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Abstract

Telemonitoring involves wireless technology for remote follow-up, where daily patient’s
measurements of biomarkers such as weight, heart rate, and blood pressure, are tran-
simitted wirelessly to a server where they can be stored, reviewed, and analyzed by
the clinicians. To manage heart failure , clinicians use these measurements to predict
rehospitalization, so that intervention decisions can be made. This is important for clinical
practice due to high rehospitalization rate in heart failure patients. In this project, we
explore the relationship between the risk of rehospitalization and different features of
the biomarkers. These features are expressed through different parameterizations. Such
an exploration is important in the sense that more appropriate parameterizations will
"more readily" reveal the true predictive ability of the biomarker. In Chronic Heart Failure
data, the best parameterization was time dependent slopes for both weight and systolic
blood pressure whereas the cumulative effect parameterization produced the best fit for
diastolic blood pressure. For heart rate, the current value parameterization had the best
fit.
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1. Introduction

In clinical studies, patients are followed over a period of time and biomarkers are
repeatedly collected at multiple time points. Besides the data can include the time when
an event of particular interest occurred, eg., relapse of a disease, rehospitalization or
death. The reasearch question in such studies often require separate analyis of recorded
outcomes, but in many occassions interest may lie in studying the association of the
biomarker and time-to-event [10]. When the interest is on the latter case, then joint
modelling of the longitudinal and time-to-event framework is adopted. For example, the
CD4+ lymphocyte count or the viral RNA (viral load) and AIDS or death in HIV studies,
cognitive performance and survival in geriatric studies, systolic blood pressure and a
coronary event, prostate-specific antigen biomarker and prostate cancer recurrence, and
hemoglobin level and survival in type 2 diabetes [1]−[5].

The joint modelling field has evolved in the recent past, with one of the interests being
dynamic predictions for either the survival or the longitudinal outcome. The quality of
this prediction typically depends on two factors; first, on the capability of the longitudinal
marker itself in predicting future events i.e the biological mechanism that the marker
attempts to describe, and how strongly this mechanism is related to the event of outcome.
Secondly, the correct formulation of the joint model to reveal the true predictive perfor-
mance of the marker [10]. The second factor calls for different parameterizations which
entail different assumptions about the dependence of the risk on different features of the
biomarker. For example, the risk could depend on current/ previous, slope or the entire
summary history of the biomarker. Besides the risk could be different in different patient
subgroups due to the fact that the biomarker is different in those subgroups. Therefore it
is important to find out the best formulation of the biomarker that determines the risk
and fits the data well.

Heart failure (HF) develops when the pumping or the relaxing action of the heart is
inadequate, typically because the heart muscle is weak, stiff, or both. As a result, blood
may not flow out in adequate amounts [15] to cater for body needs. In response, the
body initiates a mechanism to compensate for heart failure. The mechanism may help the
body adjust to the effects of heart failure in the short term. But over time, for instance
the kidneys may respond by causing the body to retain fluid (water) and salt. This may
lead to recurrent hospitalization of the patient due to fluid overload and/or worsening
of renal function [6]. The fluid accumulation may lead to weight gain and if proper
treatment is given it may lead to loss of weight. Therefore it is important for HF patients
to monitor their weight on daily basis[16]. The heart compensates for its pumping power
by beating faster (tachycardia) in order to keep the same flow of blood around the body.
This increased heart rate sometimes is irregular and therefore it’s important to monitor
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the heart rate daily [16]. Besides weight and heart rate, it’s advisable for clinician to
monitor systolic and diastolic blood pressure of HF patient for hypertension (abnormally
high blood pressure ) or hypotension (abnormally low blood pressure). Systolic blood
pressure is the maximum arterial pressure during contraction of the left ventricle of the
heart, while diastolic blood pressure can be defined as the minimum arterial pressure dur-
ing relaxation and dilation of the ventricles of the heart when the ventricles fill with blood.

According to American Heart Association (AHA), HF is the primary diagnosis in more
than one million hospitalizations annually. Patients hospitalized for HF are at high risk
for rehospitalization, with a one month readmission rate of 25%. In 2013, physician office
visitis for HF cost $1.8 billion. The total cost of HF care in the United States exceeds $30
billion annually, with over half of these costs spent on hospitalization [16].

Telemonitoring has been found to improve the care for HF patients [6]. It involves wireless
technology for remote follow-up, where daily patient’s measurements of biomarkers such
as weight, heart rate, and blood pressure, are transimitted wirelessly (via a telephone
line, a mobile phone, or a computer) to a server where they can be stored, reviewed, and
analyzed by the research team.

The aim of this paper is to explore the relationship between risk of first rehospitalization
and different features of biomarkers in Chronic Heart Failure (CHF) patients. These fea-
tures are expressed through different parameterization. Such an exploration is important
in the sense that more appropriate parameterizations will "more readily" reveal the true
predictive ability of the biomarker. The choice of a time-dependent covariate involves
the choice of a functional form for the time-dependence of the covariate. This choice is
usually not self-evident but may be suggested by biological understanding or biological
hypothesis [11]. For instance, considering only the current value of a time-varying covari-
ate to be associated with the risk of rehospitalization may miss more complex forms of
association between the longitudinal marker and the survial outcome leading to incorrect
conclusion [10].

1.1 Data

The data originated from a study conducted in Belgium from the year 2008 to 2010, to
determine whether follow-up of CHF patients by means of a telemonitoring programme
reduced mortality and rehospitalization rates. 80 patients discharged from the hospital
with a sufficient cognitive function to understand the aims of the study were followed for
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six months. These patients were given monitoring devices upon discharge, to remotely
transmit their daily measurements of systolic blood pressure (sbp), heart rate (hr), weight
and diastolic blood pressure (dbp) to a central computer where they could be stored,
reviewed and analysed by clinicians. The measurements were recorded every day at a
fixed hour in the morning for a period of 6 months. Sixteen patients got rehospitalized at
least once during the study period.

Before discharge from hospital, patient’s baseline characteristics where recorded. This
included: gender (sex), age, heart rhythm, cardiac muscle fibre stretch measured through
NTproBNP, patients fitness indicator (given using the New York Heart Association
(NYHA) score indicator) and the left ventrical ejection fraction (LVEF), which is a measure
of heart performance .

2. Methodology

2.1 Exploratory Data Analysis

The CHF data consisted of two outcomes types: multivariate longitudinal (weight, heart
rate, systolic and diastolic blood pressure) and time-to-rehospitalization. The subject-
specific profiles, mean and variance structures were explored in the same way for all the
biomaker. For the weight variable, the mean structure was explored by plotting lowess
smoothed averaged observed weight for all patients and sub-populations (baseline patient
characteristics) in CHF data. Average squared residuals over time were used to explore
variance structure. Random samples of lowess smoothed individual profiles were plotted
to explore the variability between and within individual patients. The average evolution
describes how the profiles evolve over time and it is useful in order to select a fixed-effects
structure for the linear mixed model of patients trajectories. In addition to the average
evolution, the evolution of the variances is important to build an appropriate longitudinal
model[17].

In order to gain insights of time to first rehospitalization, Kaplan-Meier curves were
plotted for the baseline covariates (heart rhythm, NYHA, gender, LVEF and age). The
distribution of the number of events each month was also explored. This was important
in gaining insights of how risk varied over time and also in determing breakpoints of
piecewise constant model baseline hazard. This baseline hazard allows risk to be constant
at a given time interval [18].
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2.2 The Joint Model

Joint modelling is used to estimate the association between survival and endogenous
time-dependent covariate. It is important to differentiate between two time-dependent
covariates (exogenous and endogenous). Exogenous covariates are predictable, their
complete path can be determined before the study begins and are external to the subject
under study. Examples may include seasonal patterns and air pollution. The longitudinal
outcomes (biomarkers) are also referred as endogenous time-dependent covariates in
survival modelling framework. Important features of these covariates are: (1) they require
survival of the patient for them to exist, (2) they are measured with error and (3) their
complete path up to any time t is not fully observed i.e the marker of the patient is only
known at days when the patients provides the measurements [10]. The joint modelling of
longitudinal and time-to-event data therefore takes into account these special features of
the endogenous covariates and consists of survival and longitudinal submodels.

For the ith patient, let Ti be the observed event time, Ti=min(Ti
∗,Ci), with Ti

∗ the true
event time, and Ci the censoring time. The survival submodel is written as follows:

hi(t|Mi(t),wi) = h0(t)exp{γTwi + αmi(t)} (2.2.1)

WhereMi = mi(s),0≤ s < t is the history of the true unobserved longitudinal process
up to time point t, h0(.) is the baseline risk function and α is the parameter representing
the longitudinal effect on hazard. Similary, wi is a vector of baseline covariates associated
with parameter vector γ. The risk for an event at time t therefore depends on the baseline
hazard, baseline covariates and the true value of the longitudinal covariate at that time.
The risk ratio associated with unit changes of baseline covariates is given by exp(γ) and
the relative change in the risk for a unit change in the true value of the longitudinal
covariate (biomarker) is exp(α) [9].
The survival function is given by:

S i(t|Mi(t),wi) = exp (−
∫ t

0
h0(s)exp{γTwi + αmi(s)}ds ) (2.2.2)

which implies that the function depends on the whole covariate historyMi(t). However,
the biomarker measurements are collected intermittently and with error at time points tij,
j = 1, ...,ni, for patient i.

The baseline hazard h0(.) in standard survival model is sometimes left unspecified to avoid
incorrect specification of the distribution of survival times. However, if the same is done
in joint modelling may lead to an underestimation of parameter estimates’ standard errors
[10]. Therefore, h0(.) was assumed to follow Weibull distribution or piecewise-constant
(PC) model. One of the key issue with the PC model is determining the appropriate
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number of time intervals to be used. Although any number of time periods can be chosen,
it is important to strike a balance between flexibility and parsimony. A key requirement
when choosing the number of time periods is that there should be units that experience
the event within each of the different time intervals. If this is not the case, it is difficult to
obtain reliable parameter estimates [18] [19]. The Weibull hazard is given by:

h0(t) = ρtρ−1 exp{γ0}

Where ρ is the shape parameter and exp(γ0) is the scale parameter. Note that if ρ < 1, the
hazard is decreasing and if ρ > 1 the hazard is increasing in t. When ρ = 1, the hazard is
a constant resulting to an exponential distributed survival time.
The piecewise-constant hazard on the other hand is given by

h0(t) =
Q

∑
q=1

aq I(vq−1 < t ≤ vq)

where 0 = v0 < v1 < ... < vQ denotes a split of the time scale, with vQ being the largest ob-
served time. aq denotes the hazard in the interval (vq−1,vq] and should be estimated from
the data. The advantage of piecewise constant model compared to Weibull parametric is
that; standard errors can be estimated directly from asymptotic maximum likelihood and
is more flexible in describing changes in the shape hazard function rather assuming a
monotonic shape hazard [10] [21].

For the longitudinal outcome, the unobserved true value of the ith patient is assumed to
be related with the observed value yi(t) through the following submodel:

yi(t) = mi(t) + εi(t) = Xi
T(t)β + Zi(t)bi + εi(t), (2.2.3)

where εi(t) ∼ N(0,σ2) and bi ∼ N(0, D). Xi and Zi are design matrices for the fixed
effects β and random effects bi vectors respectively. The measurement error εi(t) is
assumed to be independent of the random effects Zi. The equation is a linear mixed
model which accounts for measurement error problem by postulating that the observed
level of longitudinal outcome yi(t) comprises of true value mi(t) contaminated by a
random error term εi(t). If observations are taken on daily basis, it is difficult to disregard
autocorrelation. However, it is difficult to impliment a model with both random-effects
and autocorrelation term [13] therefore random-effects model was preferred due to its
computational ease in implementation. By fitting the linear mixed submodel the true
biomarker value is estimated and the complete patient’s longitudinal history Mi(t) is
reconstructed [10].
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The likelihood method is a widely used approach for the parameter estimation in the joint
model [10] [13]. In defining the joint distribution, we assume the vector of time-dependent
random effects bi is shared by both the longitudinal and survival process i.e the random
effects account for both the association between the longitudinal and event outcomes,
and the correlation between the repeated measurements in the longitudinal process [10].
Assumming that the censoring, timing, and measurement processes depend only on the
observed history and latent random effects and not on the future event time itself [13],
the likelihood contribution of the ith patient is:

f (Ti,δi,yi;θ) =
∫
(Ti,δi|bi;θ)

[
∏

j
f
{

yi(tij)|bi;θ
}]

f (bi;θ)dbi,

where θ is the parameter vector, yi is a (ni × 1) vector of longitudinal response for the ith

patient, δi = I(Ti
∗ ≤ Ci) is the event indicator. The likelihood funcion is given by

f (Ti,δi|bi;θ) =
[
h0(T)exp{γTwi + αmi(T)}

]δi exp
(
−
∫ t

0
h0(t)exp{γTwi + αmi(t)}dt

)

2.3 Different Parameterizations

Assuming the association between risk of an event to be dependent only on the current
value of a time-varying covariate may miss some complex forms of the association [10]

and lead to incorrect conclusions. The choice of a time-dependent covariate involves
the choice of a functional form for the time-dependence of the covariate. This choice is
usually not obvious but can be found by understanding the biological mechanism of the
biomarker [11]. The different parameterization are special cases of the general formulation
of the following survival submodel .

hi(t) = h0(t)exp
[
γTwi1 + f {mi(t− c),bi,wi2;α}

]
(2.3.1)

Where f(.) is a function of the true marker value mi(.) depended on the random effects bi
and extra covariates wi2.

2.3.1 Interaction Effects Parameterization

We assume the longitudinal marker behaves differently in patients subgroups. To achieve
this parameterization an interaction term between the marker and a categorical baseline
covariate is included. The resulting model was:

hi(t|Mi(t),wi) = h0(t)exp
[
γTwi + αT{ki ×mi(t)}

]
(2.3.2)
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Where ki is categorical baseline covariate that expand the association of mi(t) in the
different subgroup, everything else defined as in 2.2.1.

2.3.2 Lagged Effects Parameterization

This parameterization assumes that, the risk at time t depends on the true longitudinal
marker at time t-c. The model is given by

hi(t|Mi(t),wi) = h0(t)exp
[
γTwi + αmi{max(t− c,0)}

]
(2.3.3)

where c is the time lag of interest.

2.3.3 Time-Dependent Slopes Effects Parameterization

The parameterization assumes that, the risk of rehospitalization depends on both the
current true value of the trajectory and the slope of the true trajectory at time t [10] . The
relative risk survival submodel is given by:

hi(t) = h0(t)exp
{

γTwi + α1mi(t) + α2mi
′(t)
}

(2.3.4)

mi
′(t) =

d
dt

mi(t) =
d
dt
{Xi

T(t)β + Zi(t)bi}

where parameter α1 is interpreted as in equation 2.2.1 while α2 parameter measures the
association of true longitudinal trajectory slope at time t and risk of the event, provided
mi(t) is constant. This parameterization is useful when two patients show similar true
marker levels, but differ in the rate of change of the marker [10].

2.3.4 Cumulative Effect Parameterization

Here, the whole history of the marker is assumed to be associated with the risk of an
event. The survival submodel written as:

hi(t) = h0(t)exp
{

γTwi + α
∫ t

0
mi(s)ds

}
(2.3.5)

Where α measures the association between the the risk of an event at time t, with the area
under the longitudinal trajectory which is regarded as the whole trajectory [10].
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2.4 Software

Exploratory data analysis was done using SAS version 9.3 and R while while statistical
modelling was done using JM package [12] in R version 3.0.2.
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3. Results

3.1 Exploratory Data Analysis

In total there were 80 patients as shown in Table 1. 30 (37.50%) were females and 7 of
them were rehospitalized. 36 (45%) patients had normal heart rhythm and 7 of them were
rehospitalized. In total 16(20%) patients were rehospitalized. The mean age at baseline
was about 76 years (sd=9.7). The dbp and sbp range was 31-123 and 74-205 respectively.
The heart rate ranged between 40 and 134 while weight (measured in Kg× 10) ranged
from 350.5 to 1478. The baseline cardiac muscle fibre stretch was highly variable with a
mean of 70.787 and a sd of 588.265 as shown on Table 1. The NYHA score at baseline
was also explored, 5 (6.25%) patients were classified to score 2 , 14 (17.5%) to score 2.5, 34
(42%) to score 3, 21 (26.25%) to score 3.5 and 6 (7.5%) score 4.

Table 1: CHF data. Varible distribution, heart rhythm of 0=normal, 1=not normal and status; 0= not
rehospitalized and 1= rehospitalized

continuous variable Discrete varible Status

variable Mean Std Dev Min max variable group No. of Patient (%) 1 0
Diastolic blood pressure 31 125 Sex female 30 (37%) 6 24
Systolic blood pressure 74 205 Male 50(62.50%) 10 40
Heart Rate 40 134 Heart rhythm 0 44(44%) 7 37
NTproBNP 4993.22 6835.61 16 37690 1 36(45%) 9 27
LVEF 35.575 15.452 12.5 80 NYHA score 2 5 (6.25%)
Age 75.875 9.679 46 95 2.5 14 (17.5%)
Weight 350.5 1478 3 34 (42%)

3.5 21 (26.25%)
4 6 (7.5%)

The distribution of number of rehospitalization cases over time (months) was as follows:
6 (37.5%) in the first, 5(31.25%) in the second, 2(12.5%) in the third and sixth month,1
(6.25%) in the fourth and 0 in the fifth month. This indicates a decreasing risk over time
though modelling is needed to confirm this trend. From this observation, piecewise
constant hazard model with breakpoints at day 30, 60, 90 and 120 could be a plausible
starting points.

To investigate survival probabilities by different baseline covariates, Kaplan-Meier curves
were plotted. Figure 1 shows a Kaplan-Meier survival estimate, with the 95% confidence
interval, for the time to first rehospitalization. The risk of rehospitalization seem to be
high before day 100 but decreases afterwards.
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Figure 1: CHF data, Kaplan-Meier survival estimate for time to first rehospitalization

To explore the continous baseline variable such as age and LVEF we had to figure out a
way of dichotomising them. According to Yancy et al. (2013), HF Patients aged 65 years
and above are at higher risk of rehospitalization than younger patients. On the other
hand, LVEF can be classified as either preserved or reduced ejection fraction. Therefore,
age was dichotomised as follows: age ≥ 65 years was classified as old and younger
otherwise. Similary, LVEF was dichotomised as follows; patients with LVEF ≥ 45 were
classified to have preserved ejection fraction and reduced ejection fraction if their LVEF
was otherwise.

From Figure A1 patients aged less than 65 years seemed to have better survival than
older patients. Patients with normal heart rhythm seem to have better survival than
patients with abnormal one as shown in Figure A2. Similarly patients with preserved
ejection fraction had better survival than their counterparts with reduced ejection fraction
as shown in Figure A3. By looking at NYHA scores, Patients with lower score seemed to
have better survival than those with higher scores Figure A5. Females seemed to have
better survival than males A4. However, to determine if the observed differences are
significant modelling is required.

The time-varying biomarkers were explored by plotting the average profiles, average
squared residuals over time and subject-specific evolution profiles.
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3.1.1 Weight

Mean structure
Exploration of the mean structure was done using average profile plots. An overall as
well as a different average profile for each of the different levels of the baseline covariates
were plotted. From the overall average profile plot in Figure 2 (left), a linear time trend
was observed. It was observed that males had on average had high weight than females
Figure A10. This was expected because naturally males weigh more than females. From
Figure A7 Patients in NYHA class 2 had higher and less fluctuating weight compared to
patients in higher classes.

Patients aged 65 years and above had on average higher, increasing and slightly fluctuating
weight compared to younger patients who seemed to exhibit lower and stable weight as
shown in Figure A6 . This could be because chronic heart failure gets severe at age 65
and leads to fluid accumulation which leads to weight gain by the patient as suggested
by Yancy et al. (2013). On the other hand, there was no observable weight differences
between patients with normal and abnormal heart rhythm Figure A9 .

Patients with preserved ejection fraction had consistently higher weight than their coun-
terparts with reduced Figure A8. From Figure A12 individual patients seem to exhibit
linear evolution with less within variability. Patients getting rehospitalized seemed to
have lower and highly fluctuating weight compared to those who didn’t experience the
event as shown in Figure A11.

From the overall impression from the overall average profile plot Figure 2 (left) a linear
time evolution would be a plausible starting point in modelling the evolution of weight
over time.

Variance Structure
The average evolution of variance as function of time is shown in Figure 2 (right). The
general evolution of the variance function is not constant. This suggests that a constant
variance structure is not plausible.
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Figure 2: Weight variable: Mean Structure (left) and Variance Structure (right)

3.1.2 Heart Rate

Mean Structure
From the overall average profile plot in Figure 3 (left), a linear decreasing trend before
day 100 and a constant time trend afterwards was observed. It was observed that there
was no observable differences of heart rate in patients with different ages, and NYHA
scores Figures A13 and A14 respectively, although modelling is needed to conclude this
observation. From Figure A15 patients with preserved ejection fraction had consistently
lower heart rate than patients with reduced ejection fraction. From Figure A17 females
seemed on average to have slightly higher heart rate than males. Patients with abnormal
heart rhythm had higher heart rate than their counterparts with normal heart rhythm
Figure A16.

From Figure A19 the individual profile show linear time evolution for heart rate with
some patients having very few observations due to missing data. There seem to be alot
of between and less within variability. Patients rehospitalized seemed to exhibit highly
fluctuating and decreasing average evolution as shown in Figure A18. Patients who don’t
get rehospitalised seem to exhibit on average, a linear and less fluctuating evolution .

From overall impression from the average profile plot Figure 3 (left) modeling the heart
rate over time, a linear time evolution could be a plausible starting point.

Variance Structure
The average evolution of variance as function of time is shown in 3 (right). The general
evolution of the variance function is not constant. This suggests a random intercept model
is not a good choice.
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Figure 3: Heart Rate: Mean Structure (left) Variance Structure (right)

3.1.3 Diastolic Blood Pressure(dbp)

Mean Structure
From the overall average profile plot in Figure 4 (left), a general linear trend was observed.
There was no observable difference in dbp in patients with different gender and heart
rhythm Figures A24 and A23 respectively. Young patients had on average higher dbp
compared to older patients Figure A20. Patients with NYHA score of 4 had lower and
highly fluctuating dbp than patients with lower scores. Similary from Figure A22 patients
with reduced ejection fraction had lower dbp than those with preserved ejection fraction.

From overall impression from the average profile plot Figure 4 (left) modelling the
evolution of diastolic blood pressure over time, a linear time evolution could be a
plausible starting point.

Variance Structure
The average evolution of variance as function of time is shown in 4 (right). The general
evolution of the variance function is not constant. This suggests a random intercept model
is not a good choice.
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Figure 4: Diastolic Blood Pressure: Mean Structure (left) and Variance Structure (right)

3.1.4 Systolic Blood Pressure (sbp)

Mean Structure
From the overall average profile plot in Figure 5 (left), a general increasing linear trend
with some fluctuations was observed. There was no observable difference of sbp in
patients with different ages, NYHA scores and heart rhythm Figures A27 , A28 and A30
respectively. Patients with preserved ejection fraction had consistently higher sbp than
those with reduced ejection fraction as shown in Figure A29. Females exhibited higher
sbp than males Figure A31. From Figure A33 the individual patient profiles show linear
time evolution for sbp. There seem to be alot of between and less within variability.
Patients rehospitalized seemed to exhibit a low and highly fluctuating averange evolution
as shown in Figure A32.

Just like in dbp, a linear time evolution could be a plausible starting point in modelling
the evolution of sbp .

Variance Structure
From the mean variance structure in Figure 5 suggests than a random intercept model is
not a plausible choice.

14



Figure 5: Systolic Blood Pressure:Variance structure

All the four longitudinal biomarkers had some missing values. Moreover, one patient
didn’t have any post discharge measurement for all biomarkers and another patient
lacked post discharge measurements for weight. Besides, other four patients had missing
baseline cardiac muscle fibre stretch (NTproBNP). These patients were excluded from the
analysis and thus the analysis was done on 74 patients.

3.2 Joint Modelling With Different Parameterizations Results.

For the time to first rehospitalization and for each of the longitudinal marker separately,
the joint model was used. The basic model (assuming risk is dependent on the current
value of the marker) was built in two stages. In stage one, the linear predictor of the
of the survival submodel only contained the effect of the biomarker. The submodel
was fitted with both Weibull baseline hazard and Piecewise constant model with four
breakpoints at days 30, 60, 90 and 120. The fixed effects structure of the longitudinal
submodel only included the time evolution while the random structure had random slope
and intercept. In the stage two the baseline covariates were added one by one in both
the longitudinal and survival submodels. The likelihood ratio test was used to test if
the covariate was important or not at 5% significant level. Once the final basic model
was found, different parametarizations were applied to check which parameterization
produced the best fit. This was achieved by comparing them using Akaike’s information
criterion (AIC) calculated as:

AIC = 2× loglikelihood + 2k

15



Where k is the number of parameters in the fitted model. This criteria finds balance
between accuracy and complexity of the fitted model. The model with smallest AIC is
preferred. To compare different AIC values, information loss when fitted model is used
rather than the best approximating model is calculated as follows ∆i = AICi − AICmin.
Where AICmin is the minimum AIC. The following rule of thumb is then applied [22] :

• if 0≤ ∆i ≤ 2 then the two models have equivalent support

• if 4≤ ∆i ≤ 7 then the two models are clearly distinguishable

• ∆i > 10 then the two models are definitely different

For numerical stability, several covariates were transformed or rescaled. Time, weight,
heart rate, systolic and diastolic blood pressure were rescaled to unit magnitude by
dividing by the largest value. The cardiac muscle fibre stretch (NTproBNP) values were
transformed by square root and age values were rescaled by dividing with the minimum
value. Left ventricle ejection fraction (LVEF) was dichotomized as follows according to
Yancy et al. (2013), LVEF ≥ 45 were considerd high (preserved ejection fraction) coded 1
and low (reduced ejection fraction) otherwise coded as 0.

3.2.1 Weight

From exploratory data analysis, weight seemed to exhibit a linear time trend evolution
structure figure 2 left. To start with, the basic survival submodel only containing weight
as a covariate as described above was fitted.

No baseline covariates were added to this model since likelihood ratio test showed there
was no need of including them, a P-value > 0.05. Initially the numerical integration
was done using adaptive Gauss-Hermite rule with 15 points and then the points were
gradually increased. Convergence was concluded when the parameter estimates and the
AIC values were no longer changing. It is worth noting that, analysis was conducted
assuming both Piecewise constant hazard and Weibull baseline hazard for the survival
submodel. The basic longitudinal submodel and survival submodel with weibull baseline
hazard were written as follows respectively.

weightij = mi(t) + εit = β0 + β1Timeij + b0i + b1iTimeij + εij

hi(t|Mi(t)) = ρtρ−1 exp{γ0 + αmi(t)}
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Different parameterizations were extended on these submodels. For interaction effect we
looked at interaction between weight and and categorical baseline covariate (gender and
heart rhythm). The survival submodel was written as follows:

hi(t|Mi(t)) = ρtρ−1 exp
[
γ0 + α1mi(t) + α2{sexi ×mi(t)}

]
For the lagged effect parameterization the model was written as follows:

hi(t|Mi(t)) = ρtρ−1 exp
[
γ0 + αmi(max(t− c,0))]

For c=1,2.

The time dependent slope parameterization model was formulated as follows;

hi(t|Mi(t)) = ρtρ−1 exp{γ0 + α1mi(t) + α2mi′(t)}

where mi′(t) is the derivative of mi(t) with respect to t.

mi′(t) = β1 + b1i

Finally the cumulative effect parameterization model was written as follows;

hi(t|Mi(t)) = ρtρ−1 exp{γ0 + α
∫ t

0
mi(s)ds}

Where the integral has a closed form solution:

∫ t

0
mi(s)ds = β0Time + β1

Time2

2
+ b0iTime + b1i

Time2

2

The results for the different parameterizations assuming weibull and PC baseline hazard
are presented in Tables 2 and A1 respectively. From Table 2 survival submodel with
weibull baseline hazard has smaller AIC than PC. The current value and lagged effect
parameterization produced the poorest fit to the data and the association parameters
were not statistically significant. The interaction effect by sex and heart rhythm have the
same AIC value, this is because both had similar distribution in terms of events as shown
in Table 1. A unit decrease of weight for female patient/ a patient with abnormal heart
rhythm increases the risk of rehospitalization by 0.00037. Similarly, a unit increase in
weight for a male/a patient with normal heart rhythm is associated with 36.62 increase
in the risk of rehospitalization. The time depended slopes parameterization has the
best fit to the data with the smallest AIC value of -51619.02 and -51615.95 for Weibull
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and PC baseline hazards respectively. A unit decrease in the current value of weight
is associated with 0.17 increase in the risk of rehospitalization. For patients having the
same weight, the log hazard ratio for a unit decrease in the current slope of weight
trajectory is -29.245(sd=9) with a Pvalue=0.0012. This finding confirms the observation in
Figure A11, where patients getting rehospitalized seemed to have on average low and
highly fluctuating weight evolution. From Table 2 the the Weibull shape parameter in
all parameterazation except in cumulative effect is less than one implying a decreasing
hazard of rehospitalization with time. According to Yancy et al.(2013) weight loss in CHF
patients could be due to increase of dose or frequency of diuretic administration which is
intended to eliminate clinical evidence of fluid retention.

From the piecewise constant hazard model table A1, the hazard increased from first to
second month and afterwards it decreased with increasing time, implying that once a
patient is discharded, he/she is more likely to be rehospitalized during early months.

Table 2: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
for weight varible: Current value, Lagged effect,Time dependent slopes,cumulative and Interaction
Effect . sex/H.Rhythm represents main effects for sex(males) or Heart rhythm(normal), assoct is
the association parameter , assoct.s is slope association parameter and interaction is the interaction
between true weight with sex or Heart rhythm.** implies a pvalue of 0.0012 and *implies a
pvalue=0.0346. ∆i was computed for Weibull baseline hazard survival submodel

Current Value Lagged Effect Time Dependent Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
Intercept(γ0) -1.276 ( 1.223) -1.490 ( 1.206) -1.490 ( 1.206) -0.797 ( 1.201) -0.603 ( 0.792) 2.115 ( 2.271) 2.115 ( 2.271)
sex/H.Rhythm -5.113 (2.659) -5.113 (2.659)
Assoct -0.319 ( 2.310) 0.095 ( 2.269) 0.095 ( 2.269) -1.772 ( 2.378) -3.879 (3.307) -7.902 (4.869) -7.902 (4.869)
assoct .s -29.245 ( 9.009)**
Interaction 11.502( 5.443)* 11.502( 5.443)*
log(shape) -0.369 (0.270) -0.370 (0.270) -0.370 (0.270) -0.136 ( 0.265) 0.053 (0.364) -0.319 (0.261) -0.319 (0.261)
Shape 0.692 0.691 0.691 0.873 1.054 0.727 0.727
Weibull AIC -51612.82 -51612.81 -51612.81 -51619.02 -51614.27 -51614.21 -51614.21
Piecewise AIC -51610.76 -51610.76 -51610.76 -51615.95 -51611.13 -51612.12 -51612.12
∆i 6.2 6.21 6.21 0 4.75 4.81 4.81

3.2.2 Systolic blood pressure(sbp)

A similar procedure as described for weight was repeated for systolic blood pressure.
From exploratory data analysis Figure 5 left, it seemed sensible to begin from linear
time evolution of sbp for the longitudinal submodel, with random intercept and linear
slope. We first built the basic model (assuming risk to be depended on the current
marker value). LVEF was included in both the longitudinal and survival submodels as a
baseline covariate. Although it was not important in the survival process it was found
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to influence the longitudinal process. Initially the numerical integration was done using
adaptive Gauss-Hermite rule with 15 points and then the points were gradually increased.
Convergence was concluded when the parameter estimates and the AIC values were
no longer changing. For interaction effect parameterization we considered interaction
between sbp with categorical baseline covariates (heart ryhthm and sex). The survival
submodel had Weibull and PC baseline hazard model. The longitudinal and basic survival
with Weibull baseline hazard submodels were respectively written as follows.

Sbpij = mi(t) + εit = β0 + β1LVEFi + β2(LVEFi × Time) + β3Timeij + b0i + b1iTimeij + εij

hi(t|Mi(t)) = ρtρ−1 exp{γ0 + γ1LVEFi + αmi(t)}

Different parameterizations were extended on these submodels as described in weight.

The results for different parameterization with Weibull and PC baseline hazard are
presented on Tables 3 and A2 respectively. From Table 3 there was no difference between
lag1 and lag2 parameterizations. The interaction effect by sex and heart rhythm have the
same AIC value, this is because both had similar distribution in terms of events as shown
Table 1. The time dependent slopes parameterization produced the best fit to the data
with AIC value of -30147.71 and -30142.75 for Weibull and PC baseline hazard models
respectively. This implies that, a unit decrease in current value of systolic blood pressure
is associated with 0.0009 increase in the risk of rehospitalization though not statistically
significant. Similary, for patients with the same sbp, a unit decrease in the current slope of
sbp trajectory is associated with 0.0004 increase in the risk of rehospitalization. Therefore
the risk of rehospitalization depends on both the current value and slope of the sbp.

Although, the time dependent slopes parametarization gave the best fit to the data, the fit
was not different from that of current value and cumulative effect parameterization. A
unit decrease in current value of sbp, is associated with 0.007 increase in the risk of rehos-
pitalization though not statistically significant. For the cumulative effect parameterization,
a unit decrease in the area under sbp longitudinal profile corresponds to 0.0036 increase
in the risk of rehospitalization though not statistically significant. These results are similar
to what was observed in exploratory data analysis in Figure A32, where patients getting
rehospitalized had decreasing and highly fluctuating sbp compared to those who did not.

The decrease in systolic blood pressure may lead to a condition known as hypotension,
which occurs when sbp < 90 (mm Hg). In CHF patients, this condition could result due to
use of inappropriately high doses of diuretics which lead to volume contraction causing
an increased risk of hypotension and renal insufficiency [16]. From previous studies,
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patients in need of high diuretic doses are the sickiest ones [23] hence more likely to be
rehospitalized.

The interaction effect gave the poorest fit to the data and also the lagged effect param-
eterization. From the Piecewise constant hazard model Table A2, the hazard increased
from first to second month and afterwards it decreased with increasing time, implying
that once a patient is discharged, he/she is more likely to be rehospitalised during early
months. This observation was also seen in weight biomarker.

Table 3: CHF data. Parameter estimates and standard error (SE) in brackets of different parameteri-
zation for Systolic blood pressure (sbp) varible: current value, Lagged effect,Time dependent
slopes,cumulative and Interaction Effect (by heart ryhtm and sex). sex/H.Rhythm represents main
effects for sex(males) or Heart rhythm(normal), LVEF(=1),represents the main effects for LVEF,
assoct is the association parameter , assoct.s is slope association parameter and interaction is the
interaction between true sbp with sex or Heart rhythm.

Current Value Lagged Effect Time Dependent Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
Intercept(γ0) 1.449 ( 2.059) -0.297 (1.811) -0.297 (1.811) 2.558 (2.073) 0.030 (0.993) 3.189 ( 3.135) 3.189 ( 3.135)
sex/H.Rhythm -2.499 (3.955 ) -2.499 (3.955 )
LVEF(=1) 0.272 (0.658) 0.050 (0.651) 0.050 ( 0.651) -0.012 (0.682) 0.021 ( 0.591 ) 0.258 ( 0.646) 0.258 ( 0.646)
Assoct -5.030 ( 3.681) -1.954 ( 3.185) -1.954 (3.185) -7.021 (3.804) -5.626 (3.435) -8.724 (5.693) -8.724 (5.693)
assoct .s -7.872 ( 5.377)
Interaction 5.562 (6.928) 5.562 (6.928)
log(shape) -0.333 (0.264) -0.365 (0.269) -0.365 ( 0.269) -0.366 ( 0.269) 0.287 ( 0.357) -0.323 (0.263) -0.323 (0.263)
Shape 0.717 0.694 0.694 0.694 1.333 0.724 0.724
Weibull AIC -30146.68 -30144.83 -30144.83 -30147.71 -30147.1 -30144.65 -30144.65
Piecewise AIC -30144.43 -30142.75 -30142.75 -30145.75 -30142.42 -30142.37 -30142.37
∆i 1.03 2.88 2.88 0 0.61 3.06 3.06

3.2.3 Diastolic blood pressure(dbp)

To model the longitudinal evolution of dbp we started with assuming linear time evo-
lution as suggested by Figure 4 (left) with random slope and intercept. Model building
proceeded as described in section 4.2 and in weight subsection. No baseline covariate
was added in both the longitudinal and survival submodels. The survival submodel
was fitted with both Weibull and PC hazard baseline hazard. However, for lagged effect
parameterization, the survival submodel with PC baseline hazard did not converge.

The final longitudinal and Weibull baseline hazard survival (assuming risk to depend on
current marker value) submodels were written in that order as follows,

dbpij = mi(t) + εit = β0 + β1Timeij + b0i + b1iTimeij + εij
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hi(t|Mi(t)) = ρtρ−1 exp{γ0 + αmi(t)}

Different parameterizations were extended on these submodels as described in weight
subsections. The results for different parameterization with Weibull and PC baseline
hazard are presented on Tables 4 and A3 respectively. From Tables 4 the cumulative effect
parameterization gave the smallest AIC value of -27865.53 and -27862.18 for Weibull and
PC baseline hazard models respectively. However, the model fit was not different from
that of current value, lagged effect and time dependent slopes parameterizations. For
cumulative effect, a unit decrease in the area under the longitudinal profile corresponds
to 0.001 increase in the risk of rehospitalization though not statistically significant. A
unit decrease in the current value of dbp is associated with 0.0368 increase in the risk of
rehospitalization but not statistically significant. These findings are similar to what we
saw in exploratory data analysis Figure A25, where patients getting rehospitalized had
on average lower and slightly fluctuating dbp compared to those who did not.

Just like in systolic blood pressure, low dbp is a result of hypotension which occurs
when dbp goes below 60 (mm Hg). In CHF patients, this condition could result due to
use of inappropriately high doses of diuretics which lead to volume contraction causing
an increased risk of hypotension and renal insufficiency [16]. From previous studies,
patients in need of high diuretic doses are the sickiest one [23] hence more likely to be
rehospitalized.

Table 4: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
for diastolic blood pressure(dbp) varible: current value, Lagged effect,Time dependent slopes,
cumulative and Interaction Effect (by heart ryhtm and sex). sex/H.Rhythm represents main
effects for sex(males) or Heart rhythm(normal), assoct is the association parameter, assoct.s is
slope association parameter and interaction is the interaction between true dbp with sex or Heart
rhythm.

Current Value Lagged Effect Time dependent Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
Intercept(γ0) 0.414 (2.050) -0.303 (1.764) -0.303 ( 1.764) 1.887 ( 2.154) 0.298 (1.109) -1.897 (2.807 ) -1.897 (2.807 )
sex/H.Rhythm 4.894 ( 4.291) 4.895 ( 4.291)
Assoct -3.303 ( 3.679 ) -2.010 (3.123) -2.010 (3.123) -6.307 ( 4.077 )
assoct .s -7.008 (4.486 ) -6.897 (3.974)
Interaction -7.521 (7.674) -7.521 (7.674)
log(shape) -0.362 (0.268) -0.362 (0.267) -0.362 ( 0.269) -0.384 ( 0.272 ) 0.355( 0.368) -0.361 -0.361
Shape 0.697 0.696 0.696 0.682 1.426 0.697 0.697
Weibull AIC -27864.8 -27864.41 -27864.41 -27864.41 -27865.53 -27861.94 -27861.94
Piecewise AIC -27862.72 -27862.48 -27862.18 -27860.01 -27860.01
∆i 0.73 1.12 1.12 1.12 0 3.59 3.59
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3.2.4 Heart Rate (hr)

To model the longitudinal evolution of heart rate we started with assuming linear time
evolution as suggested by Figure 3(left) with random slope and intercept. Model building
proceeded as described in section 4.2 and has described in weight. No baseline covariate
was added in both the longitudinal and survival submodels. The survival submodel was
fit with both Weibull and PC hazard baseline hazard.

The final basic longitudinal and survival submodels were written in that order as follows,

hrij = mi(t) + εit = β0 + β1Timeij + b0i + b1iTimeij + εij

hi(t|Mi(t)) = ρtρ−1 exp{γ0 + αmi(t)}

Different parameterizations were extended on these submodels as described in weight.
The results for the different parameterization assuming weibull and PC baseline hazard
are presented in Tables 5 and A4 respectively. From Table 5 survival submodel with
Weibull baseline hazard has smaller AIC than PC. The cumulative effect and lagged effect
parameterizations produced the poorest fit to the data.

The interaction effect by sex and heart rhythm have the same AIC value, this is because
both had similar distribution interms of events as shown in Table 1. The log hazard ratio
for a unit increase of heart rate for female patient/ a patient with abnormal heart rhythm
is 9.252 (Pvalue=0.0448). Similary the log hazard ratio for unit increase in heart rate for a
male/a patient with normal heart rhythm is 12.6903 (Pvalue=0.0448) . The current value
parameterization has the best fit to the data with the smallest AIC value of -29051.95 and
-29049.25 for Weibull and PC baseline hazards respectively. However, the model fit was
not different from that of time depended slopes parameterization. A unit increase in the
current value of heart rate is associated with 76657.29 (pvalue=0.003) increase in the risk
of rehospitalization.

For time dependent slopes parameterization, a unit increase in the current heart rate
value is associated with 73570.54 (Pvalue=0.0002) increase in the risk of rehospitalization.
For Patients having the same heart rate, a unit increase in the current slope of heart rate
trajectory increases the risk of rehospitalization by 14.404 but not statistically significant.
This finding confirms the observation in Figure A18, where patients getting rehospitalized
seemed to have on average higher and decreasing heart rate evolution. From Table 5 the
the Weibull shape parameter in all parameterazations except in cumulative effect is less
than one implying a decreasing hazard of rehospitalization with time. The increase in
heart rate could be due to the adverse effects of diuretics which oftenly causes arrhythmias
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(irregular heart beat) [16].

Table 5: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
for heart rate(hr) varible: current value, Lagged effect, Time dependent slopes, cumulative and
Interaction Effect (by heart ryhthm and sex). A * implies a statistically significant estimate with
p-value < 0.05. Sex/H.Rhythm represents main effects for sex(males) or Heart rhythm(normal),
assoct is the association parameter , assoct.s is slope association parameter and interaction is the
interaction between true heart rate with sex or Heart rhythm.** implies a Pvalue<0.005 * implies
pvalue<0.0455

Current Value Lagged Effect Time dependent Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
Intercept (γ0) -7.780 (1.876)** -4.427 ( 1.580)** -4.427 ( 1.580)** -7.775 ( 1.823)** -0.513( 0.873) -6.838 (2.719)* -6.838 (2.7188)*
sex -1.637 ( 3.612 ) -1.637 ( 3.612 )
Assoct 11.247 ( 3.087)** 5.379( 2.689)* 5.379( 2.689)* 11.206 ( 2.984)** -4.201 (3.570) 9.252 ( 4.612)* 9.252 ( 4.612)*
assoct .s 2.668 ( 1.837 )
Ass.Sex 3.438 (5.947) 3.438 (5.947)
log(shape) -0.197 ( 0.239) -0.340 ( 0.262) -0.340 ( 0.262) -0.293 ( 0.260) 0.080 (0.384) -0.183 ( 0.234) -0.183 ( 0.234)
Shape 0.821 0.712 0.712 0.746 1.083 0.833 1.833
Weibull AIC -29051.95 -29042.28 -29042.28 -29051.8 -29039.18 -29049.21 -29049.21
Piecewise AIC -29049.25 -29040.17 -29040.17 -29050.19 -29038.4 -29046.84 -29046.84
∆i 0 9.67 9.67 0.15 12.77 2.74 2.74
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4. Discussion and Conclusions

In total 80 patients were considered in this study, of whom 37.50% were females. 45% of
the patients had normal heart rhythm while the rest had abnormal heart rhythm. In total
20% of the patients were rehospitalized. The mean age at baseline was about 76 years
with a standard deviation of 9.7. The dbp and sbp ranged between 31 to 123 and 74 to
205 mmHg respectively. The heart rate ranged between 40 and 134 heart beats per minute
while weight ranged from 35.05 to 147.8 Kg. The baseline cardiac muscle fibre stretch was
highly variable with a mean of 70.787 and a standard deviation of 588.265. The NYHA
score classification at baseline was as follows: 6.25% patients were classified to score 2,
17.5% to score 2.5, 42% to score 3, 26.25% to score 3.5 and 7.5% to score 4. Out of the
80 patients, the analysis was done on 74 patients due to missing baseline covariate in
four patients and missing post discharge measurement in two patients. Of the 15 patients
rehospitalized, six were females. Six out of the 15 patients had abnormal heart rhythm.

All longitudinal models had linear time evolution for fixed effects while random effects
consisted of both intercept and slope. No baseline covariate was added in the final joint
model except for systolic blood pressure model which had LVEF baseline covariate.

Considering weight, the time dependent slopes parameterization had the best fit to the
data with the smallest AIC values of -51619.02 and -51615.95 for Weibull and PC baseline
hazards respectively. Similarly, for systolic blood pressure the time dependent slopes
parameterization produced the best fit to the data with AIC values of -30147.71 and
-30142.75 for Weibull and PC baseline hazard models respectively. The fit to the data was
not different from that of current value and cumulative effect parameterizations since they
had equivalent support (∆i of 1.03 and 0.61 respectively). For diastolic blood pressure,
the cumulative effect parameterization gave the smallest AIC value of -27865.53 and
-27862.18 for Weibull and PC baseline hazard models respectively. However, the model
fit was not different from that of current value, lagged effect and time dependent slopes
parameterizations as they had equivalent support. The current value parameterization
had the best fit to the data for the heart rate with the smallest AIC value of -29051.95 and
-29049.25 for Weibull and PC baseline hazards respectively. However, the model fit was
not different from that of time depended slopes parameterization.

In general, the risk of rehospitalization could be associated with increased use of diuretics.
From the piecewise constant hazard models, the hazard increased from first to second
month and afterwards it decreased with increasing time, implying that once a patient is
discharded, he/she is more likely to be rehospitalized during early months.

A limitation of the study was that only 15 (20%) patients were rehospitalized leading to
80% censoring. In the cumulative effect parameterization, equal weights were placed in
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all past values of the markers, which might not be reasonable. Maybe an integrand should
be adjusted by multiplying the true marker (mi(t)) with appropriate weight functions
that places different weights at different time points [10]. Finally the biomarkers were
analysed separately, it would be important to consider them jointly accounting for their
association structure.
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Appendix

A. Appendices

A.1 Exploratory Data Analysis

Figure A1: KM curves by Age
Figure A2: KM curves by Heart

rhythm Figure A3: KM curves by LVEF

Figure A4: KM curves by Sex
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Figure A5: KM curves by NYHA
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Figure A6: Weight by age Figure A7: Weight by NYHA
score

Figure A8: Weight by LVEF

Figure A9: Weight by heart
rhythm

Figure A10: Weight by sex Figure A11: Weight by status
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Figure A13: Heart rate by age Figure A14: Heart rate by
NYHA score

Figure A15: Heart rate by LVEF

Figure A16: Heart rate by heart
rhythm

Figure A17: Heart rate by sex Figure A18: Heart rate by status
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Figure A19: Heart rate: Random sample of
lowess smoothed longitudinal pro-
files of 16 patients
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Figure A20: dbp by age Figure A21: dbp by NYHA score Figure A22: dbp by LVEF

Figure A23: dbp by heart rhythm Figure A24: dbp by sex Figure A25: dbp by status
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Figure A26: dbp: Random sample of lowess
smoothed longitudinal profiles of
16 patients

34



Figure A27: sbp by age Figure A28: sbp by NYHA score Figure A29: sbp by LVEF

Figure A30: sbp by heart rhythm Figure A31: sbp by sex Figure A32: sbp by status
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Figure A33: Sbp: Random sample of lowess
smoothed longitudinal profiles of
16 patients
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A.2 Joint modelling with different parameterization Results.

A.2.1 Weight

Table A1: CHF data. Parameter estimates and standard error (SE) in brackets of different parame-
terization for weight varible with piecewise constant model: Lagged effect,Time dependent
slopes,cumulative and Interaction Effect . sex/H.Rhythm represents main effects for sex(males)
or Heart rhythm(normal), assoct is the association parameter , assoct.s is slope association
parameter and interaction is the interaction between true weight with sex or Heart rhythm.
**implies a pvalue=0.0022

Current Value Lagged Effect Time depended Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
sex/H.Rhythm -4.3182 (2.6020) -4.3182 (2.6020)
Assoct -0.3391 ( 2.3128 ) 0.0854 (2.2647) 0.0854 (2.2647) -1.4992 ( 2.2887) 2.3456 (4.4893) -6.7003 (4.6644) -6.7003 (4.6644)
Assoct .s -25.6384 (8.3696)**
Interaction 9.8812 ( 5.2552) 9.8812 ( 5.2552)
log(xi.1) -0.6707 (1.2692) -0.8839 (1.2565) -0.8839 (1.2565) -0.5329 ( 1.2423) -0.9422( 0.4872) 2.1055 ( 2.2347) 2.1055 ( 2.2347)
log(xi.2) -0.5784 (1.2708) -0.8049 (1.2550) -0.8049 (1.2550) -0.2312 ( 1.2101) -1.0544 ( 0.7287 ) 2.2304 (2.2453) 2.2304 (2.2453)
log(xi.3) -1.4322 (1.3894 ) -1.6543 (1.3705) -1.6543 (1.3705) -0.8456 (1.3408 ) -2.1014 (1.2007) 1.4140 ( 2.3172) 1.4140 ( 2.3172)
log(xi.4) -2.0606 (1.5616) -2.2834 ( 1.5441 ) -2.2834 ( 1.5441 ) -1.4523 ( 1.5209 ) -2.9415 (1.7025) 0.7855 ( 2.4206) 0.7855 ( 2.4206)
log(xi.5) -2.1136 (1.3970) -2.3370 (1.3732) -2.3370 (1.3732) -1.5057 (1.3424) -3.3093 (2.1680) 0.7431 (2.3215) 0.7431 (2.3215)

A.2.2 Systolic blood pressure(sbp)

Table A2: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
with piecewise constant model for Systolic blood pressure (sbp) varible: Lagged effect,Time
dependent slopes,cumulative and Interaction Effect (by heart ryhtm and sex). sex/H.Rhythm
represents main effects for sex(males) or Heart rhythm(normal), LVEF(=1),represents the main
effects for LVEF, assoct is the association parameter , assoct.s is slope association parameter and
interaction is the interaction between true sbp with sex or Heart rhythm.

Current Value Lagged Effect Time depended Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
LVEF_cat1 0.2827 (0.6618) 0.0581 (0.6520) 0.0578 (0.6518) -0.0551 (0.6901) -0.1502 ( 0.5991) 0.2110 ( 0.6491) 0.2110 ( 0.6491)
sex/H.Rhythm -2.0634 (3.9453) -2.0634 (3.9453)
Assoct -5.0201 (3.6964) -2.0496 (3.2033) -2.0429 ( 3.2021) -7.2970 (3.8138) 1.1360 (5.5464) -7.6971 (5.5929 ) -7.6971 (5.5929 )
Assoct .s -8.6959 ( 5.3379)
Interaction 4.7931 (6.8831) 4.7931 (6.8831)
log(xi.1) 2.0002( 2.0659) 0.3495 (1.8490) 0.3459( 1.8485) 3.2808 (2.0924) -0.8584 (0.5277) 3.1714 (3.0875) 3.1714 (3.0875)
log(xi.2) 2.1063( 2.0873) 0.4352( 1.8522) 0.4319 ( 1.8517) 3.3709 (2.1029) -0.8836 (0.9082 ) 3.2760 ( 3.1086) 3.2760 ( 3.1086)
log(xi.3) 1.2781 (2.1774) -0.4125 (1.9330 ) -0.4161 (1.9326) 2.5768 ( 2.2063) -1.8463 (1.5109) 2.4509 (3.1747) 2.4509 (3.1747)
log(xi.4) 0.6678 ( 2.3057) -1.0382 ( 2.0664 ) -1.0420 (2.0660) 1.9239 ( 2.3103) -2.5921 ( 2.1396) 1.8492( 3.2750) 1.8492( 3.2750)
log(xi.5) 0.6258( 2.1937 ) -1.0900 (1.9408) -1.0936 (1.9403) 1.8070( 2.1462) -2.8201( 2.8607) 1.8135 (3.1998) 1.8135 (3.1998)
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A.2.3 Diastolic blood pressure(sbp)

Table A3: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
with piecewise constant model for diastolic blood pressure(dbp) varible: Lagged effect,Time
dependent slopes and cumulative . sex/H.Rhythm represents main effects for sex(males) or Heart
rhythm(normal), assoct is the association parameter , assoct.s is slope association parameter .
Interaction effect parameterization model did not converge.

Current Value Lagged Effect Time depended Slopes Cumulative Effect Interaction Effect

Lag1 Lag 2 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Effect(SE) Estimate(SE)
sex/H.Rhythm 4.5751 (4.2657) 4.5751 (4.2657)
Assoct -3.2041 (3.6577) -6.1074 (4.1783) 2.6381 (5.6107) -0.1312 (4.8409) -0.1312 (4.8409)
Interaction -6.4464 ( 4.5566)
Asso.Sex -6.9235 (7.6321) -6.9235 (7.6321)
log(xi.1) 0.9464 (2.0583) 2.4117 (2.2510) -0.9668 (0.5213) -1.1481 (2.8000 ) -1.1481 (2.8000 )
log(xi.2) 1.0405 (2.0729) 2.4947 ( 2.2476) -1.1273 ( 0.9111) -1.0342 (2.8043) -1.0342 (2.8043)
log(xi.3) 0.1968 (2.1540) 1.6917 ( 2.3387) -2.2345 (1.5084) -1.8860 (2.8598) -1.8860 (2.8598)
log(xi.4) -0.4357 ( 2.2702) 1.0265 ( 2.4243) -3.1123 (2.1228) -2.5196 ( 2.9468) -2.5196 ( 2.9468)
log(xi.5) -0.4907 (2.1496) 0.8996 ( 2.2504) -3.5679 (2.8362) -2.5746 ( 2.8566) -2.5746 ( 2.8566)

A.2.4 Heart rate (hr)

Table A4: CHF data. Parameter estimates and standard error (SE) in brackets of different parameterization
with piecewise constant model for heart rate varible:Current value, Lagged effect,Time depen-
dent slopes and cumulative . sex/H.Rhythm represents main effects for sex(males) or Heart
rhythm(normal), assoct is the association parameter , assoct.s is slope association parameter .
Interaction effect parameterization model did not converge. Where ** implies Pvalue=0.0002,*
implies a pvalue =0.0471

Lagged Effect Time depended Slopes cumulative Effect Interaction Effect by

Lag1 Lag 0 by sex by H.Rhythm
Effect Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE)
sex/H.Rhythm -1.7139 ( 3.7206) -1.7139 ( 3.7206)

Assoct 11.0657 (3.1329) 5.4173 (2.7344)*0.0467 5.4173 (2.7344)* 11.7471 ( 3.1368 )** 7.9122 (5.6715) 9.2264( 4.6462)* 9.2264( 4.6462)*
Assoct .s 3.5775 ( 1.9290)
Interaction 3.6258( 6.1034) 3.6258( 6.1034)
log(xi.1) -7.2680 ( 2.0186) -3.8766 (1.6578) -3.8766 (1.6578) -7.5557 (1.9838) -1.2055( 0.5248) -6.4519 (2.8234) -6.4519 (2.8234)
log(xi.2) -7.0439 (1.9413) -3.7743 (1.6470) -3.7743 (1.6470) -7.4233 ( 1.9372) -1.8123( 0.8983) -6.1991 (2.7934) -6.1991 (2.7934)
log(xi.3) -7.7995 ( 1.9850) -4.6153 ( 1.7347) -4.6153 ( 1.7347) -8.2031 (1.9914) -3.3563 (1.4742 ) -6.9533 ( 2.8266) -6.9533 ( 2.8266)
log(xi.4) -8.3235( 2.0768) -5.2279 ( 1.8667) -5.2279 ( 1.8667) -8.8204 (2.1160) -4.6709 ( 2.0642) -7.4957 ( 2.8879 ) -7.4957 ( 2.8879 )
log(xi.5) -8.3768 ( 1.9825) -5.2783 ( 1.7282) -5.2783 ( 1.7282) -9.1309 ( 2.1665) -5.8793( 2.8270) -7.5893( 2.7969) -7.5893( 2.7969)
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A.3 Codes

############################
##Diastolic blood pressure##
############################
#1.Current value parameterization#

#longitudinal submodel#
LMeFIT.Diast=lme(dbpt~T,

random = ~1+T| ptID,
na.action = na.omit, data = CHF_Long)

summary(LMeFIT.Diast)

##survial submodel#
coxFit.CHF= coxph(Surv(CHF_surv$T, CHF_surv$status) ~1,

data= CHF_surv, x = TRUE)
summary(coxFit.CHF)

####JOINT model###

##Weibull baseline##
jointFit.diast= jointModel(LMeFIT.Diast, coxFit.CHF,

timeVar = "T" , method = "weibull-PH-aGH",GHk=15,verbose=TRUE)

summary(jointFit.diast)
AIC(jointFit.diast)

###piecewise##
jointFit.diast.P= jointModel(LMeFIT.Diast,coxFit.CHF,

timeVar = "T" , method = "piecewise-PH-aGH",
knots=c(30/185,60/185,90/185,120/185),GHk=20 )

AIC(jointFit.diast.P)
summary(jointFit.diast.P)

#2.Lagged Effect parameterization#
#weibull#
lag1_jointFit.diast=update(jointFit.diast,lag=1)
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summary(lag1_jointFit.diast)
AIC(lag1_jointFit.diast)#--18366.7

lag2_jointFit.diast=update(jointFit.diast,lag=2)
summary(lag2_jointFit.diast)
AIC(lag2_jointFit.diast)#-18366.7

##piecewise##
lag1_jointFit.diast.P=update(jointFit.diast.P,lag=1)
summary(lag1_jointFit.diast.P)
AIC(lag1_jointFit.diast.P)-18364.65

lag2_jointFit.diast.P=update(jointFit.diast.P,lag=2)
summary(lag2_jointFit.diast.P)
AIC(lag2_jointFit.diast.P)-18364.65

#################################
#3.Time depeended slopes#########
#################################
dform.diasto=list(fixed=~1,indFixed=2,random=~1,
indRandom=2)

#weibul#

Slope_jointFit.diast=update(jointFit.diast,parameterization="both",
derivForm=dform.diasto)

summary(Slope_jointFit.diast)
AIC(Slope_jointFit.diast)

#Piecewise##

Slope_jointFit.diast.P=update(jointFit.diast.P,parameterization="both",
derivForm=dform.diasto)

summary(Slope_jointFit.diast.P)
AIC(Slope_jointFit.diast.P)

#################################
###4.Cumulative effect parameterization###
#################################
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iform.diasto=list(fixed=~-1+T+I(T^2/2),indFixed=1:2,
random=~-1 +T +I(T^2/2),indRandom=1:2)

##weibull#

cum_jointFit.diast=update(jointFit.diast,
parameterization="slope",derivForm=iform.diasto)
summary(cum_jointFit.diast)
AIC(cum_jointFit.diast)
plot(cum_jointFit.diast)

#Piecewise#

cum_jointFit.diast.P=update(jointFit.diast.P,
parameterization="slope",derivForm=iform.diasto)
summary(cum_jointFit.diast.P)
AIC(cum_jointFit.diast.P)
plot(cum_jointFit.diast.P)

##########################
#5.Interaction Effect#####
##########################
##by sex#
##longitudinal submodel##
LMeFIT.Diast.I=lme(dbpt~T,

random = ~1+T| ptID,
na.action = na.omit, data = Long_data)

summary(LMeFIT.Diast.I)

##survial submodel#
coxFit.CHF.I= coxph(Surv(surv_data$T, surv_data$status) ~sex,

data= surv_data, x = TRUE)
summary(coxFit.CHF.I)

##JOINT model##

##weibul#
jointFit.diast.I= jointModel(LMeFIT.Diast.I,coxFit.CHF.I,

timeVar = "T" , method = "weibull-PH-aGH",GHk=15,
interFact=list(value=~sex,data=surv_data))

40



summary(jointFit.diast.I)
AIC(jointFit.diast.I)

####piecewise#
jointFit.diast.P.I= jointModel(LMeFIT.Diast.I,coxFit.CHF.I,

timeVar = "T" , method = "piecewise-PH-aGH",GHk=15,
knots=c(30/185,60/185,90/185,120/185),
interFact=list(value=~sex,data=surv_data))
summary(jointFit.diast.P.I)
AIC(jointFit.diast.P.I)
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