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Abstract

Iodine deficiency is a serious threat to public health throughout the world. The lack of iodine

could result in major detrimental diseases and underdevelopments, especially for newborn ba-

bies. In Spain, screening of iodine deficiency was done by means of a heel prick in newborns,

which allows measuring the concentration of thyroid-stimulating hormones (TSH), a hormone

which triggers the thyroid gland. This study concentrates on the area of Galicia, situated in the

northwestern part of Spain. The gathered information on the TSH levels served as a guide to

highlight areas that could be considered as iodine deficient, in the sense that in iodine deficient

areas the mean TSH levels in newborns is higher.

In this paper, a space-time latent component model was constructed in order to study how

TSH levels changed in time. Results indicated that there were two distinct components which

followed a different temporal trend between 2004 and 2009. Furthermore the characteristics

Gender and Feeding Type were investigated as well and found to have an impact on the TSH

levels overall.
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1 Introduction

1.1 Background

Iodine has an important function in the human body as it is the keystone of the thyroid hor-

mones triiodothyronine (T3) and thyroxine (T4). The iodine elements are actively absorbed

from the blood by the thyroid gland to make the T3 and T4 hormones. The production of these

molecules is regulated by the thyroid-stimulating hormones (TSH) (Irizarry 2014).

However when the dietary intake of iodine falters, the production of TSH increases in order to

maintain equilibrium. This might cause the phenomenon called goiter, an enlargement of the

thyroid, increasing the area to absorb more iodine. It was estimated that around 2 billion people

suffered from this disease, of which approximately 300 million were between the age of 6 and

12 (WHO 2004).

For newborn babies, the TSH values could go up to 39 mU/L (Thureen 2011). Due to the fact

that the thyroid hormones of the mother may still be active as well, the first outcomes may not

be conclusive and thus another series of tests may be advisable after a couple of weeks in order

to confirm the readings. At this stage, a normal TSH reading is situated between 1.7 mU/L and

9.1 mU/L (Roth 2013). As the infant grows older, the maximal normal TSH value will further

decrease.

Iodine deficiency can have different consequences across ages. The most severe adverse effects

of increased TSH occur during the fetal state and the critical period of brain development, and

can result in functional, developmental and irreversible mental abnormalities (WHO 2004; Vitti

2001). Indicators to assess the iodine status are the thyroid size, urinary iodine and the blood

constituent TSH. In this study the latter will be used in order to investigate areas with possible

worrisome iodine levels.
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In most European countries, neurological and neuropsychological impairments are prevalent,

caused by mild to moderate iodine deficiency. More specifically in Spain, different regions

exhibit prevalence percentages up to 25% of endemic goiter in school-going children. This

indicates that there are local areas where people are severely lacking a iodine-rich diet.

1.2 Objective

In this study, information on the TSH levels of all newborns between 2004 and 2009 was

collected in each municipality of Galicia, a region in the northwest of Spain. This region is

comprised of four provinces: A Coruña, Lugo, Ourense and Pontevedra (see Figure 1). This

information was obtained by means of a heel prick. Since Gender and Feeding Type can affect

the TSH levels, these effects should be accounted for in the analysis.

The objective of this project is to model the TSH levels over the aforementioned period of time,

taking into account the heterogeneous nature of this evolution across the municipalities in order

to check whether or not TSH levels change over time across subsets of municipalities. These

temporal components will then in turn provide information on the presence of iodine deficiency

within the municipalities.

A Coruña
Lugo
Ourense
Pontevedra

Figure 1: Province Plot for Galicia
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1.3 Data

The dataset for this project was provided by the Santiago University Clinical Hospital. It con-

tained 97216 observations, providing information on the 315 municipalities of Galicia over a

period of 6 years. For each newborn the following characteristics were given:

• Municipality: Contains information on the residence of the newborn;

• Province: The province in which the baby is living;

• Year: Year at which the heel prick was taken (2004 - 2009);

• TSH: The TSH level of the newborn (in micro units per liter);

• Gender: Categorical variable: 1 for males, 2 for females;

• Feeding type: Categorical variable for the method of feeding: 1 for breastfed ( = mater-

nal), 2 for a mixture of breastfed and artificial ( = mixta), 3 for artificial.

From this dataset several observations were deleted, in order to meet the criteria below:

• TSH values which are not higher than 20 mU/L

• Gestational ages within the range of 38-42 weeks

• Newborns of which the gender, feeding type or birth weight were reported

• Newborns with a birth weight above 500 grams

• Observations coming from the time frame 2004 - 2009

The reduced dataset, which contained 73774 observations, was used for the remainder of the

analysis. It should be noted that we did not work with the individual data. The averaged TSH

levels for each municipality
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2 Methodology

In this project, we wish to look into the temporal variation of TSH across regions, and investi-

gate whether there are groups of areas where the trend is different than in other areas. The use

of a latent structure model, as proposed by Lawson et al. (2010), will be investigated for this.

2.1 Model Specification

Define the response of interest, TSH f gi j be the average TSH level in municipality i (i =

1, ...,315), in year j ( j = 1, ...,6), for males/females (g = 1,2 for Gender) getting either breast-

feeding, mixed or artificial feeding ( f = 1,2,3 for the different levels of Feeding Type). When

specifying the first level of the hierarchy, the assumption is made that the logarithmic transfor-

mation of the TSH levels follows a Normal distribution (See Figure 3), namely:

log(TSH f gi j)∼ N(µ f gi j,σ
2)

where µ f gi j is the expected mean of log(TSH f gi j) and σ2 the variance. The mean structure µ f gi j

consists out of two major components: (1) a predictor which is a function of the fixed effect

covariates Gender and Feeding Type, and (2) a mixture component that models the temporal

trend in municipalities. This can be defined as:

µ f gi j = β0, j +β1, j ·Genderg +β2, j ·Feedtype f +β3, j ·Genderg ·Feedtype f +Γi j

The β., j parameters reflect the time-dependent covariate effects and are globally defined from

a spatial perspective.

2.1.1 Specification of the Mixture Component

The Γi j term is a mixture component, indexed for the ith municipality and jth time point, and

will be the main focus throughout this paper. This term disaggregates the various temporal
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components across different spatial subsets and will thus account for the spatio-temporal vari-

ation in the model. The idea behind this proposal of a mixture model is that the time trend

corresponding to a particular component could be attached to particular areas, and we are in-

terested in knowing how these areas form groups with similar time trends. We assume the

following mixture model:

Γi j = www′iχχχ j =
L

∑
l=1

wil ·χl j

with L latent components χl j which describe the temporal trends: χ1 j, ...,χL j. The parameters

wil are the weights given to component l in area i. In this general specification the weights

can be spatially varying, allowing to estimate which of the components is better attached to the

areas. The choice of the temporal components and weights are further described in the next

sections.

2.1.2 The Temporal Component

A model for the unobserved temporal components, χχχ j = (χ1 j, ...,χL j)
′, should be considered.

Since it is not clear how the temporal trends behave, we will assume a flexible model for this

time trend. We assume that the temporal trend can be described by a autoregressive-dependent

model as follows:

χl0 ∼ N(0,σ2
χl
), l = 1, ..,L

χl j ∼ N(ρl ·χl, j−1,σ
2
χl
), l = 1, ..,L, j = 1, ...,6

The mean structure of this distribution consists of two elements: (1) a single-lag autoregressive-

dependent term χl, j−1, smoothing the transition between time points and (2) a parameter ρl

which controls the dependency on the previous time point. Note that for the starting component

χl0 a zero-centered Normal distribution is assumed. Since these temporal components were not

observed, assumptions had to be made on their form. This assumption allows for a separate

variance parameter σ2
χl

for each component l.
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2.1.3 Specification of Spatial Weights

Moreover the region-specific weights wil are to be specified. These weights reflect the relative

contribution of the temporal components to each region and ought to satisfy the obvious restric-

tions: wil > 0 and ∑
L
l=1 wil = 1. Hence, these weights follow a probabilistic distribution across

the different components for a given municipality. In order to insure that these spatial weights

follow the aforementioned criteria, a normalization is in order: wil = w∗il/∑
L
l=1 w∗il . When mod-

eling w∗il , one has to keep in mind that these unnormalized weights have to be positive in order

to make sense.

Independent Weights

One possible distribution which guarantees the positivity of the unnormalized weights is the

Gamma distribution. This approach implies that the original, normalized spatial weights fol-

low a Dirichlet prior distribution. Also note that in this paper this more straightforward model

will not assume any spatial dependence structure.

w∗il ∼ Gamma(1,1)

Spatially Distributed Weights

Another suitable prior distribution for w∗il is the Log-Normal distribution:

w∗il ∼ LN(α1il,σ
2
w)

Notice that since we do not expect the unnormalized weights to behave differently across the

components, the same variance is applied. When specifying the prior distribution of the weight

mean values α1il , a univariate CAR model is applied for each separate component. This has the

following specification, as proposed by Besag et al. (1991):

α1il|α1i′l,i 6=i′ ∼ N

(
1
ni

∑
i 6=i′

Bii′α1i′l,
σ2

α1il

ni

)
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Here Bii′ contains the neighborhood information: if municipality i is adjacent to municipality

i′, Bii′ is assigned the value 1, and Bii′ = 0 otherwise. This strategy is also known as the Queen’s

Case. The number of neighboring areas for municipality i is represented by ni = ∑i 6=i′ Bii′ . The

variance term σ2
α1il

is allowed to vary across the different components.

2.1.4 Number of Components

The only thing left to determine is the number of components that have to be used, since

in general the number L is unknown and thus needs to be estimated. Two approaches are

possible to select the number of components. The traditional approach is to compare models

with a number of components using e.g. DIC. An alternative approach which could be used

is the introduction of an entry parameter to each component of the mixture term. This entry

parameter will in turn indicate the absence or presence of the respective components, based

on their posterior average. This is related to Bayesian model selection. However this method

needs to start from a so-called “full” model: a model with a large number of components, in

order to make sure no components would be missed. When implementing the entry parameters,

ψl , the mixture component has the following notation:

Γi j =
L

∑
l=1

ψl ·wil ·χl j

As a prior distribution for the ψl-parameters, a Bernoulli distribution is considered:

ψl ∼ Bern(pl)

Thus the components will enter the model with probability pl . In order to produce a non-

informed guess, pl is assumed to be equal to 0.5 here.

2.1.5 Hyperprior Specification

Since we are working in a Bayesian setting, a prior distribution ought to be given to each

parameter. The parameters for the standard deviations used throughout this section assume the
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same prior Uniform distribution:

σ ,σχl ,σw,σα1il ∼U(0,100)

The fixed effect parameters β0, j,β1, j,β2, j,β3, j are assumed to follow a widely-dispersed Nor-

mal distribution:

β., j ∼ N(0,106)

Lastly the temporal dependency parameter ρl will be assigned an uninformative Beta prior

distribution:

ρl ∼ Beta(1,1)

In short, the complete likelihood of the model which is used for the remainder of the project

can be written in the following general form (in vector notation):

L(log(TTT SSSHHH)|...) =
315

∏
i=1

6

∏
j=1

N(log(T SH f gi j)|βββ j,www,χχχ;σ
2)

Combining this with the aforementioned prior distributions, leads to the following definition of

the posterior definition:

p(βββ ,www,χχχ, ppp|log(TTT SSSHHH)) =L(log(TTT SSSHHH)|...) · p(www|ααα111,σw) · p(ααα111|σσσααα111) · p(χχχ|σσσ χχχ ,ρρρ)

· p(βββ ) · p(ρρρ) · p(ppp) · p(σw) · p(σσσ χχχ) · p(σσσααα111)

Obviously this formula will simplify drastically if no spatial dependence is assumed.

2.2 Model Comparison

A standard measure in Bayesian model selection is the Deviance Information Criterion (DIC).

This goodness-of-fit measure can be decomposed into two parts: the deviance D(θθθ) and the
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number of effective parameters pD:

D(θθθ) =−2 · log L(log(TTT SSSHHH)|θθθ)

pD = D(θθθ)−D(θθθ)

Here θθθ denotes the total collection of variables { βββ ,www,χχχ, ppp,ρρρ,ααα111,σw,σσσ χχχ ,σσσααα111}. Thus the DIC

can also be expressed in function of the mean posterior deviance D(θθθ) and the deviance of the

posterior mean D(θθθ), as proposed by Spiegelhalter et al. (2002):

DIC = 2 ·D(θθθ)−D(θθθ)

When using mixture models, there is a general concern that the correct effective number of

parameters are not properly accounted for. In order to provide for alternative measures, the

Mean Squared Prediction Error (MSPE) and the Marginal Predictive Likelihood (MPL) are

also applied. The additional benefit of using the latter measures is that they also evaluate the

prediction performance, an aspect which the DIC overlooks (See Celeux et al. (2006)). The

used definitions for MSPE and MPL are as follows:

MSPE =
1
N ∑

f ,g,i, j
(T SH f gi j− T̂ SH f gi j)

2

MPL = ∑
f ,g,i, j

log(CPO f gi j)

where N reflects the number of observations, TSH f gi j is the observed value and T̂SH f gi j rep-

resents the predicted value of TSH f gi j, sampled from the posterior predictive distribution. The

CPO f gi j represents the Conditional Predictive Ordinate of TSH f gi j, given the data without ob-

servation TSH f gi j. This could be interpreted as a cross-validation check for a future observation

versus the actual value of the observed TSH value.

In addition to the model with the entry parameters, these measures can also be used to obtain a

model with an appropriate amount of temporal components. Models with lower values for the

DIC and MSPE, and higher values for the MPL are preferred.
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3 Results

3.1 Exploratory Data

In this section the variables, described in Section 1.3, will be briefly discussed. In addition, the

variable of interest TSH will be further explored, both in terms of distributional assumptions,

temporal evolution and spatial variation.

A first remark should be given on the number of observations at each year. The numbers, which

can be consulted in Table 1, tell us that the amount of observations in the year 2004 are more

sparse compared to the other time points. This is due to incomplete reporting of all newborns

in the database. This might introduce some additional variability for this time point, possibly

adding difficulties when modeling the temporal components.

Year 2004 2005 2006 2007 2008 2009

# Newborns 6736 13146 13301 13735 14978 11878

Table 1: Number of Observations at every Time Point

Figure 2 shows the histogram of the average TSH values, from which it is clear that a Normal

distribution is insufficient to describe the data at hand. A solution was found by using a log-

arithmic transformation, as mentioned in the methodology section. Figure 3 depicts the TSH

values that have undergone this transformation and shows the Gaussian curve that is needed for

the model.
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Figure 2: Histogram of TSH Values
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Figure 3: Histogram of log(TSH) Values

Information on 73774 newborn babies was used in the analysis, 51.2% of which were male

whereas 48.8% were female. Furthermore, as 22.9% of the infants were fed artificially, 58.8%

were breastfed and the remaining 18.3% received a combination of the former feeding types.

When plotting the different combinations of Feeding Type and Gender against the averaged

TSH levels at each time point (Figure 4), a couple of remarks could be made. First the average

TSH levels seem to decrease over the years, though an increase is again seen in the year 2009.

Second, on average the male infants seem to have higher TSH values as compared to their

female counterparts. Third, babies that were exclusively breastfed exhibited a lower TSH level

as compared to the other two feeding types. The difference between the artificial and the mixed

approach seems a bit less obvious although the former seems to yield higher values for the

response of interest in more recent years.
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Figure 4: Average Evolution of TSH Values over the Feeding Types per Gender

The spatial distribution of the TSH values, averaged over all time points, was calculated and can

be consulted in Figure 5. It is clear that higher TSH values are recorded in the eastern part of

Galicia. The attentive reader will also notice the two municipalities which got assigned a black

color. These municipalities, Negueira de Muñiz and Teixeira, contained only two observations

in the original dataset. However these observations did not meet the earlier defined criteria,

which explains them being absent in the reduced dataset.

When comparing Figure 5 with the plotted TSH levels of the different time points (Figure 6),

something odd could be observed. Where in 2005 till 2009 the color scheme resembles the

one in Figure 5, apart from the increase in non-observable areas, the pattern seems a bit more

random for the year 2004. One has to keep in mind that the number of observations for the

year 2004 was lower than those for the other years, causing a larger amount of variability to be
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introduced.

Furthermore areal maps were provided for the different combinations of Gender and Feeding

Type in Figure 7. Again the province of Lugo seems to have enclosed the majority of the high

TSH-leveled municipalities. Also the information retrieved from Figure 4 could be recycled.

In general males had higher TSH level compared to females across all feeding types. Also

breastfed newborns produced much lower TSH values compared to the artificially and mixed

feeding type for both males and females.

[−0.5,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,1.2]

Figure 5: Average log(TSH) Values per Municipality
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Figure 6: Average log(TSH) Values for (a) 2004, (b) 2005, (c) 2006, (d) 2007, (e) 2008, (f)
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Figure 7: Average log(TSH) Values for (a) Males-Breastfed, (b) Females-Breastfed, (c) Males-
Mixed, (d) Females-Mixed, (e) Males-Artificial, (f) Females-Artificial
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3.2 Analysis

In this section, we explored the models as presented in previous sections.

3.2.1 Model Choice

When fitting the model stated in the methodology with two components, it became clear that

the convergence of some parameters could not be assured. The core problem lied within the

unwanted synergy between the temporal components and the time-dependent intercept. As

these two elements tried to explain the same thing, the convergence of these variables became

problematic. A solution could be found in the form of a time-independent intercept, forcing the

temporal components to clarify all the information not yet explained by the variables Gender

and Feeding Type.

Another, more practical adaptation to the model could be found in the evaluation of the inter-

action term as it had no significant effect at any of the time points. This was already hinted by

Figure 4 in the exploratory analysis. These findings were translated into the following model:

µ f gi j = β0 +β1, j ·Genderg +β2, j ·Feedtype f +
2

∑
l=1

wil ·χl j

These adaptations secured convergence of the model in the non-spatial setting, however for the

spatial model convergence could not be guaranteed. Thus it was opted to remove the global

intercept β0 in order to remove any interaction whatsoever between the intercept and the tem-

poral components. By following this road, convergence problems in general were resolved, as

was validated using trace plots, the MC Error and the Geweke diagnostic when in doubt. These

models were run using a single chain for 50000 iterations, applying a thinning factor of five

and inducing overrelaxation, in order to break the autocorrelation and improve convergence.

3.2.2 Selection Number of Components

When setting up the model, the number of components had to be identified first. This was done

by including the entry parameters, in combination with the calculation of the MPL and MSPE.
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The traditional DIC was also calculated to check how well it would hold up, despite being the

lesser of the four methods.

D(θ) pD DIC MSPE MPL

Non-Spatial Weights 2 Components 16500 7811.37 24311.37 0.2127 1.193

3 Components 16580 8033.48 24613.48 0.2103 1.199

4 Components 16620 8147.97 24767.97 0.2090 1.201

Spatial Weights (CAR) 2 Components 16490 7729.34 24219.34 0.2136 1.191

3 Components 16560 7915.34 24475.34 0.2111 1.197

4 Components 16580 7969.32 24549.32 0.2104 1.198

Table 2: Model Diagnostics for Spatial and Non-Spatial Models

In Table 2, models with two, three and four components were compared. By looking at the

MSPE and MPL values between the different sets of components, one readily sees that the

subsequent differences for both the spatial and the non-spatial models on the weights are neg-

ligible. This implies that introducing another component does not improve the fit of the model,

discouraging unwanted model complexity. Even though the MSPE and MPL criteria are pre-

ferred here, due to their predictive nature, the DIC values also confirm the general idea that the

usage of more than two components is unnecessary in this setting.

This finding was backed up by the “full” model, which included the entry parameters. The

model which was set up could be described as follows:

µ f gi j = β0 +β1, j ·Genderg +β2, j ·Feedtype f +
10

∑
l=1

ψl ·wil ·χl j

The “full” model contains ten components, whose eligibility was assessed using the posterior

means of the entry parameters. After running a single-chain of 30000 iterations, the results

suggested that two components were sufficient to describe the different temporal trends.
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3.2.3 Fixed Effects Results

When looking at the posterior means for the main effects, Table 3 could be consulted. Af-

ter a brief inspection, one could observe that the differences between the two approaches are

minimal. Furthermore the results learn us that none of the variables are significant at the first

year. This does not come as a surprise, given the low number of observations at the given time

point, causing an increase in variability compared to the other years. Since these variables are

non-significant at some time points, one might question their overall effect. Using a model

with time-independent covariates, further investigation teaches us that both Gender and Feed-

ing Type had a significant effect of -0.0361 (-0.05795, -0.01417) and 0.0393 (0.02627, 0.0523)

respectively for the non-spatial model. The estimates of the spatial model yielded similar re-

sults. Hence it was decided that these covariates were to remain in the model in order to give

the interpretation of the results an additional dimension.

Translated, these numbers exemplify the fact that male newborns on average have slightly more

elevated TSH values compared to their female counterparts. When looking at the feeding type

of the infants, the period between 2005 and 2009 provided significant values in the range of

(0.0279, 0.0598) for the non-spatial model, and (0.0346, 0.0607) for the spatial model. This

empowers the belief that breastfeeding counters iodine deficiency compared to bottle feeding

and the mixed approach, by the the transferral of iodine from mother to child.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Non-Spatial Gender 0.0143∗ -0.0086∗ -0.0522 -0.0695 -0.0761 -0.0121∗

(-0.0378, 0.0666) (-0.0517, 0.0334) (-0.0959, -0.0105) (-0.1114, -0.0283) (-0.1170, -0.0334) (-0.0575, 0.0354)

Feeding Type 0.0195∗ 0.0279 0.0345 0.0598 0.0339 0.0585

(-0.0129, 0.0511) (0.0002, 0.0556) (0.0065, 0.0620) (0.0323, 0.0875) (0.0066, 0.0616) (0.0292, 0.0885)

Spatial Gender 0.0140∗ -0.0085∗ -0.0528 -0.0725 -0.0803 -0.0180∗

(-0.0382, 0.0662) (-0.0504, 0.0331) (-0.0952, -0.0118) (-0.1129, -0.0321) (-0.1207, -0.0387) (-0.0618, 0.0292)

Feeding Type 0.0215∗ 0.0301 0.0359 0.0607 0.0346 0.0572

(-0.0110, 0.0536) (0.0022, 0.0573) (0.0086, 0.0635) (0.0334, 0.0880) (0.0076, 0.0617) (0.0285, 0.0868)

∗ Main effect is not significant at the given time point

Table 3: Posterior Means for given Main Effects and their respective Credible Intervals
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3.2.4 Temporal Components

The next step is to explore the two components which originated from the model, starting with

the temporal aspect. The fitted results for both the non-spatial and spatial model, along with

their pointwise 95% credible intervals, were displayed in Figure 8. The temporal evolutions

seem to be similar for the two models: one component which stabilizes around zero as the

other one starts a bit higher, but decreases over time. This indicates that the regions that belong

to the second component had a high rate of iodine deficiency in the beginning of the study,

which reduced steadily in more recent years.

The attentive observer might notice two additional things: the variability at the first year is

slightly larger compared to the other time points across all components, and the overall vari-

ability is smaller for the spatial model than for the non-spatial model. It is already known that

the former is due to the lower amount of information available for that time point. The latter

observation on the other hand could be explained by the nature of the models. As the non-

spatial model neglects the modeling of the correlation between neighboring areas, this induces

an inflation of the posterior standard deviation. The CAR model on the other hand does take

this relationship into account, which is translated in this narrow credible interval.
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Figure 8: Posterior Expected Temporal Effects for (a)-(b) Non-Spatial Weights and (c)-(d)
Spatial Weights
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3.2.5 Spatial Weights

One also ought to take a look at the posterior spatial weights. The maps, providing information

on the allocation, are presented in Figure 9 for the non-spatial and spatial model. The maps

depicting the estimated values for the fitted weights could be consulted in Figure 10. The

municipalities which showed larger TSH values are apparently inclined to be situated in the

second component, which is a logical result since this component produces the higher TSH

values of the two. Therefore these regions, which are depicted in orange, could be considered

iodine deficient. Furthermore these maps nicely show the spatial smoothing caused by the CAR

model. The plots of the spatial weights also display the symbiosis between the magnitude of the

TSH values and the posterior weights: the higher the TSH level for a particular municipality, the

higher the corresponding weight for the second temporal component will be (and vice versa).

Component 1
Component 2
NA

(a)

Component 1
Component 2
NA

(b)

Figure 9: Maximum Posterior Expected Weight Map for (a) Non-Spatial Weights and (b) Spatial
Weights
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Figure 10: Posterior Expected Weight Maps for (a)-(b) Component 1 and 2 of the Non-Spatial
Model and (c)-(d) Component 1 and 2 of the Spatial Model
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3.2.6 Model Fitting

Lastly, an important feature of any appropriate model is the ability to fit the data in an adequate

manner, which will be investigated now. Figure 11 provide us with the fitted posterior means,

averaged over the six time points, of the non-spatial and spatial model respectively. While the

non-spatial model only aims at approximating the data, the spatial model also considers infor-

mation from neighboring municipalities, taking into account the possible correlation between

municipalities. The spatial smoothing which results from this methods can be easily observed

in the corresponding areal map.

For both these models the eastern cluster, containing a lot of municipalities with relatively high

TSH levels, immediately catches the attention. Geographically, the utmost southeasterly part

of this cluster coincides with the western part of the Cantabrian Mountains, a mountainous area

which stretches across the north of Spain. The central and northwestern part is surrounded by a

series of mountain ranges. These areas are thus secluded from the sea, making it more difficult

to obtain seafood, a prominent source of sea salt and thus iodine. This lack of iodine triggers

the thyroid to work harder, by increasing the production of TSH and thus elevating the overall

TSH level for those municipalities.
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Figure 11: Posterior Fitted Means for (a) Non-Spatial Weights and (b) Spatial Weights

3.3 Sensitivity

In order to check the consistency of the results, a handful of models with small changes were

applied to the dataset as well. One of them is already discussed briefly, namely the model with

time-independent covariates. The second model is defined by an autoregressive dependence

structure of order two for the temporal components, allowing for a more flexible assumption:

χl j ∼ N(ρ1l ·χl, j−1 +ρ2l ·χl, j−2,σ
2
χl
)

Finally the last model assumes a linear mean structure for the temporal components, allowing

for a different evolution within each component. Their model diagnostics can be found in Table

4 and were fit solely for the non-spatial model.

For the spatial models, the sensitivity of the neighborhood structure was evaluated. Up un-

til now, only the Queen’s Case was looked into, however a variety of neighborhood structures

could be applied. Instead of applying weights equal to 1, the inverse distances between the cen-
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troids of the municipalities could be used as weights for the neighborhood structure. This was

done using the nearest neighbors method, where only the association between municipalities

whose centroids lie within a certain prespecified distance is evaluated. In this situation, larger

weights are granted for areas which lie close within the prespecified range. This user-defined

distance was chosen such that the municipality with the largest amount of neighbors in the

Queen’s Case still retained all its “neighbors” within the distance band. This also guaranteed

that each area was connected with at least one other area, producing no “islands”.

Even though the differences in MPL and MSPE between the models are minimal, one can notice

that the better model comes in the form where Gender and Feeding Type are time-independent,

indicating that the proposed model could be simplified. Globally, looking at the diagnostic fea-

tures and the recovery of the components (not shown here), the deviations from the proposed

model are kept to a minimum, inferring that the model is robust against small alterations.

D(θ) pD DIC MSPE MPL

Non-Spatial Time-Independent Covariates 16490 7784.80 24274.80 0.2130 1.192

AR(2) Structure 16520 7947.37 24467.37 0.2123 1.194

Linear Temporal Structure 16500 7806.56 24306.56 0.2128 1.193

Spatial Inverse Distance 16490 7740.33 24230.33 0.2130 1.192

Table 4: Model Diagnostics for Sensitivity Analysis

4 Discussion and Conclusion

In this paper the TSH values of 315 municipalities in Galicia, a region in the north-west of

Spain, were examined over a period of six years as an indicator for the widespread problem of

iodine deficiency. When investigating the possible spatial and temporal effects, a space-time

latent component model was constructed in order to catch these evolutions on the logarithmic

scale of the TSH response. It ought to be stressed that this model takes into account spatial

heterogeneity, meaning that not a global trend was sought after but rather several local trends.

In addition to the mixture component, our term of interest, the predictor variables Gender and
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Feeding Type were also looked into.

Componentwise, only two were needed to explain the spatio-temporal heterogeneity which was

apparent in this study. This was confirmed by means of two approaches: a “full” model con-

taining entry parameters and several model diagnostic features. It was found that the inclusion

of another component would not be deemed necessary.

The investigation of the two temporal components elucidated that the major difference lies in

the magnitude of the areal TSH levels. The discrepancy between the two components is larger

for the non-spatial model as compared to the spatial model. The reasoning behind this could

be found in the fact that the information exchange between neighboring areas for the spatial

model causes the more extreme values to be moderated downwards, reducing the dissimilari-

ties between areas. Another fact which should be highlighted is the use of the intercept term in

the non-spatial model, whereas this was not needed in the CAR model. The moderation of the

spatial model could provide an explanation for this phenomenon. Given that the value for the

intercept was -0.0584 for the non-spatial model, the overall trend of the components would be

situated lower if the intercept would be left out. The function of the intercept in the non-spatial

could be questioned in general as it only sets the first component as a reference around zero for

the period of six years. Also one could remark that the use of a time-independent intercept is

only viable here since the temporal trends are relatively linear and stable to begin with. If this

were not the case, the model could be severely underspecified, creating the possibility that it

would miss some critical information.

The weight maps reflect the findings and suspicions of the temporal components. The weights

of those municipalities which exhibit a large TSH value are more elevated for the second com-

ponent as would be expected, since this component portraits relative high TSH levels overall.

In this project it was assumed that these weights have spatial dependence only, whereas the

temporal components only had an AR(1) dependence. This assumption added strength to the

identification of these components, which could be observed by their narrow credible intervals.

Relinquishing this assumption might pose troubles in the interpretation and identification of the

temporal components.

When specifying the prior distribution of the spatial weights, one might specify a Multivariate
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model in order to capture the possible correlation between the spatial weights of different com-

ponents. One possible approach is the Multivariate Intrinsic Conditional Autoregressive Model,

which assumes the following notation for the mean weight values, as proposed by Gelfand et

al. (2003):

α1il|α1i′l,i 6=i′ ∼ N

(
1
ni

∑
i 6=i′

Bii′α1i′l,
1
ni

ΣΣΣααα111

)

where ΣΣΣααα111 is the L×L positive definite variance-covariance matrix between the weights from

different components. For this variance structure a Wishart prior distribution was assigned:

Wishart(R−1,r), where R is a 315× 315 - dimensional positive definite matrix and r repre-

sents the number of latent variables. The specification of this model would be referred to as

MCAR(ΣΣΣααα111). When applying this prior distribution to the unnormalized weights, it was found

that the convergence of the temporal components could not be guaranteed. A separate CAR

model for each of the components provides us with an alternative, devoid of overspecification.

When building the model, one could also take into account random effects for Gender and

Feeding Type. However this was not investigated here due to an increase in computational time

and a lack of need. Even though the addition of the random effects might give a better fit, the

use of only the global time-dependent covariates provide us with a straightforward, biologically

plausible interpretation. The use of a random intercept term for each municipality on the other

hand might tamper with the (number of) temporal components as these random effects might

borrow their information, possibly disrupting the interpretation of the spatial weights.

Also one might consider adding additional covariates to the model, such as gestational age,

the time between birth and the heel prick, birth weight, the time from the moment of birth till

the newborn was fed for the first time, the iodine status of the mother, etc. In the present set-

ting these characteristics were not considered due to the fact that their inclusion prolonged the

running time of the used programs up to the point that the deadline for this paper would have

been jeopardized. However in future studies, it is recommended that these variables should be

investigated as well.

Lastly, the use of the Normal distribution for the response variable ought to be addressed. The

reader should convince himself that this is of course not the sanctified road which needs to

be taken. For example a Poisson approach would also be usable, by counting the number of
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newborns with high TSH levels according to a prespecified benchmark. However one should

bear in mind that the amount of information is highly dependent on this cut-of value, posing

a great responsibility on the determination of this value. Also the question “What is a high

TSH value?” is not that straightforward as these values tend to be higher for newborns than

for grown-ups. Remember also that “newborn” in this setting is a subjective concept as some

babies were measured weeks, even months after their birth, causing a shift in their metabolism

as compared to babies who were merely a couple of days old. Furthermore there is a general

loss of information, which is present in every binarization process, making this approach less

appealing.
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