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The primary objective of this study was to determine the probability of success of a

vaccine efficacy trial at study end. In randomised clinical trials, often times, spon-

sors and investigators are interested to know whether the trial will demonstrate

a successful result at the end. Interim analyses are planned for these purposes.

Conditional power is one of the tools used to assess the probability that a study

will succeed in the end given data observed at a given point in time. Based on

simulations, a two-arm randomised Phase II vaccine efficacy trial was simulated

and based on data observed until an interim analysis, the probability of success

was estimated. The trial was replicated 1000 times depicting the design of the

actual trial and the conditional power for every trial was calculated and an aver-

age estimate was obtained. The estimate of probability of success at study end

based on the data observed was 63.9 %. Therefore it was concluded that there was

about 64 % chance that the trial would run to completion given the observed data.

More elegant alternatives were however recommended such as the predictive power

which accounts for variability of the treatment effect to assess the probability of

success.
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Chapter 1

Introduction

The pharmaceutical industry has grown exponentially over the years, and the most

logical expectation would be that the amount of drugs to treat various diseases

would also grow at approximately the same rate. However this is not currently

the case. An ongoing and serious challenge facing the pharmaceutical industry

is the high failure rate in the latter stages of drug development, resulting in low

research and development (R&D) productivity [1]. As such resources are deployed

in producing drugs that are eventually rendered useless.

Gan et al [2], reviewed 235 recently published phase III randomized clinical trials.

The authors report that 62% of the trials did not achieve results with statistical sig-

nificance. Trying to explain the high failure rate, they note the actual magnitude

of benefit achieved in a clinical trial is nearly always less than what was predicted

at the time the trial was designed (designated δ) and conclude, “investigators con-

sistently make overly-optimistic assumptions regarding treatment benefits when

designing randomised clinical trials.[3]. Such instances have been evidenced in

oncology trial but this does not mean the problem is unique to oncology trials but

also vaccine efficacy trials which this report is focused on. This problem of high

failure rate indeed universally affects any drug development process. Randomized

clinical trials utilize enormous resources, most importantly money but also human

resources. Realizing that this is a huge risk when it comes to sponsoring such

trials, many sponsors often want to know whether their investment in the drug

process is worth it. In order to accommodate such concerns, during the design of

the study, in between analyses are planned at a specified time during the trial.

These analyses, called interim analyses help to shed light on the progress of the

study in terms of the effect of the treatment (or indeed the relevant hypothesis in

1



Introduction 2

question). Often the interim analyses will be able to tell whether the drug under

study is effective (at the point of analysis), or is worse than the standard/compari-

son. Apart from that, these analyses also help to address safety concerns such that

if the drug under study displays more harm than good, the safety of the patients

has to respected and the trial must be stopped to uphold ethical considerations,

as they are a vital aspect in clinical trials. In cases where the drug is found to

have higher efficacy before the intended trial duration, it can be terminated and

conclusions that the drug is effective can be made. Equivalently, the trial can be

terminated if the drug is performing worse and threatening the lives of the patients.

An important and critical aspect of the clinical trial is the power of the study.

It is calculated during the design of the clinical trial. This statistical power is

the probability that the study will succeed by attaining statistical significance,at

a designated effect size. This however does not provide a reliable answer to the

question of successful completion of the study. This is so because traditional power

is the probability of success (achieving statistical significance) at an assumed ef-

fect size where the assumed effect size is often based on regulatory, payer, and/or

marketing requirements or needs, and may not be supported by available evidence

or reflect the true treatment effect [4]. In addition this power does not make use

of any available data regarding the treatment effect.

On the other hand, Conditional power is the probability of concluding a positive

study at the end of trial, given the interim results of treatment effect. It conditions

on the current data, and assumes a particular point estimate (usually the maxi-

mum likelihood estimate) for the treatment effect [5]. It differs from traditional

statistical power in that an observed amount of data is used to calculate condi-

tional power. The conditional power approach rather than the traditional power is

more appealing in determining whether a study will be successful on completion.

The conditional power function is a useful device for communicating with clinical

investigators as it can be used to illustrate the effects of low accrual or to aid the

decision of continuing the study [6]. If the conditional power is very small then

the investigation can be stopped in order to channel resources to more promising

investments. However both the traditional and conditional power consider the

treatment effect to be fixed which is usually a restrictive assumption.

Alternatively the probability of success can be determined by considering that the

effect size varies(not fixed). This can be done by computing the predictive power

of the study. The predictive power therefore accounts for the variability of the
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treatment effect.

Both Wang [4] and Trzaskoma [7]]focus on the hybrid of bayesian and frequentists

concepts in determining the probability of success. By simulating studies under

different scenarios and accounting for the variability of the treatment effect size,

they separately showed that both conditional power and predictive power can help

optimize individual study designs, for example, if the power is high, it makes sense

to employ an aggressive study design such as allowing stopping early for efficacy;

on the other hand, futility interim analysis may be needed if the available data in-

dicate a low power. Furthermore, conditional power approach can also be used for

sample size re-estimation purposes to create one single interim analysis rule. This

allows interim results to be used for adjusting the original sample size if necessary

to ensure adequate power in the final analysis, or to terminate the trial early on

the basis of such interim findings.

In the same line of thought, Carroll [1] approached the probability of success prob-

lem in a context of moving form a phase II trial to a Phase III trial also from a

bayesian point of view. In this case, the prior is based on data collected form the

Phase II study to inform decision on the Phase III study. The author is however

quick to mention that other choices of prior distributions can also be used as long

as they are plausible.

1.1 Vaccine Efficacy

Vaccine efficacy (VE) is defined as the degree in which the vaccine offers protection

against the target infection or disease.[8]. Several effects of vaccine can be studied

depending on the interest of the study. These effects as described by Halloran

et al [9] include: vaccine efficacy of susceptibility where there is measurement

of how protective vaccination is against infection, and vaccine susceptibility to

disease whose distinction with the former lies in the case definition of the disease

but are usually considered as one in literature. Normally the interest in vaccine

efficacy trials has been to determine how well vaccination protects the vaccinated

individual i.e the vaccine efficacy of susceptibility to disease [8].

In conducting vaccine efficacy trials there is need to quantify the occurrence of new

cases of disease in the population. This is often done by determining the incidence

of the disease/infection in the population and it is associated with individuals who
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were initially healthy and then got infected. There are three types of incidence

measures commonly used: the cumulative incidence, the incidence rate and the

hazard rate. If in a vaccine field efficacy trial the endpoint is infection then the

three incidence measures are usually termed the attack rate, the infection rate and

the force of infection respectively.[8]

However the vaccine efficacy does not depend on which incidence measure is used.

1.2 Problem Description

Acute otitis media (AOM) is the most common bacterial infectious disease among

children and often a painful experience for the affected child. Prior to the advent

of an effective vaccine against the pneumococcal serotypes associated with otitis

media, approximately two thirds of children in the USA, for example, experienced

at least 1 episode of otitis media, and almost 1 in 6 children experienced 3 or more

episodes of otitis media in their first years of life [10]. Characteristic symptoms

of AOM are effusion in the middle ear accompanied by signs of acute illness as

earache, otorrhoea ,ear tugging, fever, irritability, anorexia, vomiting or diarrhoea.

In the long run these may lead to delayed speech development as well as imparied

hearing apart from resistance of pneumococcal strains to common antibiotics. As

such there is a growing and justified need for effective vaccines [11].

Despite the introduction of the first licensed 7-valent pneumococcal conjugate vac-

cine (Prevnar, Pfizer) in the childhood routine immunization schedule, Navajo and

White Mountain Apache children continue to suffer from pneumococcal diseases

and have carriage rates, therefore the development of protein-based pneumococ-

cal vaccines that have the potential to provide protection across all pneumococcal

serotypes, in addition to pneumococcal conjugate vaccine, would be of great public

health interest to AI/AN populations.

A Vaccine Efficacy phase II Trial was designed by GlaxoSmithKline(GSK) Vac-

cines to demonstrate the VE of the pneumococcal dPly and PhtD proteins in

preventing AOM in Native American infants aged less than 24 months, living

in the southwestern US in and around the Navajo and White Mountain Apache

reservations, as well as to evaluate the impact on Acute Lower Respiratory Tract

infections (ALRI) and on nasopharyngeal carriages up to the second year of life.

The efficacy of a three-dose primary course at 2, 4 and 6 months of age followed by

a booster dose at 12-15 months of age with GSK Vaccines pneumococcal protein
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vaccine co-administered with Prevnar 13 in preventing clinical AOM diagnosed

and verified against American Academy of Pediatrics (AAP) criteria will be es-

tablished. In view of this trial,the following objective were developed for this

project;

1.3 Objectives

• Computation of an integrated conditional probability of success at study end

(based on accumulated data up to an Interim Analysis).

The organization of the report is as follows, the next chapter gives the brief out-

line of methods implemented in this project. Results are presented in chapter 3,

followed by discussion and conclusions in chapter 4.





Chapter 2

Methodology

2.1 Trial Setting Description

This trial was designed as a Phase II, double-blind, randomized, placebo-controlled,

multi-centric, single-country study with two parallel groups. The two study groups,the

treatment group dPly/PhtD group was expected to enroll approximately 900 sub-

jects receiving GSK Vaccines’ pneumococcal protein vaccine (dPly-PhtD vaccine)

co-administered with Pfizer’s Prevnar 13 vaccine. The control group was also

expected to enroll approximately 900 subjects receiving GSK Vaccine’ placebo co-

administered with Pfizer’s Prevnar 13 vaccine representing a 1:1 randomization

ratio. Subjects were expected to be followed up for a maximum of 22 months

with an accrual period of 16 months. During the design phase of the study there

was no licensed pediatric pneumococcal vaccine containing pneumococcal proteins

available to act as an active comparator justifying the use of the placebo.

The primary endpoint of the trial is to demonstrate the efficacy of a three-dose pri-

mary course at 2, 4 and 6 months of age followed by a booster dose at 12-15 months

of age with GSK Biologicals’ pneumococcal protein vaccine co-administered with

Prevnar 13 in preventing clinical AOM diagnosed and verified against American

Academy of Pediatrics (AAP) criteria. As such the endpoint is time to episodes

of acute otitis media.

With a time to event endpoint the Vaccine Efficacy is essentially defined as 1 mi-

nus the hazard ratio denoted

V E = (1–
λ1
λ0

)× 100

7
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where λ0 is the hazard rate in the placebo group and λ1 is the hazard rate of the

vaccinated group. As such the hypothesis was formulated as follows:

Ho : V E ≤ 0%

Ha : V E > 0%

Or equivalently in terms of the hazard ratio(HR):

Ho : HR = 1%

Ha : HR < 1%

The above hypotheses correspond to the hypothesis that pneumococcal proteins

in the vaccine will reduce the incidence of clinical AOM compared to control group

if the vaccine efficacy is greater than 0%.

2.2 Statistical Methodology

2.2.1 Cox proportional Hazards Model

Cox’s proportional hazards model is the most commonly used model for clinical

trial data and provides reliable estimates of survival times, as well as the rela-

tive risk associated with time-to-event occurrence[12]. Considering that we were

dealing with time to event data, first attempt of analysis was done using the Cox

model which only uses the time to the first event. In time to first event data anal-

ysis,if T is a non-negative continuous random variable representing the waiting

time until the occurrence of an event, then the survival function which gives the

probability of not experiencing an event just before duration t, or more generally,

the probability that the event of interest has not occurred by duration t is given

by:

S(t) = Pr(T ≥ t.)

The Cox proportional hazards model is given by

λxt = λ0exp(βx)
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where λ0 is the baseline hazard function and is assumed to depend on time t and β

an unknown vector of regression coefficients for covariate x that does not depend

on time . This builds up to the important assumption of proportional hazards. As

such hazard ratios between two individuals of different covariate information are

used to compare survival between two individuals. The Cox proportional hazards

model relates the hazard rate for individuals at the value x(λx(t)), to the hazard

rate for individuals at the baseline value λ0(t). This produces an estimate for the

hazard ratio

HR = λx(t)/λ0(t)

The hazard ratio represents the chance of experiencing events in the treatment

arm as a ratio of the chance of events occurring in the control arm. The Cox

proportional hazards model was fitted considering the time to first occurence of

Acute otitis media. However, the common feature with the standard Cox regres-

sion model is that it only considers the time to the occurrence of the first event.

In this study there were expected cases of recurrent episodes of AOM such that

the cox proportional model would not be appropriate to analyse such data. This

is because the model ignores any recurrent episodes. An extension of the Cox

model ,the Andersen and Gill model(A-G) was considered for analysis to account

for recurrence and is briefly described below.

2.2.2 Andersen-Gill Model

Recurrent events, are events that are experienced a number of instances times

from the same individual. These can include, myocardial infactions, and tumour

recurrence. The analyses of recurrence time to event data are prone to inappro-

priate analyses using the cox model because of its simplicity.

The A-G model is one of the models used to analyze data with repeated occur-

rences. Also known as the counting process model, this approach models the

repeated episodes for each person as separate observations, with the risk set not

constrained by the number of events occurring within an individual, and it makes

a strong assumption of independence among multiple observations per person over

time and also between individuals.[13]. For the kth event of the ith subject at time

t, in the counting process model, the hazard function is given by

λik(t) = λ0(t)exp(xikβ)
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where β represents the covariate vector (p fixed effects) for the ith subject with

respect to the kth event and xik is the covariate matrix and λ0 represents the

common baseline hazard for all events. This model is an extension to the standard

Cox Proportional Hazards model [14]. The A-G model uses the counting process

formulation. As pointed out by Castaneda and Gerritse [15], the primary difference

between the cox proportional hazards model and the A-G model is the definition

of the individuals at risk. For the Cox model, an individual ceases to be at risk

when an event occurs while for the A-G model the individual still remains at risk

after an event. It is also known as a conditional model,distinct from a marginal

model where subject is at risk from the start of treatment and does not depend

on any previous events. The partial likelihood for the A-G model is given by

L(β) =
n∏
i=1

Ki∏
k=1

(
exp(βTxi)∑n

i∈R(tik) exp(β
Txi)

)δik

where δik=0 if censoring intervent time and 1 otherwise. [16]

2.3 Probability of Success

Suppose we wish to test our null hypothesis using a reference test Z, then according

Jennison and Turnbull [? ], the conditional power at stage k which represents the

probability that a trial will succeed at the end given data(Dk) observed up until

a given point in time is given by

P (θ)k = Prθ(Z will reject H0|D(k))

A very low value of this probability will suggest that continuation of the trial

is futile and the primary endpoint of efficacy will be no longer pursued. In this

project, any probability values less than 15 % will lead to the trial stopping for

the primary outcome.

For successive analyses, assuming Zk is a sufficient statistic for θ at stage k, and

for an information level Ik, then it can replace Dk such that the conditional dis-

tribution of ZK given Zk can be written as

ZK |Zk ∼ N (Zk
√

(Ik/IK) + (θ(IK − Ik)/
√
IK), 1− Ik/IK)
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and there on sided conditional power at analysis k is as presented by Jennison and

Turnbull [? ] is also given by

P (θ)k = Φ{Zk
√
Ik − zα

√
IK + (IK − Ik)θ√

(IK − Ik)
}

Where ZK is the test statistics at final analysis and IK represents the information

(number of events) required at final analysis and θ represented by ln(HR). Zk is

calculated as( θ×
√
Ik). Since we were using a one sided test at 0.074 significance

level, Zα is the critical value for significance level of 0.074.

The above formula was applied to each simulated dataset to calculate the con-

ditional power for each trial. The resulting conditional powers were averaged to

obtain one estimate of probability of success.

2.4 Data Simulation

Simulation studies use computer intensive procedures to test particular hypotheses

and assess the appropriateness and accuracy of a variety of statistical methods in

relation to the known truth. [17] To estimate probability of success, 1000 datasets

were simulated closely depicting the design of the trial. The Interim Analysis

was planned to be conducted at 50% of the information, thus after at least 633

reported clinical AOM episodes were diagnosed and verified against AAP criteria

since 1266 reported cases were expected at final analysis. Inorder to accumulate

633 events,the trial was simulated and cut off 17 months into the trial where

the approximately, the postulated number of events were obtained. As such only

reported cases till 17 months were used for analysis.

A hypothesized hazard rate of 0.6 event /child /year was used for the placebo group

which corresponded to a hazard rate of 0.465 in the treatment group for a true VE

of 17 %. These rates assumed a constant event rate over time, which is consistent

with an exponential distribution of the time to event. The complete follow-up

for each subject was set to 22 months and accrual of the individuals was set to

16 months such that 633 events were obtained shortly after accrual period ended.

With an expected loss to followup of 10 % , about 1537 subjects were expected

to be evaluable as such this was the number of generated subjects. Based on an

almost constant accrual rate of 96 individuals per month, a total of approximately
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633 events would be accrued by aprroximately 17 months into the trial. The

simulation was done according to Metcalfe et al [16]. For each subject,inter-event

times were simulated as independent realization of an exponential distribution of

rate

λ = exp(xiβ)

obtained from the inversion method

tik = − lnui
exp(xiβ)

= − lnui
λ

where i=1, ...., n individuals; k=0, ..., ki events observed from an individual; tik

denoted as the interval time from tik − 1 until tik and ui ∼ U[0,1], a uniform

distribution. By transforming ui ,interval-event times tik for each subject were

generated. All generated times greater than 17 months were censored. Time

to occurrence of primary endpoint during the defined efficacy follow-up period

was compared between groups by estimating Vaccine efficacy(VE) and its 92.6%

confidence interval (one sided, 0.074 significance level)using the Cox model and

A-G model. All analyses were done in SAS statistical package version 9.3
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Results

3.1 Exploratory Data Analysis

3.1.1 Descriptive Statistics

From the 1000 datasets simulated and based on approximately 1540 subjects. The

number of occurrences that were determined as failed or censored observations

were tabulated. There were more events experienced in the placebo group than

the vaccinated group up to follow up time as shown below.

Table 3.1: Table of Status by Group

Status
Group

Placebo Vaccinated Total
Censored 1360 1226 2586

41.34 37.26 78.6
Failed 406 298 704

12.34 9.06 21.4

On average, 21.4 % of the children experienced atleast one event at the time of

analysis. Events that were censored were those that were experienced after 17

months of the trial which was the cutoff point for the analysis. About 70 % of the

children had not yet experienced an event until this point in time. An overview

of the recurrences by treatment group also seemed appropriate inorder to gain

insight in the differences between the two groups if any.

13
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Table 3.2: Recurrent Events by Group

Group

Events
Placebo Vaccinated Total

0
405 307 710

12.31 9.33 21.82

1
578 520 1098

17.57 15.81 33.37

2
450 398 848

13.68 12.1 25.78

3
222 196 418

6.75 5.96 12.71

4
80 80 160

2.43 2.43 4.86

5
20 15 35

0.61 0.46 1.66

6
10 7 17
0.3 0.21 0.52

7
1 1 1

0.03 0.03 0.06

Total
1766 1524 3290
53.8 46.32 100

Recurrent events were experienced in both groups with a maximum of 7 recurrent

events experienced by two subjects,one in each group. Slightly more recurrent

events per child were observed in the placebo group rather than the vaccinated

group. For example 13.68 % of the placebo experienced at least 2 recurrent events

while a slightly lower percentage of 12.1% experienced the same in the vaccinated

group.

3.1.2 Proportional Hazards Assumption

Both the cox and the A-G model assume the proportionality of the hazards. In

this regard the assumption was investigated graphically using Kaplan Meier Curves

and the cumulative hazard functions were also plotted.

Figure 3.1, shows the two curves do not seem to cross, reflecting proportional

hazards,and the treatment group is seen to survive longer until an episode of

AOM as compared to the placebo group (Log rank test pvalue= 0.02). However,
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Figure 3.1: Kaplan Meier Curves and Cumulative Hazard curves for Cox
Model

in the Cox model,the standard Kaplan Meier analysis assumes that after an event

has been observed, the individual is no longer at risk [18]. This might not be

appropriate for recurrent events as the individual is still in the risk set even if the

first event occurred. As such there is an enormous amount of information that is

lost in displaying such curves for recurrent data. In accounting for that, survival

curves for the recurrent events were plotted as seen in Fig 3.3. .

Figure 3.2: Kaplan Meier Curves and Cumulative Hazard curves for A-G
Model

It can be observed that the rate at which the Kaplan meier curve of the recurrent

events is dropping is slower than the rate at which the same curve is dropping for

the cox model. By the middle of the follow up time(330 days), the probability

of surviving without an event for the cox model is approximately 63 % for the

control group and close to 70 % for the treatment group. As for the curves that
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account for the recurrent events, by middle of follow up time, the probability of

surviving is slightly above 70 % for the control group while it is about 80 % for

the treatment group. It seems however that probability of experiencing an AOM

episode is higher after half the time of follow up for the control group than the

treatment.

3.2 Statistical Analysis

Based on the accumulated data until 17 months into the beginning of the study,

the Cox model and A-G model were fitted for each dataset. The covariate con-

sidered here was the treatment alone where 0 represents the placebo group and

1 represents the vaccinated group. The covariate vector of fixed effects therefore

represents the treatment effect. For further statistical analysis of the A-G model

the data was manipulated into the A-G data structure. Based on this structure

of the data, intervals in which events occur are split between start times and stop

times, such that for a second episode of AOM, the starting time is the previous

time(stop time) which the first event occurred. These starting and stopping times

are modelled independent variables in the model. If an individual has 1 event,

there are two rows representing data for that subject,i.e 1 row indicating time of

entry until the event, and the last row,indicating time of event until censorship

and it follows for more subsequent events.

Each event from the same individual is assumed to be independent and a subject

Table 3.3: A-G Data Structure

ID Tstart Tstop Event Status
1 0 12 1 1
1 12 17 2 1
1 17 25 2 0
2 0 12 0 0
3 0 23 1 1
3 23 28 2 1
3 23 40 2 0

contributes to the risk set for an event as long as the subject is under observation

at the time the event occurs. A sample data structure of the A-G model has been

presented in table3.3.
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The hazard ratio of the two groups and the treatment effect of the vaccine was

estimated from an assumed true VE of 17% using the Proc phreg procedure in

SAS.

Table 3.4 presents the average estimates based on the simulated datasets for both

the Cox model and the A-G model. Level of significance was 0.074 in order to

account for the multiple analyses to be done during the trial.

The estimates for the Cox model were obtained after deleting any recurrent events

Table 3.4: Parameter Estimates

Model Parameter Estimate(Standard Error) Hazard Ratio 92.6% HR CI
Cox Model Treatment -0.210(0.091) 0.814 [0.713;0.928]

A-G Treatment -0.218(0.078) 0.806 [0.717;0.906]

from the same individual such that there was only one record per individual. This

was done assuming that the interest was in the time to first event. The A-G model

estimates were obtained as a result of a robust sandwich estimate for the covari-

ance matrix which produces robust standard errors as a way of accounting for the

correlation of events from one subject as opposed to the model based standard

errors.

Table 3.5: Vaccine Efficacy at 17 Months into the trial

Model Vaccine Efficacy 92.6% VE CI
Cox Model 18.6% [9 %;28.9 %]

A-G 19.4% [10%;28.3 %]

From the estimated values of the hazard ratios the vaccine efficacy for each model

was calculated with the A-G model displaying a higher vaccine efficacy than the

cox model. This is expected because information from recurrent episodes is utilized

in the A-G model. In addition the cox model has got slightly wider confidence

limits than the A-G and model. A true VE of 17% was assumed at the design of

the trial representing a bias of 9.4 % for the cox model and 14.11 % for the A-G

model. These percentages are considered high suggesting the estimates could be

biased.

3.3 Probability of Success

The traditional power of the trial during design phase,where 1800 subjects were

targeted, was calculated prior to the trial for different scenarios corresponding to
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different incidence rates and the target vaccine efficacy. A high significance level

was chosen because of the uncertainity around the incidence of AOM in the studied

population. For example with a 0.6 incidence rate, and VE equals 11%, the power

was calculated as 81% and around 92.1 % for a vaccine efficacy of 17%.

Considering that these calculations were made before the data was obtained, there

was need to calculate the conditional power now based on the accumulated data.

By applying the formula in chapter 2. The following estimate was obtained for a

true VE of 17 %.

For the standard Cox model, the conditional power and therefore the probability

Table 3.6: Conditional power

Model Conditional power

Standard Cox Model 58.3
A-G 63.9

to observe a successful trial at the end was 58.3% while the A-G model it is about

63.9. % The A-G model indicates more power for the study to run to completion

than the cox model.



Chapter 4

Discussion and conclusion

Data accumulated until an interim analysis gives an insight into the progress of

the trial and sometimes a decision can be made to stop the trial or proceed with it.

Statistical techniques are used to aid this decision. Estimation of the conditional

power is one of the tools used to help in making this kind of decision. Conditional

power expresses the probability of the trial running to completion given that some

data has already been accumulated up until a given point in time. This is usually

of interest for all the concerned parties conducting the trial and most importantly

the sponsor whose resources are invested for a significant treatment effect. In

this trial, with a fixed estimate of the Vaccine efficacy of 17% i.e to detect a 17

% reduction in the hazard ratio of experiencing episodes of Acute otitis media,

and with the null hypothesis of VE being less than 0% (no treatment effect),it is

expected that there will be insufficient evidence to reject it if the conditional power

is less than 15 % . The probability of the trial being successful at the end given

the data observed until an interim point was calculated as 58.3 % based on the

cox model and 63.9% based on the A-G model which was more appropriate and

therefore preferable in this case. Thus there is about 63.9 % chance that the trial

will reject the null hypothesis of hazard ratio being equal to 1 and consequently, the

vaccine efficacy being less than 0%. This is considerably further from the stopping

rule of ≤ 15% power that was hypothesized to stop the trial. This estimate is

also considerably lower than the 92.1 % that was postulated at the beggining of

the trial. However the conditional power suggests that the trial will succeed if the

current trend in the treatment effect is maintained.

It should be noted however that, this decision to either proceed or terminate the

trial should not entirely be driven by the statistical considerations. There are

19
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other aspects of the trial that also play part in making this decision. For example

in cohort studies,slow case accrual, costly laboratory tests, or tests that require

destruction of unique biological samples can make it desirable to stop early when

the data indicate no relevant effect [19]. The A-G estimates were a result of a

robust sandwich estimator for the covariance matrix as opposed to the model

based matrix and this provides a simple and valid approach to analyze recurrent

events. A one sided 92.6 %confidence interval of [0.717;0.906] suggests significance

of the treatment for the A-G model. From a hazard ratio of 0.806, the vaccine

efficacy is obtained as 19.4 % and is contained in the VE confidence interval of [10

%;28.3%] .

We can therefore say that the treatment is shown to delay occurrence of the first

episode and the subsequent episodes where applicable. The treatment effect -0.21

translates to a hazard ratio of 0.846 with a standard error of 0.09 for the cox

model. The hazard ratio 92.6 % confidence interval does not contain 1 suggesting

significance. However this model was used for illustrative purposes and deemed

inappropriate for recurrent data.

According to a review by Fletcher et al [10], clinical trials during the develop-

ment of AOM vaccines found that their efficacies against a microbiological out-

come, vaccine-serotype pneumococcus in middle ear fluid isolates(MEF), were

quite similar (about 60%), yet vaccine efficacies against a clinical outcome, “clin-

ical episodes” of otitis media, varied considerably ranging from -1 to 34 % . This

is inline with the results obtained.

By considering all AOM episodes, a slight increase in vaccine attributable benefit

could be detected compared to analytical methods that only take the first episode

of AOM experienced by each child into account. [11]. The total number of episodes

of acute otitis media in a population and also most importantly the effects of re-

currence of the infection are better off in indicating burden of the disease. Thus,

the reduction of the total number of episodes might be a more relevant measure

of vaccine efficacy than the reduction of the number of children with at least one

episode. This is why, statistical methods which account for recurrence in the data

and therefore utilising this information are more appropriate then the methods

that take into account only time to first episode.It has never been shown that

there is a good correlation between the time to first recurrence and the course

of illness as a whole. Therefore, although time to first recurrence is indeed an
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important measure of survival in many fields of medical research (e.g. cancer re-

search), it may only provide a rough approximation of the true course of illness.[18]

In comparison with the Cox proportional hazards model, it can be noted that

there were not pronounced differences between the results of the two approaches

interms of the Vaccine efficacy though the A-G model displayed slightly higher

efficacy. This was expected because more information is used in the A-G model to

estimate the efficacy of the vaccine. This also expresses why the conditional power

computed is also higher than the cox model. It should be mentioned however, that

differences between the two approaches could be quite substantial in most cases

for example when there is complete follow up for each individual.

Finally, the conditional power has got a number of shortfalls. As described by

Tweel et al [19],First, a choice must be made for a plausible parameter value to

calculate the Conditional Power: for example, the parameter value as specified in

the design phase under the alternative hypothesis, or the parameter value based

on the data obtained so far. Second, a choice must be made for the critical

value for the Conditional Power to decide for early stopping or continuing. Third,

a choice must be made for the “optimal” information fraction to estimate the

Conditional Power. Further more, conditional power assumes that the treatment

effect does not vary which in most cases is not realistic. There are several statistical

approaches to circumvent around these shortfalls. The most common alternative is

use of group sequential analysis and use of predictive power in place of conditional

power. The use of predictive power addresses the shortfall of fixed treatment effect

by accounting for the variability of the true treatment effect. In this approach,

the observed data is used to update some prior distribution for the treatment

effect, and then the predictive distribution of the result at the final analysis is

obtained by integrating over the posterior distribution of the treatment effect

parameter [4]. These predictive probabilities have a distinct advantage over the

conditional probabilities in that the predictive probabilities take into account both

prior notions of the likely values for the true treatment probability and the evidence

in the data for the true value.[20].

In this paper, we investigated the conditional power of a phase II vaccine efficacy

trial via simulations. Two models of analysis that handle survival data were used,

but with different approaches. The cox model and A-G model. The cox model was

used in order to illustrate the incompetence of the model to handle recurrent data

which the trial is characterized with. Conditionally, there is 63.9 % probability
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that the trial will succeed at the end to reject the null hypothesis that the vaccine

efficacy is less than 0%. However we would recommend using group sequential

analysis or the predictive power to reliably estimate the probability of success at

study end.
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Appendix A

Appendices

SAS Simulation and Analysis code

/*data _null_;

a=’10OCT2013’d;

put ’SAS date=’a;

put ’formatted date=’a date9.;

run;

SAS date=19175

formatted date=01JUL2012

SAS date=19632

formatted date=01OCT2013

SAS date=19641

formatted date=10OCT2013

*/

proc iml;

accr=do(19175,19632,30);

f=quantile(’normal’,0.926);

print f;quit;

Proc iml;

beta1=-0.1863;

26
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/***create id matrix***/

id=1:1540;id=id‘;

do sample=1 to 1000;

/**randomly sample 770 subjects***/;

call randseed(sample);

t_id=sample(id,770,"NoReplace"); t_id=t_id‘;

p_id=setdif(id,t_id);p_id=p_id‘;

/**treatment allocation***/

trt_1=j(nrow(t_id),1,1);

trt_0=j(nrow(p_id),1,0);

/**combine id with its allocated treatment**/

treat=t_id||trt_1;placebo=p_id||trt_0;

/**append treat and placebo***/

dataset=treat//placebo;

/*Allocate accrual dates*/

accr=do(19175,19632,30);accr=accr‘;

accr=repeat(accr,96,1);

accr1={19175,19565,19805,19355};

accr=accr//accr1;

dataset=dataset||accr;

/*Generate number of events in treatment group*/

num_evts_trt=j(nrow(treat),1,.);

call randseed(482 + sample);

call randgen(num_evts_trt,’poisson’,0.68);

/*Generate number of events in placebo group*/

num_evts_pcb=j(nrow(placebo),1,.);

call randseed(482 + sample);

call randgen(num_evts_pcb,’poisson’, 1);

num_evts=num_evts_trt//num_evts_pcb;

samp=repeat(sample,nrow(dataset),1);

dataset=dataset||num_evts||samp;

/**time to events**/

do k=1 to nrow(dataset);

num=dataset[k,4];

linpred=exp(beta1*dataset[k,2]);

if num=0 then do;
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x=j(1,1,.);

call randseed(k);

call randgen(x,’uniform’);

time=-log(x)/(0.6*linpred);

if time>1.8 then time=1.8;else time=time;

status=0;

idd=dataset[k,];cum_time=time;samp=sample;

row_sub=idd||time||status||cum_time;

end;

else if num>0 then do;

xk=0;

do until (xk=1);

x=j(num,1,.);

call randseed(k);

call randgen(x,’uniform’);

time=-log(x)# 1/(0.6*linpred);

sum_time=sum(time);if sum_time>1.8 then xk=0;else xk=1;

idd=repeat(dataset[k,],num,1); status=repeat(1,num,1);

samp=repeat(sample,num,1);

if num=1 then cum_time=time;else cum_time=cusum(time);

row_sub=idd||time||status||cum_time;

end;

end;

/***combine all subjects***/

allsub=allsub//row_sub;

end;

Aom_data=sub_data//dataset;

end;

create thesis from allsub[colname={"id" "treat" "date" "num_events" "sample" "time" "status" "cum_time" }];

append from allsub;

create Aom from sub_data[colname={’id’ ’trt’ ’date’ ’num_events’ ’sample’}];

append from Aom_data;

quit;

proc sort data=Thesis;

by sample id time cum_time;
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run;

/***A-G Model Data Manipulation***/

Data Thesis2;

Set Thesis;

By sample id;

Var=days;

lag_Var = lag(days);

lag_time=lag(cum_in_days);

Retain Tstart;

If first.id then Tstart=0 and (tstop=days);

else tstart=lag_var;

Tstop=days;

if Last.id then Tstop=cum_in_days;

output;

drop lag_var var lag_time ;

run;

/****Andersen and Gill Model 2 sided alpha***/

ods output ParameterEstimates = ParmEst;

proc phreg data= thesis2 alpha=0.148 covs(aggregate) covm;;

by sample;

class status;

model (tstart tstop)*status(0) = treat / rl;

id id;

run;
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