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Abstract

The Thyroid Stimulating Hormone (TSH) is a hormone that plays a role in brain

development and bone maintenance among other functions. Lack of dietary iodine

is known to result in decreased production of thyroid hormones and the deficiency of

these hormones triggers a rise in blood TSH levels. Though iodine influences TSH

levels, there could be other important predictor variables as well. In this project we

consider four potential predictors of TSH levels in newborns (gestational age, birth

weight, gender and time until first feeding) within a spatial regression context and

the idea is to select which ones are important to include in the regression model. We

illustrate and compare some Bayesian variable selection methods using two types

of spatial regression models namely, spatially fixed coefficient models and spatially

varying coefficient models.
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1 Introduction

The Thyroid Stimulating Hormone (TSH) is a hormone whose function is to regulate thy-

roid hormones which are important in brain development and bone maintenance among

other functions. Lack of dietary iodine leads to reduced production of thyroid hormones

and a deficiency of these hormones triggers a rise in blood TSH levels. The increased

levels of TSH are aimed at stimulating the thyroid to produce more thyroid hormones

into the blood so as to return thyroid hormone levels to normal state. Upon stimulation,

many biochemical reactions occur in the thyroid and eventually its cells grow and multi-

ply leading to goitre (American Thyroid Association, 2012).

Iodine deficiency is more common in mountainous regions of the world where food is

grown in iodine-poor soil. In these regions low content of soil iodine is due to leaching

effects of snow, water and heavy rainfall, which removes iodine from the soil (Assey et

al, 2006). If iodine does not enter the dietary chain of populations living in these regions

(via e.g. iodization of salt) then iodine deficiency disorders will persist in these areas

(World Health Organization, 2007).

Even though iodine influences TSH levels, there could be other predictor variables as well.

In this project we consider some potential predictors of TSH within a regression setting

and the idea is to select which ones to include in the regression model. This exercise is

known as variable selection and can be seen as a way to identify important and negligible

predictors (Mitchell and Beauchamp, 1998).

We base our study on a community called Galicia (Spain) which consists of several mu-

nicipalities some of which are severely affected by iodine deficiency (Lope et al, 2006). It

is worth noting that there may be similarity in TSH levels amongst municipalities which

are closer together as compared to municipalities that are further apart possibly due to

the amount of iodine content in the soil, dietary habits as well as other factors. Hence,

we consider spatial regression models.
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In spatial regression modelling a common approach is to assume that effects of predictor

variables are the same for all areas, and thus a single effect for each predictor variable is

estimated for the entire region. In order to select predictor variables to include in the re-

gression model, one may utilize model selection tools to compare across models consisting

of a different subset of predictor variables. In a Bayesian context (the context in which

spatial modelling is often done), one may use the Deviance Information Criterion (DIC),

Bayes Factor and Mean Square Prediction Error among others. However, a drawback of

using these tools is that they are calculated for every model to be compared and if there

are many predictor variables to be considered the exercise becomes laborious. In view of

this problem, Bayesian Variable Selection (BVS) techniques come in handy - they save

one from the laborious exercise via automating the variable selection process.

Instead of assuming that effects of predictor variables are fixed over the entire region, one

can assume that these effects vary from one area to another. Here, the model to be fitted

will contain regression coefficients for each predictor variable at each area, in other words

a regression model for each area is fitted. As is the case with spatially fixed covariate

effects, the problem of selecting predictor variables which are important in explaining

the responses arises. It may be that a given predictor variable is important at one area

and not important at another. Thus we can again use BVS techniques with the area spe-

cific regression models to identify which predictor variables are important for a given area.

In doing the area-specific variable selection it may be reasonable to assume that if a

predictor variable is important at a given area, then it would also be important among

its neighbours. Hence, one may consider incorporating spatial structure in the variable

selection process (Lum, 2012).

In this project, we illustrate and compare BVS techniques in the context of spatially fixed

and spatially varying coefficient models. In particular, we apply the method of Kuo and
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Mallick (1998), Gibbs Variable Section (Dellaportas et al, 1997) and Stochastic Search

Variable Selection (George and McCulloch, 1993).

1.1 Study objectives

The objective of this project is to investigate how and whether BVS techniques can be

utilized in spatial regression models.

1.2 Description of the Data

Galicia is located in the northwest of Spain and has a total area of 29, 574km2. Its interior

is characterized by a mountainous landscape and in terms of climate it is temperate and

rainy. Galicia therefore suffers from iodine deficiency.

The data considered in this project are TSH levels of 15,416 babies born in 315 municipal-

ities of Galicia (Spain) in the year 2009. TSH screening was done on all these newborns,

approximately 3 days after birth. During screening, some variables were recorded together

with level of TSH namely, gestation age (in weeks), birth weight (in grams), gender and

time from birth until first feeding (in days).
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2 Methodology

2.1 Model Specification

Let Y
(j)
i be a continuous response and (X

(j)
1i , X

(j)
2i , . . . , X

(j)
pi ) be a set of potential predictor

variables for the ith subject in area j (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) and p denotes the

number of predictor variables. Interest lies on modelling Y
(j)
i as a linear function of the

X
(j)
i s as follows:

Y
(j)
i = β0 + β1X

(j)
1i + · · ·+ βpX

(j)
pi + ε

(j)
i + u(j) + v(j)

= β0 +

p∑
k=1

βkX
(j)
ki + ε

(j)
i + u(j) + v(j) (1)

where β0, β1, . . . , βp are fixed regression coefficients; ε
(j)
i ∼ N(0, σ2) is the error term for

subject i in area j; σ2 is the variance of the ε
(j)
i terms; u(j) ∼ N(0, σ2

u) is the non-spatial

random effect for area j; σ2
u is the variance of the u(j)s; v(j)|v(m),m ∈ δj ∼ N(v̄(j), σ2

v)

is the area j spatial random effect; δj is the set of neighbours of area j, v̄(j) denotes the

average of the v terms of the neighbours of area j; σ2
v is the variance of the v(j)|v(m)s.

According to Besag et al (1991), the terms u and v, are interpreted as surrogates for un-

known or unobserved predictor variables at the area level; the u′s represent unstructured

variables whereas the v′s represent structured variables. If the v′s were to be observed,

they would display substantial spatial structure in that the values of neighbours would

be generally similar. Hence, the v′s are assigned a Conditional Autoregressive (CAR)

prior as one would think that the full conditional distribution of v(j) should depend only

on its neighbours (Banerjee et al, 2004).

In this project we consider a fully Bayesian implementation of this model in WinBUGS.

In terms of prior distributions we assign minimally informative priors on β1, β2, . . . , βp,

i.e. N(0, τ 2k ), with τ 2k very large and IG(ε, ε) with ε small. Note that an improper uniform
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prior is assigned on β0 for the reason that the CAR distribution (car.normal) in Win-

BUGS is parameterised to include a sum-to-zero constraint on the spatial random effects.

In studies where the main goal is to obtain a good understanding between Y
(j)
i and the

X
(j)
i s, variable selection is a key step. It is key because it facilitates selection of predic-

tor variables which are essential in explaining the response variable - this way, a better

understanding of the Y/X relationship is obtained.

In subsection 2.2 we reflect on classical variable selection and in subsection 2.3 we give a

detailed description of some Bayesian Variable Selection (BVS) techniques. In subsection

2.4 we describe BVS as extended to spatially varying coefficient models.

2.2 Classical Variable Selection

We use the term classical variable selection to refer to Bayesian model selection tools

which overlap in use to the variable selection tool kit. Model selection encompasses

identifying a ‘good’ model among competing models where these models differ in any

of the following: link function, systematic component and/or random component. Since

variable selection entails identifying a ‘good’ model through varying the systematic com-

ponent to include different subsets of predictor variables it can be viewed as a special

case of model selection. In this subsection we reflect on the DIC because our main focus

is on BVS and also because of its popularity as a model selection tool.

2.2.1 Deviance Information Criterion

The Deviance Information Criterion (DIC) can be seen as a Bayesian version of the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) in the sense that

it trades off a measure of model adequacy against a measure of complexity. It is defined

as

DIC = D(β̄ββ) + 2pD

where D(.) is the deviance and β̄ββ is the posterior mean vector of unknown parameters of
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the model. The deviance measures how well the model fits to the data, with larger values

corresponding to a worse model. The parameter pD is the effective number of parameters

and measures the complexity of the model. This parameter is defined as the difference

between posterior mean of the deviance and the deviance evaluated at the posterior mean

of the parameters, i.e., D(βββ)−D(β̄ββ).

A model is penalized by both the value of D(βββ), which favors a good fit and by pD.

The quantity D(βββ) will decrease as the number of parameters in a model increases, pD

compensates for this effect by favoring models with a smaller number of parameters

(Spiegelhalter et al, 2002). A rule of thumb for using DIC is that a difference in DIC

of more than 10 rules out the model with the higher DIC while with a difference of less

than 5 there is no clear winner (Lesaffre and Lawson, 2012).

Comparison of models via DIC involves calculating this measure for each model to be

compared. A major drawback of such an exercise is that the number of possible models

quickly grows large as the number of covariates increases - with p predictors, the number

of possible models is 2p. When p is large it becomes essential to employ variable selection

strategies that can quickly identify promising models without having to fit all 2p models.

2.3 Bayesian Variable Selection

In Bayesian literature there exist variable selection tools which possess the key feature

of circumventing the computational burden which may be encountered with use of clas-

sical variable selection tools. Instead of calculating a variable selection measure for each

of the 2p models, these techniques make use of Monte Carlo Markov Chain (MCMC)

sampling to quickly identify high probability models or in other words more promising

models. Most of the unpromising submodels will never or rarely appear in the MCMC

sample. As a precursor to the description of these techniques we give a brief account of

the principle behind BVS.
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Let M be the set of all 2p models under consideration and m denote a model which

is a member of this set. Also, let f(m) denote the prior probability of model m and

f(yyy|βββm,m) the likelihood of the data under model m then, invoking the Bayes Theorem

we have that the posterior probability of model m is given by:

f(m|yyy) =
f(m)f(yyy|m)∑

m∈M f(m)f(yyy|m)
(2)

with

f(yyy|m) =

∫
f(yyy|βββm,m)f(βββm|m)dβββm (3)

where βββm denotes the regression coefficients of model m (as in model 1 above) (Dellapor-

tas et al, 1997).

The principle behind BVS is to calculate the posterior model probabilities using expres-

sion (2) such that a model with high probability is chosen as the one containing essential

predictor variables, this model is also known as the maximum a posterior (MAP) model.

However Barbieri and Berger (2004) show that the MAP model is not necessarily the

optimal predictive model and to this end, they show that the optimal predictive model

is often the median probability (MP) model. The MP model is defined as the model

where each predictor variable has posterior inclusion probability greater or equal to 0.5.

In contrast to the MAP model which involves monitoring model posterior probabilities,

the MP involves monitoring posterior inclusion probabilites for each covariate. In this

project we applied and compared both the MAP and MP model approaches.

Several Bayesian variable selection methods have been proposed in the literature, these

include among others: Kuo and Mallick, Gibbs Variable Selection (GVS), Stochastic

Search Variable Selection (SSVS), adaptive shrinkage with Jeffreys’ prior or a Laplacian

prior, reversible jump MCMC and variable selection based on Zellner’s g-prior (Kuo and

Mallick, 1998; Dellaportas et al, 1997; George and McCulloch, 1997; O’Hara and Sillan-
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paa, 2009; Lesaffre and Lawson, 2012). Here, three of these apporaches are considered

and investigated in the context of spatial regression models, namely Kuo and Mallick,

GVS and SSVS. These three are based on the Gibbs sampler and can therefore be eas-

ily implemented in WinBUGS software (Ntzoufras, 2009). Description of these methods

follows.

2.3.1 Kuo and Mallick

Let γγγ = (γ1, γ2, . . . , γp) be a p × 1 vector of latent indicators (also known as entry pa-

rameters), where the parameter γk is an indicator variable taking on values 1 or 0 when

covariate Xk is included or excluded (respectively) in the model, with k ∈ 1, 2, . . . , p. In

this approach the linear predictor η
(j)
i =

∑p
k=1 βkX

(j)
ki of model (1) is expanded to include

covariate entry parameters as follows:

η
(j)
i =

p∑
k=1

γkβkX
(j)
ki . (4)

Since estimation of the model is done in a Bayesian framework we specify a prior distri-

bution on each of the parameters as was done for model (1). This method assumes that β

and γ are independent a priori, i.e., f(βk, γk) = f(βk)f(γk) and therefore implementation

of this approach only requires specification of priors on βββ and γγγ independently (Kuo and

Mallick, 1998). Prior distributions were specified as follows:

i. γk ∼ Bern(pk) with pk ∼ U(0, 1) for k = 1, 2, . . . , p;

ii. β0 ∼ dflat(), βk ∼ N(0, 10) for k = 1, 2, . . . , p; and

iii. IG(0.001, 0.001) for each of σ2, σ2
u and σ2

v .

The parameter pk is the prior inclusion probability of the kth predictor variable, i.e., the

probability that predictor variable Xk is important a priori. The parameter is assigned a

U(0, 1) distribution to reflect no prior choice for the value pk. Note that this specification

assumes a mixture of a point mass at 0 with probability 1 − pk and a normal density

N(., .) with probability pk for the parameter ϑk = γkβk. In this way, variable selection
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is essentially a discrete process where covariates are either retained or dropped from the

model. Note that we also chose to work with weakly informative priors on the βks and

the variance components as no prior information was available a priori.

The Gibbs sampler full conditionals for βk are equal to:

f(βk|yyy,γγγ,βββ(k)) ∝


f(yyy|βββ,γγγ)f(βk|βββ(k)) if γk = 1,

f(βk|βββ(k)) if γk = 0.

where βββ(k) and γγγ(k) are the vector of regression coefficients/entry parameters without the

kth component (Dellaportas et al, 1997). Clearly it can be seen from the full conditionals

that when γk = 0, βk will be sampled from the full conditional distribution f(βk|βββ(k)),

which is its prior distribution. On this note O’Hara and Sillanpaa (2009) point out that

mixing will be poor if this prior is too vague as the sampled values of βk will rarely be in

the region where ϑk has high posterior support. It is for this reason that not too vague

priors were chosen for βk k = 1, . . . , p.

Nevertheless, an alternative formulation that attempts to circumvent the problem sam-

pling βk from a too vague prior when γk = 0 is available due to Dellaportas et al (1997)

and is described in the next subsection.

2.3.2 Gibbs Variable Selection

This method is a variation of the method of Kuo and Mallick and is aimed at circumvent-

ing the problem of sampling βk from a too vague prior. The linear predictor is specified

exactly as done in the method of Kuo and Mallick (4) but this time when γk = 0, βk is

sampled from the so-called pseudo-prior which is a prior distribution that has no impact

on the posterior distribution. The pseudo-prior serves the purpose of increasing the effi-

ciency of the sampler by allowing the sampler to propose good values for βk conditional

on the value of γk (0 or 1) (Carlin and Chib, 1995; O’Hara and Sillanpaa, 2009). Speci-

fication of the pseudo-prior is facilitated by the so called spike and slab priors (Mitchell
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and Beauchamp, 1988).

The idea behind spike and slab priors is to think of βks as arising from a mixture of two

normal distributions which have different variances. This has an important implication

when γk = 0 since βk will no longer be sampled from its prior distribution as in the

method of Kuo and Mallick. Essentially, this specification of the prior translates to the

following spike and slab prior for βk:

βk|γk ∼ (1− γk)N(µk, τ
2
0k) + γkN(0, τ 21k)

where τ 20k <<τ
2
1k. The implication of this specification is that βk is dependent on γk a

priori, i.e. f(βk, γk) = f(βk|γk)f(γk).

For the choice of pseudo-prior parameters (µk and τ 20k) we were guided by Dellaportas

et al (1997) who suggest that a possible choice is to take these from a pilot run of the

full model, i.e. model with all covariates included. We also considered arbitrary choices

for µk and τ 20k to demonstrate that one needs to exercise caution with selection of these

values. As for the slab variance we took τ 21k = 100 to reflect no prior information. As in

subsection 2.3.1, the other priors are chosen to reflect little prior information as

i. γk ∼ Bern(pk) with pk ∼ U(0, 1) for k = 1, 2, . . . , p;

ii. β0 ∼ dflat(); and

iii. IG(0.001, 0.001) for each of σ2, σ2
u and σ2

v .

Note that in this model the Gibbs sampler full conditionals for βk are obtained as:

f(βk|yyy,γγγ,βββ(k)) ∝


f(yyy|βββ,γγγ)N(0, τ 21k) if γk = 1,

N(µk, τ
2
0k) if γk = 0.
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2.3.3 Stochastic Search Variable Selection

This method differs from Kuo and Mallick and GVS in that βββ is specified to be of full

dimension p under all models, so that the linear predictor is

η
(j)
i =

p∑
k=1

βkX
(j)
ki (5)

as in model (1). Indicator variables γk come in via the specification of the prior of βk as

follows:

βk|γk ∼ (1− γk)N(0, τ 2k ) + γkN(0, c2kτ
2
k ) (6)

and

P (γk = 1) = 1− P (γk = 0) = pk. (7)

When γk = 0 (i.e. covariate Xk is excluded), it is assumed that βk has a spike prior, i.e.

βk ∼ N(0, τ 2k ) and when γk = 1 (i.e. covariate Xk is included), it is assumed that βk has

a slab prior, i.e. βk ∼ N(0, c2kτ
2
k ). The principle behind this formulation is to set τk very

small (>0) so that if γk = 0, then βk would be close to zero and therefore unimportant.

On the other hand, ck is set large (ck >1 always) to have a diffuse prior and a non-zero

estimate of βk when γk = 1, i.e. when it is included. As before, the parameter pk can

be thought of as the prior probability that predictor variable Xk will be included in the

model i.e., βk 6= 0 (George and McCulloch, 1993). Figure 1 depicts the spike and slab

priors.

George and McCulloch (1993) suggested that the choice of ck must allow for a non-

zero estimate of βk in the model whenever βk ∼ N(0, c2kτ
2
k ). On the other hand, they

suggest choosing ck large enough to allow for values of βk that are considerably differ-

ent from zero, but rather not too large to support unrealistic values of βk. They note

that the two normal distributions in Figure 1 intersect at the points ±εk = τkδk where
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Figure 1: Spike and slab priors of George and McCulloch (1993)

δk =
√

2(log ck)c2k/(c
2
k − 1). The point εk can be taken as a margin of ‘statistical signifi-

cance’ such that regression coefficients falling into the interval [−εk,εk] can be interpreted

to be zero. Therefore, the tuning parameters can be chosen in such a way that the point

of intersection reflects one’s perception of statistical significance. Alternatively, τk can be

assumed unknown and therefore estimated from the data, with this assumption only the

value of ck is fixed (Meuwissen and Goddard, 2004).

It is well documented in the literature that the choice of the tuning parameters heavily

influences posterior model probabilities (and of course, posterior inclusion probabilites of

covariates), see among others George and McCulloch (1997); Dellaportas et al (2000) and

O’Hara and Sillanpaa, (2009). In view of this, several choices of the tuning parameters

were considered as a sensitivity analysis.

Again, as in subsection 2.3.1 the other priors are chosen to reflect little prior information

as:

i. γk ∼ Bern(pk) with pk ∼ Beta(1, 1) for k = 1, 2, . . . , p;
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ii. β0 ∼ dflat(); and

iii. IG(0.001, 0.001) for each of σ2
u and σ2

v .

and the Gibbs sampler full conditionals for βk are obtained as:

f(βk|yyy,γγγ,βββ(k)) ∝ f(yyy|βββ,γγγ)f(βk|γk)

and thus values of the prior when γk = 0 influence the posterior distribution.

2.4 Bayesian Variable Selection with Spatially Varying Coefi-

cients Model

Model (1) assumes that regression coefficients are fixed over the entire region. While this

is indeed a reasonable assumption it can be argued that the regression coefficients are not

fixed but rather vary from area to area. Gelfand et al (2003) introduced a model which

assumes spatially varying regression coefficients. Extending their model to our setting,

model (1) becomes:

Y
(j)
i = β

(j)
0 + β

(j)
1 X

(j)
1i + · · ·+ β(j)

p X
(j)
pi + ε

(j)
i

= β
(j)
0 +

p∑
k=1

β
(j)
k X

(j)
ki + ε

(j)
i (8)

where β
(j)
0 , β

(j)
1 , . . . , β

(j)
p are area specific regression coefficients and ε

(j)
i ∼ N(0, σ2) is the

error term for subject i in area j. At this stage our interest is to combine model (8) with

BVS techniques described in subsection 2.3. By incorporating latent covariate inclusion

indicators at area level the resulting model allows identification of important predictor

variables at area level - this way each area model includes different covariates.

This type of modelling has few references in the literature and here we are guided by the

work of Lum (2012). In their paper, they employ spike and slab priors for β
(j)
k similar to
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those used by George and McCulloch (1993) in their SSVS approach (subsection 2.3.3).

They assume that,

β
(j)
k ∼ γ

(j)
k N(µk, τ

2
k ) + (1− γ(j)k )δ0(β

(j)
k ) (9)

where δ0(β
(j)
k ) is the Dirac delta function evaluated at β

(j)
k . The area specific covariate

inclusion indicators are modelled using a probit model with a spatial dependence structure

(via a CAR prior) so as to achieve spatial information sharing in variable selection as

follows,

probit(γ
(j)
k ) = η0k + η

(j)
k (10)

where η0k is a constant term and η
(j)
k ∼ CAR prior. This prior induces spatially smoothed

inclusion probabilities such that if a covariate is included among neighbours of area j then

this covariate has high chance of being included for area j. To complete their model they

place a N(.,.) prior on the µks and an IG(ε, ε) on the τ 2k s.

In this project we took a more or less similar approach to that of Lum (2012). For re-

gression coefficients we placed common priors on the β
(j)
k s. As for the entry parameters

(γ
(j)
k ) we took three approaches.

As a starting point, we assumed that the entry parameters are inexchangeable such that in

estimating them, no information is shared among the areas. In other words, we assumed

that the importance of a given predictor variable in a given area has no similarity with

its importance in any other area i.e.,

γ
(j)
k ∼ Bern(p

(j)
k ) (11)

where p
(j)
k ∼ Beta(1, 1). This assumption may however be too strong to hold in a spatial

setting. In the context of our data, it helps to note that cultural behaviors (e.g. dietary

habits) as well as other aspects such as iodine content in the soil do not change in accor-
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dance with administrative boundaries, and therefore, it may as well be more sensible to

allow for information sharing in the entry parameters.

In the second approach the idea was to share information among neighbours using an

approach similar to Lum (2012) as follows,

logit(γ
(j)
k ) = η0k + η

(j)
k (12)

where η0k is a constant term and η
(j)
k ∼ CAR.

In the third approach the idea was to share information across the entire region by

modelling the entry parameters in terms of a normal prior as follows,

logit(γ
(j)
k ) = η0k + η

(j)
k (13)

where η0k is a constant term and η
(j)
k ∼ N(., .).

In terms of variable selection, we employed the method of Kuo and Mallick and SSVS.

We did not consider GVS in this setting as it requires specification of a lot of parameters

for the pseudo-priors - in this case as many pseudo-priors as the number of areas would

have to be specified.

2.4.1 Kuo and Mallick

Employing the method of Kuo and Mallick, the linear predictor of model (8) becomes

η
(j)
i =

∑p
k=1 γ

(j)
k β

(j)
k X

(j)
ki . Prior distributions are specified to reflect no prior information

as follows:

i. β
(j)
k ∼ N(µk, τ

2
k ) for k = 0, 1, . . . , p with µk ∼ N(0, 10) and τ 2k ∼ IG(0.001, 0.001);

ii. IG(0.001, 0.001) for σ2; and

iii. In Model A: γ
(j)
k ∼ Bern(p

(j)
k ) with p

(j)
k ∼ Beta(1, 1). In Model B: logit(γ

(j)
k ) =
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η0k+η
(j)
k where η

(j)
k ∼ CAR. In Model C: logit(γ

(j)
k ) = η0k+η

(j)
k where η

(j)
k ∼ N(0, 10)

for k = 1, 2, . . . , p.

2.4.2 Stochastic Search Variable Selection

As for the SSVS method, the linear predictor of model (8) is retained as η
(j)
i =

∑p
k=1 β

(j)
k X

(j)
ki .

Prior distributions are specified to reflect no prior information as follows:

i. β
(j)
k ∼ γ

(j)
k N(µk, τ

2
k )+(1−γ(j)k )N(0, c2kτ

2
k ) with µk ∼ N(0, 10) and τ 2k ∼ IG(0.001, 0.001);

ii. IG(0.001, 0.001) for σ2; and

iii. In Model A: γ
(j)
k ∼ Bern(p

(j)
k ) with p

(j)
k ∼ Beta(1, 1). In Model B: logit(γ

(j)
k ) =

η0k+η
(j)
k where η

(j)
k ∼ CAR. In Model C: logit(γ

(j)
k ) = η0k+η

(j)
k where η

(j)
k ∼ N(0, 10)

for k = 1, 2, . . . , p.

Note that in (i.) we can no longer fix c and τk as was done in subsection 2.3.3, this is

because the spike and the slab are now centered at different points, i.e. at zero and µk

respectively. We therefore followed the random effects variant of SSVS due to Meuwissen

and Goddard (2004) where τk is taken as a parameter to be estimated and c can be fixed

by the user.

In terms of determining which covariate is included or excluded for any given area, we

employed the MP model approach of Barbieri and Berger (2004).
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3 Results

In this section study results are presented. First, we present some exploratory analysis

that was conducted to get a feel of the data. This is followed by results of variable

selection in the case of a spatially fixed coefficients model and lastly variable selection in

the case of a spatially varying coefficients model.

3.1 Exploratory Data Analysis

Three exploratory analyses are presented here. We give an overview in terms of sample

sizes in the municipalities, the spread of the response variable and the correlation among

the predictor variables.

Of the 315 municipalities of Galicia, 289 were used for analysis after removing those which

had no data as well as observations with missing predictor variables and/or TSH values.

Figure 2 provides a summary of the number of observations in the 289 municipalities in

the year of 2009. From this map we learn that there is a significant number of munic-

ipalities with few data, 97 have between 1 and 5 ([1,5)) and 50 have between 5 and 10

([5,10)). It is useful to keep this in mind when it comes to modelling, particularly for the

spatially varying coefficients model, since some areas do not have sufficient data to tell

whether or not a predictor variable is important.

Figure 3 shows a histogram of the response variable (TSH) as well as that of a transformed

version of it (log TSH). It can be seen that the response variable is highly skewed, hence

the need to consider a transformation. In model (1) we assume a normal distribution for

the response and it therefore makes sense to consider a fairly symmetrical version of TSH.

In regression analysis problems that arise due to collinearity among predictor variables

are well documented (see for example Kutner et al, 2005). We therefore checked for

the presence of multicollinearity by calculating pairwise correlations amongst the four
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Figure 2: Frequency of observations

Figure 3: Histograms: TSH and log(TSH)

predictor variables. We note that the correlations are not too high to require remedial

action (Table 1). Predictor variables were however centered for computational reasons.

Table 1: Correlation matrix of predictor variables

Variable gestage bthwgt timetofeed
gestage 1
bthwgt 0.324 1
timetofeed 0.006 0.004 1
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3.2 Variable Selection: spatially fixed coefficients setting

In this section we present variable selection results based on model (1) - here, the number

of predictor variables is taken to be four, i.e. p = 4. We begin by presenting results of

classical variable selection using DIC followed by those of BVS.

3.2.1 Deviance Information Criterion

Since the number of predictor variables is four, the total number of possible subsets of

predictors is 24 = 16. Table 2 is a listing of these subsets together with their DIC values.

The ‘best’ subset is the one that yields the least DIC, which in this case is model (2).

However, it can be noted that there are other subsets which are almost as good, i.e.

those that differ from the ‘best’ subset by a difference less than 5 (models 1, 5 and 9).

A sensible choice is then to select the smallest subset among these, i.e. model including

birth weight and gender.

Table 2: Possible models and their DIC values

subset gestage bthwgt gender timetofeed DIC
1 ⊗ ⊗ ⊗ ⊗ 27632.0
2 ⊗ ⊗ ⊗ - 27631.3
3 ⊗ ⊗ - ⊗ 27641.9
4 ⊗ - ⊗ ⊗ 27651.5
5 - ⊗ ⊗ ⊗ 27635.0
6 ⊗ ⊗ - - 27640.7
7 ⊗ - ⊗ - 27650.8
8 ⊗ - - ⊗ 27657.5
9 - ⊗ ⊗ - 27634.3
10 - ⊗ - ⊗ 27644.3
11 - - ⊗ ⊗ 27650.5
12 ⊗ - - - 27656.6
13 - ⊗ - - 27643.4
14 - - ⊗ - 27649.7
15 - - - ⊗ 27656.3
16 - - - - 27655.2

⊗ means present, - means absent

3.2.2 Bayesian Variable Selection

Implementation of the method of Kuo and Mallick is straight forward in that it does not

involve choosing tuning parameters, however the GVS and SSVS techniques do (subsec-

tion 2.3). For the GVS technique, values for the pseudo-prior parameters were obtained

from a pilot run of the full model as suggested by Dellaportas et al (1997). They suggest
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use of full model parameter estimates and standard errors as choices for µk and τ0k, we

therefore took (0.0650,-0.0800,0.0500,-0.0150) and (0.0280,0.0170,0.0142,0.0130) respec-

tively. To demonstrate that one needs to exercise caution with selection of these values

we took µk = (0, 0, 0, 0) and τ0k = (0.0140, 0.0085, 0.0071, 0.0065).

As for the SSVS technique, different settings were specified for sensitivity analysis pur-

poses. We observed the magnitude of the regression coefficients and thereof assumed three

margins of ‘statistical significance’ namely, [-0.01,0.01], [-0.0175,0.0175] and [-0.025,0.025].

In terms of the choice of c, i.e. the factor by which the spike standard deviation is mul-

tiplied to get a larger standard deviation for the slab, the values were taken as c = 100,

c = 125 and c = 100 respectively.

For all methods we ran 10,000 overrelaxed iterations with thinning equal to 3, further-

more, a burn-in of 1,000 was removed. In terms of speed, we noted that SSVS was the

fastest, followed by method of Kuo and Mallick and lastly GVS.

Table 3 shows the posterior inclusion probabilities of each predictor variable based on the

method of Kuo and Mallick, GVS and SSVS variable selection techniques. By employing

the MP model principle (Barbieri and Berger, 2004), we are led to select the predictors

birth weight and gender as the important ones to include in the regression model.

Table 3: Posterior inclusion probabilities for predictor variables

method tuning parameters
inclusion probability

speed (in sec.)
gestage bthwgt gender timetofeed

K & M - 0.10 0.92 0.50 0.01 2496

GVS

µk = (0.0650,−0.0800, 0.0500,−0.0150)
0.09 0.89 0.50 0.01 2685

τ0k = (0.0280, 0.0170, 0.0142, 0.0130)
µk = (0.0000, 0.0000, 0.0000, 0.000)

0.07 0.85 0.1 0.01 2691
τ0k = (0.0140, 0.0085, 0.0071, 0.0065)

SSVS

c = 100, ε = 0.0100, τk = 0.0033 0.44 0.98 0.50 0.10 581
c = 125, ε = 0.0175, τk = 0.0056 0.30 0.95 0.45 0.038 493
c = 100, ε = 0.0250, τk = 0.0082 0.23 0.92 0.50 0.03 504

Table 4 shows posterior model probabilities also based on the method of Kuo and Mallick,

GVS and SSVS variable selection techniques. The acronyms GVSa, GVSb and SSVSa,
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SSVSb, SSVSc denote the different tuning parameter settings for GVS and SSVS respec-

tively. By employing the MAP principle, we are led to select the predictor variable birth

weight as the important one to include in the regression model. Though all the three

approaches favour the model with birth weight only, we observe that the model with birth

weight and gender also appears frequently in the MCMC sample - it appears more in the

method of Kuo and Mallick followed by GVS and lastly SSVS.

Table 4: Posterior model probabilities

subset gestage bthwgt gender timetofeed K & M GVSa GVSb SSVSa SSVSb SSVSc

1 ⊗ ⊗ ⊗ ⊗ 0.0004 0.0008 0.0000 0.0147 0.0059 0.0026
2 ⊗ ⊗ ⊗ - 0.0630 0.0497 0.0083 0.2054 0.1412 0.1091
3 ⊗ ⊗ - ⊗ 0.0003 0.0004 0.0000 0.0197 0.0053 0.0033
4 ⊗ - ⊗ ⊗ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 - ⊗ ⊗ ⊗ 0.0029 0.0040 0.0007 0.0208 0.0102 0.0118
6 ⊗ ⊗ - - 0.0412 0.0344 0.0566 0.1982 0.1466 0.1084
7 ⊗ - ⊗ - 0.0000 0.0004 0.0000 0.0001 0.0007 0.0020
8 ⊗ - - ⊗ 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010
9 - ⊗ ⊗ - 0.4114 0.3697 0.0788 0.2274 0.2757 0.3080
10 - ⊗ - ⊗ 0.0019 0.0031 0.0067 0.0206 0.0101 0.0109
11 - - ⊗ ⊗ 0.0000 0.0040 0.0000 0.0008 0.0003 0.0004
12 ⊗ - - - 0.0004 0.0008 0.0016 0.0010 0.0029 0.0034
13 - ⊗ - - 0.4152 0.4247 0.6954 0.2758 0.3482 0.3538
14 - - ⊗ - 0.0078 0.0249 0.0072 0.0053 0.0162 0.0263
15 - - - ⊗ 0.0001 0.0001 0.0009 0.0007 0.0012 0.0014
16 - - - - 0.0552 0.0870 0.1439 0.0096 0.0352 0.0583

⊗ means present, - means absent

Thus, we note that in general, the MP and MAP principles do not lead to the selection

of the same model. To choose which principle to adopt, it helps to note that in this case

the MP model coincides with a good predictive model (as identified by the DIC). These

findings are in line with Barbieri and Berger (2004) who showed that oftentimes the high

probability model (i.e. MAP model) is not optimally predictive but rather, the median

model (i.e. MP model) is.

It can also be noted that the choice of tuning parameters in the SSVS approach affects

the posterior probabilities - the predictor gender would appear unimportant in setting

SSVSb. This is not surprising as it is well documented in the literature that the choice

of tuning parameters can drive the results (see George and McCulloch 1993; George and

McCulloch 1997; Dellaportas et al, 1997; Kuo and Mallick, 1998; O’Hara and Sillanpaa,
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2009; Lesaffre and Lawson, 2012). Moreover, we note that an arbitrary choice of pseudo-

prior parameters for the GVS method will not give good results (GVSb), other possible

choices are given in Ntzoufras (1999).

Summarizing, we choose birth weight and gender as the important predictor variables to

include in the regression model. The choice is in accordance with results from classical

variable selection (based on DIC) and BVS (used with MP principle). Though these two

techniques agree to a large extent, we note that BVS give the benefit of avoiding fitting

of all 16 possible models. Parameter estimates of the final model are shown in Table 5.

Table 5: Parameter estimates of final model

Parameter Estimate (std. error)
intercept 0.142 (0.016)
bthwgt -0.067 (0.014)
gender 0.047 (0.022)
σ2 0.600 (0.008)
σ2
u 0.006 (0.003)
σ2
v 0.035 (0.01)

3.3 Variable Selection: spatially varying coefficients setting

In this subsection we present results of BVS applied to the spatially varying coefficients

model (8). Before presenting the main results we give an insightfull preliminary analysis.

3.3.1 Preliminary results

Since the aim is to extend variable selection to a spatially varying coefficients model, we

began by fitting this model with no variable selection - this was done to get a rough idea

about the importance of each of the four predictor variables in the different areas. Two

choices of priors were considered for the regression coefficients namely β
(j)
k ∼ N(µk, σ

2
k)

with θk ∼ N(0, 100) and σ2
k ∼ IG(0.001, 0.001) as well as β

(j)
k ∼ CAR prior.

Figure 4 depicts a summary of parameter estimates of β
(j)
k s based on the normal prior

(results obtained from assuming a CAR prior are shown in the Appendix). The standard
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Figure 4: Summary: parameter estimates of the four predictor variables

errors range between 0.028-0.034, 0.030-0.042, 0.040-0.080 and 0.003-0.023 for gestational

age, birth weight, gender and time to feed respectively. We observe that the β
(j)
k estimates

are shrunk towards their respective means (Table 6), especially for municipalities with

few data, moreover, we also observe that on average standard errors are large relative to

the parameter estimates. Based on this preliminary analysis, it would appear that at the

area level few to no predictor variables are important in explaining the response variable.

Table 6: Estimates of regression coefficient prior means

Predictor Estimate (std. error)
gestage 0.063 (0.026)
bthwgt -0.075 (0.018)
gender 0.060 (0.018)

timetofeed -0.0006 (0.003)
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3.3.2 Main results

We now present results of BVS. The method of Kuo and Mallick and two settings of SSVS

were considered (taking c2 = 10, c2 = 100 denoted SSVSa, SSVSb respectively). However,

here we only show results of the method of Kuo and Mallick since all results lead to more

or less the same conclusions, SSVS results are shown in the Appendix. Note that we only

have results of Model A (where it is assumed that entry parameters are inexchangeable)

since Models B and C did not reach convergence.

Figure 5 depicts Model A posterior inclusion probabilities (per predictor variable). An

inclusion probability greater or equal to 0.5 is taken to mean that a given predictor vari-

able is important in a given area. We observe that predictor variable inclusion appears to

occur mostly at locations with few data. The explanation to this counter-intuitive find-

ing is that in such areas there is little information to update the prior distribution and

as a result the average inclusion probability of prior distribution (which is equal to 0.5)

dominates the likelihood and hence the inclusion. This problem can however be solved if

one adopts Models B and C - by assuming that the entry parameters are exchangeable

the priors of these models induce information sharing such that for areas with few data

entry parameters are made to appear like others on average.

Table 7 summarizes the selected predictor variables in 142 municipalities. A total of 147

municipalities with fewer than 10 observations were excluded because for such areas with

few data the posterior inclusion probabilities are largely due to the prior mean. Across all

three scenarios considered i.e. Kuo and Mallick, SSVSa and SSVSb, it is observed that in

general one of the following occurs: no covariate is included, one of the four is included,

birth weight and gender are included or gestational age and gender are included. Com-

paring with results from subsection 3.2.2, we note that the predictor variables selected

in the spatially fixed coefficients model (birth weight and gender) are generally not the

same as those selected at the area level.
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Figure 5: Variable selection at area level: Model A, Kuo and Mallick

Table 7: Frequency distribution of selected predictor variables - count (%)

subset gestage bthwgt gender timetofeed K & M SSVSa SSVSb

1 ⊗ ⊗ ⊗ ⊗ 1 (0.007) 1 (0.007) 1 (0.007)
2 ⊗ ⊗ ⊗ - 4 (0.028) 3 (0.021) 4 (0.028)
3 ⊗ ⊗ - ⊗ - - -
4 ⊗ - ⊗ ⊗ 4 (0.028) 6 (0.042) 3 (0.021)
5 - ⊗ ⊗ ⊗ 3 (0.021) 3 (0.021) 2 (0.014)
6 ⊗ ⊗ - - 3 (0.021) 1 (0.007) 3 (0.021)
7 ⊗ - ⊗ - 15 (0.106) 13 (0.092) 16 (0.113)
8 ⊗ - - ⊗ - - 1 (0.007)
9 - ⊗ ⊗ - 10 (0.070) 12 (0.085) 9 (0.063)
10 - ⊗ - ⊗ 5 (0.035) 3 (0.021) 5 (0.035)
11 - - ⊗ ⊗ 4 (0.028) 7 (0.049) 5 (0.035)
12 ⊗ - - - 4 (0.028) 3 (0.021) 3 (0.021)
13 - ⊗ - - 21 (0.148) 27 (0.190) 23 (0.162)
14 - - ⊗ - 28 (0.197) 24 (0.169) 26 (0.183)
15 - - - ⊗ 12 (0.085) 12 (0.085) 9 (0.063)
16 - - - - 28 (0.197) 27 (0.190) 32 (0.225)

⊗ means present, - means absent 142 (100) 142 (100) 142 (100)
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4 Discussion

In this section we discuss the application of BVS in spatial regression models. We begin

with the spatially fixed coefficients setting and thereafter, the spatially varying coefficients

setting.

Spatially fixed coefficients setting

In subsection 3.2.2 we applied BVS to identify important predictor variables to be in-

cluded in the regression model (model 1). It was found that birth weight and gender are

important predictors of TSH levels in newborns. The results show that keeping gender

constant, the higher the birth weight the lower the TSH level and keeping birth weight

constant, male infants tend to have higher TSH levels compared to female infants (Table

5). These results are consistent with findings from other studies, e.g., Frank et al (1996)

and Herbstman et al (2008) reported that birthweight is predictive of TSH level and

Sullivan et al (1997), Chan et al (2001) and again Herbstman et al (2008) reported that

gender is predictive of TSH level. Note that other studies have also found gestational age

as predictive of TSH level (see Herbstman et al (2008)).

Turning to the variable selection exercise, we saw that BVS techniques require less com-

putational effort as compared to classical approaches - with BVS one does not need to fit

all the possible models in order to identify important predictor variables. However, when

using BVS one needs to pay attention to the decision rule they adopt in order to select

predictor variables that will yield an optimally predictive model. It was noted that the

best subset of predictor variables as identified by the MAP model principle was different

from that identified by the MP model principle. We went in favour of the latter as it

coincided with an optimally predictive model identified using the DIC. On this note, we

can mention that our findings are in agreement with Barbieri and Berger (2004) who

noted that often times the MP model is optimally predictive and the MAP model is not

necessarily so.
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Adopting the MP model principle as the decision rule, we were led to select the same

predictor variables across all three approaches, i.e. method of Kuo and Mallick, GVS and

SSVS. Though there was agreement among all the approaches, we noted some advantages

and disadvantages for each. We now reflect on these in turn.

An advantage of the method of Kuo and Mallick is that it has a straight forward im-

plementation. Unlike the GVS and the SSVS, it does not require sophisticated choice

of tuning parameters, one only has to specify priors for regression coefficients and entry

parameters independently. When specifying priors for regression coefficients, one has to

set the prior variance considerably low in order to have good mixing (see O’Hara and

Sillanpaa, 2009). In terms of disadvantages we observed that this method is slow (Table

3). Other authors have also noted that this method does not work well in the presence

of multicollinearity (see Ntzoufras, 1999), in our case this was not experienced since our

predictors were not highly correlated.

As in the method of Kuo and Mallick, the GVS approach also has a relatively simple

implementation. Moreover, if a good pseudo-prior is specified the GVS leads to better

mixing if compared with the former. However, a drawback of this method is specifica-

tion of pseudo-priors - sophisticated choices are required. In our analysis (Table 3) we

considered a choice suggested in Dellaportas et al (1997) of taking values obtained from

a pilot-run of the full model. This choice worked reasonably well - results obtained were

in agreement with those of other approaches. In order to demonstrate that pseudo-prior

parameters cannot be chosen arbitrarily we took values not far off from those obtained

from the pilot run, the resulting MP model was different from that identified by the other

approaches (see Table 3). As in the method of Kuo and Mallick, we observed that this

method is slow and other authors have also noted that this method does not work well

in the presence of multicollinearity (see Ntzoufras, 1999).
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Turning to the SSVS approach, the major advantage that we noted was simulation speed,

it was faster compared to the other approaches (see Table 3). A well known disadvantage

(that we also noted) is the method’s reliance on user defined and data dependent tun-

ing parameters. The tuning parameters heavily influence posterior model and predictor

inclusion probabilities and hence a sensitivity analysis may be ideal. From the three

scenarios that we prespecified, we noted that if the constant c is kept fixed, a smaller

value of ε allows predictor variables to enter the model more frequently. Also, increasing

both c and ε disallows predictor variables from entering the model more frequently. It

should however be noted that in some instances the reliance of SSVS on tuning param-

eters makes the approach flexible as it can allow the user to define their own margin of

practical significance (George and McCulloch, 1993).

Spatially varying coefficients setting

In subsection 3.3 we extended the method of Kuo and Mallick and SSVS to the spatially

varying coefficients model. Though we could not get all results we hoped for, the few

that were obtained seemingly indicated that generally, one of the following occurs: no

covariate is included, one of the four is included, birth weight and gender are included or

gestational age and gender are included. This would appear to contradict results from

the spatially fixed coefficients setting however, it helps to note that at the municipality

level there are generally few data hence, it may well be that the data are not sufficient

to show importance of the predictor variables.

Turning to the variable selection exercise, basically the same advantages and disadvan-

tages that were observed in the spatially fixed coeffients model also apply in this model.

As one would also expect, the variable selection exercise became more computationally

involved and hence more time consuming - as before the SSVS settings considered were

faster than the method of Kuo and Mallick (1147, 1111 and 3507 seconds respectively).

Though extending BVS to this model was possible, we were only able to achieve conver-
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gence in the simplest case where we assumed that the entry parameters γ
(j)
k have nothing

in common, here they were not modelled but only assigned priors. Note that with a

binary response, even this simplest case could not reach convergence.

We experienced great difficulties when we sought to model these entry parameters to

enable information sharing among neighbours as well as across regions (Models B and C,

subsections 2.4.1 and 2.4.2). Several alterations were made on the programs to try to im-

prove convergence. Among the first alterations was standardizing the predictor variables;

varying the link function on the entry parameters model (i.e. logit, probit, c log log); vary-

ing parameters on priors (e.g. on the IG(.,.) prior); changing variance priors from IG(.,.)

to U(.,.) on prior standard deviations as well as adjusting tuning parameters in the SSVS.

Additional alterations involved imposing some assumptions on the model so as to re-

duce its complexity. In place of modelling the entry parameters we assumed that they

had a common success probability, i.e. γ
(j)
k ∼ Bern(pk) with pk ∼ U(0, 1) and also

γ
(j)
k ∼ Bern(0.5). We also tried fixing variances on regression coefficient priors, a range

of values were considered. Finally we also considered implementing the models in rjags

but still no convergence was reached.

On this note we put forward that though combining spatially varying coefficient models

with BVS is possible and an attractive idea, allowing for information sharing among the

entry parameters increases computational intensity and hence makes the model suscep-

tible to convergence problems. Whilst Lum (2012) succeeded in doing so, more research

can be done in the future to look into ways of tackling convergence problems in this

context. Note that we also succeeded sharing information in the entry parameters using

a N(.,.) prior (as in Model C) on a different data set with only one predictor variable.
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5 Conclusion

In conclusion we found that bayesian variable selection methods can be applied with ease

in spatially fixed coefficient models and they are more advantageous compared to classical

methods as they reduce computational burden of fitting all possible models. However, in

spatially varying coefficient models convergence problems may occur, especially when one

attempts to incorporate information sharing in entry parameters. Based on the spatially

fixed coefficient model, we found that the predictor variables birth weight and gender

are important in explaining TSH level in newborns. In terms of the spatially varying

coefficient model and based on the results obtained, different predictor variables appear

to be important at different areas.
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Appendix

Figure 6: Summary: p-values based on OLS per municipality
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Figure 7: Variable selection at area level: Model A, SSVS with c2 = 10

Figure 8: Variable selection at area level: Model A, SSVS with c2 = 100
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