gamma frailty models for the estimation of individual heterogeneity in the ac-
quisition of infections.
The remainder of the report is organized as follows: Section 2.1 describes the data. In
Section 2.2 some relevant concepts in modeling infectious diseases are introduced. Section
2.3.1 sets up the shared gamma frailty model. In Section 2.3.2, the correlated gamma
frailty model is introduced. The parametric distributions for the baseline hazard function
are given in Section 2.3.3. The new correlated gamma frailty model and its extension
using fractional polynomials are given in Section 2.3.4 and Section 2.3.5, respectively.
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Model fitting and comparison between both correlated gamma frailty models are given in
Section 2.3.6 and Section 2.3.7, respectively. In Section 3, the methods developed in this
report are applied to paired serological data on Varicella-Zoster Virus and Parvovirus
(B19). Discussion and conclusion are given in Section 4 and Section 5, respectively.
Computation in this report was carried out using software package R version 3.1 (R De-
velopment Core Team 2014). All computer code used is available upon request. The
forms of the data structure to fit the models are presented in the Appendix.
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2 Methodology

2.1 Data

The data used in this report consist of serum samples tested for two infections, Varicella-
Zoster Virus (VZV) and Parvovirus (B19). Data from these infections were collected in
a survey in Belgium in a period from November 2001 until March 2003. The Varicella-
Zoster Virus, also known as human herpes virus 3 (HHV-3), is one of eight herpes viruses
known to affect humans and other vertebrates (Thiry et al. 2002; Hens et al. 2008).
Primary Varicella Zoster-Virus infection results in chickenpox (varicella), has a two-week
incubation period and is highly contagious by air droplets starting two days before symp-
toms appear. Infectiousness is known to last up to ten days. Therefore, chickenpox
spreads quickly through close social contacts (Hens et al. 2008).
Parvovirus B19 was the first human Parvovirus to be discovered, in 1975. In clinical
terms Parvovirus B19 is best known for causing a childhood exanthem called fifth disease
or erythema infectiosum. The virus is primarily spread by infected respiratory droplets.
Parvovirus B19 symptoms begin some six days after exposure and last for about a week.
After being infected, patients are infectious for five to seven days and usually develop the
illness after an incubation period of four to fourteen days (Broliden et al. 2006 and Hens
et al. 2008).
In total, 3080 sera were tested for Varicella Zoster-Virus and 2657 sera were tested for
Parvovirus B19 from which 2382 sera were tested for both Varicella Zoster-Virus and Par-
vovirus B19. As mentioned by Hens et al. (2010) and Hens et al. (2012), when modeling
the force of infection a first issue is the definition of antibody activity levels as they truly
reflect natural infection rather than maternal antibody or vaccine induced activity. An
ad hoc approach commonly applied is to delete the observations which are believed to
refer to maternal antibodies (in this case corresponding to the first 6 months). Therefore,
without loss of generality samples from children under 6 months which corresponds to
less than 0.5 years old were omitted. Since in this report attention was restricted to
the association between Varicella Zoster-Virus and Parvovirus B19 infections, individuals
having serological results for both infections were considered. Hence, from 3374 blood
samples 2377 complete cases together with age were used.
Figure 1 shows the observed proportion of sera that tested positive for both Varicella
Zoster-Virus and Parvovirus B19 (top left panel), that tested positive on Parvovirus B19
only (top right panel), that tested positive on Varicella Zoster-Virus only (lower left
panel), and that tested negative on both viruses (lower right panel). From the figure, it
seems that the prevalence of being co-infected with both viruses increases quickly with
age and decreases around the age 21 to 30 years old and start to increase again, while the
proportion of still being susceptible decreases (almost zero at age 40 years old). It can
also be observed that the prevalence of Varicella Zoster-Virus infection is higher than the
prevalence of Parvovirus B19 infection.

2.2 Relevant Concepts in Modeling Infectious Diseases

Before turning to the statistical models which are used to estimate the degree of the
individual heterogeneity using current status data, some relevant concepts in modeling
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Figure 1: Proportion of samples that tested positive on both Varicella-Zoster Virus and Par-
vovirus B19 (top left panel), that tested positive on Parvovirus B19 only (top right panel), that
tested positive on Varicella-Zoster Virus only (lower left panel), and that tested negative on
both viruses with dots proportional to sample size.

infectious diseases are introduced.
There are many drivers behind the spread of diseases (Hannon and Ruth, 2009). The
concepts of infectious diseases in this report are referred (Hens et al. 2012) to those
that are caused by pathogens, which are transmissible between hosts, either directly
or indirectly. Suppose that a population P is divide into two groups. One part of the
population Z is affected by something and the other part A is not affected. In the context
of infectious diseases the population is affected by an infection and therefore Z is the part
of the population infected individuals (the infected class) while A is the susceptible part
of the population (the susceptible class). In the above definition, each individual in the
population belongs only to one part of the population and at each time the individuals
move from one class to the others, that means the susceptible class becomes infected
and the infected individuals recovers and becomes susceptible again (Keeling and Rohani
2008 and Hens et al. 2012). In this process of moving from one class to the other, Ross
(1916) assumed that there are three different processes that act simultaneously on the
population and proposed a model which represents the population dynamics using a set
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of three differential equations.
The main problem of the model proposed by this author is that some of the parameters
of the model are unknown and the solution proposed by Ross was to iterate between two
modeling frameworks namely, a posteriori and a priori methods (Hens et al. 2012). The
former refers to statistical models and the latter to mathematical models. An example of
a mathematical model is the Susceptible-Infected-Recovered (SIR) model. This model, is
one of the basic compartmental models in infectious diseases epidemiology and is widely
used and well suited to model many viral infectious in childhood (Hens et al. 2012).
One of the assumption of this SIR model which is the main motivating of the statistical
models for this report, is the time homogeneous representation of the model (Hens et al.
2012). Under this assumption, the proportion of susceptible individuals at age a is given
by

s(a) =
S(a)

N(a)
= exp (−λa) , (1)

where S(a) is the number of individuals in the cohort in the susceptible class at age a,
N(a) denotes the number of individuals in the cohort who are still alive at age a, and λ
represents the rate at which individuals are infected. As mentioned by Hens et al. (2012),
when λ depends on age, expression (1) becomes

s(a) = exp

(
−
∫ a

o

λ(u)du

)
. (2)

From equation (2) it can be clearly observed that there is a relation between the above
formulation and survival analysis. In this particular formulation, the time to event can
be thought of as the age at infection, s(a) being the survival function (which represents
acquiring infection), λ(a) denoting the age-specific hazard of infection and

∫ a
0
λ(u)du in-

dicates the cumulative hazard of infection. More detail on the SIR model can be found
in Keeling and Rohani (2008) and Hens et al. (2012).
Although the concepts of serological and current status data are discussed in more detail
in the next section, the connection between cross-sectional serological samples and math-
ematical model are presented. As defined by Hens et al (2012), let Yi, i = 1, 2, ..., N , be
an indicator variable representing the disease status for the ith individual in the sample.

Yi =

{
1 when seropositive (previously infected),
0 when seronegative (susceptible to infection).

Let P (Yi = 1|ai) = π(ai) = E(Yi|ai) be the probability to be infected before age ai. It
follows that

Yi ∼ Bernoulli(π(ai)).

Observe that π(ai) = 1 − s(ai) and using expression (1), which relies on the validity of
the SIR assumption for the specific infection under consideration, it follows that

π(ai) = 1− exp (−λai) .

Hence, in order to estimate the unknown parameter λ one can define a generalized linear
model (GLM) for the binary response with complementary log-log link function

g(π(ai)) = log(− log(1− π(ai))) = α + log(ai),

where α = log(λ).
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2.3 Statistical Methods

The connection between the SIR model relying on the time homogeneous assumption,
serological data, and the estimation of the force of infection has been discussed in the
previous section. The concepts of current status, serological data and their relation are
described in this section. Current status data arise in studies where the target measure-
ment is the time of occurrence of some event but observations are limited to indicator
of whether or not the event has occurred at the time the sample is collected. Only the
current status of each individual with respect to event occurrence is observed (Shiboski
1998; Wang and Ding 2000; Balakrishnan and Rao 2004; Sun 2006).
Current status data is also referred to as case I interval-censored data. A more convenient
representation of case I interval-censored data is {C, δ = I(T ≤ C)}, where C denotes the
monitoring time, I is the indicator function and δ is the indicator whether the event al-
ready occurred before the monitoring time or not. With this definition, clearly it can be
noted that this type of data one can only know that the event has occurred between two
time points, but not the exact time point (Hens et al. 2009).
The bivariate version is defined as follows (Wang and Ding 2000; Balakrishnan and Rao
2004; Unkel and Farrington 2012): consider a study in which interest focuses on the
bivariate distribution F of two random survival variables (T1, T2) neither of which can be
directly measured. Rather, for each individual, we observe at a random monitoring time,
C, whether Tj exceeds C or not for each j = 1, 2. That is, on each subject, we observe

(Y1 ≡ I(T1 ≤ C), Y2 ≡ I(T2 ≤ C)),

where C is assumed independent of (T1, T2).
In this report, current status data that can be used to estimate the degree of the individ-
ual heterogeneity in acquisition of infections are considered. Such bivariate data occur
naturally in infectious diseases epidemiology, for instance, when T1 and T2 represent the
ages at the onset of infection by two distinct infectious agents whose onset can only be
determined to lie below or above C. In this context, the time scale is age and the defining
time point from which times are measured is birth (Unkel and Farrington 2012).
As mentioned by Farrington and Whitaker 2005 cited by Unkel and Farrington 2012, with
the above definition the association between the ages T1 and T2 may carry information
about relevant infection processes and can be examined using paired serological survey
data on two infections. In this perspective, serological data are obtained by testing blood
serum residues for the presence of antibodies to one or more infections. A positive (neg-
ative) result indicates prior infection (susceptibility to infection), giving rise to current
status data.
In this report, the data used are bivariate corresponding to the Varicella-Zoster Virus
and Parvovirus B19-virus. More precisely, the data consist of observations (y1, y2, a),
where y1 is the current status of the Varicella-Zoster Virus at the examination time, y2

is the current status of Parvovirus B19, and a represents the age at the examination
time. Given bivariate binary data on two infectious diseases (y1 = V ZV, y2 = B19)
from a sample of individuals together with their age a, denote the joint probability
πj1,j2 = P (y1 = j1, y2 = j2), where the index k = 1, 2 corresponds to disease 1 and
2, respectively, and jk = 1(0) indicating past or current infection (susceptibility) for
disease k = 1, 2. Modeling such multivariate categorical data can be done using condi-
tional or marginal models (Liang et al. 1992). In this report attention was restricted in

6



modeling such data using different conditional models in order to estimate the individual
heterogeneity in acquisition of both infections. In particular, the frailty models such as
shared and correlated gamma models and a new model based on the clustered binary
data model of Coull et al. (2006) were considered. This new model was applied, modified
and compared to the existent frailty models.

2.3.1 Shared Gamma Frailty Model

A first conditional model that can be considered to estimate the degree of the individual
heterogeneity in acquisition of infections is the shared gamma frailty model. Vaupel et
al. (1979) and Aalen (1988), pointed out that individuals are dissimilar in the way they
acquire infections. Some individuals are more susceptible than others and will experience
infection earlier. This can be expressed in terms of the age-dependent force of infection
(FOI) by λ(a, Z) where Z can be an individual-specific covariate or, alternatively, a ran-
dom variable. Z is often referred to as frailty and expresses to what extent an individual
has a lower or higher risk of infection. Thus, the model assumes that every individual is
infected differently from the others, that is, the force of infection, λ(ai, zi), depends on a
individual-specific random variable zi or ”frailties” (Del Fava et al., 2011).
In this particular context, the FOI is defined as being the rate at which susceptible in-
dividuals acquire infection, and in terminology of survival analysis, the FOI is nothing
else than the hazard function (Farrington and Kanaan 2001; Sutton et al. 2006; Hens et
al. 2010; Hens et al. 2012). Given the assumption of proportional hazards, the FOI for
disease j = 1, 2, can be written as

λj(ai, zi) = ziλ0j(ai),

where λ0j is the baseline hazard for an individual of age a at the time of test. Therefore,
the susceptible proportion for the infection j is given by

Sj(ai|Zi) = exp

(
−zi

∫ ai

0

λ0j(t)dt

)
, j = 1, 2, (3)

where the unconditional susceptible proportion can be obtained by integrating out the
random frailty zi using the Laplace transform:

Sj(ai) = E(Sj(ai|Zi)) = Lj

(∫ ai

0

λ0j(t)dt

)
, j = 1, 2. (4)

The susceptible proportion refers to the proportion of the population that is susceptible
(no pathogen is present) to the disease (Keeling and Rohani 2008; Hannon and Ruth
2009). Hence, by (3), assuming a common gamma frailty distribution, and using the
Laplace transformation, it follows that the unconditional bivariate susceptible proportion
is given by (Hens et al. 2012)

π00(ai) = [S1(ai)
− 1
θ + S2(ai)

− 1
θ − 1]−θ, (5)

where θ denotes the shape parameter of the gamma frailty distribution Z ∼ Γ(θ,
1

θ
). Since

E(Z) = 1 and variance V ar(Z) =
1

θ
, θ is the parameter describing the heterogeneity in
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acquisition of infection. The larger θ, the smaller the heterogeneity and thus the more
people are alike in the way they acquire the infection.
Reparameterizing the joint probability in terms of the cumulative FOI,

Λj(ai) =

∫ ai

0

λ0j(t)dt,

gives the following set of equations for the four joint probabilities (Hens et al. 2012):
π00(ai) =

[
exp(Λ1(ai)

θ
) + exp(Λ2(ai)

θ
)− 1

]−θ
,

π10(ai) = exp(−Λ2(ai))− π00(ai),
π01(ai) = exp(−Λ1(ai))− π00(ai),
π11(ai) = 1− π10(ai)− π01(ai)− π00(ai),

(6)

where π00(a) is the probability that an individual of age a has been infected by neither
viruses and π10(a) is the probability that an individual of age a has been infected by
infection 1 (VZV) but not infection 2 (B19), π01(a) represents the probability that an
individual of age a has been infected by infection 2 (B19) but not infection 1 (VZV),
and π11(a) gives the probability that an individual of age a has been infected by both
infections.

2.3.2 Correlated Gamma Frailty Model

The shared gamma frailty model presented in Section 2.3.1 is a special case of the corre-
lated gamma frailty model with correlation between the frailties equal to one. A correlated
frailty model can be considered as a mixed (random effects) model in survival analysis,
with group and individual variation both included in the distribution of the frailty vector.
Therefore, correlated frailty models contain association characteristics of frailty (correla-
tion coefficients) among other parameters. In this model, the frailties of individuals in
a cluster are correlated but not necessarily shared (Yashin et al. 1995; Duchateau and
Janssen 2008; Wienke 2011; Hanagal 2011).
As defined by Hens et al. (2009) and Wienke (2011), let k0, k1, k2 be nonnegative real-
value numbers, set λ1 = k0 + k1 and λ2 = k0 + k2. Let Y0, Y1, Y2 be independent,
gamma-distributed random variables with parameters Y0 ∼ Γ(k0, λ0), Y1 ∼ Γ(k1, λ1),
and Y2 ∼ Γ(k2, λ2).
Consequently,

Z1 =
λ0

λ1

Y0 + Y1 ∼ Γ(k0 + k1, λ1), (7)

Z2 =
λ0

λ2

Y0 + Y2 ∼ Γ(k0 + k2, λ2), (8)

and E(Z1) = E(Z2) = 1, V ar(Z1) =
1

λ1

:= σ2
1, V ar(Z2) =

1

λ2

:= σ2
2. Then the following

relation holds

Cov(Z1, Z2) =
k0

(k0 + k1)(k0 + k2)
. (9)
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This leads to the correlation

ρ =
k0√

(k0 + k1)(k0 + k2)
. (10)

The explicit expression for the survival function in terms of σ1, σ2 and ρ applying the
Laplace transform of gamma-distribution random variables is given by (Hens et al. 2009
and Wienke 2011):

S(t1, t2) =
[S1(t1)]

1−σ1
σ2
ρ
[S2(t2)]

1−σ2
σ1
ρ

([S1(t1)]−σ
2
1 + [S2(t2)]−σ

2
2 − 1)

ρ
σ1σ2

, (11)

where the univariate marginal survival functions are given by

Sj(tj) =

(
1 + σ2

j

∫ tj

0

λ0j(s)ds

)− 1

σ2
j
. (12)

It is important to notice that with the above notation in this particular setting, the
correlated gamma frailty model is defined without observed covariates. Similarly, the
unconditional bivariate susceptible proportion is given by setting π00(ai, ai) = S(t1, t2)
and the four joint probabilities are expressed as follows

π00(ai) =
[S1(ai)]

1−σ1
σ2
ρ
[S2(ai)]

1−σ2
σ1
ρ

([S1(ai)]−σ
2
1 + [S2(ai)]−σ

2
2 − 1)

ρ
σ1σ2

,

π10(ai) =
(
1 + σ2

2

∫ ai
0
λ02(s)ds

)− 1

σ22 − π00(ai),

π01(ai) =
(
1 + σ2

1

∫ ai
0
λ01(s)ds

)− 1

σ21 − π00(ai),
π11(ai) = 1− π10(ai)− π01(ai)− π00(ai),

(13)

where λ02(s) is the baseline hazard function for infection 2 (B19), λ01(s) represents the
baseline hazard function for infection 1 (VZV), and where π00(ai), π10(ai), π01(ai) and
π11(ai) are defined as before.

2.3.3 Baseline Hazard Function for the Force of Infection

To fit the correlated gamma frailty models, it is necessary to assume a particular function
for the baseline hazard (which represents the force of infection) (Del Fava et al. 2011).
In this section, under the parametric approach, most commonly adopted distributional
assumptions when dealing with parametric proportional hazard models in survival anal-
ysis are presented. The possible choice can be for instance: The Exponential, Weibull,
Gompertz, Lognormal and Loglogistic distribution (Duchateau and Janssen 2008; Munda
et al. 2012). Table 1 displays the hazard and cumulative hazard functions for each of
these distributions.
It is important to notice that a particular choice of the distributional assumption leads
to a specific link function and interpretation under a generalized linear model framework.
For instance the Weibull baseline hazard leads to a proportional hazard interpretation
with complementary log-log link fucntion. Another example is the Log-logistic which
leads to a proportional odds interpretation and logit link function (Fahrmeir and Tutz
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Table 1: Hazard function λ0(a), cumulative hazard function Λ0(a) of some distributions used for
modeling survival time. With the lognormal, φ(.) and Φ(.) respectively denote the probability
density and the cumulative distribution functions of a standard normal random variable and a
represents age of the individual at time of test.

Distribution λ0(a) Λ0(a) =
∫ a

0
λ0(s)ds Parameter space

Exponential αj αja αj > 0
Weibull αjβja

βj−1 αja
βj αj > 0, βj > 0

Gompertz αj exp(γja)
αj
γj

(exp(γja)− 1) αj > 0, γj > 0

Lognormal
φ( log(a)−µ

γ
)

γt(1− Φ( log(a)−µ
γ

))
− log(1− Φ( log(a)−µ

γ
)) µjε<, γj > 0

Loglogistic
exp(φj)kja

kj−1

1 + exp(φj)akj
log(1 + exp(φj)a

kj) kj > 0, φjε<

Source: Duchateau and Janseen 2008; Munda, Rotolo and Legrand 2012.

2001; Allison 2010 and Hens et al 2012).
Another model for the force of infection can be assumed. Hens et al. (2012), applied a
shared gamma frailty model to estimate individual heterogeneity in acquisition of rubella
and mumps using a gamma function for the force of infection given by

λ(a) = αaβ exp(−a
γ

), (14)

where a is the age at the time of test, α, β and γ are positive parameters.
In this report, the shared and correlated gamma frailty model were fitted using the
baseline hazard functions considered in Table 1. Based on the Akaike’s information
criteria (AIC), the best baseline hazard for the force of infection was selected. The choice
of the parametric baseline hazard was motivated due to the fact that (Hens et al. 2009)
the correlated gamma frailty model is not identifiable using a nonparametric baseline
hazard function for the force of infection.

2.3.4 New Correlated Gamma Frailty Model

A third and new way to estimate the individual heterogeneity in acquisition of infections,
is by considering the model proposed by Coull et al. (2006). These authors, introduced
a computationally tractable multivariate random effects model for clustered binary data.
This model can also be seen as a special case of the correlated gamma frailty model with
gamma random variables having the same variances but not necessarily the correlation
coefficient to be exactly equal to one. In this report, the model is applied and modified
to the setting of modeling infectious diseases and related it to correlated gamma frailty
models in the context of current status data. In what follows we describe the model and
we show how it can be related to the correlated gamma frailty models.
The proposed model is built around multivariate gamma random effects, as defined by
Henderson and Shimakura (2003). Let W1, ...,Wq be independent p-variate Gaussian
random variables with standard marginals and common (p × p) correlation matrix C.

Write Wj = (Wj1, ...,Wjp)
t, j = 1, ..., q and let Zk =

∑q
j=1

W 2
jk

q
, for k = 1, ..., p. Then
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the vector Z = (Z1, ..., Zp)
t is said to be multivariate gamma with marginal Ga(

q

2
,
q

2
)

distributions and Laplace transform

E(exp(−utZ)) = |I +
2Cdiag(u)

q
|
−q
2 , (15)

for u ε <p and C = (cjk). Bapat (1998) showed that the above Laplace transform defines

a proper distribution more generally for non-integer values q > 0. With ζ =
2

q
, we denote

this multivariate distribution by

Z ∼MG(ζ, C)

with the correlation matrix R describing the association among the gamma components,
having elements

rjk = c2
jk.

Observe that a potential disadvantage of the model is the fact that the multivariate
gamma distribution does not accommodate negative correlations (Coull et al. 2006).
This is not perceived however as a severe limitation for many applications.
The model proposed by Coull et al. (2006) is given by

log {− log [E(Yij|ai, Zij))]} = log(Zij) + fj(ai), (16)

for i = 1, 2..., n and j = 1, 2, ..., p and with fj(ai) a linear, non-linear or nonparametric
function to model the effect of age on the probability to be infected for infectious disease
j. In this particular application the function fj(ai) has to meet the additional constraints
that it is a non-decreasing function of age a with fj(ai)→ −∞ as ai → 0.
Conditional on the random effects (frailties) log(Zij), the simplest form of the model that
can be applied to investigate the effect of age on the probability of being infected by
Varicella-Zoster Virus and Parvovirus B19 is given in the following way:{

log {− log [E(Yi1|age, Zi1)]} = log(Zi1) + β01 + β11 ∗ age,
log {− log [E(Yi2|age, Zi2)]} = log(Zi2) + β02 + β12 ∗ age.

(17)

For this particular application of the model, the parameters of primary interest are the
variance of the gamma components (ζ) and their correlation (ρ).
Note that expression (16) leads to a probability curve given by (Agresti 2002):

E(Yij|ai, Zij) = exp(− exp(log(Zij) + fj(ai))).

To have the probability curve

E(Yij|ai, Zij) = 1− exp(− exp(log(Zij) + fj(ai))),

we rewrite the proposed model in the following way:

log {− log [1− E(Yij|ai, Zij))]} = log(Zij) + fj(ai). (18)

11



With the expression (18), the relationship between the response probabilities and covari-
ates can be related to the analysis of survival data (Shiboski 1998, Fahrmeir and Tutz
2001 and Balakrishnan and Rao 2004). In this particular situation for the complementary
log-log link function in (18), implies that the susceptible proportion for the infection j
can be rewritten as expression (3) with baseline hazard given by

λ0j(ai) = exp(fj(ai))f
′
j(ai), (19)

where, f ′j(ai) represents the derivative of fj(ai) with respect to ai, and where ai is the age
of the ith individual at the time of test . Note that by (3) and (19) the proposed model
is closely related to the correlated gamma frailty model as defined in Section 2.3.2.

2.3.5 New Correlated Gamma Frailty Model using Fractional Polynomials

In Section 2.3.4 the new correlated gamma frailty model was described and showed how
this model can be related to a correlated gamma frailty model in the context of current
status data. It was noted that in its natural definition the model uses a linear predictor
function. These linear predictor functions can have some disadvantages, for instance
their limited flexibility of linear covariate function type. To enhance flexibility of this
new correlated gamma frailty model, fractional polynomial functions were used.
Fractional polynomial functions, as a natural extension of polynomial functions (Hens et
al. 2012) allow flexible parametric shapes by considering not only integer powers of the
key continuous covariates, but also fractional powers (Royston and Sauerbrei 2008).
In the context of binary responses, a fractional polynomial of degree m for the linear
predictors is defined as

η(a, β,P,m) =
m∑
i=0

βiHi(a),

with β = (β0, β1, β2, ..., βm) being a vector of coefficients and P = (p0, p1, p2, ..., pm)
a vector of powers with p0 = 0 and H0 ≡ 1 representing the intercept. The powers
p1 ≤ p2 ≤ ... ≤ pm can be positive or negative integers or fractional powers. Hi(a) is a
transformation on a continuous variable a defined as

Hi(a) =

{
api if pi 6= pi−1,
Hi−1(a) ∗ log(a) if pi = pi−1,

(20)

and api = log(a) if pi = 0. In this report the continuous covariate a represents the age
at the time of test for the Varicella-Zoster Virus and Parvovirus B19 infections. Roys-
ton and Altman (1994) argued that, in practice, fractional polynomials of degree higher
than 2 are rarely needed and suggested to choose the values of the powers from the set
{−2,−1,−0.5, 0, 0.5, 1, 2, 3}.
Although Royston and Altman (1994) suggested to choose the value of the powers from
the above set, one can extend the family of candidate models by refining the grid of pos-
sible powers, such as for instance an equidistant grid on the interval [−2,max(3,m)] with
step size 0.1 or even 0.01. In this report, the method was applied and all possible models
of the same degree were fitted using maximum likelihood estimation and the model with
the smallest deviance was chosen. To decide whether a model of first degree is adequate
or a second degree model is needed, the Akaike’s Information Criteria (AIC) was used.
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In the previous sections we have seen that the force of infection can be easily derived from
the serological data under assumption including time homogeneity and lifelong immunity.
Under this assumption the probability to be infected (prevalence) should be monotoni-
cally increasing with age and therefore implying a positive force of infection (Hens et al.
2012). Although fractional polynomials provide a wide range of curve shapes, there is
no guarantee that the probability of being infected will be a monotone function of age
and therefore fractional polynomials can still result in a negative estimate for the force
of infection (Shkedy et al. 2006).
In case of a violation of the monotonicity assumption, one solution is to fit the new
correlated gamma frailty model under the constraint that the probability to be infected
should be monotonically increasing with age. Bollaerts et al. (2008), proposed a modified
version of the fractional polynomial which satisfy the property of monotonicity within
a generalized linear mixed model (GLMM). The modification is defined as proposed by
Bollaerts et al. (2008). Assume a GLMM given by

Yij ∼ Binomial(Nij, πij),

g(πij) = β0 + β1xij + bi = ηij (21)

with xij being a continuous covariate, and bi ∼ N(0, σ) the random intercepts. The
fractional polynomial of degree m = 2 for the linear predictor is defined as

η(x, β,P, 2) = β0 + β1x
p1 + β2x

p2, (22)

with p1 < 0, p2 ≥ 0, β1 < 0, and β2 > 0. According to Bollaerts et al. (2008), the
restrictions imposed on the powers and the parameter estimates yield a monotonically
increasing linear function β0 + β1x

p1 + β2x
p2 bounded between −∞ and +∞.

2.3.6 Model Fitting

Following the development in the previous sections, all models were fitted by maximum
likelihood based on equation:

L =
∑
a

(n00a log(π00(ai)) + n10a log(π10(ai)) + n01a log(π01(ai)) + n11a log(π11(ai))),

(23)
where n00a denotes the number of individuals of age a with neither infections, n10a is
the number of individuals of age a infected by Variella-Zoster Virus but not infected by
Parvovirus B19, n01a represents the number of individuals of age a infected by Parvovirus
B19 but not infected by Varicella-Zoster Virus and n11a is the number of individuals of
age a infected by Varicella-Zoster Virus and Parvovirus B19.
Regarding models computation the shared and correlated gamma frailty models were fit-
ted by creating the log-likelihood function in the R software package. For the new frailty
model, the R program developed by the authors which is available from the web at
http://www.hsph.harvard.edu/betensky/papers.html was used. Table C1 (new corre-
lated gamma frailty model) and Table C2 (correlated gamma frailty model) in the ap-
pendix show how to prepare the data and fit the models using R software. Model com-
parison was performed with Akaike’s Information Criteria (AIC).
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2.3.7 Comparison Between Both Correlated Gamma Frailty Models

Following the development of the statistical models in the previous sections, their simi-
larities and differences are discussed in this section. It was observed that the expressions
(3) and (19) clearly picture how closely the new correlated gamma frailty model (Coull et
al. 2006) is related to the correlated gamma frailty model (Hens et al. 2012). The main
difference is the way the multivariate gamma is introduced in the model, and the indirect
way to specify the baseline hazard. Saying that, it can be seen that from (19) the new
correlated gamma frailty model in (17) implies a particular baseline hazard function for
the force of infection.
Similarly, for the correlated gamma frailty model using a Log-logistic baseline hazard
function, by expression (19) results on fj(ai) given by

fj(ai) = log(log(1 + exp(φj))a
kj
i ). (24)

From (24) it can be observed that a particular choice of baseline hazard function can
lead to a nonlinear function of fj(ai) for the new correlated gamma frailty model. In
this particular setting the function fj(ai) has to meet the additional constraints that it
is a non-deceasing function of age a with fj(ai) → −∞ as ai → 0. However, current R
program for implementing the new correlated gamma frailty model is limited to a linear
predictor function.
Another baseline hazard function that can be fitted within this new correlated gamma
frailty model is a Weibull model. With this Weibull model, by (19) the new correlated
gamma frailty model can be reformulated with linear predictor given by

fj(ai) = log(β0j) + β1j log(ai), (25)

where β0j and β1j are the parameters for the infectious disease j = 1, 2 and ai is the age
of the ith individual at the time of test. Hence, in order to show how closely the new
correlated gamma frailty model is related to correlated gamma frailty model both models
were fitted using a Weibull baseline hazard function. In particular, the following new
correlated gamma frailty model was fitted

log (− log (E(Yij| log(age), log(Zij)))) =


log(Zi1) + log(β01) + β11 log(age) if B19,

log(Zi2) + log(β02) + β12 log(age) if VZV,

where log(Zi1) and log(Zi2) are the log gamma frailties corresponding to Yi1 (Parvovirus
B19 infection) and Yi2 (Varicella-Zoster Virus infection), respectively.

Since the models are based on correlated gamma frailties, both can be considered as
correlated gamma frailty models. One (new model) is built under classical generalized
linear model with complementary log-log link function and another (correlated gamma
frailty model by Hens et al. 2009) is formulated in terms of the proportion hazard func-
tion. Beyond their similarities and differences, the models have limitations. For instance,
for the correlated gamma frailty model, Hens et al. (2009) and Weinke (2011) the possible
range of the correlation between frailties depends on the values of σ1 and σ2:

0 ≤ ρ ≤ min

(
σ1

σ2

,
σ2

σ1

)
. (26)
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With this restriction, clearly it can be seen that, if σ1 6= σ2, the correlation between
the frailties is constrained to be always less than one. This property can be a serious
limitation, especially when the values of σ1 and σ2 differ strongly (Weinke 2011).
Note that expression (26) implies that, for the correlated gamma frailty model introduced
by Hens et al. (2009), the correlation between the frailties is constrained by the ratio
of the variances and bounded between zero and one. In case of the new correlated
gamma frailty model, the correlation is also bounded between zero and one, but the
constraint is done by the construction of the model. In addition, this new model assumes
that both variances are identical. Despite their similarities and differences, one remark
is that with the notation introduced in Section 2.3.4, the model proposed by Coull et
al. (2006) is closely related to the correlated gamma frailty model (Hens et al. 2009)
when the variances of the gamma random variables is assumed to be the same. Further
investigation could be done for the new correlated gamma frailty model in order to allow
the variances to be different.
Turning to the difference of the specification of the baseline hazard function in the models,
we show how both models are related to each other. The marginal probability of a
response in the new correlated gamma frailty model is given by (Coull et al. 2006):

P (Yij = 1) = |I + ζCidiag(uij)|−
1
ζ , (27)

where I is the identity matrix, ζ = σ2 is the variance of the gamma components, uij is a
vector having exp(fj(ai)) in position j and 0 elsewhere, and Ci is defined as before. In
this particular setting, in case of p = 2, using (27), the marginal probabilities are given
by

P (Yi1 = 1) = (1 + σ2 exp(f1(ai)))
−1

σ2 , (28)

P (Yi2 = 1) = (1 + σ2 exp(f2(ai)))
−1

σ2 . (29)

Note that expressions (28) and (29) are related to the definition of the univariate survival
functions in (12). The only difference, is the way how the baseline hazard is introduced
in both models.
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3 Application to Multisera Data on Varicella and

Parvovirus B19

In this section, the methods developed in the report are applied to the multivariate current
status data. In particular, the data consist of paired observations of current status of
Varicella-Zoster Virus and Parvovirus B19 together with the age of the individual at the
time of test. In this report, it was assumed that both diseases are irreversible, meaning
that the immunity is assumed to be lifelong. Under this assumption the probability to be
infected (prevalence) should be monotonically increasing with age and therefore implying
a positive force of infection. Furthermore, by fitting shared and correlated gamma frailty
models the report also was restricted to the parametric baseline hazard models for the
force of infection for which the only covariate in the model is the host age. The choice
of parametric baseline hazards was motivated due to the fact that in case of current
status data without any covariates, the model introduced by Hens et al. (2009) is not
identifiable using a nonparametric baseline hazard function for the force of infection.
Table 2 shows the results obtained by fitting the various version of the correlated gamma
frailty model using different baseline hazard functions for the force of infection. Based on
AIC-values, the results revealed that the Log-logistic baseline hazard provides the best
fit (AIC=3884.238 compared to others).

Table 2: Parameter estimates of the correlation and variances of the frailties together with
their standard errors obtained by fitting the correlated gamma frailty model with different and
equal variances and shared gamma frailty model using different baseline hazard functions for
the force of infection.

Baseline Hazard Unrestricted Equal variances Shared
Model for the FOI Parameter Estim. Std.err Estim. Std.err Estim. Std.err
Weibull ρ 0.2881 0.0765 0.3803 0.0832 1.0000 (—)

σ1 1.0040 0.1503 1.4853 0.1737 0.5239 0.0593
σ2 2.0971 0.2620 1.4853 0.1737 0.5239 0.0593
AIC-value 3891.816 3902.090 3945.665

Gompertz ρ 0.9998 0.0109 0.9979 0.0363 1.0000 (—)
σ1 0.3344 0.0777 0.3342 0.0783 0.3342 0.0777
σ2 0.3343 0.0776 0.3342 0.0783 0.3342 0.0777
AIC-value 3910.977 3908.983 3906.976

Log-Logistic ρ 0.3517 0.0689 0.7407 0.2580 1.0000 (—)
σ1 0.3897 0.0699 0.4602 0.0800 0.4056 0.0571
σ2 1.1006 0.0905 0.4602 0.0800 0.4056 0.0571
AIC-value 3884.238 3909.149 3907.765

Log-Normal ρ 0.4152 0.1208 0.5145 0.1435 1.0000 (—)
σ1 0.4994 0.1027 0.6622 0.0798 0.4645 0.0578
σ2 1.1657 0.1130 0.6622 0.0798 0.4645 0.0578
AIC-value 3893.939 3907.835 3912.42
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3.1 Results for the Shared and Correlated Gamma Frailty Mod-
els

In this section, we present the results obtained by fitting the shared and correlated gamma
frailty models using a Log-logistic baseline hazard function for the force of infection. Ta-
ble 3 shows the parameter estimates and their associated standard errors. From the
table, it can be observed that the estimated correlation coefficients differ in all fitted
models. While the shared gamma frailty model assumes perfect correlation, in the cor-
related gamma frailty model with different variances, this correlation was estimated to
be 0.3517 with standard error 0.0689. The goodness of fit was measured by means of
Akaike’s information criterion with the smaller its value the better the fit. As can be
observed, the correlated gamma frailty model with different variances provides best fit
(AIC-value=3884.238 compared to 3909.149 and 3907.765).
Graphically representation of the marginal prevalence and force of infection curves ob-
tained by fitting correlated gamma with different variances, equal variances and shared
gamma frailty model using Log-logistic baseline hazard are displayed in Figure 2. Al-
though the observed prevalence for Parvovirus B19 decreases around the age 21 to 30
years old and afterward starts to increase it seems that the correlated gamma frailty
model with different variances fits to the data well. The figure also shows that the pre-
dicted force of infection is positive and higher at lower age group. This is an indication
that there is high risk of being infected at yearly age. In addition, the plot of their joint
probabilities that tested positive for both Varicella-Zoster Virus and Parvovirus B19 (top
left panel), that tested positive on B19 only (top right panel), that tested positive on
Varicella-Zoster Virus only (lower left panel), and that tested negative on both viruses
(lower right panel) is shown in Figure 3. From the figure it can also visually be observed
a good fit.

Table 3: Parameter estimates and standard errors for the correlated gamma frailty model with
different and equal variances and shared gamma frailty model using the best baseline hazard
function (Log-logistic baseline hazard), VZV(j=1) and B19(j=2).

Correlated Gamma Model Shared Gamma Model
Unrestricted Equal variances σ1 = σ2 and ρ = 1

Parameter Estimate Std.err Estimate Std.err Estimate Std.err
VZV

α1 -2.0076 0.2793 -2.1459 0.3229 -2.0031 0.2668
β1 2.1840 0.2150 2.3664 0.2850 2.1986 0.1898
σ1 0.3897 0.0699 0.4602 0.0800 0.4056 0.0571

B19
α2 -4.3897 0.5009 -2.6794 0.2272 -2.6112 0.2060
β2 2.5014 0.3173 1.3028 0.1041 1.2574 0.0852
σ2 1.1006 0.0905 0.4602 0.0800 0.4056 0.0571
ρ 0.3517 0.0689 0.7406 0.2580 1.0000 (—)
-2l 3870.238 3897.149 3897.765
AIC 3884.238 3909.149 3907.765
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Figure 2: The marginal prevalence and baseline FOI curves for the VZV (first panel - solid line
and dashed line, respectively) and Parvovirus B19 (second panel - solid line and dashed line,
respectively) obtained by fitting correlated gamma with different variances (green curve), equal
variances (red curve) and shared gamma frailty model (blue curve) using Log-logistic baseline
hazard with dots proportional to sample size.

3.2 Results for the New Correlated Gamma Frailty Model

Turning to the new correlated gamma frailty model, the structure of input data was
transformed to allow bivariate modeling framework. Mainly, it consists in the integration
of the binary responses for the Varicella-Zoster Virus and Parvovirus B19 in the same
response vector and an indicator variable indicating the response variable concerned (In-
dicator=1 for Parvovirus B19 and Indicator = 0 for Varicella-Zoster Virus). The simplest
form of the model is given by

log {− log [E(Yij|Ii, agei, Zij)]} = log(Zij) + βo + β1Ii + β2agei + β3agei ∗ Ii

or, alternatively,

log (− log (E(Yij|Ii, agei, Zij))) =


log(Zi1) + β∗0 + β∗1agei if I=1

log(Zi2) + β0 + β2agei if I=0

where, β∗0 = β0 + β1 and β∗1 = β2 + β3 are the parameters to be estimated, log(Zi1) and
log(Zi2) are the log gamma frailties corresponding to Yi1 (Parvovirus B19 infection) and
Yi2 (Varicella-Zoster Virus infection), respectively, I is the indicator variable (I=1 for B19
and I=0 for VZV), and i = 1, 2, ..., n.
The predicted marginal prevalence curves for Varicella-Zoster Virus and Parvovirus B19
obtained by fitting the above model resulted on poor fit. Furthermore, a comparison of
the AIC-values of the models revealed that the correlated gamma frailty model using a
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Figure 3: Plot of the joint probabilities of VZV and Parvovirus B19 and the correlated gamma
frailty fit with different variances (green curves), equal variances (red curves), and shared gamma
frailty model (blue curves) using Log-Logistic baseline hazard. p11 refers to past infection
for both viruses (top left panel); p01 represents to no past and past infection for VZV and
Parvovirus B19 (to right panel), respectively; p10 refers to past and no past infection for VZV
and Parvovirus B19 (lower left panel, respectively); and p00 refers to the joint probability of no
past infection for either virus (lower right panel).

Log-logistic is to be preferred (Table A1 and Figure A1 in the Appendix A). However, for
the above new correlated gamma frailty model, the implied baseline hazard function for
the force of infection differs from Log-logistic model. As mentioned before, a particular
choice of Log-logistic baseline hazard implies a non-linear predictor function for the new
model. Moreover, current R-program for implementation of the model is limited to a
linear predictor function.
Another baseline hazard that can be fitted within this new correlated gamma frailty
model framework is a Weibull. Hence, in order to get insight on their similarities and
differences both models were fitted using a Weibull baseline hazard function for the force
of infection. Parameter estimates and their associated standard errors obtained by fitting
both models are presented in Table 4.
From the table, it can be observed that using a Weibull baseline hazard function, the

20



Table 4: Parameter estimates and their standard errors obtained by fitting the new∗ and
original+ correlated gamma frailty models using a Weibull baseline hazard function.

Correlated Gamma Frailty
New Correlated Gamma σ1 6= σ2 σ1 = σ2 Shared Gamma
Parameter Est. s.e Par. Est. s.e Est. s.e Est. s.e

Intercept 1.179 0.180 α1 0.210 0.060 0.119 0.042 0.381 0.007
Indicator 0.708 0.212 β1 1.700 0.332 2.947 0.555 0.918 0.006
log(age) -1.548 0.087 α2 0.015 0.009 0.047 0.017 0.138 0.003
log(age)*Ind. 0.572 0.095 β2 2.790 0.560 1.685 0.267 0.789 0.004
σ1 0.687 0.095 σ1 1.004 0.150 1.485 0.174 0.524 0.059
σ2 0.687 0.095 σ2 2.097 0.262 1.485 0.174 0.524 0.059
ρ 0.999 0.005 ρ 0.288 0.077 0.380 0.083 1.000 (—)
Deviance 3887.5 3877.8 3890.1 3935.7
AIC 3899.5 3891.8 3902.1 3945.7

- new∗ refers to the model proposed by Coull et al. (2006).

- original+ refers to the correlated gamma frailty model introduced by Hens et al. (2012).

- Par. = Parameter; Est. = Estimate; s.e = Standard Error

Akaike’s information criterion supported the correlated gamma frailty model with dif-
ferent variances (AIC-value= 3891.8 compared to 3899.5 and 3945.7). Although both
models were fitted using the same baseline hazard, the resulted correlation between the
gamma components is different. This is not surprising however, within correlated gamma
frailty model the correlation is constrained by the ratio of the variances, whereas in the
new correlated gamma frailty model the correlation is restricted by the construction of
the model.
Figure 4 displays the marginal prevalence curves obtained by fitting the new model,
shared and correlated gamma frailty models. Although, the models yielded different cor-
relations, the plots are overlapped indicating that both models can produce similar results
on the marginal prevalence while the correlation being different. Similarly fit is observed
on their resulted baseline force of infection (Figure 5 and Figure 6). In addition, similar
results were also observed on their predicted joint probabilities that tested positive on
both Varicella-Zoster Virus and Parvovirus B19, that tested positive on Parvovirus B19
only, that tested positive on Varicella-Zoster Virus only, and that tested negative on both
viruses (Figure B1 in the Appendix B).

3.3 Results for the Unrestricted New Correlated Gamma Frailty
Model Using Fractional Polynomials

In the previous section it was observed that the simplest form of the new correlated
gamma frailty model did not fit well to the multisera data on Varicella-Zoster Virus and
Parvovirus B19. As mentioned in the development of the methods used in this report,
this new model in its natural definition it allows a linear predictor function. This lin-
ear predictor function can have some disadvantages, for instance their limited flexibility
of linear covariate function type. To enhance flexibility, the model was modified using
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Figure 4: The marginal prevalence curves for VZV (first panel) and B19 (second panel) obtained
by fitting new model (black curve), original correlated gamma with σ1 6= σ2 (green curve), with
σ1 = σ2 (red curve) and shared gamma (dashed blue curve) using a Weibull baseline hazard.
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Figure 5: Plot of the baseline FOI curves of VZV (left panel) and Parvovirus B19 (right panel)
obtained by fitting new model (black curve) and correlated gamma frailty model with σ1 = σ2

(red curve) using a Weibull baseline hazard.
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Figure 6: Plot of the baseline FOI curves of VZV (left panel) and Parvovirus B19 (right panel)
obtained by fitting new model (black curve) and shared gamma frailty model (red curve) using
a Weibull baseline hazard (Figures on the top of each other).
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fractional polynomial functions without taken into consideration that the probability of
being infected should be monotonically increasing with age. In particular, the following
new correlated gamma frailty model using fractional polynomial of age with degree two
was fitted

log (− log (E(Yij|ter1j, ter2j, log(Zij)))) =


log(Zi1) + β∗0 + β∗1ter11 + β∗2ter21 if I=1,

log(Zi2) + β0 + β2ter12 + β3ter22 if I=0,

where ter1j and ter2j (ter1 and ter2 stand by term1 and term2, respectively) are defined
using (20) and where the powers p1 and p

′
1 were selected from equidistant grid of powers

on the interval [−2, 3] with stepsize 0.1, log(Zi1) and log(Zi2) are the log gamma frailties
corresponding to Yi1 (Parvovirus B19 infection) and Yi2 (Varicella-Zoster Virus infection),
respectively.
This fractional polynomial with degree two was fitted with powers p1 and p2 for the
Varicella-Zoster Virus and powers p

′
1 and p

′
2 for Parvovirus B19. Since the computation

time for fractional polynomial models increases exponentially with the number of powers
(Bollaerts et al. 2008), the powers p1 and p

′
1 were chosen to be the same for both infec-

tious diseases while the powers p2 and p
′
2 were chosen to be common or different.

The parameter estimates and their associated standard errors for the best unconstrained
model are shown in Table 5. From a set of all possible fractional polynomial models with
degree two, the model with powers p1 = p

′
1 = −1.0 and p2 = p

′
2 = −1.0, had a smallest

AIC-value (3848.577) and thus fits the data best. All fixed effects are statistically signif-
icant at 5% level of significance. Although the new correlated gamma frailty model was
not restricted to the monotonicity assumption, the estimated correlation is almost 1.000
(0.9999) with standard error 0.0014.
Furthermore, a comparison of the AIC-values of this model and correlated gamma frailty
models using a Log-logistic and Weibull baseline hazard functions, revealed that without
forcing the new correlated gamma frailty model to satisfy the monotonicity assump-
tion, the model provides best fit for Varicella-Zoster Virus and Parvovirus B19 (AIC-
value=3848.577 compared to 3884.238 and 3891.8). However, graphically representation
of the marginal prevalence (dashed blue curve) curves for the Varicella-Zoster Virus and
Parvovirus B19 displayed in Figure 7 (blue dashed curves), indicate that the predicted
baseline force of infection obtained from the model is negative. These results lead to
non-meaningful epidemiological interpretation. Therefore, in the next section we fit the
model under the constraint that the probability of being infected should be monotonically
increasing with age.
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Table 5: Parameter estimates and their standard errors for the best unconstrained new corre-
lated gamma frailty model using fractional polynomial with degree two.

Model Parameter Estimate Standard error
Fractional polynomial Intercept -5.3285 0.2485
degree two Indicator 3.2364 0.2688
with powers term1 4.3970 0.3920
VZV: p1 = −1.0, p2 = −1.0 term2 10.1126 0.9189
B19: p

′
1 = −1.0, p

′
2 = −1.0 Indicator*term1 -1.1970 0.5422

Indicator*term2 -4.5461 1.0743
ζ 0.3691 0.1372
ρ 0.9999 0.0014

Deviance 3832.577
AIC 3848.577

3.4 Results for the Restricted New Correlated Gamma Frailty
Model using Fractional Polynomials

In this section we present the results of the new correlated gamma frailty model using
fractional polynomial of age under the constraint that the probability of being infected
should be monotonically increasing with age. In particular, the fitted model is similar
to that fractional polynomial with degree two presented in Section 3.3. Similarly, the
powers p1 and p2 for Varicella-Zoster Virus and powers p

′
1 and p

′
2 for Parvovirus B19 were

defined in the same way.
For fractional polynomial with degree one, the following model was fitted

log (− log (E(Yij|termj, log(Zij)))) =


log(Zi1) + β∗0 + β∗1term1 if I=1,

log(Zi2) + β0 + β1term2 if I=0,

where term1, term2, log(Zi1), and log(Zi2) are defined as before.
In Table 6, parameter estimates and standard errors are given for the best new correlated
gamma frailty model using fractional polynomials with degree one and two. As can be
observed, from a set of all possible fractional polynomial models with degree one, the
model with powers p1 = −0.6 and p

′
1 = −0.6 fits the data best, whereas for degree two

the best model was the one with powers p1 = p
′
1 = −1.2 and p2 = p

′
2 = 0. A comparison

of the AIC-values of the models showed that the new correlated gamma frailty model
using fractional polynomial with degree one provides best fit for Varilla-Zoster Virus and
Parvovirus B19 data (AIC=3890.736 compared to AIC=3893.472). Furthermore, the
model fits slightly better than the correlated gamma frailty models with equal variances
using Log-logistic and Weibull baseline hazard functions.
In Figure 7, the marginal prevalence curves for the Varicella-Zoster Virus and Parvovirus
B19 obtained by fitting the new correlated gamma frailty model using fractional polyno-
mials with degree one and two are shown. From the figure, it can be seen that allowing
for more flexibility in the new correlated gamma frailty model, resulted an improved
behavior of the marginal prevalence curves.
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Table 6: Parameter estimates and their standard errors for the best constrained new correlated
gamma frailty models using fractional polynomials of age with degree one and two.

Model Parameter Estimate Standard err.
Fractional polynomial Intercept -5.1062 0.2821
degree 1 Indicator 2.5876 0.2713
with powers I(term1*(1-Indicator)) 10.4864 1.0880
p1 = −0.6(V ZV ), p

′
1 = −0.6(B19) I(Indicator*term2) 11.1415 1.6326

ζ 2.6637 0.6095
ρ 0.6632 0.0978

Deviance 3878.736
AIC 3890.736

Fractional polynomial Intercept 1.9844 0.4418
degree two Indicator -0.7094 0.5235
with powers I(term1*(1-indicator)) -1.2589 0.7570
VZV: p1 = −1.2, p2 = 0 I(term1*indicator) 1.8095 1.0621
B19: p

′
1 = −1.2, p

′
2 = 0 I(term2*(1-indicator)) -1.8522 0.1746

I(term3*indicator) -0.7816 0.1089
ζ 0.5292 0.1691
ρ 0.9981 0.0314

Deviance 3877.472
AIC 3893.472

term1 = ter11 = ter12, term2 = ter21, and term3 = ter22.
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Figure 7: The marginal prevalence curves for Varicella-Zoster Virus (first panel) and Parvovirus
B19 (second panel) obtained by fitting the best constrained new correlated gamma frailty model
using fractional polynomial with degree one (red curve), degree two (dashed green curve) and
the best unconstrained fractional polynomial with degree two (blue dashed curve).
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3.5 Results for the Comparison Between Both Correlated Gamma
Frailty Models

In order to get more insights on similarities and differences in both correlate gamma
frailty models, we fit using the baseline hazard function obtained from the best fractional
polynomial with degree one. In Table 7, parameter estimates and standard errors for
the new model and correlated gamma frailty model are presented. Since the new corre-
lated gamma frailty model assumes common variances for the gamma components, the
comparison was made with correlated gamma with equal variances. As can be seen, the
AIC-values showed that with this baseline hazard function, the new correlated gamma
frailty model provides the best fit for Varicella-Zoster Virus and Parvovirus B19 (AIC-
value=3890.7 compared to 3893.8, 3896 and 3894.1). In contrast, using a Weibull baseline
hazard the correlated gamma frailty model was preferred. It was also observed that the
baseline hazard obtained from fractional polynomial with degree one, produced close
results on the estimated correlation (new model: ρ = 0.663 with s.e equal to 0.098; corre-
lated gamma with equal variances: ρ = 0.840 with s.e of 0.569), whereas using a Weibull
baseline hazard the estimated correlations differ in both models.
Observe that visually inspection of the marginal prevalence, predicted joint probabilities
and baseline force of infection curves for Varicella-Zoster Virus and Parvovirus B19 are
similar for both correlated gamma frailty models with equal variances (Figure 8 and Fig-
ure 9). These results were also obtained by fitting both models using a Weibull baseline
hazard function for the force of infection. These results in combination with the findings
in Section 3.2, we conclude that both correlated gamma frailty models can produce simi-
lar marginal prevalence curves, but the correlation between the gamma components and
their variances being different.

Table 7: Parameter estimates and their standard errors obtained by fitting the new∗ and
original+ correlated gamma frailty models using baseline hazard function obtained from the
best fractional polynomial with degree one.

Correlated gamma frailty model
New correlated gamma σ1 6= σ2 σ1 = σ2 Shared gamma
Parameter Est. s.e Par. Est. s.e Est. s.e Est. s.e

Intercept -5.106 0.282 α1 2.320 0.180 2.317 0.390 2.235 0.142
Indicator 2.588 0.271 β1 -4.607 0.372 -4.600 0.660 -4.471 0.327
term1.VZV 10.486 1.088 α2 2.115 0.509 1.241 0.179 1.207 0.090
term1.B19 11.142 1.633 β2 -7.151 1.114 -5.318 0.488 -5.245 0.359
σ1 1.632 0.187 σ1 0.414 0.082 0.415 0.188 0.372 0.069
σ2 1.632 0.187 σ2 0.978 0.220 0.415 0.188 0.372 0.069
ρ 0.663 0.098 ρ 0.424 0.100 0.840 0.569 1.000 (—)
Deviance 3878.7 3879.8 3884.0 3884.1
AIC 3890.7 3893.8 3896.0 3894.1

- new∗ refers to the model proposed by Coull et al. (2006).

- original+ refers to the correlated gamma frailty model introduced by Hens et al. (2012).

- Par. = Parameter; Est. = Estimate; s.e = Standard Error
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Figure 8: The marginal prevalence and baseline FOI curves for VZV (first panel - solid line
and dashed line, respectively) and B19 (second panel - solid line and dashed line, respectively)
obtained by fitting new model (blue curves), original correlated gamma with σ1 6= σ2 and with
σ1 = σ2 (red and green curves, respectively) using baseline hazard function obtained from the
best fractional polynomial with degree one (Figures on the top of each other).
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Figure 9: Plot of the joint probabilities of VZV and B19 and the correlated gamma frailty
model fit with σ1 6= σ2 (green curves), with σ1 = σ2 (red curves), and new correlated gamma
frailty model (blue curves) using baseline hazard function obtained from the best fractional
polynomial with degree one. p11 refers to past infection for both viruses (top left panel); p01
represents to no past and past infection for VZV and B19 (to right panel), respectively; p10
refers to past and no past infection for VZV Virus and B19 (lower left panel, respectively); and
p00 refers to the joint probability of no past infection for either virus (lower right panel).
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4 Discussion

In modeling infectious diseases, individual heterogeneity in the acquisition of infectious
diseases is recognized as a key concept, which allows improved estimation of important
epidemiological parameters. In this perspective, serological samples taken at certain time
point provide information about whether or not the individual has been infected before
that time point. From these serological samples, a positive (negative) result indicates
prior infection (susceptible to infection), giving rise to current status data.
Under the assumption of lifelong immunity and that the epidemic is in steady state (i.e.,
at equilibrium), these epidemiological parameters can be estimated from serological sam-
ples. The traditional statistical models that allow representing such heterogeneity are the
correlated gamma frailty models. In 2006, Coull, Houseman and Betensky introduced a
computational tractable multivariate random effects model for clustered binary data.
In this report, the proposed model was introduced as a new correlated gamma frailty
model, and it was applied and modified to the setting of modeling infectious diseases,
and relate it to existing frailty models applied to current status data. The application
of these models, was done using a bivariate current status data on Varicella-Zoster Virus
and Parvovirus B19. Firstly, the theoretical similarities, limitations and differences of
the models are discussed. Secondly, the results obtained from the shared and correlated
gamma frailty models and the findings from the new correlated gamma frailty model are
also discussed.
Following the development of the models, it was showed that the new model is closely
related to the correlated gamma frailty model and both models can be seen as a cor-
related gamma frailty models since they are based on correlated gamma frailties. The
main difference is the way the multivariate gamma is introduced in the new model, and
the indirect way to specify the baseline hazard function. In terms of constructions, a
correlated gamma frailty model is typically formulated based on specification of the pro-
portional hazard function, whereas the new correlated gamma frailty model is built using
a classical generalized linear mixed model with complementary log-log link function for
clustered binary data. Since the frailty models are defined under the assumption of time
homogeneous representation of Susceptible-Infected-Recovered (SIR) model and that im-
plying a monotonically increasing relationship between the probability to be infected and
age, in this particular application, the new correlated gamma frailty model is required to
satisfy such property as well.
Going to the parameter which describes the association between multiple infections (i.e.,
the correlation coefficient), both models share similar limitation on positive correlation
between the gamma components. While the correlated gamma frailty model the corre-
lation is bounded between zero and the ratio of the variances of the frailties, in the new
correlated gamma frailty model the correlation is limited by construction of the model.
In addition, the shared gamma is a special case of the correlated gamma frailty model
with correlation between the frailties equal to one (perfect correlation), while the new
correlated gamma frailty model can be seen as a special case of the correlated gamma
frailty model with common variances but the correlation is not necessarily to be equal to
one.
Turning to the results, the shared and correlated gamma frailty models were fitted using
different parametric baseline hazard functions for the force of infection. The choice of
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parametric baseline hazards was motivated due to the fact that in case of current status
data without any covariates, the model introduced by Hens et al. (2009) is not iden-
tifiable using a nonparametric baseline hazard function for the force of infection. The
Log-logistic baseline hazard function provided the best fit for bivariate current status
data on Varicella-Zoster Virus and Parvovirus B19. With this baseline hazard function,
the correlated gamma frailty model with different variances was preferred.
Fitting the new correlated gamma frailty model, it was observed that the simplest form
of the model did not adequately fit to the data as compared with the correlate gamma
frailty model with equal variances using Log-logistic baseline hazard. However, the fitted
new correlated gamma indirectly implied a particular baseline hazard which was different
from the Log-logistic hazard function. Since the new correlated gamma in its natural
definition it uses a linear predictor function and that this linear predictor can have some
disadvantages on their limited flexibility on linear covariate function type, the model was
extended using fractional polynomials. The findings supported that the new correlated
gamma frailty model using fractional polynomial with degree one provided the best fit for
the Varicella-Zoster Virus and Parvovirus B19 and the estimated correlation was found
to be 0.6632 with standard error of 0.0978.
In order to get insight on their similarities, both models were fitted using Weibull base-
line hazard and the baseline hazard obtained from the fractional polynomial with degree
one. The choice of the Weibull baseline hazard function was motivated due to the fact
that, this baseline hazard can be used within the new correlated gamma frailty model
framework. Although, using the Weibull baseline hazard the models produced different
correlation, the marginal prevalence and baseline force of infection curves were similar. In
contrast, when baseline hazard function obtained from fractional polynomial with degree
one was used, the correlation was not much different as observed using Weibull baseline
hazard and both models provided similar fit as well. As mentioned before, this is not
surprising, however in the correlated gamma frailty model, the correlation coefficient is
constraint by the ratio of the variances, whereas in the new model the restriction is made
by construction of the model.

5 Conclusion and Further Research

This report has presented the model proposed by Coull et al. (2006) as a new correlated
gamma frailty model and the original correlated gamma frailty model in the context of
bivariate current status data to estimate the degree of individual heterogeneity in acqui-
sition of infections. This new correlated gamma frailty model, in its natural definition it
allows a linear predictor function and also assumes that the frailties (random effects) have
common variances. In this particular setting, the new model has to satisfy the assump-
tion of monotonicity that is a non-decreasing probability of being infected as function of
age. Furthermore, the proposed model is closely related to the original correlated gamma
frailty model. The main difference is the way the multivariate gamma is introduced in
the model, and the indirect way to specify the baseline hazard function. Future investi-
gation could be done on this new correlated gamma frailty model in order to allow the
random effects to have different variances and also to extent the model for non-linear or
nonparametric smoothed functions.
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7 Appendices

7.1 Appendix A: Additional Output for the New Correlated
Gamma Frailty Model

Table A1. Parameter estimates and standard errors for the new correlated gamma frailty
model with ρ > 0 and ρ = 0.

New correlated gamma (ρ > 0) New correlated gamma (ρ = 0)

Parameter Estimate Standard Error Estimate Standard Error

Intercept -0.2529 0.1218 -0.0454 0.1347
Age -0.1678 0.0124 -0.1819 0.0132
Indicator 0.6532 0.1556 0.6567 0.1610
Indicator*Age 0.1049 0.0132 0.1150 0.0140

ζ 0.4623 0.1549 1.000 (−−−−)
ρ 0.9999 0.0016 0 (−−−−)

Deviance 4065.037 4111.921
AIC 4077.037 4119.921
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Figure A1. The marginal prevalence curves for the Varicella-Zoster Virus (first panel) and
parvovirus B19 (second panel) obtained by fitting the new correlated gamma frailty model.
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7.2 Appendix B: The Plot of the Joint Probabilities - New and
Original Correlated Gamma Frailty Models Using a Weibull
Baseline Hazard Function
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Figure B1. Plot of the joint probabilities of Varicella-Zoster Virus and Parvovirus B19 and
the correlated frailty fit with different variances (green curve), equal variances (red curve) and
new gamma frailty (blue curve) using a Weibull baseline hazard. p11 refers to past infection for
both viruses (top left panel); p01 represents to no past and past infection for Varicella-Zoster
Virus and Parvovirus B19 (to right panel), respectively; p10 refers to past and no past infection
for Varicella-Zoster Virus and Parvovirus B19 (lower left panel, respectively); and p00 refers to
the joint probability of no past infection for either virus (lower right panel).
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7.3 Appendix C: Data Structure to Fit Both Correlated Gamma
Frailty Models

Table C1. Form of the data structure for the new correlated gamma frailty model.

ID Gender Age Response Time Indicator

1 1 18 1 1 1
1 1 18 1 2 0
2 0 22 0 1 1
2 0 22 1 2 0
. . . . . .
. . . . . .
. . . . . .

4763 0 9.75 1 1 1
4763 0 9.75 1 2 0

Table C2. Form of the data structure for the correlated gamma frailty model.

NN NP PN PP a

0 0 0 1 1.05
1 0 1 0 1.07
. . . . .
. . . . .
0 1 7 35 19.00
0 0 1 0 19.01
. . . . .
. . . . .
0 0 0 1 39.98
0 0 0 1 40.12
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7.4 Appendix D: R-code to Fit the Correlated Gamma Frailty
Model to Current Status Data

-------------------------------------------------------------------------------

--Correlated gamma frailty model with different variances using a -------------

--------------------- Log-Logistic baseline hazard ----------------------------

library(stats4)

C.G.F.M1 <- function(alphaeta1=-1.68,betaeta1=-0.46,alphaeta2=-0.065,betaeta2=

-.96,k0eta=-2,k1eta=-2,k2eta=-2){

alpha1 <- alphaeta1

beta1 <- exp(betaeta1)

alpha2 <- alphaeta2

beta2 <- exp(betaeta2)

k0=exp(k0eta)

k1=exp(k1eta)

k2=exp(k2eta)

sigma1=1/sqrt(k0+k1)

sigma2=1/sqrt(k0+k2)

rho=k0/sqrt((k0+k1)*(k0+k2))

Lambda.VZV <- log(1+exp(alpha1)*data$a^beta1)

Lambda.B19 <- log(1+exp(alpha2)*data$a^beta2)

Sa1.VZV <- (1 + (sigma1^2)*Lambda.VZV)^(-1/sigma1^2)

Sa2.B19 <- (1 + (sigma2^2)*Lambda.B19)^(-1/sigma2^2)

S12a <- (Sa1.VZV^(-sigma1^2)+Sa2.B19^(-sigma2^2)-1)^(-rho/(sigma1*sigma2))

p00 <- (Sa1.VZV^(1-(sigma1/sigma2)*rho))*(Sa2.B19^(1-(sigma2/sigma1)*rho))

*S12a

p10 <- Sa2.B19 - p00

p01 <- Sa1.VZV - p00

p11 <- 1 - p00 - p01 - p10

return(-sum(PP*log(p11)+PN*log(p10)+NP*log(p01)+NN*log(p00)))

}

Fit1 <- mle(C.G.F.M1,start=list(alphaeta1=-1.68,betaeta1=-0.46,alphaeta2=

-0.065,betaeta2=-.96,k0eta=-2,k1eta=-2,k2eta=-2))

AIC1 <- -2*logLik(Fit1) + 2*length(coef(Fit1)); AIC1

beta1 <- exp(coef(Fit1)[2]); round(beta1,4)

s.e.beta1 <- beta1*sqrt(vcov(Fit1)[2,2]);round(s.e.beta1,4)

beta2 <- exp(coef(Fit1)[4]);round(beta2,4)

s.e.beta2 <- beta2*sqrt(vcov(Fit1)[4,4]);round(s.e.beta2,4)

k0 <- exp(coef(Fit1)[5]); k1 <- exp(coef(Fit1)[6]); k2 <- exp(coef(Fit1)[7])

sigma1 <- 1/sqrt(k0+k1);sigma1 ; sigma2 <- 1/sqrt(k0+k2);sigma2

-------------------------------------------------------------------------------

37


