
CONTENT -CENTRIC NETWORKING

MASTER THESIS

OF

FREDERIK VAN BOGAERT

SEPTEMBER 6, 2014

SUPERVISORS:
DR. MAARTEN WIJNANTS (COORDINATOR)

PROF. DR. WIM LAMOTTE (PROMOTOR)

UNIVERSITEIT HASSELT

EINDWERK VOORGEDRAGEN TOT HET BEHALEN VAN DE GRAAD VAN MASTER

IN ICT

Abstract

The current internet model, which relies on packet switching, has
served us well and led to a huge explosion in connectivity of both
computers and people, and created a huge new industry. However,
the way the internet is used today (which is mainly viewing different
kinds of content) is increasingly at odds with its original intention
of connecting computers with known addresses to each other. This
thesis examines several technologies, collectively known as “Named
Data Networking”, which aim to fix this discrepancy by placing em-
phasis on the content being transferred, in order to create a more
durable, secure and efficient internet for tomorrow.

In this thesis, several Named Data Networking technologies are
examined, including their philosophies, advantages and disadvan-
tages. Particular interest is given to “Content-Centric Networking”
(CCN), a promising technology with a lot of current research. The
theoretical and practical issues concerning implementation are also
addressed, by giving a discussion of a Voice-over-IP replacement us-
ing CCN, as well as a detailed look at the real-world performance of
the technology in the field of multimedia dissemination using Dy-
namic Adaptive Streaming.

In this examination, it is discovered that CCN faces some seri-
ous performance hurdles requiring significant fine-tuning, but that
HTTP-like performance can be achieved in some cases. Given the
obtained results, the viability of replacing the IP stack with CCN is
discussed.

Preface

I would like to thank my coordinator, Maarten Wijnants, for pro-
viding me with the relevant data and for thoroughly checking draft
versions of this document. Thanks also to my promoter, Wim Lam-
otte and to the EDM staff for giving me the resources necessary
for my thesis. Finally I would like to thank my parents for their
patience.

Contents

I Literature study 1

1 Introduction 3
1.1 Motivation . 4

1.1.1 The origin of IP . 4
1.1.2 Obsolescence of IP 6
1.1.3 Research goal . 9

2 Named Data Networking 11
2.1 Concepts and terminology 11
2.2 Internet Addressing . 15
2.3 Advantages of NDN . 17
2.4 Initial applications . 19

2.4.1 LFBL . 19
2.4.2 DASH . 21
2.4.3 Other possible applications 24

3 CCN 27
3.1 Packet design . 27
3.2 Naming . 28

3.2.1 Prefix matching . 29
3.2.2 Name structure . 30

3.3 Architecture . 31
3.4 Routing . 33
3.5 Transport . 35
3.6 Data validation . 36
3.7 Content protection . 37

4 VoCCN: A case study 39
4.1 VoIP . 39
4.2 CCN Implementation . 40
4.3 Security . 43
4.4 VoIP interoperability . 43
4.5 Mobility . 44

4.6 Evaluation . 47

5 Alternative NDN technologies 49
5.1 TRIAD . 49
5.2 DONA . 52

5.2.1 Naming . 53
5.2.2 Name resolution 54
5.2.3 Path-based addressing 56
5.2.4 Security . 57
5.2.5 Applications . 58

5.3 Content-Oriented Transport Protocol 59
5.3.1 Naming . 60
5.3.2 Architecture . 60

5.4 Serval . 62
5.4.1 Naming . 62
5.4.2 Architecture . 63
5.4.3 Service name resolution 64
5.4.4 Application support and adoption 65

5.5 Publish/subscribe systems 65
5.5.1 Principles . 66
5.5.2 COPSS: Content-Oriented Publish/Subscribe Sys-

tems . 70

6 CCN design challenges 75
6.1 Content revocation . 75
6.2 Security . 76

6.2.1 Architectural reliance on cryptography 76
6.2.2 Denial of Service 76

6.3 Privacy . 78
6.4 Accountability . 79
6.5 Paid and sensitive content 80
6.6 Scalability . 80
6.7 Performance . 83

7 Conclusion 85

II Implementation & Testing 89

8 Setup 91
8.1 Introduction . 91
8.2 Test goals . 91
8.3 Related work . 93
8.4 Test methods . 94

8.4.1 Simulation . 94
8.4.2 DASH player . 97
8.4.3 Testbed environment 98

8.5 Experiment selection . 100

9 Experiment 1: Large file download 101
9.1 Motivation and setup . 101
9.2 Code . 102
9.3 Results . 104

10 Experiment 2: Downloading multiple smaller files 109
10.1Motivation and setup . 109
10.2Code . 110
10.3Results . 110

11 Experiment 3: DASH-like CCN download 115
11.1Motivation and setup . 115
11.2Code . 116
11.3Results . 117

12 Other experiments 123
12.1Multi-source CCN . 123

13 Conclusions 125

References 129

Appendix 135

A Figures 135

B Code 137
B.1 DASH over CCN test application 137
B.2 DASH over HTTP test application 141
B.3 Experiment 2 execution script 144
B.4 Experiment 3 execution script 146

Part I

Literature study

1

Chapter 1

Introduction

The internet is commonly considered one of the greatest inventions
of the 20th century; and like all great inventions, any possible im-
provement to it could prove immensely useful to society. Despite
its rapid pace of development, there are still many ways to improve
the security, efficiency and ease-of-use of the internet. One pos-
sible route for improvement is to access content on the internet
by name instead of by address. This technology is alternatively
named Content-Centric Networking (CCN) or Named Data Net-
working (NDN). The Internet Research Task Force (IRTF), which is
the longer-term focused parallel organization to the Internet speci-
fication producing Internet Engineering Task Force (IETF), has es-
tablished a research group that works specifically on Information-
Centric Networking (ICN).

In this thesis, ‘Named Data Networking’ is used to refer gener-
ally to techniques to access content by name on the internet, while
‘Content-Centric Networking’ refers to one specific implementation
of this philosophy.

This dissertation starts out by describing the reasons for up-
grading the current internet stack with alternatives based on NDN,
and the advantages such an approach can bring (chapter 1). Af-
ter that the principles and issues surrounding NDN are described
(chapter 2). Next CCN in particular is treated (chapter 3), followed
by a study of a Voice-over-CCN implementation (chapter 4), a com-
parison of other NDN techniques (chapter 5) and a look at the main
weaknesses of CCN (chapter 6). The main findings are then sum-

3

4 CHAPTER 1. INTRODUCTION

marized (chapter 7). This concludes the first part of the thesis.
The second part is concerned with an in-depth study of the perfor-
mance of CCN. Various research targets and approaches are dis-
cussed (chapter 8), followed by an examination of the performance
of CCN for file transfer in general (chapters 9 and 10), and applied to
adaptive streaming of multimedia content (chapter 11). A few other
experiments round off the experimental phase (chapter 12). Finally,
the findings are discussed (chapter 13).

1.1 Motivation

To understand the context of NDN and CCN, it is important to un-
derstand why people are looking for alternatives to traditional IP
networking. In this section, both the reasons for introducing IP in
the first place, and the reasons for moving beyond IP are discussed.

1.1.1 The origin of IP

Before the introduction of packet switching, networking between
two computers was universally done in the same way as the tele-
phone network was implemented: the problem the networking com-
munity intended to solve was to connect two hosts together by first
setting up a communication path between the involved parties. This
approach is known under the term circuit switching (see figure
1.1(a)).

There are four main issues with the telephone model, however,
that make it unsuitable for data networking [Jac06]:

Scaling It is difficult to successfully scale this approach. Because the
telephone network is a hierarchical system, and because re-
sources need to be reserved in all nodes on the path between
the caller and the callee, the amount of bandwidth necessary
in the links between the top nodes in the hierarchy is consider-

1.1. MOTIVATION 5

(a) Circuit switching

(b) Packet switching

Figure 1.1: Architectural comparison of circuit and packet switching. Source: [Int]

able. In data networking, a lot of bandwidth that was reserved
would not be used, leading to an inefficient use of resources.

Stability The telephone system is a rigid central hierarchy. As a result,
all the nodes (exchanges) in between the hosts, as well as all

6 CHAPTER 1. INTRODUCTION

the links (cables) between them need to be in perfect working
order for a call to succeed between two hosts. Adding more
infrastructure between callers decreases the total reliability of
the telephone network because the system strength is deter-
mined by the weakest link.

Setup time The telephone network first sets up a path between the caller
and the callee, a process that guarantees an uninterrupted
connection. However, this connection setup takes time. If
all you need is to transmit a small file (for example, 5 kB),
the setup time is disproportionately large in comparison to the
time it takes to send the file.

Efficiency A system which can only work in a fixed hierarchical fashion
and which reserves resources all along the way is simply not
an efficient system for distributing (short) messages.

Packet switching (see figure 1.1(b)) fixed these problems. In packet
switching, the data is split into independent packets which each
contain its source and destination address, so they can be routed
individually, at each node, without any prior setup of the connection
(see figure 1.1 for a comparison).

Scaling becomes less of a problem when no resources need to
be reserved, the network only uses the amount of bandwidth that
is absolutely necessary. Because each intermediate node decides
how to forward a packet, the network can recover from link failures
without manual intervention, and more links in the network in-
crease the stability of the network as a whole, instead of decreasing
it because each extra link provides an alternative path for packets
to move along from source to destination. There is no longer a de-
lay to set up a connection. By switching from a link-focused view
to a conversation-focused view, networking between computers was
significantly simplified, leading to big gains in efficiency, reliability
and scalability.

1.1.2 Obsolescence of IP

However, today the conversation paradigm itself is obsolete. In the
early days of networking, computers were big, expensive and static.

1.1. MOTIVATION 7

The main problem that the network architects were trying to solve
was establishing usable links between two computers (hosts) on dif-
ferent networks. Now, however, we spend more time trying to find
out where (on which host) content we wish to access (such as a
web page, a paper or a radio live stream) is located, so that we
can access it. This indirection is a direct consequence of the cur-
rent internet design, and it is unnecessary. Just like the focus
on the telephony model complicated the implementation of effective
networking between computers, the enduring focus on the conver-
sation paradigm1 makes most tasks that are executed today more
difficult. In particular, the following issues arise with the current,
TCP/IP-based architecture [Jac06, MPZ10a, KCC+07, MA11]:

Mobility When packet switching first gained momentum, all com-
puters were big, hulking monsters that were tightly attached to the
ground; now mobile computing is on the rise. The fact that hosts
can move about is something that was not anticipated when the
IP stack was designed and now leads to awkward workarounds (see
section 2.3). The explosion in popularity of smartphones makes this
matter even more urgent.

Caching Often, caching and content delivery networks (CDNs) are
used to shield hosts from the effects of high demand for a specific
resource on the web and to reduce start-up delay, but there are sit-
uations where this is not possible, such as live streaming. A router
may have thousands of different IP ‘conversations’ all trying to ac-
cess the same resource, but the router itself cannot tell, and may
be forced to send the same content up- and downstream thousands
of times. For instance, if 10 users on the same network are watch-
ing the same live stream, the edge router of the network will send
the same requests for content upstream 10 times, receive the same
content 10 times, and distribute it to the 10 hosts. CDNs are these
days also used to distribute live video streams to many users. They
however rely on complicated DNS techniques that can potentially
be replaced by CCN.

1The view that all data flowing over a network is a conversation between two
hosts

8 CHAPTER 1. INTRODUCTION

Complexity The development of new protocols for accessing data
is becoming increasingly complex (for instance: Gnutella, bittorrent,
...). The main reason that creating new protocols is and remains
such a nuisance is that the IP network cares only about paths to
hosts, not about data. To determine how to get the data, one must
therefore first discover the location of that data. If the network itself
moves the focus to data, protocols layered on top of it, as well as
applications can be simplified because they no longer need to worry
about where to get their content.

Name persistence If content is accessed through a certain name,
that name ideally should not change as long as the content is still
available. The fact that many websites are forced to occasionally
rethink their layout leads to a great number of broken links and
assorted difficulty. This would be even worse if content were habit-
ually addressed by IP address (such as 192.168.2.2:80/index.html)
because content providers often switch hosting (and thus move to
new servers, with a different IP). Fortunately, DNS and URL rewrit-
ing provide partial solutions to this problem, but they still fail if the
identifier for the content changes.

Data availability The perception users get from internet services
depends on having high availability and low latency, but this is dif-
ficult to achieve if the requested data is provided by a single host
(in other words, through a single point of failure). Dynamic DNS
and content delivery networks like Akamai can resolve this prob-
lem by allowing the data to be accessible from several servers, but
typically this is not a financially feasible option for small websites,
which means that problems such as the Slashdot effect2 are still
fairly common on the internet.

Authenticity Most of the data on the internet is transferred with-
out a guarantee of origin or integrity. Current methods, which rely
on a Public Key Infrastructure (PKI), provide a form of authenticity,
but they are not ideal because they typically secure the channel over

2The Slashdot effect: When content hosted on a small site suddenly becomes
very popular, causing that server to be overloaded and eventually even crash due
to the spike in demand. See image A.1 on page 135.

1.1. MOTIVATION 9

which the content is served, rather than to secure the data itself (or
even the source). If you have a malevolent ISP, it could substitute
the requested data with data of its own, even if the network connec-
tion was secured using methods like SSL (see, for instance, [Nig08]).
In this model, the security of the data is inherently tied to the se-
curity of the server that hosts it; if the host is compromised, it can
send malicious data over ‘trusted’ links. It also relies on having
secure mechanisms to identify and locate hosts. Also, a piece of
content that has been securely retrieved can still become corrupted
after it has been downloaded, and before it is used (for instance, by
malware).

1.1.3 Research goal

For the reasons discussed in the previous chapter, several projects
have developed over the past decade to try to replace the IP stack
with a new networking stack that doesn’t suffer from these limita-
tions. In the rest of this thesis, these replacements are discussed on
a technical level, and one of them in particular (CCN) is discussed
and dissected in more detail. This thesis therefore starts out as a
domain survey of Named Data Networking technologies, and pro-
gresses into a case study of CCN, in the field of smart multimedia
streaming.

The central research question addressed by this thesis is: Can
CCN provide a viable replacement for the TCP/IP stack?

10 CHAPTER 1. INTRODUCTION

Chapter 2

Named Data Networking

Named Data Networking refers to any internet technology that places
content (‘named data’) centrally, reducing the location of that con-
tent to a secondary role, to improve the efficiency of content distri-
bution.

2.1 Concepts and terminology

These are some of the terms and concepts that are referred to in the
rest of this thesis:

Public Key Encryption In traditional symmetric key encryption,
the same key is used for encryption and decryption purposes. The
disadvantage of this method is that a key needs to be agreed be-
tween the communicating parties in advance. This needs to happen
in such a way that the key cannot be intercepted. Public key en-
cryption solves the problem by using a different key for encryption
and decryption. A person using public key cryptography will have
a private key that they keep to themselves, and a public key that is
available to everyone. Messages encrypted with the private key can
only be decrypted using the public key. Because there is only one

11

12 CHAPTER 2. NAMED DATA NETWORKING

person that holds the private key, only one person can encrypt a
message that can be decrypted with the public key. Also, messages
signed with the public key can only be decrypted using the private
key, which means that messages signed with a public key can only
be decrypted by the owner of the corresponding private key [RSA78].

Cryptographic signatures NDN technologies typically use signing
to ensure the integrity of data. Before sending the data, the sender
generates a cryptographic signature of the data. A cryptographic
signature is a hash of the data, encrypted with the sender’s private
key (see figure 2.1). The signature of the data can be used by the
recipient to verify the authenticity of the data, by decrypting the
signature with the sender’s public key and comparing the result
against the hash of the data. If the decrypted signature matches
the hash of the data, it means that the data came from the correct
source and that it has not been altered.

Figure 2.1: The use of digital signatures to perform content authenticity verification
[Sig].

2.1. CONCEPTS AND TERMINOLOGY 13

Nonce A pseudo-random number used to identify a cryptographic
transaction to make replay attacks1 impossible.

Autonomous System (AS) A collection of connected IP routing
prefixes under the control of one or more network operators with
one routing policy on the internet. Routing between multiple ASs
currently happens using BGP (Border Gateway Protocol, see [BGP]).

Names A crucial concept in NDN is the name of the data. This
is because NDN attempts to widen the gap between an identifier of
data (the name) and a locator of data (the means of retrieval). In IP
networking with DNS, the difference is marginal: an URL is both an
identifier and a locator of data. NDN instead insists that a piece of
data should only ever have a single identifier, even if it is available
from multiple locations. Furthermore, names need to be persistent
and contention-free (no disputes about the ownership of data). If
data names are organized in a hierarchical fashion, for instance,
should the data name be ‘company.project.person.paper’ or ‘per-
son.paper’? What if that person changes company? In other words,
it is very hard to organize data names in a hierarchical fashion if
they are not supposed to change. A different approach is to use a
flat (non-hierarchical) namespace based on a cryptographic hash of
its content. This has the added advantage that this kind of name
can be self-certifying (see next paragraph). Both approaches are
common in NDN technologies.

Self-certifying names A self-certifying name is a name that, by
itself, can be used to verify the integrity and/or the authenticity
of the data. A name can be used to verify the integrity of data if it
includes a hash of the content it describes. In the same way, a name
can be used to verify the content’s authenticity if it includes, for
instance, a hash of the public key of the entity (person or company)
that authored (or published) the data.

1A replay attack involves listening in on a host who is authenticating itself to
another host, capturing all the traffic between the hosts and simply retransmitting
it to authenticate itself as well.

14 CHAPTER 2. NAMED DATA NETWORKING

Distributed Hash Tables If a flat namespace is chosen, traditional
hierarchical routing (like DNS) becomes impossible. Instead, Dis-
tributed Hash Tables (DHT) can be used for routing. A Distributed
Hash Table is a routing system (often used in peer-to-peer networks)
which is decentralized, scalable and largely self-organized. With N
hosts in the network, it allows content to be routed in at most O(log
N) steps with O(log N) states in the routing table, although a trade-
off can be made to store more data in routing tables in return for a
reduced number of steps and smaller latency [ADD+08].

Publish-subscribe NDN technologies can also integrate publish/-
subscribe functionality [CAFR12, CAJ+11]. Usually on the Internet,
a client/server architecture is used where a client requests a file or
a feature, and a servers sends a reply. For many use cases how-
ever, it would be advantageous to instead use push messaging: the
server notifies everyone interested when a resource they care about
becomes available or is modified. For example, e-mail clients need
to regularly poll their server for new e-mail, where it would be more
efficient if the e-mail servers could simply push the e-mail to the
client when it arrives. Publish/subscribe systems allow a client to
subscribe to an event to register its interest in it; when an event
happens, the server publishes the event to all subscribers. Sys-
tems for integrating publish/subscribe mechanisms into NDN are
discussed in section 5.5.

Adaptive Streaming Adaptive Streaming (or Dynamic Adaptive
Streaming over HTTP: DASH, see 2.4.2) is a relatively new phe-
nomenon on the internet but is already being widely adopted in
different forms. It refers to streaming multimedia content in such a
way that the quality-of-experience2 is adapted to the quality of the
network link to the consumer. As an example, if a content consumer
is traveling and watching a video on a smartphone, the server will
stream high quality frames to the consumer when he or she has
good coverage/Wi-Fi connectivity, and will fall back to lower qual-
ity content when switching to cellular internet connectivity or when
coverage drops. Adaptive streaming delivers different quality en-
codings of the multimedia stream to each screen (customer) even

2Quality of Experience (QoE): The perceived quality of the source media as ob-
served by the audience.

2.2. INTERNET ADDRESSING 15

for live broadcast TV streams, instead of relying on multicast tech-
nology to send the same quality stream to each consumer. As most
of the current internet traffic is multimedia in one form or another
[San], analyzing the relation between NDN and Adaptive Streaming
is an important topic that we cover in section 2.4.2.

2.2 Internet Addressing

Addressing in IP In the IP system, each computer typically has
a fixed IP address which is divided in a ‘network’ part and a ‘host’
part. Intermediate routers only need to know the ‘network’ part to
figure out where to send a packet destined for a specific IP address
to. Normally every computer that is connected to the internet has a
distinct IP address, but a technology called NAT (Network Address
Translation) is often used to provide multiple computers within a
small network with the same outside IP address. For more informa-
tion about IP addressing and routing, see [Lin06].

Addressing in NDN Most NDN technologies discussed in this the-
sis propose a different underlying architecture from IP, with the idea
being that globally routable identifiers are not really necessary on a
lower level. Instead, they can be replaced with ‘path labels’, where
the return address of a packet is given by a series of labels, or do-
main identifiers for each node along its path. When a packet is sent
towards a server, the node appends its identifier to the path labels.
The return packet then ‘unwinds the stack’: it uses the last path
label to forward the packet to the first hop towards the client, which
then uses the second topmost label for the next hop, and so on.
Take the example in figure 2.2. Here, the client sends a request to
host X which passes through 2 intermediate domains (let’s call them
D1 and D2). It uses its local address on the client domain as the
return address (A). This address is only routable within the client
domain (much like the 10.x.y.z addresses in IPv4). Each interme-
diate domain has a number of interfaces over which it can receive
and transmit data, and each interface has a label. D1 receives the
request from host A on the interface it calls B, and appends this
label to the return address (labeled src in the figure). It then sends
the packet onward to the next domain, which receives the request

16 CHAPTER 2. NAMED DATA NETWORKING

on the interface it labeled ’C’. This label is added to the src address
and sent onwards to the final domain. It reaches the domain of the
server on the interface labeled D. The return address is thus con-
structed domain-by-domain, and consists only of identifiers that
are exclusively valid within their specific domain. The reply then
has to take the exact same route back. The server domain sends
the packet over the interface it labels ‘D’, and then strips this la-
bel from the destination address. The next domain sends it back
over its interface ‘C’, and strips that label from the destination ad-
dress.This way, the reply can only be sent along the same route as
the request came [HG04].

Figure 2.2: Path-based addressing [HG04]

There are many security advantages to using path-based ad-
dressing as opposed to IP [HG04]:

• The client return address as known to the server is only valid
for the domain the server is in. That means that if an attacker
manages to ‘harvest’ client addresses from a server, they will
be of very limited use to him. This severely limits some types
of exploits on the internet.

• The client cannot spoof his address, which means that attacks
on a server are easily traceable back to its source. This also
means that offending clients can easily be blocked (in IP net-
working, it is common for attackers to spoof their source IP
address to keep servers from filtering them out based on IP
addresses).

• It is easier for transit ISPs to monitor the network for malicious
traffic, by checking if traffic in one direction is followed by traf-
fic on the reverse path (this is not possible in IP, because in IP
the reply can take a different path than the original query).

• Because clients do not have a globally routable address any-
more, it is very hard to compromise the security of a client

2.3. ADVANTAGES OF NDN 17

computer unless one of the servers the client tries to access
is compromised (whereas in IP, if you know the IP address of
your target and the target is online, you can attack it)3.

The security aspect of NDN is discussed in more detail in section
6.2.

The major disadvantage of path-based addressing is that client
addresses are inherently unstable: if the client moves location or if
the inter-domain routing changes, the client address will change,
which poses a problem for traditional transport connections that
require that the underlying address remains the same4.

2.3 Advantages of NDN

NDN is designed to alleviate the problems with the IP infrastruc-
ture as noted in section 1.1.2. Several other advantages have been
identified [MPZ10a, Jac06, LRH10, Lau10]:

Mobility Most NDN technologies, like CCN, greatly reduce the com-
plexity and issues of implementing mobile networking because they
require less state setup. In particular, they do not need a fixed ad-
dress for a host, and allow a response to simply take the reverse
path of the request, which means a mobile host can send requests
to one base station until it detects that the signal of a different
base station is stronger, at which point it starts to send requests
to the other base station. No reconfiguration on the network layer
is required. A concrete protocol for roaming internet over CCN is
discussed in section 2.4.1.

3Unless this is blocked by NAT, a firewall or some other defense
4This is not an issue in most cases, because the relevant protocols do not use

dedicated connections.

18 CHAPTER 2. NAMED DATA NETWORKING

Energy efficiency Servers and routers in the internet expend con-
siderable energy in serving and routing content to end users. The
U.S. Environmental Protection Agency estimates that over the course
of 2011, servers and data centers combined consumed about 100
billion (1011) kilowatt hours [LRH10]. Content-centric networking al-
lows for a more energy efficient distribution of content. The issue of
energy efficiency is explained in more detail in section 6.6.

Latency Many NDN technologies decrease the latency experienced
by end users in typical circumstances. For instance, CCN usually
requires Interests to traverse only a few hops, because of the ubiq-
uitous caching of content. This means that access times (latency)
should decrease for most content compared with IP (especially pop-
ular content).

Consistency CCN and other NDN technologies have a ‘fate-sharing’
property between routing of content requests and retrieval: if the
content can be located, it can be retrieved. This is not always the
case in the current internet today: it may be possible to resolve the
DNS name of a server on the internet to an IP address, but this does
not mean that the server is ‘up’ or that the desired content on that
server is still accessible. This means that with CCN, there will be no
more HTTP 404 (File not found) errors caused by broken links. Note
that it may still be possible that content cannot be found because it
has since been revoked, but at least the user is certain that content
that cannot be found does not exist.

Server load reduction Because the NDN architecture allows and
encourages caching of content in routers, the load on the original
servers will be a lot lighter, and content servers that are suddenly
flooded with requests for popular content should become a thing of
the past. It will also reduce or eliminate the need to work with a
Content Delivery Network for popular content.

Authenticity Instead of trusting hosts or connections, NDN di-
rectly authenticates the binding of names to data using crypto-

2.4. INITIAL APPLICATIONS 19

graphic signatures, which means that better guarantees of authen-
ticity are possible.

Easier content delivery Due to the popularity of content on the
internet, content has to be distributed and cached close to con-
sumers. This is particularly true for popular video files that can be
accessed on demand. Additionally, the internet is more and more
used to deliver live content, as a replacement of traditional television
services. Consumers are turning to tablets, smartphones and PC’s
to watch live streams. The industry is moving to a new standard
called DASH [MA11] for live streaming of audiovisual content. In
section 2.4.2 we discuss the possibility of using CCN in conjunction
with DASH for optimal adaptive video streaming.

2.4 Initial applications

While NDN is generally considered a replacement for the entire IP
stack, its advantages carry greater weight in some areas than in oth-
ers. In particular, the following applications could benefit directly
from NDN and perhaps spearhead its adoption.

2.4.1 LFBL

Listen First, Broadcast Later is a protocol designed for use with
wireless roaming and mobile hosts, based on Content Centric Net-
working [MPZ10a, MPZ10b]. By making full use of the inherent
broadcast nature of wireless communications, it attempts to find as
efficiently as possible a way for disseminating data in a wireless en-
vironment where base stations may move about and hosts can come
and go. In order to do so, LFBL minimizes its housekeeping and
uses data from overheard packets to build up a dynamic picture of
the network on each node, so that each node has a rough idea of its
distance to the other nodes in the network. A host that desires data
will broadcast a request over the wireless network that contains the
name of the data. Each host (node) that receives such a request

20 CHAPTER 2. NAMED DATA NETWORKING

(a) Request forwarding phase

(b) Response forwarding

Figure 2.3: LFBL request/response routing

will then determine if it is an eligible forwarder (if it is closer to
the intended destination than the source of the request). They will
wait a short time to see if another node forwards the packet first (to
avoid flooding), and then broadcast the packet with a header that
includes the cumulative distance from the source. Each node along
the way can thus update their own internal estimates regarding the

2.4. INITIAL APPLICATIONS 21

distance of various other nodes in the network, by remembering the
source distance mentioned in the overheard packets. When the in-
tended destination of the packet receives the request, a response is
generated which will use the same path as the request back to the
source of the request. Unlike true CCN, LFBL does not store routing
prefixes, because of the dynamic environments it is intended to be
used in. Instead, requests are always broadcast to all recipients.

In figure 2.3, an example is shown. Here, the source broadcasts
a request for some data provided by the node labeled "Destination".
Each intermediate node will check if it is closer to the destination
than the sender, wait for a little while and if no-one else forwarded
the request in the mean time, forwards the request using another
broadcast. First, the source broadcasts the initial request to all
hosts in range, Node 1, 3 and 5. Node 5 realizes that it is more
distant from the destination than the source and silently drops the
request. Nodes 1 and 3 wait for a while. Node 1 broadcasts first in
this scenario, which means that Node 3 also discards the request.
Before broadcasting, Node 1 added its own distance from the source
to the request. The request is then caught by Node 2 and Node 4.
Node 4 then forwards the request to the destination. The reply trav-
els over the same line as the original broadcast, using the Pending
Interest Table (see section 3.3).

The architecture of LFBL is based on NDN because of the inher-
ent difficulties of fixed routing tables, and IP address assignment, in
a highly mobile, dynamic environment. It is assumed that not only
the hosts switch location, but the requested data may also travel
between hosts.

2.4.2 DASH

DASH stands for Dynamic Adaptive Streaming over HTTP. It is the
standardized version of the techniques that Apple (HTTP Live Stream-
ing), Microsoft (Smooth Streaming) and others have introduced to
handle delivery of internet (HTTP) video over a network with varying
and unstable performance. With the growing success of web based
video delivery like Netflix, Amazon, Apple, YouTube, this technol-
ogy is rapidly gaining importance. Even “classical” TV providers

22 CHAPTER 2. NAMED DATA NETWORKING

are converting their service delivery model from UDP multicast or
unicast streaming towards HTTP adaptive streaming. Examples in
Belgium include Yelo from Telenet [tel13] and Belgacom’s TV Ev-
erywhere [bel]. Netflix reportedly uses almost one third of the US
Internet traffic every night on its own [San].

With adaptive streaming, a large media file is subdivided in smaller
segments, that are typically a few seconds in length. Each media
file is encoded in different quality levels, with segments for each
quality level being generated. The media player (client) will sequen-
tially download each segment (HTTP GET). With each download, the
client will determine the quality of the connection by measuring the
media throughput on the network link. The client will get the next
segment with the highest possible quality that is sustainable by the
network connection. The selection also depends on device capabili-
ties (screen size, resolution) and user preferences. A DASH encoded
stream comes with a Media Presentation Description (MPD) which
is a XML file that contains the segment relationships and descrip-
tion (timing, URL, bitrate, resolution,..). Before starting to play the
media file, the client will first download the MPD. DASH content
delivery is entirely pull-based, i.e. the client is in control of the
streaming process. As the delivery mechanism is HTTP, media can
be distributed using normal CDNs and caching logic.

As pointed out in [LMR+13b], there are several elements that
DASH and CCN have in common, namely the fact that content is
handled in segments / chunks and that both rely on a client driven
pull approach. DASH representations can be mapped to CCN con-
tent versions. Moreover, the intensive use of CDN caching for DASH
video can be considered as the equivalent to the CCN principle of
caching content within the network. Since the two technologies are
operating at different protocol layers - DASH at application and CCN
at the network layer - they potentially can be combined and lever-
age the advantages of both. An approach is suggested where the
DASH client has a native CCN interface and adopts the CCN nam-
ing scheme (CCN URI) to refer to video segments in the MPD. See
figure 2.4

The client would send a CCN Interest packet that reflects the
desired characteristics of the segment, like bitrate, resolution, lan-
guage. . . within the content name. This fact, combined with the

2.4. INITIAL APPLICATIONS 23

(a) Architecture

(b) Naming Structure

Figure 2.4: DASH over CCN [LMR+13b]

4kB chunk size of CCN, leads to a huge increase in transmission
overhead for CCN compared with HTTP DASH. Moreover, CCN is
less efficient than when the HTTP 1.1 feature of pipelining, i.e. us-
age of multiple simultaneous TCP requests, is used. Nevertheless
these disadvantages might trade-off for the intrinsic advantages of
CCN like caching and implicit multicast support. Further issues are
identified [AVS] that hamper the use of DASH in CCN.

• Naming of data is not aligned with the NDN conventions, in

24 CHAPTER 2. NAMED DATA NETWORKING

that all segments might not share a common prefix

• For video delivery, ownership of the content (and authentica-
tion of clients that have the right to watch) is often linked with
the location from which the content is retrieved.

• The nature of DASH, which estimates the achievable quality by
the download rate, assumes that network conditions are more
or less the same from video segment to segment, which is the
case if the same CDN is being used. This is not compatible
with the CCN concept that location should be of no concern
when asking for content. This might also introduce unwanted
oscillations in video quality. If a standard quality is cached
close to the user, it will be retrieved fast, leading the client
to ask the next segment with a higher quality. If this one is
cached on a remote location, the client will go back to standard
quality.

2.4.3 Other possible applications

Named Data Networking has been proposed for several other appli-
cations where IP would not work equally well:

Sensor networks Sensor networks are made of small devices that
can only spend a small amount of energy on communication.
Since the content of the data that sensors want to communi-
cate is more relevant than the identity of the node itself, a data
centric approach can be beneficial. An approach is suggested
[SRK+03] based on Distributed Hash Tables for identifying the
sensor and the data key. For routing GPSR (Greedy Perime-
ter Scalable Routing), which is a geographic routing system for
multi-hop wireless networks, is used in such a way that the
closest node that can serve or store the request is used.

Vehicle-to-vehicle communications There are many interesting ap-
plications in the field of vehicle-to-vehicle communications such
as information sharing for safety, real-time traffic updates and
similar. V2V communications are also an important aspect of
driverless cars. NDN is of interest here [WWK+12] because it
allows vehicles to directly request the desired data from neigh-
boring nodes (i.e. other vehicles), without the need of an IP

2.4. INITIAL APPLICATIONS 25

layer with all its additional overhead of address allocation and
routing. The key to success will however be to define and agree
upon a common naming scheme that allows the requester to
express exactly what data he wants and suppliers to describe
exactly what they have to offer.

Real-Time applications As already discussed in the DASH section,
applications like video streaming can create a lot of overhead
with NDN. In [YFX12] it is observed that content users do not
frequently change their channel when watching live video, and
that conferencing also takes time. So overall content inter-
est does not change with every chunk. It is therefore sug-
gested to introduce a concept of long-term interests for live
video streaming and (audio) conferencing. This contrasts with
the one-to-one mapping of an interest package with the deliv-
ered data package of NDN. A long-term interest means that
the client ‘subscribes’ to a real-time data stream and keeps
getting the related content packages until he ‘unsubscribes’ or
the lifetime expires. This will not only reduce overhead but
also reduce the memory requirements of the content server.
A drawback is that some of the advantages of NDN might not
be maintained. More in particular, getting the content from
various sources is an issue.

26 CHAPTER 2. NAMED DATA NETWORKING

Chapter 3

CCN

CCN is the NDN content-centric protocol promoted by Jacobson et
al [JST+09]. CCN was created by Jacobson out of his perception
that IP and the surrounding protocols no longer accurately reflect
the most common use cases for the internet, which are content-
oriented, but server agnostic. CCN is an attempt to create a system
where “Content has a name, not a location” [JP09].

CCN is a request/reply architecture where data is cached through-
out the network: a host that desires a piece of data requests the
data by name by broadcasting a request for that data locally. One of
the nodes on the local network can then respond to the request with
data, or forward the request further along the chain. It uses spe-
cial Content Routers that cache content that passes through them
based on its popularity.

3.1 Packet design

CCN features two types of packets: Interest packets and Data pack-
ets (see figure 3.1 for an illustration of their layout). CCN uses a
simple question-answer paradigm: when a host is interested in a
piece of content, it broadcasts its interest in the content using an

27

28 CHAPTER 3. CCN

Interest packet. A node that observes the Interest and has the re-
quested data may respond using a Data packet. Data is only trans-
mitted in response to an Interest, and it satisfies (‘consumes’) that
Interest.

Figure 3.1: CCN packet structure [JST+09]

Interests may also be provided for content that does not yet exist,
such as dynamically generated web pages or video content from
a live web stream. This allows content providers to generate the
requested content on the fly, and to transparently mix cached and
dynamically generated content. Routing in CCN uses longest-prefix
matching (see section 3.2.1) on the content name. Based on the
result of that look-up, a node will either retrieve stored content,
or forward the Interest towards potential sources of the requested
data.

3.2 Naming

As with all Named Data Networking technologies, CCN addresses
content by name, instead of by location. CCN only imposes one re-
striction on names: they must be hierarchically structured (like IP
addresses are). This allows for efficient, hierarchical distributed
routing through aggregation of routing information. To achieve
some compatibility with traditional networks, DNS names can be
used; generally, meaning comes from applications, institutions and
global conventions. For instance,

/uhasselt.be/students/frederik.vanbogaert/docs/CCN.pdf/page28

3.2. NAMING 29

is a valid name, which could refer to this page of this document.

3.2.1 Prefix matching

Because CCN names are hierarchical, prefix-matching can be used
for routing. For instance, if one host requests

/example.com/presentation.pdf

a node that has

/example.com/presentation.pdf/page1

can respond with its data. An example of this is given in figure
3.2. Here, an intermediate router gets a CCN request (‘Interest’)
for some data named /parc.com/videos/other.mpg. The router
does not have that name registered in its FIB, but it does have two
names with a matching prefix: one for /parc.com and one for /
parc.com/videos. CCN uses longest prefix matching, like IP, so the
latter entry is used to make the forwarding decision, and the packet
is forwarded over ‘face’ A1. This routing is analogous to IP routing
based on addresses, as illustrated in the same figure.

Another advantage of hierarchical names is aggregation: a Con-
tent Router does not need to store two separate entries for /example.com
and /example.com/images if requests for both names would both
be sent over the same interface; it is sufficient to store the entry for
/example.com, and let another router further downstream evalu-
ate the rest of the name. This is essential for a stable, scalable
network infrastructure.

1Interfaces are commonly called faces in CCN parlance

30 CHAPTER 3. CCN

Figure 3.2: Routing decisions in IP and CCN routers: a comparison

3.2.2 Name structure

CCN names are subdivided into several components. Names have
to be meaningful to the application, CCN itself only demands that
they are properly structured so that they are routable and can be
aggregated. Names would typically go further than simply the file
name: if a file is sufficiently large, it could not be sent as a single
packet, and would have to be split up. Furthermore, there may be
different versions of the file available. Because everything in CCN is
named, these versions and subdivisions (segments) would also have
names (see figure 3.3). For example, a client may request the file

Figure 3.3: Structure and representation of the data names [JST+09]

/parc.com/videos/WidgetA.mpg

and in response get the first segment,

3.3. ARCHITECTURE 31

/parc.com/videos/WidgetA.mpg/_v3/_s0.

Because the client does not always know the full name of the con-
tent segments he wants to retrieve, CCN names can also be spec-
ified relative to other content. For instance, after getting the first
segment of data, the client could request

/parc.com/videos/WidgetA.mpg/_v3/_s0 RightMostChild

to get the next segment, continuing in this way until all of the file
has been transmitted2.

3.3 Architecture

The architecture involves three main data structures (see figure 3.4)
[JST+09]:

FIB The FIB, or Forwarding Information Base, is used to identify
which nodes to forward intercepted Interest packets to. A similar
structure exists in IP, where it is also called FIB (see figure 3.2).
The CCN FIB stores information about the faces on which a piece
of content can be reached. This may be a single interface or a list
of interfaces, unlike an IP FIB, where entries are always tied to a
single interface.

Content Store The Content Store is a buffer for content. In IP
routers, packets are only buffered until they can be forwarded, and
are then immediately discarded. In CCN, the Data packets are
stored in the Content Store as long as possible, in case the host
receives a request for the same data later on. The Content Store

2The client could instead request the segments directly because the segmenta-
tion rules of the application would probably be known to it

32 CHAPTER 3. CCN

uses a replacement strategy, generally either LFU (Least Frequently
Used), which removes packets that are requested with the small-
est frequency, or LRU (Least Recently Used), which purges the Data
packets that have not been served for the longest amount of time in
case of a tie. The Content Store is similar to application-level prox-
ies in a traditional setup, with the advantage that in CCN this is a
central feature of the network itself, rather than an extension that
violates the separation between layers.

PIT The PIT (Pending Interest Table) tracks Interests that have
been forwarded towards possible sources of content, so that the
returned Data can be sent back to the requester. PIT entries will be
erased once the Data packet is sent back to the requester, or once
a pre-set timeout expires (see section 3.4).

Figure 3.4: The CCN node model [JST+09]

In figure 3.4, we can see that the FIB of this particular Content
Router contains an entry indicating that Interests with names start-
ing with /parc.com should be forwarded over either face 0 or face
1. The Content Store already contains the data with name

/parc.com/videos/WidgetA.mpg/v3/s0

3.4. ROUTING 33

which it cached as a result of a previous Interest. We can also see
that the PIT contains one pending Interest, for content named

/parc.com/videos/WidgetA.mpg/v3/s1

This entry also specifies that when the Data packet for this pending
Interest arrives, it should be sent back over face 0.

3.4 Routing

Once an Interest arrives on an interface, a longest-prefix matching
look-up is done on the content name. Content Store matches will
be preferred, if available. If no matching entry is found in the Con-
tent Store, the PIT will be consulted. If there is already someone
requesting that exact content, the requester is added to the list of
requesting interfaces in the PIT and the Interest will be discarded
because it has already been sent upstream. If there is no match in
the PIT for this content either, the FIB is consulted. If a match is
found, the Interest will be forwarded and the Interest and request-
ing interface are inserted in the PIT. If no match is found in the
FIB, the Interest is discarded. When a Data packet arrives on an
interface, a longest-prefix matching is done. If a match is found in
the Content Store, the data is discarded because it is a duplicate of
what the Content Server already has. If there are PIT matches, the
data has been requested by one or more hosts downstream, and the
data is first added to the Content Store and then sent back to the
hosts in the PIT (see figure 3.5 for an example). Subsequently, the
corresponding entry is purged from the PIT.

Any node with access to two or more networks can serve as a
content router, including mobile hosts that are periodically con-
nected to different networks, which can use their cache to transfer
data between two disconnected areas. Hosts do not need access to
the entire internet in order to exchange data; CCN works equally
well in disconnected local networks.

Because Data packets follow the PIT entries back to the requester,

34 CHAPTER 3. CCN

Figure 3.5: An example CCN request

and because Content Routers discard duplicate entries, data can-
not loop in CCN. Because CCN’s forwarding model is similar to IP’s
forwarding model (see figure 3.2) and uses the same routing se-
mantics (longest-prefix lookup), routing schemes that work for IP
should work for CCN as well with minor adaptations. In particular,
CCN routing can be accomplished using established IGP3 proto-
cols like OSPF and IS-IS [JST+09]. In these routing protocols, all
routers possess information about the complete network topology
and can make independent decisions about the best next hop for
each possible destination in the network. CCN Content Routers can
even be attached to an existing routing infrastructure using OSPF
or IS-IS without any modifications to the existing network or routers
[JST+09], which aids in incremental deployment of CCN within an
AS.

A major difference in the routing between IP and CCN is that in
CCN all nodes send all matching Interests to all of the announcers,
because in CCN a prefix announcement means that some content
with that prefix can be reached via the router that sent the an-
nouncement, whereas in IP the prefix announcement means that
all the hosts with that prefix can be reached through the announc-
ing router. CCN routers will forward Interests to all the routers in

3IGP: Interior Gateway Protocol, a routing protocol for use within an AS
(Autonomous System) http://en.wikipedia.org/wiki/Interior_Gateway_
Protocol.

http://en.wikipedia.org/wiki/Interior_Gateway_Protocol
http://en.wikipedia.org/wiki/Interior_Gateway_Protocol

3.5. TRANSPORT 35

their FIB that announced the prefix, which is safe because unlike
IP packets, CCN packets cannot loop.

For inter-domain routing, it is in the best interest of an ISP to
deploy Content Routers in their network once some of their cus-
tomers start to use CCN to reduce the peering cost (only one copy
of the content needs to be fetched from a different domain, the rest
of the requests can be served from a local cache). This also reduces
the latency their customers experience. The main problems with
inter-domain routing of CCN are intermediate domains that do not
implement CCN. In that case, the edge Content Routers need to
tunnel the CCN requests using ad-hoc UDP tunnels, using a DNS
look-up of the other domain’s Content Router(s) to determine the
IP address for forwarding. This form of routing is a lot less op-
timal than if Content Routing were supported by all intermediate
domains, and may generate considerable overhead for them. To fix
this problem, domain-level content prefixes could be integrated into
BGP. BGP AS-path information allows each domain to construct an
inter-domain topology map for Content, similar to the one for the
intra-domain case.

3.5 Transport

Because CCN operates on top of unreliable network infrastructures,
packets may get corrupted or lost. CCN relies on a system of re-
transmissions to achieve reliability, by having the client retransmit
Interests that are not followed by Data after a certain timeout. This
retransmission is left up to the application itself4. The design of the
network also means that Interests can loop; a special ‘nonce’ value
is used by the routers to identify specific Interests and to allow them
to discard the Interest if it has already been encountered. TCP uses
a ‘window’ of outstanding packets that have not yet been confirmed.
Similarly, CCN also allows senders to send new Interests before the
Data corresponding to the pending Interests has arrived. Unlike
TCP however, CCN does not order its Data responses in the order
in which Interests for them were sent, which means one lost packet
does not affect the speed of the Data stream as a whole. Optimizing

4In some cases, such as live video communication or video streaming, it may
not make sense to retransmit Interests

36 CHAPTER 3. CCN

the transport layers of CCN is one of the focus areas for the CCN
evaluation in section 8.2.

3.6 Data validation

CCN directly authenticates the binding of content to its name, by
using a cryptographic signature in each Data packet over the name,
the content and some additional data useful in verification called
‘signed data’ (see figure 3.1). This way, content publishers can bind
content to names they choose. This contrasts with schemes that use
self-certifying names (such as DONA, see section 5.2) that securely
name content by requiring names to, for instance, contain a crypto-
graphic digest of the content. CCN names can be authenticated by
anyone who cares to do so: the signatures embedded in packets are
public-key signatures and anyone can verify that a name-content
binding was signed with a particular key. Each signed Data packet
contains the information necessary to retrieve the public key that is
used to verify it (see figure 3.6).

Figure 3.6: CCN packet example, from a Wireshark trace, showing the embedded signa-
ture. Note that CCN is running on top of UDP in this example

To verify the content, the consumer needs to request the public
key of the publisher, which in CCN is just another piece of content,
which is named according to a naming convention. Simply gener-
ating a key as CCN content generates a certificate of it, binding a

3.7. CONTENT PROTECTION 37

name to that key as authenticated by the publisher. Because con-
tent is organized in terms of hierarchical namespaces, CCN allows
the signing policy and keys to be attached to particular namespaces
so that the authorization at one level is accomplished by a signa-
ture from a higher level (see figure 3.7). For instance, an associate
of PARC could be authenticated by the organization (PARC) itself.
If the key for parc.com is known, it can then be used to sign its
employees.

Figure 3.7: CCN trust establishment associating content namespaces with publisher
keys [JST+09]

3.7 Content protection

CCN controls access to sensitive content by encryption. Content
protection is organized by an application-specific key distribution
scheme to allow applications to keep full control over how they en-
code and distribute keys and content. Following is an example of a
client, Alice, buying some secured content on a web page owned by
Bob:

1. Alice visits the (unsecured) web page of Bob

2. Alice sends a log in request to a web page of Bob containing Alice’s
public key

3. Bob verifies that Alice is a registered user of the web site.

4. Bob sends a challenge containing the public key of Bob, encrypted
using the public key of Alice

38 CHAPTER 3. CCN

5. Alice replies with the correct answer to the challenge of Bob, proving
that Alice has Alice’s private key. This reply is encrypted using the
public key of Bob. At this point, both parties are confident that they
are talking to the right partner. Alice is logged in.

6. Alice buys content, named C, on the site of Bob

7. Alice sends payment to Bob

8. Bob provides a key to Alice to access content C

9. Alice wants to access content C: Alice sends a request containing
a request for C and a random nonce value, encrypted using the
key provided earlier (the nonce ensures that the content will be ad-
dressed under a different name each time, to prevent replay attacks)

10. Bob decrypts the request, extracts the content name and sends the
encrypted content back to Alice

Chapter 4

VoCCN: A case study

VoCCN [JSB+09] is an application level architecture for voice con-
versations. It is a mapping of the VoIP protocols1 onto CCN, in order
to demonstrate that CCN works well in the traditional IP territory of
host-to-host conversations, while preserving the security, interop-
erability, and performance of VoIP. The architecture consists of a
SIP/RTP implementation over CCN which provides interoperability
with VoIP using a stateless IP-to-CCN gateway.

4.1 VoIP

VoIP (Voice Over IP, commonly known as IP telephony) uses a com-
plex infrastructure to set up a link between two (or more) partic-
ipants. Each participant in the conversation has a VoIP provider
(SIP gateway) that keeps track of where they are (the current IP ad-
dress where they can be reached) at any given time. In order to
set up a call, participant A’s VoIP provider makes a connection with
participant B’s VoIP provider, which then forwards the connection
request to participant B. This link, involving two VoIP providers,
is called the signaling path. It is necessary in order to locate the

1VoIP is not strictly a protocol in itself, it is a suite of different protocols such
as SIP and RTP, implemented on top of IP.

39

40 CHAPTER 4. VOCCN: A CASE STUDY

other participant(s) in a conversation, and to set up a connection
even when there are restrictive network devices such as firewalls
or NAT devices on either participant’s network. Once the necessary
configuration has been completed over the signaling path, the par-
ticipants can communicate over a direct, bi-directional path known
as the ‘media path’ (see figure 4.1(a)). In order to provide security
(and privacy), the conversation phase (which uses RTP) needs to be
secured. RTP is usually secured by wrapping it in DTLS2, a variant
of TLS for use over UDP-based protocols which relies on public key
infrastructure (PKI). An alternative solution is to use SRTP, which
secures RTP by using symmetric key encryption [VoI]. The key for
SRTP needs to be exchanged beforehand, for instance in the signal-
ing path. In this case, the SIP conversation needs to be encrypted
as well (usually using DTLS).

Because of the separate signaling and media paths, the needed
provisions for security and the architectural requirements, VoIP is
a complicated technology that relies on multiple independent stan-
dards and is quite difficult to implement. This is the result of a
fundamental mismatch between (simple) user goals (such as calling
a friend), and the possibilities of the network (sending packets to a
pre-specified IP address).

(a) VoIP architecture (b) VoCCN architecture

Figure 4.1: Architectural comparison of VoIP and VoCCN [JSB+09]

4.2 CCN Implementation

VoCCN (Voice Over Content Centric Networking) is an implementa-
tion of SIP and RTP over CCN in a way that is secure and compatible

2http://crypto.stanford.edu/~nagendra/projects/dtls/

http://crypto.stanford.edu/~nagendra/projects/dtls/

4.2. CCN IMPLEMENTATION 41

with existing implementations. The design of VoCCN aims to remove
most of the complexity of VoIP by allowing the data to flow directly
to the interested observer (see figure 4.1(b)). There are some diffi-
culties that need to be overcome to implement the voice protocols
on top of CCN:

Service contact point In order for SIP to operate, a way is needed
for an Interest to get access to one particular service on one
particular host. This service contact point would be similar
to an IP address and port number in TCP/IP. In other words,
it is a way to contact the destination directly, an operation
normally avoided in CCN.

On-demand publishing On-demand publishing is the ability to ex-
press an Interest in content that has not yet been published,
and to route that Interest to a publisher that creates the ap-
propriate content in response to the Interest (similar to dy-
namically generated web pages on the world wide web). That
content is then sent back in response to the Interest.

Bi-directional conversation flow IP packets contain the informa-
tion of their origin and their destination, which means bi-
directional conversation is trivial to implement. In CCN, how-
ever, that is not true: one participant sends an Interest, the
other participant replies with Data. Because voice conversa-
tions are rarely one-way, we want both participants to be able
to route Interest packets to each other. This requires both
on-demand publishing of data, and an algorithm that allows
both participants to arrive at the same name for all the content
that either one of them publishes, and those names must be
routable based on the available data. Also, the names must be
unique, or else there is a risk of receiving a Data packet from
a previous conversation out of an intermediate cache instead
of a Data packet from the current conversation.

In VoCCN, SIP INVITE messages are mapped to CCN Interest
packets, in such a way that the entire INVITE is included in the
content name of the request. The name also has an appropriate
prefix to allow it to be routed towards the callee. For instance, if all
messages with a unique name starting with

/example.com/SIP/Bob

42 CHAPTER 4. VOCCN: A CASE STUDY

will be routed to Bob, Alice could send a CCN Interest packet with
a name like

/example.com/SIP/Bob/invite/352356234/example2.org/users/Alice/SIP/352356234/
INVITE/. . .

Such a name would be routed towards Bob, and would allow Bob to
route Interest packets back to Alice. The callee unpacks the name
and generates a SIP response as a Data packet satisfying the Inter-
est. This data exchange in SIP also includes a seed for a function
that generates names to use for RTP packets between the partici-
pants within the INVITE message. A more detailed example of the
exchange is displayed in figure 4.2.

Figure 4.2: An example VoCCN conversation [JSB+09]
EpkB(sk) is a symmetric key that has been encrypted with the public key of Bob.
Esk(message) is the message encrypted with the symmetric key

Each host keeps multiple outstanding Interests, similar to a win-
dow in TCP or pipelining of requests in HTTP, to achieve better per-
formance. The number of outstanding Interests is typically kept
constant.

4.3. SECURITY 43

4.3 Security

In order for people to communicate with comfort, a VoCCN con-
versation should be secured. As mentioned in section 4.1, VoIP
typically implements this by using PKI for the negotiation phase,
followed by symmetric encryption for the actual conversation. In
CCN, the SIP INVITE is encrypted using PKI, and encapsulated in
the CCN Interest name (see figure 4.2). The (encrypted) SIP INVITE
also contains a key exchange message using the MIKEY key ex-
change protocol3, which is used to establish a key to use with the
symmetric encryption of SRTP.

4.4 VoIP interoperability

Despite the different underlying transport architecture, VoCCN re-
mains quite close to VoIP: both use RTP and SIP, and both use sim-
ilar methods to secure the content. Because of this, it is possible to
construct a stateless gateway that maps VoIP into VoCCN (and vice
versa) [JSB+09]. The VoCCN-VoIP gateway, which also serves as a
SIP Proxy, translates both SIP and SRTP packets between the dif-
ferent transport protocols. When translating a packet from VoIP to
VoCCN, the proxy bases the name of the CCN packet on the header
of the inbound packet. The gateway caches these packets until an
Interest arrives for them.

To illustrate how the interoperability works, consider one partic-
ipant called Alice, who is using VoIP, and another participant called
Bob who is using VoCCN. Alice sends a SIP INVITE to Bob which
passes through the VoIP-VoCCN gateway. The gateway uses this
INVITE to generate a CCN Interest packet containing the INVITE
and sends it on towards Bob. Bob replies using a Data packet,
which is translated by the gateway into an UDP packet. Because
the IP addresses of the participants are included in the SIP and
RTP packets, the gateway does not need to ‘remember’ who to for-
ward the SIP response to, but can derive the IP address of Alice
from the SIP packet. Once Alice gets the SIP response, the involved

3http://tools.ietf.org/html/rfc3830

http://tools.ietf.org/html/rfc3830

44 CHAPTER 4. VOCCN: A CASE STUDY

parties can begin to communicate directly using RTP. Alice and Bob
both send SRTP packets to the gateway. If an SRTP packet arrives
from Alice, the gateway stores it until an Interest arrives for it from
Bob. The gateway also generates Interests for Bob’s SRTP packets.
Bob replies with Data packets, which the gateway forwards towards
Alice. Because the VoIP and VoCCN packets can be derived from
each other, the gateway itself does not need to keep any state apart
from queuing packets until an Interest arrives for them. The key
exchange and media path encryption are end-to-end (providing that
it is supported by the VoIP client); the gateway only plays a role in
setting up the security of the Signaling path. At the VoIP end, this
is done using traditional methods between Alice and the gateway.
The gateway then signs the message and sends it on into the CCN
infrastructure.

4.5 Mobility

One of NDN’s supposed advantages is a better support of host mo-
bility. In this discussion we use the term Mobile Node (MN) for a
host that changes its content router (CR) in the middle of a conver-
sation, and the conversation partner is labeled the Correspondent
Node (CN). The standard VoCCN protocol as described in [JSB+09]
makes no provisions for the mobility of the hosts. This can cause
certain problems in a conversation between two mobile hosts [lLZ+12]:

Figure 4.3: Problems with a Mobile Node and CCN [lLZ+12]

4.5. MOBILITY 45

Outstanding Data Packets Data packets can still be routed back
to the MN, provided that the client re-sends the relevant In-
terest packets, by following the Pending Interest Table entries
set up by the new Interest. However, this causes extra latency,
requires retransmission of Interests, and increases resource
consumption.

Interests from the CN Interests from the CN will not reach the MN
at its new position because they are sent with the wrong rout-
ing prefix. In practice, this would mean that the MN will still
hear the CN, but not the other way around.

These problems are pictured in figure 4.3.

To alleviate the second problem, it is sufficient that the MN sends
an Interest containing a SIP re-INVITE message with the new prefix
to the CN. This gives the CN the opportunity to send its Interests to
the new prefix. This setup is illustrated in figure 4.4 (compare with
4.2).

Figure 4.4: Dealing with the MN’s (Alice’s) changing prefix [lLZ+12]

This approach still has disadvantages: it will result in a large
handoff delay, which is unacceptable in an application that requires
a low delay, such as voice communication. The delay is caused by

46 CHAPTER 4. VOCCN: A CASE STUDY

the fact that the new name prefix needs to be registered. Also, the
Interests sent by the CN between the handoff and the arrival of the
re-INVITE message will be lost. To alleviate this problem, a more
complex handoff procedure may be adopted: a new name prefix is
allocated to the MN before handoff happens, based on link-layer
indicators such as relative wireless signal strength indicators.

1. The MN detects that a different access point’s signal strength
is rapidly increasing while the signal strength from the current
access point is decreasing.

2. The MN sends a message to the current Access Router (AR)4

to find the new AR for the new access point, including the new
content name prefix.

3. The MN sends a FBU (Forwarding Base Update) message to the
old AR to redirect traffic to the new router.

4. The old router contacts the new router to configure the hand-
off.

5. The new link becomes active: the old router starts to forward
new packets from the CN towards the new router, through
which they reach the MN.

6. The MN sends the re-INVITE message to the CN.

7. The CN can now send its new Interest packets directly to the
MN.

This is illustrated in figure 4.5(a). The routing paths during the
different stages are shown in figure 4.5(b). In the latter picture,
the ‘during handoff’ path designates the path taken by Interests
between the moment the MN switches links and the moment the
CN receives the SIP re-INVITE message.

This approach was tested in several scenarios and proved to have
a much lower delay and retransmission of Interests than the simpler
method [lLZ+12].

4Access Router: First-hop Content Router.

4.6. EVALUATION 47

(a) The transition process

(b) Interest routing before, during, and after Access Point switch-
ing

Figure 4.5: Seamless mobility provisions in VoCCN

4.6 Evaluation

The VoCCN architecture, as described above, has been implemented
by Jacobson et al. [JSB+09]. The implementation works perfectly,

48 CHAPTER 4. VOCCN: A CASE STUDY

and performance is said to be similar to the UDP-based protocols.
A small fraction (less than 0.1%) of the packets were dropped by
the implementation for arriving too late. The VoIP-VoCCN gateway
was not implemented. Another team has implemented and tested
VoCCN in situations of varying mobility, with generally good results
[lLZ+12].

VoCCN has some advantages over VoIP [JSB+09, lLZ+12]:

• Content routing supports multi-point routing, so the request
can be easily routed to all the places it might be answered (cell
phone, home phone, home computer, ...), without requiring the
complex infrastructure that is necessary to support it over IP.

• VoCCN is architecturally simpler and more scalable than VoIP
because it does not require any SIP proxies.

• Because of its architectural simplicity and content-oriented fo-
cus, it is relatively easy to add advanced services such as voice-
mail, call logging and recording, and conference calling.

• With the changes discussed in section 4.5, VoCCN can be used
in situations where the user is highly mobile (for instance, on
a train).

However, the fact that Interests need to be generated for each
piece of RTP Data, even if no data is actually available, does increase
the overhead of the protocol on the network. This can be alleviated
using Publish/Subscribe systems for real-time protocols like these
(see section 5.5).

Chapter 5

Alternative NDN
technologies

5.1 TRIAD

TRIAD, an acronym for “Translating Relaying internet Architecture
integrating Active Directories”1, is a proposed new internet archi-
tecture that works on top of IP [CG00b]. It uses “Content Routers”
(CRs) to route a request for content by name as part of a ‘Content
Layer’ that sits between the Network and Transport layer. The Con-
tent Routers provide DNS name request forwarding, and distribute
information regarding name reachability through name-based rout-
ing in order to provide network-integrated support for content rout-
ing, caching, content transformation and load balancing.and Inde-
pendence between address realms.

TRIAD was born from the observation that in order to connect
to a website, a completely separate, and sometimes expensive, DNS
lookup phase to find the IP address of a server must be performed
first. This step can easily be the dominant delay in the delivery of
content to a user. Where in the IP and DNS model, server lookup,

1The authors also joke that it may also stand for Time to Rescue the internet
from Address Depletion[CG00a]

49

50 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

server connection and content retrieval are largely separate, in TRIAD
they are integrated using a protocol called DRP, or ‘Directory Relay
Protocol’. A DRP request is similar to a DNS request, but instead
of a domain name it incorporates the entire URL of the desired con-
tent, along additional information (referred to as ‘cookies’). In addi-
tion, DRP contains TCP connection information such as a sequence
number, port information and TCP options, allowing it to function
as a TCP connection setup protocol. Because of this, the two steps
of server location and connection establishment are merged into a
single client-side round-trip (see the comparison in figure 5.1).

(a) DNS/TCP data location and retrieval

(b) TRIAD data location and retrieval

Figure 5.1: A comparison of DNS/TCP (top) and TRIAD (bottom) methods for content
location and retrieval

The end-to-end identification of a host interface2 or a multicast
2The notation host interface is used, because a host can have multiple interfaces

5.1. TRIAD 51

interface is a hierarchical DNS name. That name is used for all
identification and authentication of hosts. No other globally signifi-
cant addresses are necessary. TRIAD therefore does not rely on IP
addresses being globally unique. Relaying of packets is done by a
new protocol called WRAP, or ‘Wide area Relay Addressing Protocol’,
a path-based addressing protocol that exists as a shim between IP
and transport protocols. It carries a pair of internet relay Tokens
(IRTs), the forward token and the reverse token, to extend address-
ing beyond IP. These tokens are path labels of WRAP, identifiers of
network interfaces only routable within one specific network (see
section 2.2 for a description of path-based addressing).

In this architecture, replicated content is supported through hi-
erarchical transparent caching of not just names, but also content
itself, which minimizes the damage from an explosion of demand in
popular content without requiring any proxy configuration or ad-
hoc measures. Caching is done in a CR by forwarding DRP packets
from clients with the CR’s own source address, allowing the caching
CR to store the content in its cache before forwarding it to the client.

TRIAD also inherently supports single-source multicast content
distribution. A client wishing to join a multicast session sends to
name lookup to the source of the session, which returns the infor-
mation necessary to join the session, with the necessary state being
established along the path.

Dynamic routing on content names in TRIAD is done by rout-
ing on name suffixes. The protocol to do this is called the ‘Name-
Based Routing Protocol’ (NBRP). Content servers advertise the con-
tent names with an associated path of content routers. This is ac-
companied with rough load information to allow routing based on
the current load of intermediate nodes. Content routers distribute
routing updates to each other. This allows the routing to evolve with
the network topology, and name resolution and packet forwarding
are ‘fate-sharing’ operations: if one works, the other will as well. In
order to make name resolution scale for millions of (not necessarily
hierarchical) domain names, routing paths are aggregated to dis-
tribute updates to many different names as a single update. Most
names map to a small number of aggregates, and names in an ag-
gregate have an equivalent topological location. CRs learn about ag-

which each have a different address, like in IP

52 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

Figure 5.2: An example of domain name aggregation for content routing [Gri]

gregate memberships by sending queries towards their creator (see
figure 5.2). Experimental results suggests that this system scales
at least as good as BGP [CG00b].

TRIAD can be easily, and incrementally, deployed into the cur-
rent internet architecture because of its backwards compatibility.

5.2 DONA

DONA, short for “Data Oriented Network Architecture”, is a content-
centric architecture explicitly designed to address three problems
from the IP architecture: persistence, availability and authenticity
(see 1.1.2). DONA’s authors argue that the main step that is nec-
essary to resolve these issues is to change the way internet names
are structured and resolved [KCC+07]. To do this, DNS names are
replaced with flat, self-certifying names and DNS name resolution is
replaced with a name-based anycast primitive on top of IP. As such,
DONA is essentially a shim between the network (IP) and transport
(TCP/UDP) layer. It enforces a strict separation of naming and name
resolution, where the naming provides persistence and availability,
and name resolution guarantees authenticity.

5.2. DONA 53

5.2.1 Naming

Unlike IP, DONA chooses to route based on flat, self-certifying names.
This means names are invariant, and provide for easy authentica-
tion. The downside to such names is that they are hard for users to
recognize; as such, it is expected that users use their own names,
which are mapped onto DONA names using some third-party map-
ping system (similar to how the DNS system provides a mapping
of user-friendly domain names to IP addresses). One such naming
concept for user-understandable names is proposed in [FSLL+06].

DONA introduces a new naming scheme, based around the ac-
tors, called principals, that use the network. Each principal has his
or her own public and private key. Content created by a principal is
given the name P:L, where P stands for the hash of the public key of
the principal, and L is a label the principal assigns to the content,
which is unique for that principal.

Each datum comes with metadata, which includes a principal’s
public key and the principal’s signature of the data. A signature
is a hash of the data, encrypted with the principal’s private key
(see figure 2.1 on page 12). The signature of the data is used to
verify the authenticity of the data by decrypting the signature with
the principal’s public key, and comparing it against the hash of the
received data. If the decrypted signature matches the hash of the
data, it means the data has not been altered while transiting the
network. In this way, the architecture of DONA inherently meets
the authenticity requirement.

An alternative naming method is used for the special case of
immutable data: data that cannot be altered once published. In this
case, the second part of the name, L, is a hash of the contents of the
data. This effectively ensures its integrity: if the data changed, the
name would change as well. In this way, the client does not need
to rely on the principal to ensure the authenticity of the data. For
immutable data, the principal is simply a distributor of the data,
not the owner.

There is no connection between a principal and the hosts that
store its data: a principal p authorizes an entity to serve his data

54 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

(see next section). This authorization has an expiration date (TTL).
If the owner moves his hosting, he or she simply authorizes a new
host to host the content and lets the old host’s authorization expire.
The name of the data does not change in this process, so the name
will always identify the proper content, which means there will be
no more ’broken links’.

5.2.2 Name resolution

To request data by name, one of two systems is used:

Lookup-by-name This method is used by DNS, it returns the location of a nearby
copy by looking it up in a distributed database.

Route-by-name In this method, the routing protocols itself are designed to find
the shortest path to content and route around failures. This
method is used by both TRIAD (see 5.1) and DONA.

DONA introduces a new class of network entities called Resolu-
tion Handlers (RHs). There are two kinds of operations supported
by these RHs: FIND(P:L) and REGISTER(P:L). When a client issues a
FIND(P:L) command, the RH routes the request to the nearest copy.
The REGISTER(P:L) command is used to set up the state to allow
RHs to route requests for this datum. Each domain or administra-
tive entity has one logical RH. A Resolution Handler of X RHx is the
provider/customer/peer of RHy if and only if X is the provider/cus-
tomer/peer of Y in the context of AS-level relationships3. An RH
uses the local policy, which is consistent with the domain’s peering
agreements of BGP (see [BGP]), when processing FINDs and REGIS-
TERs.

A client knows the location of its local RH through local config-
uration, possibly using some configuration protocol such as DHCP.
A machine authorized to serve content with the name P:L sends a
REGISTER(P:L) message to its local RH. Registrations can also look
like REGISTER(P:*) if the host is serving all of the data associated

3AS: Autonomous System

5.2. DONA 55

with this principal, or if it will forward all the incoming find packets
to a local copy. The RH maintains a registration table that maps a
content name to the next hop, along with the distance to the copy
(using some custom metric, such as the number of hops). There are
separate entries of the type P:*. In response to a FIND(P:L), a RH will
use longest-prefix matching: it first searches for a match of the type
P:L; if none is found, it searches for a P:* match. If the RH does not
have any match for the content, the FIND will be forwarded to its
parent. For immutable data, requests can also look like FIND(*:L).

If a REGISTER(P:L) message is received from a client, the mes-
sage is not forwarded unless the RH does not yet have any entry for
P:L or the REGISTER comes from a copy closer to the RH than the
previously registered one. If either of these situations is the case,
the RH will update its registration table and forward the message to
its parent and peers, so that they can update their own registration
table, if necessary (see figure 5.3). If a REGISTER is received from a
peer, it will be forwarded or not based on the local policy. In order
to prevent abuse, REGISTER messages need to be authenticated.
To do this, the RH issues a challenge with a nonce. The client then
signs the challenge with the private key of the principal, so that the
RH knows that the host is authorized to serve the content (by de-
crypting it with the principal’s public key). However, this method
requires a host to know the private key of the principal, which is
usually not desirable. Therefore, it is also possible to sign it with
another key, and include a certificate from the principal authorizing
the other key to sign this piece of data. When forwarding a REGIS-
TER, a RH will sign it itself, so the receiving RH knows that it came
from a trusted RH. The signatures of all the RHs along the path
are included with the message, along with the cost from each RH
to its previous hop, before sending it on. REGISTER messages have
an expiration date (TTL), and must be periodically refreshed. There
is also an UNREGISTER command, for when a host wishes to stop
serving a particular piece of content.

A FIND(P:L) message is a simple shim between the network and
transport layers. They also serve to initiate a transport exchange,
and ensure that a packet reaches the appropriate destination. If a
designation does not exist, the FIND will reach a tier-1 AS and fail
to find a record. In that case, an error is returned to the source of
the FIND message.

56 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

Figure 5.3: An example of content registration in DONA

The only change needed to existing protocols to support these
messages is that transport protocols need to bind to names in-
stead of addresses. It can also significantly reduce the complexity of
application-layer protocols: for instance in HTTP, the most impor-
tant parts are the URL and the headers. The URL can be replaced
by the DONA name because the data is named in a lower layer, and
the headers can sometimes be included in the name (such as a sep-
arate name for each language version, which removes the need for
a ‘Language:’ header).

5.2.3 Path-based addressing

DONA can use a different form of internet addressing instead of
relying on IP. It removes pressure on lower-level addressing struc-
tures by providing a mechanism for path discovery separate from IP
and enables IP to use path labels rather than globally routable ad-
dresses (see section 2.2). Path labels are a chain of domain-specific
addresses that do not have any meaning outside of that particular
domain. A client sends a FIND to his RH using his domain-specific
address as the source address. The RH then adds its own address
on the next-hop network to this address before sending the mes-

5.2. DONA 57

sage on. At each hop, the next-hop address is appended to the
source address. Then, when replying, the reply is sent back over
the same path, following addresses back down the chain, ‘peeling’
off one layer of addresses at each RH. These per-hop addresses can
be quite short, because it only needs to select between a few possible
next-hop domains (for instance, if an RH has only 4 distinct inter-
faces, the per-hop address could be just 2 bits). The inter-domain
routing tables in this approach are quite short, just enough to for-
ward per-hop instructions to the next-hop AS. There is no longer
any globally meaningful address; DONA FIND/REGISTER messages
are necessary for establishing end-to-end connectivity. Endpoints
are responsible for detecting AS-level path failures and need to re-
send the FIND on failure.

5.2.4 Security

Several attacks are possible against DONA, some of which can be
made difficult or impossible by the architecture itself, and others
which need external mechanisms to be resolved.

Denial-of-Service DONA does not provide any specific mechanisms
to counter DoS attacks, but leaves it to IP-level mechanisms to re-
strain unwanted packet streams that overwhelm a RH. Also, if path-
based addressing is used, DoS attacks will be much harder to suc-
cessfully execute (see section 2.2).

Resource exhaustion attack Resource exhaustion attacks can
be prevented by having providers place contractual limits on cus-
tomers to restrict the amount of FINDs and REGISTERs they can
execute over a given period.

Malicious RH A malicious RH could refuse to forward FINDs and
REGISTERs, which is a failure of the AS. It could also forward REG-
ISTER messages overheard from other RHs. This can be stopped by

58 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

including the hash of the public key of the next hop with a REG-
ISTER message, after which any RH receiving a REGISTER with a
faulty hash can simply ignore that message. Another way a mali-
cious RH can do damage is by simply refusing its clients service.
There is a proposed extension to allow clients to request access to
other copies of data than the closest one, which would mitigate this
risk, unless the RH lies on the path to all the copies of the content.
In all of these cases though commercial pressures should ensure
that any problems get fixed quickly. RHs are commercially related
to the clients they serve (nobody offers a service, like internet rout-
ing, for free), and a client can presumably switch to a different RH
if the current one does not perform as expected.

Key compromise As in CCN, key compromise is perhaps the biggest
risk because the design is very key-centric. There is no remedy for
this in DONA, but third party key revocation lists could be used, in
combination with key status query protocols.

5.2.5 Applications

DONA can be employed to significantly facilitate existing problems
on the internet:

Server selection Each server authorized to serve P:L sends a REG-
ISTER message to its local RH. DONA will route any request for this
content to the closest server. These different servers could all be
part of a content delivery network, or part of a P2P infrastructure.

Mobility A roaming host unregisters itself from one location and
registers itself again at the next location. Subsequent FIND requests
will then be routed to the new location once the new registrations
have taken effect. If there is a sudden loss of connectivity, there
may be a wait until the previous register expires.

5.3. CONTENT-ORIENTED TRANSPORT PROTOCOL 59

Multihoming A host can register with each local RH; a multi-
homed domain forwards REGISTER messages to each provider. FIND
requests can then use multiple paths.

Session Initiation Session management protocols such as SIP are
highly compatible with DONA, with SIP INVITE messages mapping
perfectly onto DONA FIND messages, and SIP REGISTER messages
mapping effortlessly onto DONA REGISTER messages.

Caching A node can support this by changing the source IP of a
FIND packet to its own IP, so that the return data goes through this
node (if path-based addressing is used, this is always possible with-
out changing the packet, because the reply takes the same route
as the request). The node can then install this data into its cache
before forwarding it, with some suitable timeout. For each FIND
request, the cache is examined; if a cache hit is found, it can re-
spond directly to the source IP. If the alternative addressing method
is used (see 5.2.3), caching is trivial because all the return data
travels over the same route.

5.3 Content-Oriented Transport Protocol

The concept of Content Oriented Transport Protocol (COL4) [ZN11]
starts from the observation that a clean-slate architecture like CCN
is not compatible with the current Internet and is therefore unaf-
fordable and undesirable. COL4 therefore proposes to maintain the
IP layer to replace the transport layer (TCP) with a new header. This
new transport protocol is referring to the content name. By doing
this, basic packet inspection could already identify the content of
the packet while routers that do not support COL4 can fall back to
IP forwarding. The essence of COL4 is that by having the content
identified at transport layer, routers can make intelligent decisions
and advise better locations for content retrieval than the original
packet destination, without having to rely on DPI (Deep Packet In-
spection). At the same time, care is taken that the new protocol

60 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

can co-exist with TCP and that the retransmissions and congestion
avoidance characteristics of TCP are preserved in the new protocol.

5.3.1 Naming

In COL4, content is identified by its publisher , its name and ver-
sion. The publisher is a globally unique name that needs to be reg-
istered, similar to a domain name in the internet. The name can be
allocated by the publisher, although the paper also suggest unique
names that represent the same content that is available from differ-
ent publishers. Content requests are allowed to be ambiguous, by
omitting the publisher to get the named content from any publisher.
Also the version number can be ambiguous to get any version newer
than the specified one. COL4 also supports the partial transfer of
content, which are called partitions. A partition is a minimum unit
of content. This is considered as being interesting for video delivery
in chunks, although COL4 puts limits on the number of partitions
that content can have and requires that this number is known up-
front, making it hard to apply for live streaming.

5.3.2 Architecture

COL4 argues that the current sockets based on IP address and
TCP/UDP ports are too much a constraint for realizing Content Cen-
tric Networking and proposes a new transport layer protocol over IP,
based on following principles: remain

• Compatible and be able to be deployed incrementally.

• Abandon socket addresses, replacing those with content nam-
ing and connectionless

• As being a transport protocol over IP, it has the have the char-
acteristics of TCP with respect to congestion control.

5.3. CONTENT-ORIENTED TRANSPORT PROTOCOL 61

As other Content Centric Networking approaches, in-network han-
dling of content is essential. Intermediate devices (routers) should
be made aware of the content they are transporting, and this with-
out relying on high computational techniques like DPI. COL4 does
this by placing the content reference in a new header that is on top
of IP, replacing as it where TCP or UDP. See figure 5.4

Figure 5.4: COL4 Header. Source: [ZN11]

This allows routers that are not COL4 aware can simply ignore
the new headers and forward packets based on IP address. The
COL4 header is used for four primitives: availability announcement,
content request, content transmission and transfer control.

• A content host sends availability announcement to neighbor-
ing nodes in the network. These nodes can decide to forward
the announcements or take part in the content caching. To en-
sure that no announcement loops are created, an incremental
weight is added to the announcement message so that routers
who have a cached copy will not forward the announcement.

• Content request can be specific or ambiguous, complete or
partial (asking for a partition).

• Content transmission is done in unit of partitions which may
require several packets. The header is identifying the content
and can be more than 500 bytes. To reduce the overhead only
the first message will have this complete header including a 16
bit hash, while consequent messages will only carry this same
hash.

62 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

• COL4 adopts TCP - like congestion control and uses Explicit
Congestion Notification (ECN)

5.4 Serval

Serval [NSG+12] goes one step further in transforming the tradi-
tional host centric internet. Instead of focusing on content, Serval
is a Service Centric Networking technology. Similar to CCN, it has
the ambition to replace the TCP/IP networking stack with some-
thing more suited for today’s needs. Serval however starts from the
observation that the internet is increasingly used to access services
and not necessarily content only. As such Serval might be seen as a
generalization of CCN, but in fact it is quite different as services are
still being offered by hosts (servers or sensors), while content can
be cached in intermediate systems like the CCN Content Store. In
this respect Serval is less disruptive, also because the IP network-
ing layered is preserved. Serval includes a new Service Access Layer
(SAL) that sits on top of IP. So similar to DONA, a new addressing
layer is added between IP and TCP.

5.4.1 Naming

The SAL will operate on serviceIDs, which represent a hierarchical
naming of service. Similar to CCN, serviceIDs can be aggregated by
prefix for scalability. Service endpoints only refer to serviceIDs. The
applications are therefore no longer aware of IP and TCP/UDP port.
This introduces the possibility for multihoming and dynamicity, im-
portant for modern online services that are increasingly accessed on
mobile devices with changing connectivity. Similarly, service host-
ing is done on cloud servers that are located on different (virtual)
hosts that can change over time depending on network conditions
and sever load situations.

Within the concept of Serval, ServiceID naming is left open, as it
is the intention to have forwarding rules provisioned in the routers
by a service controller. Serval does not dictate how ServiceID are

5.4. SERVAL 63

learned. ServiceID are like URI that are exchanged between appli-
cations. High level service descriptions can be resolved into Servi-
ceID in many ways, like directory services, search engines or social
media. The Serval prototype uses a 256-bit serviceID namespace.
A large namespace creates the possibility that a central naming au-
thority like IANA could allocate prefixes to organizations. The servi-
ceID prefix can thus be used to identify the authorized provider of
the service. The prefix would be followed by bits that provide a hier-
archy within the organization for service resolution. The serviceID
would end with a hash of the service provider public key, so that
the client can verify that it is dealing with the authorized instance
of the service.

5.4.2 Architecture

Serval is using the ServiceID in intermediate nodes only for service
selection. The first packet of a connection is forwarded to service
routers which will then decide which service endpoint will service
the request. This is called "‘late binding"’ as it defers the selection
on the service instance to the part of the network that has the de-
tails and is up- to-date on the status. So this is a sort of in-channel
resolution which can have many advantages, for instance is avoids
complex structures with server farms, proxies and load balancers.
Applications traditionally cache addresses, while Serval re-resolves
service names,leading to fast failover and intrinsic load balancing.
Serval features serviceID to identify the service and also flowID that
identifies each flow within a socket. The flowID takes over the role
that the TCP/UDP port traditionally has for identifying connections.
TCP is maintained as transport layer in Serval, but only for reliable
data delivery including retransmission and congestion Like other
technologies discussed in this paper, this represents a rethinking
of the network stack. Serval goes further in this by making clear
separations between naming (serviceID), multiplexing (flowID), end-
point identity (IP) and reliable delivery (TCP). (see figure 5.5). con-
trol. Once the the service instance has been discovered with the first
packet, the remaining packets between the two endpoints travel via
IP network routers.

64 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

Figure 5.5: Serval identifiers. Source: [NSG+12]

5.4.3 Service name resolution

The service routing stack (figure 5.6) does a longest prefix match on
the the serviceID for resolution. It decides to either FORWARD, DE-
MUX, DELAY or the first packet. In case of FORWARD, the packet
is given an new IP destination address of the next SAL capable
hop, typically several destinations. In case of DELAY the packet is
queued while a service controller figures out how to handle it. This
allows for extensible service discovery, as Serval features a split
between user space control and data plane Service Table (SIB). The
service controller controls the SIB and installs new resolution rules,
leading to potentially supporting a wide scenario range. Rules can
be installed "‘on-demand"’. DEMUX is used to deliver the packet
to the local socket, when there is an application listening for it,
typically at service endpoints. It is the intention to establish mul-
tiple flows, each with their own flowID per service session, in or-
der to allow uninterrupted service over multiple paths. The flow
table demuxes packets of established flows, directly to the trans-
port layer. Interestingly, the SAL features a default forwarding rule,
which matches any serviceID and which is pointing to the broadcast
address interface of a host. This enables service communication on
the local network segment of for identifying the local service router.

5.5. PUBLISH/SUBSCRIBE SYSTEMS 65

Figure 5.6: Serval stack. Source: [NSG+12]

5.4.4 Application support and adoption

Making applications work with Serval requires in first instance adding
support for a new Serval socket. When the paper was published,
several were demonstrated, including the Firefox web browser. There
is little evidence that Serval has enjoyed any further major suc-
cesses in recent years. The most recent work focuses on mobile
apps that work seamless over several networks, like Wi-Fi and 4G.

5.5 Publish/subscribe systems

There is much interest in the CCN world for ways to make CCN more
efficient for real-time applications like VoCCN (see previous section).
Previously, such protocols require continuous sending of new In-
terests to sustain the flow of data. While several different solutions
have been proposed (see, for instance, [YFYX12] for a recent exam-
ple), Publish/Subscribe systems (and their integration into CCN)
are in particular gaining attention.

66 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

5.5.1 Principles

Publish/subscribe systems are messaging systems designed to sup-
port full decoupling in time, space and synchronization between pro-
ducers (publishers) and consumers (subscribers) of content on the
internet [EFGK03]:

Time coupling Time coupling means that the publisher and subscriber need
to be involved in the action at the same time, in other words,
they both need to be on-line at the same time for the action to
succeed.

Space coupling Space coupling means that communicating parties need to
know each other’s address. This means that the client will
only accept replies coming from one specific address.

Synchronization coupling Synchronization coupling means that a publisher can only trans-
mit the information when a subscriber explicitly asks for it.

In IP networking, the publisher is explicitly addressed (space
coupling), the publisher needs to be on-line for any communica-
tion to take place (time coupling), and data is sent as a response to
a query for that data (synchronization coupling). In CCN, the host
that sends the data does not matter (no space coupling4) and the
originator of the data doesn’t need to be on-line for the data to reach
an interested party (no time coupling4).

Coupling IP CCN publish/subscribe
Time yes no4 no

Space yes no4 no
Synchronization yes yes no

Table 5.1: A comparison of the different kinds of coupling in publish/subscribe, CCN
and IP

However, CCN does have synchronization coupling, as hosts al-
ways need to explicitly ask for data in order to receive it. Publish/-
subscribe systems lift this requirement (see table 5.1).

4This depends on whether caching is used effectively. There is time and space
coupling in VoCCN, for instance

5.5. PUBLISH/SUBSCRIBE SYSTEMS 67

Because of the lack of coupling, publish/subscribe systems pro-
vide multiple advantages:

• Subscribers get their content as soon as it becomes available.

• Publishers don’t need to be online at the same time as their
subscribers.

• There are no scalability or traffic issues for publishers.

Operation

There are three distinct entities in publish/subscribe systems: pub-
lishers, who push their content to the network, subscribers, who
register their interest in some content by subscribing to it, and an
event system (see figure 5.7). When a publisher has new content,
that content is sent to the event system, and the event system is
responsible for notifying all subscribers who registered an interest
in content of that type [EFGK03].

Figure 5.7: How publish/subscribe systems work [EFGK03]

There are three methods for selecting the content for subscribers
to subscribe to [EFGK03]:

Topic-based Topic-based publish/subscribe systems group events
by topic, usually in a hierarchical fashion (e.g. /sports, /s-
ports/football, /sports/football/FIFA, ...). This is similar to

68 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

USENET newsgroups (comp, comp.os, comp.os.linux, ...). Topic
names can contain wildcards.

Content-based Content-based systems focus more on the actual
content of the events, rather than the category. The subscriber
gives criteria ((team1 = ‘Chelsey’ or team2 = ‘Chelsey’) and goal-
count > 0). Some systems also allow the subscriber to specify
a combination of events which need to occur before being no-
tified.

Type-based Type-based systems are similar to the topic-based sys-
tems except that each topic is represented by a specific event
type registered with the event system (its properties are known
to the event system). For instance, a friendly football match
and a FIFA world cup match would be represented by differ-
ent event types (both derived from the same subclass, Match).
There is also filtering similar to content-based systems, so
subscribers can subscribe to Matches (of any kind) featuring
Chelsey as one of the teams, or subscribe to all FIFA world cup
matches.

(a) Topic-based classification (b) Content-based classification

(c) Type-based classification

Figure 5.8: Content classification in publish/subscribe

5.5. PUBLISH/SUBSCRIBE SYSTEMS 69

The difference between these are illustrated in figure 5.8.

Desirable features

A complete publish/subscribe system should ideally possess each
of these features [CAJ+11]:

Push-enabled dissemination The system has to push information
to online subscribers interested in it. This has the added ad-
vantage that subscribers will be notified of the event at the ear-
liest possible time, which would be useful whenever quick up-
dates are required, such as news dissemination, stock market
quotes and emergency notifications (such as tsunami warn-
ings).

Decouple publishers and subscribers In a publish/subscribe sys-
tem, it is important for the network to be content centric in
order to decouple publishers from their subscribers, while still
being able to route updates to subscribers.

Scalability Publish/subscribe systems must be able to deal with a
large amount of publishers and subscribers, and should ide-
ally scale with the number of publishers and subscribers.

Efficiency The system should use network and server resources
efficiently in order to minimize the overhead on end-points.

Incremental deployment A publish/subscribe system will likely
only be rolled out gradually, so it should be incrementally de-
ployable and ideally provide a seamless transition from an IP-
dominated environment.

Support for hierarchies and context in naming content By being
able to exploit context as well as hierarchy in names, content
can be described in a more natural and accurate way. A single
hierarchy cannot support all possible ways users might want
to query for information; for instance, if content names are
arranged by topic, for instance /international/business/mid-
east and /international/politics/mid-east, someone who is in-
terested in all new information about the middle east should
not have to subscribe to both content descriptors, but can just
subscribe to /international/*/mid-east.

70 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

Support a two step information dissemination In a two-step pub-
lish/subscribe system, the publisher originally publishes just
a snippet of the information available to him into the network,
along with a description of the method of obtaining more in-
formation if the subscriber wants it. This avoids unnecessary
transmission of content the subscriber is not really interested
in, and allows the publisher to control access to (and poten-
tially charge for) information they publish (while still making
effective use of the publish/subscribe network). This idea is
similar in principle to newsfeed protocols like RSS.

Support for offline subscribers If a subscriber is offline when a
particular piece of content he has subscribed to us published,
the subscriber should still receive the data that they have
missed. A related issue is that new subscribers should be able
to retrieve previously published content.

5.5.2 COPSS: Content-Oriented Publish/Subscribe Sys-
tems

COPSS is a Publish/Subscribe system implemented over CCN. It
uses CCN’s Content Name as a basis for a Publish/Subscribe sys-
tem that can use name- and topic-based identification of content
along with more fine-grained contextual and hierarchical specifica-
tion of information. It adds a push-based multicast capability to
CCN’s pull-based information delivery, along with support for of-
fline subscribers and a 2-step delivery model that provides access
control to publishers.

There are several problems with implementing publish/subscribe
over CCN [CAJ+11]:

Multicast CCN automatically caches content in the network, in the
Content Store of intermediate Content Routers (see 3.3). How-
ever, this only occurs if one or more intermediate routers have
lots of downstream subscribers who regularly send Interests.
If not, every Interest will still be routed back to the publisher.
But event with caching in the network, CCN (and NDN in gen-
eral) are still push-based networks: anyone interested in data

5.5. PUBLISH/SUBSCRIBE SYSTEMS 71

still has to actively ask for it.

Dealing with multiple publishers In CCN, if a subscriber wants
data, he needs to know the exact name of the data he wants,
or he will only receive a portion of it (see figure 5.9). The sub-
scriber either needs to specify exactly what data he is inter-
ested in, or find a way to explicitly exclude previously received
content from its Interests, and then repeatedly send Interests
with an exclude field until no new data is received. Obviously,
this is not a satisfactory solution. For a publish/subscribe
system, the subscriber typically wants all desired content to
be retrieved simultaneously, without needing to repeatedly re-
send Interests.

Figure 5.9: Illustrating a problem with CCN for publish/subscribe systems: when a Con-
tent Router encounters one response to the Interest /sports/football, in this case /sports/-
football/manchestervschelsey, it considers the Interest fulfilled and will discard extra Data
replies

COPSS is a system built on top of CCN (and backwards com-
patible with it) that adds push-based networking and an effective
publish/subscribe functionality. In order to accomplish this, Con-
tent Routers are updated to maintain a subscription table (see fig-
ure 5.10). A Subscription Table is a list of faces with downstream
subscribers and the content they’ve subscribed to. In addition to
the existing packet types Interest and Data, COPSS also adds Sub-
scribe and Publish packet types. Subscribe packets are sent by a
Subscriber to indicate their interest in receiving updates when pub-

72 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

lishers publish new data matching the supplied Content Descriptor.
Publish packets are sent by publishers when they have new data.
Finally, a COPSS network also contains Rendezvous Nodes (RNs),
who maintain subscriptions. Each RN has a list of CDs for which
they are responsible. When a publisher publishes some data, they
send a Publish packet containing the Content Name /rendezvous/
followed by the Content Descriptor. The packet is forwarded to-
wards the RN responsible for that content descriptor. The RN will
then strip the /rendezvous/ prefix and forward it towards all the
subscribers for that CD. Publishers don’t expect a reply when pub-
lishing content, so Publish packets are not put into the Pending
Interest Table.

Figure 5.10: CCN’s forwarding engine extended with a Subscription Table [CAJ+11]
(compare with figure 3.4)

5.5. PUBLISH/SUBSCRIBE SYSTEMS 73

Figure 5.11: The subscription and publishing process in COPSS.

74 CHAPTER 5. ALTERNATIVE NDN TECHNOLOGIES

Chapter 6

CCN design challenges

Although CCN has many advantages (see section 2.3), the unique
architecture proposed by it poses some unique challenges not faced
by the current design of the internet. Although only CCN is dis-
cussed in this chapter, many of the same issues apply to other NDN
technologies like DONA and TRIAD.

6.1 Content revocation

Inevitably, some content will be created that is not intended to live
forever, or that has to be superseded by a new version. Additionally,
cryptographic keys to sign content may need to be revoked if they
are compromised or no longer trusted. All users of the data signed
by such a key would need to be notified of the revocation. CCN does
not specify an algorithm for either data or key revocation, despite
the obvious need for such mechanisms. A possible way to imple-
ment this would be a revocation list that is periodically published
by routers, and also enforced by them. The disadvantage is that
this, too, would need to be signed to prevent abuse by malicious
third parties. Alternatively, content could be released with a limited
lifespan, after which cached copies are no longer served. This ap-
proach has the disadvantage that content publishers would need to

75

76 CHAPTER 6. CCN DESIGN CHALLENGES

serve their content more frequently, increasing their load as well as
the load on the network in general [Lau10].

6.2 Security

Even though CCN has been designed with security in mind, there
are still some serious concerns. In this section, the principal con-
cerns will be sketched out.

6.2.1 Architectural reliance on cryptography

CCN relies heavily on cryptography to secure its contents, but this
means that one form of cryptography might become a standard part
of the system which is difficult to replace1. As shown by history,
cryptographic techniques eventually become obsolete because com-
puting power tends to increase to the point where brute-force at-
tacks become possible. The time between the invention of a strong
encryption algorithm and its obsolescence is generally considered
to be about 30 years [SJ09, Lau10].

6.2.2 Denial of Service

Denial of Service (DoS) attacks against content sources in CCN are
more difficult than in IP because of the need to avoid using the
same names (the response would then be cached, and the DoS at-
tack would only tax the edge router). However, by using a name
with the same prefix but a different postfix each time, an attacker
could ensure that all of its Interests make their way to the orig-
inal server, and overload it. The adverse effect of DoS attacks is
that they can either make content unavailable to legitimate users,

1This depends on the concrete implementation. If the encryption method is
negotiated between CRs rather than it being an integral part of the specification,
this will not be a big issue.

6.2. SECURITY 77

or force wrong responses to reach the clients. Both of these goals
could be accomplished in a variety of ways, some of which are listed
below (see figure 6.1 for an overview) [Lau10].

Disrupting the source By simply flooding the source with Inter-
ests, an attacker can increase the load on that source in two ways:
by flooding it directly and by decreasing the efficiency of caching
in intermediate routers, which means most of the requests of legit-
imate users would be sent directly to the source instead of being
processed by a cache, which would dramatically increase the load
as well. This does assume that it is possible to construct a large
number of Interests which will all be routed to the same content
source.

Routing disruption Routing can be hijacked by having malicious
or compromised routers in the network that do no forward requests,
or by forcing routers to have bad timeouts for responses to Interests
in its Pending Interest Table (PIT). It is not clear how such a thing
could be accomplished.

Disrupt an intermediate router Routers could be disrupted by
forcing them to conduct expensive operations, which would slow
them down to such an extent that they can no longer properly func-
tion as network elements. One such technique is forcing the router
to verify signatures for content items that are signed with different
keys, forcing the routers to fetch each of these keys. If the keys
are hosted by a malicious server under the control of the attacker,
that server could delay the delivery of those keys. Also, an attacker
could choose the keys that are most computationally expensive.

Disrupt links Links can be disrupted by flooding them with a large
amount of Interests so that the link reaches its maximum capacity
and requests will be queued in routers. This can also be a side-
effect of other kinds of DoS attacks.

78 CHAPTER 6. CCN DESIGN CHALLENGES

Returning fake content Because Interests are often broadcasted,
an attacker could pick up an Interest which it should ignore and
generate a fake response to it that is not signed (or is signed with
the wrong key), hoping that the clients will not verify the credentials;
or attackers could “replay” old, signed content as the response to
an Interest that would normally return newer content (or different
content from the same source). An attacker might also gain access
to a source’s signing key and thus be able to spoof content at will.

Blocking valid content Requests for valid content can be blocked
by routers that believe the content does not actually exist. An at-
tacker could simply generate a ‘Content does not exist’ response to
Interests, in the same way that they could generate fake content.

Figure 6.1: An overview of the different possibilities for DoS attacks in CCN [Lau10]

6.3 Privacy

Because in CCN content is cached by intermediate routers, CCN is
prone to a number of privacy concerns which are less prominent in
the current internet: while content is only occasionally cached in
the internet (at the application layer), in CCN caching is an integral

6.4. ACCOUNTABILITY 79

part of the design. Attackers can figure out whether certain content
is cached or not by measuring the response time when requesting
the content, and even encrypted content can ‘leak’ some sensitive
information in the form of meta-data such as the name, the public
key of the host, the content length, and the request time. Because
all data is cached, attacks do not need to be performed in real time,
but can happen long after the actual conversation took place.

Another big privacy concern are ISPs, which will have their own
content routers. The availability of cached content on its routers
will make it trivial for ISPs to spy on its own customers by mon-
itoring their edge routers, and logging requests. The only defense
that could be used against such snooping would be to use obfus-
cated names, but their use would either work against caching by
having different names per user, or allow ISPs to construct a dic-
tionary mapping obfuscated names to content sources, making the
obfuscation ineffective. ISPs could also create a database of content
hashes and match incoming content against this database, to pro-
file users in terms of content use. As always, whether this is a big
issue depends on the opinions of the people that use the network.
Being able to effectively monitor the content passing through its
network will make it easier for ISPs to cooperate with law enforce-
ment, for example to ban illegal content such as child pornography
[Lau10].

6.4 Accountability

In traditional IP-based networks, if a host is under attack, it can at
least get some information about where an attack is coming from.
The IP address can be faked, but not if the attacker needs to re-
ceive answer packets. In CCN, an attacker could attack a content
server with impunity because only Interests are routed, while Data
responses simply follow the path back to the attacker. This means
that content servers only know the previous hop of an attack, but
not its origin. This is problematic because a content server can not
blacklist an attacker, making traditional measures against DoS at-
tacks unusable. In order to properly identify where an attack came
from, there would need to be a special protocol to look up the source
of an Interest, or all the ISP access routers would need to be mon-

80 CHAPTER 6. CCN DESIGN CHALLENGES

itored by law enforcement agencies. An alternative solution would
be to require users to sign all their Interests, or to do so automati-
cally at the access routers, using a key provided by the ISP (because
the ISP knows what client an Interest came from, it could provide
a unique key for each of its users). These keys could be changed
every day to maintain the users’ privacy. This solution would allow
the server to block a specific user (on the basis of the key used to
sign the Interest), even if he remains anonymous. A downside of
this approach would be that it makes aggregation of Interests more
difficult. [Lau10]

6.5 Paid and sensitive content

The CCN architecture was designed, and works well, for publicly
accessible content without access restrictions, but supporting re-
stricted content is more difficult. Because restricted content would
also be cached, a person wishing to receive the content without pay-
ing the publisher simply needs to figure out (or guess) the content
name, provided that the content is cached in a router along the
path from the miscreant towards the source. Publishers also may
want to only make content available to a specific user for a lim-
ited amount of time, which could be very difficult to accomplish be-
cause of caching. Also, a person paying to access restricted content
could easily share its access with users who do not pay by sharing
the content names. Encryption schemes could be worked out be-
tween client software on users’ machines and the content servers,
but once that encryption scheme is compromised, all cached con-
tent would be available for all to view. This underscores the need
for a revocation scheme for content in CCN (see section 6.1). Also, a
publisher may want its sponsored content to be accessed only from
a certain playback environment that includes advertising. [Lau10]

6.6 Scalability

Push networking The design of CCN uses a ‘pull’ model for ac-
cessing content: content is filtered through to the client upon ex-

6.6. SCALABILITY 81

plicit request. A lot of real-life applications are based on a ‘push’
model instead, where a server pushes a continuous stream of data
(such as an audio stream, or timing information) to clients. In CCN,
this can be accomplished in two ways: by pushing Interests or by
continuous polling. In the Interest pushing method, the content
server sends its data as (part of) the name of an Interest packet
towards the client, which is inefficient considering that for each In-
terest packet the client needs to send a Data packet back towards
the content server containing the same name as the Interest. Em-
bedding content in names compromises security and privacy unless
it is somehow encrypted or obfuscated. Also, both client and server
would need to be reachable under globally unique names. In the
other method, the client sends out a constant stream of Interests
towards the content server, and the data is sent back as Data pack-
ets in reply to these Interests. This means that client and server
need to agree on an algorithm for generating predictable names for
content that is not yet published. So, while implementing push
networking in CCN is certainly possible (as shown in the VoCCN
implementation, see section 4), it is not simple to implement this in
an efficient manner.

Moving the focus from nodes to content also raises scalability
requirements to the extreme. The Internet addressing deals today
with on the order of 109 nodes. When content is directly addressed,
FIB tables will become several orders of magnitude higher, since
there is more data than there are nodes on the internet, and content
names take up more space than IP addresses.

Broadcast and multicast As with push networking, the problem
in implementing broadcasting and multicasting in CCN is that CCN
can only accept data responses after an Interest for it has been sent.
In a multicast environment, that means that not only must all the
participants agree on the names to use for data, but they need to
keep sending Interests regularly regardless of whether or not the
other participants have new data they wish to share. Even with the
suppression of duplicate Interests at the router level, this will still
dramatically increase the load on the network.

82 CHAPTER 6. CCN DESIGN CHALLENGES

Reliability CCN itself makes no guarantees for reliability or fair-
ness, and no transport-level protocols on top of CCN have been pro-
posed for supplying either. Interests can time out, but it is currently
not defined how such time-outs need to be chosen or who is respon-
sible for re-sending Interests if they do time out.

Hardware CCN routers necessarily need to be more powerful than
IP routers because they have more tasks: they need to be capable
of verifying signatures, to keep state for each Interest, possibly run
algorithms to detect and prevent Denial of Service attacks, keep a lot
of content in a local cache and work at speeds similar to modern IP
routers. This requires a lot of processing power and large amounts
of fast, random accessible memory (if content is stored on a hard
disk in the router instead of in RAM, the delay for the client is likely
to be worse than if it was not cached at all because of hard drive
seek times, although the move towards faster SSDs may alleviate
this problem). The FIB, PIT and content cache each impose big
memory requirements to be effective.

Energy efficiency In general, CCN is thought to be a more energy
efficient way to do networking because it reduces the number of
hops. In one test, it was shown that even a 20% deployment of CCN
can reduce energy consumption by 15% [LRH10]. However, other
sources dispute that the savings would be that big in real-world
conditions [Lau10]. CCN routers are more complex than routers in
an IP network and would probably draw significantly more power.

A lot of these issues will be affected by the decision of how to
implement CCN: if CCN is implemented on top of IP, use cases which
are difficult to implement in CCN can still use IP-based protocols.
This is also the best option for gradual deployment of CCN. However,
in such an over-the-top deployment it will be tempting for service
providers to stick to traditional solutions.

6.7. PERFORMANCE 83

6.7 Performance

For the discussion of the performance of CCN, it is important to re-
alize that different usages of the network can produce highly vary-
ing performance statistics. If the network is used only to distribute
publicly available content, CCN can be more efficient than TCP/IP
at this dissemination in some cases, such as when the most pop-
ular 1% of content is requested 99 times out of 100, which makes
caching in the network very attractive. In the opposite case, when
caching is ineffective or useless, such as when each piece of con-
tent generated on the network is encrypted or customized for each
client, CCN’s caching features will not play a role in the network
performance. For a more detailed discussion, see section 9.3.

84 CHAPTER 6. CCN DESIGN CHALLENGES

Chapter 7

Conclusion

In this thesis, a new networking paradigm called “Named Data Net-
working” is described, which routes requests based on content names.
This contrasts with the current, IP-based internet that requires a
separate lookup phase to find the location of content. The fact
that in Named Data Networking content is placed centrally aligns
nicely with the primary usage of the internet, which consists to
a large degree of accessing named content. Furthermore, Named
Data Networking can speed up lookups by eliminating round-trip
times and by providing possibilities for network-integrated trans-
parent caching. One technology, called CCN, was studied in detail.
It promotes a simple pull-based networking doctrine using Inter-
est (requests) and Data packets (responses). It binds the name of
the content to the content itself to make it impossible to corrupt in
transit, and also supports encryption natively, whereas IP requires
additional infrastructure for this.

However, while NDN in general and CCN in particular are able to
solve a lot of the problems that in IP-based networks require com-
plicated workarounds, it also provides its own set of difficulties and
problems. In particular, generation of content names can be prob-
lematic, as there is no built-in convention and different applications
might see the need for different standards. Also, CCN headers have
a very high overhead compared with TCP (or even HTTP). Integrating
authenticity and encryption in the network layer also has the po-
tential to diminish the performance of routers because of the high

85

86 CHAPTER 7. CONCLUSION

amount of processing per packet required, and standardizing on
any given type of encryption or hashing technology is risky because
of the evolving security landscape. Content and key revocation is-
sues are also still largely un-addressed.

The aim of this thesis is to examine whether CCN can be a vi-
able replacement for the TCP/IP stack (see section 1.1.3). So far,
the theoretical foundation of CCN was examined to try to determine
an answer to this question. The issues mentioned above still stand
in the way of CCN becoming a viable internet replacement in the
immediate future. However, most of these problems can be solved
with sufficient research and investment. A gradual deployment of
CCN seems like the most viable option for deployment, either by us-
ing CCN-to-IP gateways (as discussed in the context of VoCCN, see
chapter 4) or by initially implementing CCN as just another trans-
port protocol on top of IP. In my opinion, CCN will not become a
major success, because of the huge investments required by the in-
termediaries, and because the benifits of CCN would only show up
once it was relatively widely deployed. The second part of this the-
sis will try to provide a more detailed view of CCN by examining the
technology’s performance in the field of video streaming.

Further research is needed on the following issues:

Content revocation / expiry The need for either a content revoca-
tion protocol, or provisions to allow content to be expired has
been discussed in section 6.1. How to best implement either
option is still open for debate.

Key revocation An infrastructure that depends a lot on public and
private keys needs to have a mechanism to allow keys to be
revoked if they are compromised. This could be implemented
using key revocation lists and key status query mechanisms.
CCN currently has no such mechanism.

CCN energy efficiency While some have argued that a CCN archi-
tecture for the internet would increase energy efficiency, this
is far from certain (see sections 2.3 and 6.6). More research
needs to be done to determine the approximate energy effi-
ciency of CCN in realistic deployment scenarios.

CCN-to-IP gateways As yet, there is no efficient, general-purpose
CCN-to-IP gateway. More research on the viability of such

87

gateways in a general case (rather than separately for each
application-layer protocol, such as for VoCCN (chapter 4)) is
essential to determine if such a setup is viable.

88 CHAPTER 7. CONCLUSION

Part II

Implementation & Testing

89

Chapter 8

Setup

8.1 Introduction

An important use case for CCN is the efficient distribution and
streaming of multimedia content to end users. Indeed, the pro-
portion of internet traffic devoted to multimedia content keeps on
rising; it now accounts for over half of the internet traffic worldwide
[San]. The DASH protocol has been recently introduced for optimal
video distribution to consumers over HTTP (see section 2.4.2). For
this reason, the combination of DASH and CCN is especially inter-
esting: by combining the efficient caching features of CCN with the
adaptive streaming features of DASH, it is possible to both increase
end-user media quality and reduce the load on intermediate nodes,
particularly for ISPs.

8.2 Test goals

In this thesis, the focus will be mostly on efficient video delivery
by leveraging the strengths of both CCN and DASH. In particular,
the efficient distribution of video content over multiple links will be
investigated, as well as the most efficient parameterization of chunk

91

92 CHAPTER 8. SETUP

size and CCN window size for efficient content dissemination.

Multilink transfer CCN’s design is inherently link independent,
while a TCP connection is bound to a particular interface. This
offers the possibility not only of using the best link available at any
time to fetch DASH video segments (as in [LMR+13a]), but to fetch
different segments over different interfaces in parallel.

Chunk size parameterization The overhead of the CCN proto-
col is about 650 bytes, mostly due to the security features un-
derpinning CCN (see section 3.6). Ccnx [CCN], the open-source
CCN network stack, uses a chunk size of 4 KB by default, which
means that about 16% of the packet is CCN communication over-
head. By increasing the chunk size, we can reduce the overhead of
CCN to make it competitive with TCP. Additionally, there is a large
amount of computation that must be performed for each chunk,
which means a small chunk size causes a large CPU load on the
computer in question. The reason the chunk size is kept low by
CCNx is that the segmentation of CCN chunks into IP packets when
sent over UDP/IP causes CCN performance to decrease when com-
peting for limited bandwidth with other (e.g. TCP-based) protocols,
since the loss of any part of a chunk will force the CCN implementa-
tion to re-send the Interest for it. Conversely, when not contending
with other protocols, quite large chunk sizes, in the order of about
256 KB should be feasible [SDC+12]. The impact of CCN chunk
size on the transmission of video using DASH over CCN will be ex-
amined, in order to improve the efficiency of video delivery.

Interest window size parameterization Previous research has
indicated that CCN does not make efficient use of network resources
when the RTT delay is big [LGP+13]. We will examine the influence
of the CCN Interest window size on the average video bitrate and
compare it with the HTTP/1.1 pipelining performed by the authors
of [LGP+13].

8.3. RELATED WORK 93

8.3 Related work

[LMR+13b] analyses overhead from headers and protocol communi-
cations when using DASH over CCN in comparison with HTTP/1.0
and HTTP/1.1. They also investigate delivery performance. They
show that DASH over CCN has a lot more overhead than DASH over
either HTTP/1.0 or HTTP/1.1 (about 23.5-25% of network traffic
as compared to HTTP/1.1 5-12%). For delivery performance, they
show that CCN’s performance is roughly equal to HTTP/1.0 (and
HTTP/1.1) when the RTT is really low, but that CCN’s poor link uti-
lization at high RTT and its overhead produce much lower bitrates
at higher RTTs. Their analysis however hinges on the assumption
that the CCN chunk size has to be 4 KB (it doesn’t; [RR11] suggests
that chunk sizes smaller than 10 KB are sub-optimal because they
generate too much overhead. [SDC+12] suggests that segment sizes
of hundreds of kilobytes may be more appropriate). Furthermore,
they are using CCN over UDP/IP, which brings with it a slight in-
crease in overhead compared to running CCN natively. Finally, they
acknowledge that their DASH over CCN implementation is quite ba-
sic and could be further extended for efficiency.

[LGP+13] presents the author’s DASH over CCN implementation
(DASC) and investigates the performance and caching of CCN in the
context of DASH. They show that a setup with a single CCN client
performs worse than using a single HTTP/1.1 client; because of
CCN’s higher overhead, the client witnesses a lower average video
bitrate and hence a lower video quality. However, they also establish
that as more clients request parts of the same video stream that are
already cached, the clients who come later get progressively better
quality video. By the 8th DASC client, video bitrates were 500 KB/s
for over 95% of the time even though the bandwidth to the origin
server was limited to 250 KB/s. There is a hitch, though: because of
the ubiquitous caching that is taking place within the CCN network,
the throughput estimated by the DASH algorithm is inaccurate (i.e.
over-estimates the available bandwidth occurs when the requested
content is served from the cache instead of from the origin server).
When requesting chunks at a higher bitrate that are not yet cached,
video playback will stall for that reason.

[LMR+13a] examines the performance of DASH over CCN in mo-
bile environments with multiple links. Its conclusions are that

94 CHAPTER 8. SETUP

in general, DASH over CCN can compete with some DASH imple-
mentations regarding average media bitrate and number of quality
switches, but not with the most efficient ones. Regarding multi-
link communication, they note that CCN uses the bandwidth of the
fastest link available, but does not split up its data transmission be-
tween multiple links, so that the effective throughput is limited by
the bandwidth of the fastest link available at any given time, rather
than the sum of all available links.

8.4 Test methods

Several test methods were considered for investigating the test goals
outlined in section 8.2: simulation, using the existing DASH player
over CCN, and using a custom test bed.

8.4.1 Simulation

For the purposes of measuring the effects of the window size and
chunk size, we can make use of a simulation environment called
ndnSIM[ndn], which is a module within the popular NS-3 network
simulation environment. NS-3 simulations consist of small C++
programs that can make extensive use of pre-written classes which
simulate every part of the networking process, from detailed mod-
eling of link propagation losses to inter-domain routing and TCP
retransmissions. A basic NS-3 simulation looks like this:

Listing 8.1: NS-3 echo example

#include "ns3/core−module .h"
#include "ns3/network−module .h"
#include "ns3/internet−module .h"
#include "ns3/point−to−point−module .h"
#include "ns3/applications−module .h"
using namespace ns3 ;

//Used as a pref ix for log messages
NS_LOG_COMPONENT_DEFINE ("Example") ;

8.4. TEST METHODS 95

int main (int argc , char ∗argv [])
{

//Te l l the echo c l ient and echo server to produce
//logging output of the ’INFO ’ log l eve l and above .
LogComponentEnable (" UdpEchoClientApplication " ,

LOG_LEVEL_INFO) ;
LogComponentEnable (" UdpEchoServerApplication " ,

LOG_LEVEL_INFO) ;

//Create the end nodes
NodeContainer nodes ;
nodes . Create (2) ;

//Create a Point−to−Point (PPP) connection
PointToPointHelper pointToPoint ;
pointToPoint . SetDeviceAttribute ("DataRate " ,

StringValue ("5Mbps")) ;
pointToPoint . SetChannelAttribute ("Delay " ,

StringValue ("10ms")) ;

//Connect the devices using the Point−to−Point
connection

NetDeviceContainer devices ;
devices = pointToPoint . Ins ta l l (nodes) ;

// Ins ta l l a standard IP stack on the nodes
InternetStackHelper stack ;
stack . Ins ta l l (nodes) ;

//Assign IP addresses to the PPP end points
Ipv4AddressHelper address ;
address . SetBase (" 10.1.1.0 " , " 255.255.255.0 ") ;
Ipv4InterfaceContainer interfaces = address . Assign (

devices) ;

//Create a UDP echo server on the second node
UdpEchoServerHelper echoServer (9) ;
ApplicationContainer serverApps = echoServer . Ins ta l l

(nodes . Get (1)) ;

//Te l l the server to start a f ter 1 second and run
for 10 seconds .

serverApps . Start (Seconds (1 .0)) ;
serverApps . Stop (Seconds (10.0)) ;

96 CHAPTER 8. SETUP

//Ins ta l l a UDP echo c l ient on the server .
// I t w i l l send 5 1024−byte packets
//with 1 second intervals between packets
UdpEchoClientHelper echoClient (interfaces . GetAddress

(1) ,9) ;
echoClient . SetAttribute ("MaxPackets" ,UintegerValue

(5)) ;
echoClient . SetAttribute (" Interval " ,TimeValue (Seconds

(1 .0))) ;
echoClient . SetAttribute (" PacketSize " ,UintegerValue

(1024)) ;

// Ins ta l l the echo c l ient application on the f i r s t
node

//Te l l i t to start a f ter 2 seconds , and run for 10
seconds .

ApplicationContainer clientApps = echoClient . Ins ta l l
(nodes . Get (0)) ;

clientApps . Start (Seconds (2 .0)) ;
clientApps . Stop (Seconds (10.0)) ;

//Run the simulation .
//Wil l block unti l both c l i ent and server have

finished
Simulator : :Run () ;
//Clean up
Simulator : : Destroy () ;
return 0;

}

This code will run a simulation using a UDP echo server on one
host in the 10.1.1.0/24 network listening on port 9. Another host
(‘node’) is connected to the first one with a P2P (point-to-point) con-
nection with a delay of 10ms and a maximum data rate of 5 Mbps.
The echo client will send 1 packet per second for 5 seconds, each
1024 bytes in size. The server will then echo these packets back
to the client. The server starts up 1 second into the simulation,
the client after 2 seconds. After 10 seconds, both client and server
shut down and the simulation ends. Globally speaking, the simula-
tion sets up the various links, stack, addresses, configuration and
applications.

8.4. TEST METHODS 97

Each of the key CCN technologies are implemented. For in-
stance, the CCN FIB is implemented as the class ns3::ndn::Fib which
has methods such as

Add (const Name &prefix, Ptr< Face > face, int32_t metric)
Find (const Name &prefix)
Remove(const Ptr< const Name > &prefix)

which respectively add a new prefix to the FIB, search for the face(s)
that correspond with a specific prefix, and remove a prefix from the
simulated FIB.

On a higher level, there are “helper” classes such as ns3::ndn::StackHelper,
ns3::ndn::AppHelper and ns3::ndn::GlobalRoutingHelper to help set-
up the CCN stack, application bindings and global CCN routing.

The ndnSIM simulation environment is very convenient for test-
ing certain properties of CCN, but it does not fit in very well with
the stated desire to experiment with DASH over CCN. There is not
yet any simulation of DASH in NS-3, and it would furthermore be
difficult to integrate with the data set used in [LGP+13, LMR+13b],
so this approach was discarded.

8.4.2 DASH player

To demonstrate the effectiveness of CCN as the underlying protocol
for the transportation of DASH streams, qtsampleplayer was used.
This reference DASH player is shipped with libdash, the reference
DASH implementation1. This player is available in both a HTTP and
a CCN version; the CCN version required several manual fixes to get
it working. Also used was code from a fork by arawind2 that added
logging and dynamic quality adaptation, which is lacking from the
base version. This dynamic quality adaptation was eventually dis-

1see https://github.com/bitmovin/libdash
2Available at https://github.com/arawind/libdash-sampleplayer, cloned

on 7 July 2014

https://github.com/bitmovin/libdash
https://github.com/arawind/libdash-sampleplayer

98 CHAPTER 8. SETUP

abled, because it did not work to the level needed for this feature,
either with HTTP or with CCN.

This player provided a working proof of concept of DASH over
HTTP and of DASH over CCN, but even with the logging added from
the fork, it was unsatisfactory because it lead to unrepeatable re-
sults and did not easily allow variations of chunk window size, seg-
ment window size and RTT, which are all parameters that required
tweaking for the testing, so this approach was discarded in favor of
using a fully scripted setup (see next section).

8.4.3 Testbed environment

In addition to simulating a CCN environment, a testbed setup was
created with real computers networked using the CCNx network
stack (see [CCN]). This approach was selected because it allows
tweaking of the parameters whose effects needed to be examined,
and still approximates a real deployment of CCN. Because there is
no simulation, and very little overhead on top of CCN involved, it
can be established beyond doubt that the most efficient approach
is taken, and the results can be compared with those of [LGP+13]
and [LMR+13b].

CCNx is a full CCN networking stack, but it runs exclusively on
top of either UDP or TCP, instead of running directly on top of the
hardware. In this thesis, only CCN over UDP is considered, since
this is closer to what a “raw” CCN implementation would be like,
and because TCP has flow control and other mechanisms which
are duplicated by CCN and which might interfere with the results.
Each computer was running identical versions of the CCNx stack.
This stack was modified to remove artificial limitations imposed by
the stack on the size of chunks (8192 bytes) and Interest windows
(128). The CCNx version in use was version 0.8.2, the latest version
at the time of writing.

The testbed setup itself consisted of 3 computers were connected
to a 100 Mbps Ethernet switch (see figure 8.1). The computer la-
beled ‘server’ hosted the content, the computer labeled ‘client’ down-

8.4. TEST METHODS 99

loaded the content, and the computer ‘cache’ was not used in the
test. It was intended to use the third computer to simulate the per-
formance of CCN over multiple hops, but this part of the test was
later discarded.

For testing the raw performance of sending chunks using CCN,
the utilities ccnsendchunks and ccncatchunks2 were used. These
programs are provided along with the CCNx stack. In addition, a
new program was created using the CCNx API to test the simulta-
neous downloading of several small files as needed for DASH over
CCN. The code for this application can be found in appendix B.1.

When comparing against HTTP, the cURL downloader3 was used,
either the main binary, or a custom application coded against its API
(for simultaneous downloads). The code for the custom HTTP down-
load application used can be found in appendix B.2. The version of
cURL and its libraries that was used was 7.35.0. On the server side,
the lighttpd HTTP server4 was used.

Figure 8.1: The testbed setup used for the experiment. Note that the cache was not used
in any of the main experiments. The part in orange is a simplified representation of the FIB
of those hosts.

The specifications of the computers used in this setup are:

3To be found at http://curl.haxx.se
4see http://www.lighttpd.net.

http://curl.haxx.se
http://www.lighttpd.net

100 CHAPTER 8. SETUP

Name IP Processor Mem Kernel
Client 192.168.1.180 Intel R© CoreTM i5-4670

@3.40GHz
8GB Linux

3.13
Server 192.168.1.181 Intel R© CoreTM 2 Duo

P8600 @2.40GHz
4GB Linux

3.13
Cache 192.168.1.182 Intel R© CoreTM i3-3110M

@2.40GHz
4GB Linux

3.15

Table 8.1: Testbed computer specifications

8.5 Experiment selection

The target of the experiments is to look at the viability of CCN as a
means for e.g. streaming video in a DASH-like way. For this, it is
important to first look at the parameters that govern large file down-
loads (i.e. a 100MB file), as to isolate the underlying variables in-
dependent of start-stop effects when downloading multiple (smaller)
files (.e.g. DASH segments). Also, it can be argued that since CCN
already does segmentation by splitting content up into chunks, this
is actually one of the more realistic CCN media streaming options.
The disadvantage of this approach is that switching between differ-
ent representations would need to be handled differently compared
to the DASH philosophy. Once this is established, a second exper-
iment looks more in detail at some of the same variables, in par-
ticular when downloading smaller files of 2 MB each. We perform
the download 50 times, both to be able to compare the results with
the first experiment, and to average out the measurements so small
aberrations do not adversely affect the result. Finally, an experi-
ment was conducted with a real CCN stream using the same data
set as was used in [LGP+13] and [LMR+13a]. In contrast to those
papers, this experiment does not examine how CCN responds to
variations in the available bandwidth but instead the impact of var-
ious settings that affect CCN performance in various network delay
environments is tested.

Chapter 9

Experiment 1: Large file
download

9.1 Motivation and setup

The first thing to accomplish was finding out how CCN performed
when downloading a single large file, before looking how to deal
with multiple smaller files as needed for DASH. The purpose is to
look at the impact of the chunk size1, chunk window size2, and
network RTT3, while minimizing the impact of start and stop effects
(CCNx implements a slow start mechanism, similar to TCP’s). This
constitutes experiment 1: the download of a single large file of 100
000 000 bytes (100 MB), using a 100 Mbit/s link (enforced by the
100Mbit/s Ethernet switch), between two hosts directly connected
to the same switch, while varying the chunk size, chunk window
size and RTT. Varying the network delay was accomplished using
the Linux tc utility with the netem filter, to artificially introduce a
delay in outgoing packets on the host acting as a server, and thus

1Size of the content of a Data packet (‘chunk’), excluding headers. The header
overhead is the same in each packet (regardless of size), hence larger packets have
a smaller header relative to packet size.

2The number of chunks simultaneously downloading, also referred to as Inter-
est window size.

3Round-Trip Time, the time needed for a packet to travel from host A to host B
and back.

101

102 CHAPTER 9. EXPERIMENT 1: LARGE FILE DOWNLOAD

increasing the RTT. The following chunk sizes were tested: 1024,
2048, 4096 and 8192 bytes (the maximum allowed by the CCNx
stack without modification). Chunk sizes of 256 and 512 bytes were
also briefly considered, but preliminary testing indicated they were
too inefficient to be viable and would stretch the experiment out for
several more days without adding any real value. For the chunk
window size, values of 1, 20, 100 and 400 were tested. For the
RTT, delays of 04, 10, 40 and 100 ms were examined.

9.2 Code

Listed below is the code used for this experiment. It was written in
bash, in order to make use of its command chaining properties. The
same script uses ssh to control both the client computer (on which
the script is executed) and the server computer, where the chunks
are generated. Results for HTTP are also generated; the curl tool
is used for this purpose. There is no variation of chunk or window
sizes for HTTP, given that this is not usually applicable5.

Listing 9.1: Experiment 1: Transmission of a single 100MB file

#!/bin/bash
Author : Frederik Van Bogaert
Send a 100MB f i l e using CCN from the other host in your

CCN network .
Prerequisites :
− Both sides have ccnd running
− sshd is running on the other host
− ssh is configured for passwordless login
− tc with netem is instal led on the other host
Script parameters : other host hostname or IP , CCN name

and output f i l e
CCN parameters tested : chunk size , RTT and CCN Interest

window size

OTHER_HOST=192.168.1.181

40 ms delay is impossible to achieve in practice; packet storing and forwarding
in the network cards of both computers and the intermediate switch, as well as a
slight cable transfer delay, create an effective average RTT of 0.234 ms (σ 0.085
ms), as measured by the ping utility.

5Chunked downloading using HTTP can be emulated, e.g. by using HTTP byte
ranges; this was not considered for this test as the HTTP test is just used to
establish a baseline for comparison.

9.2. CODE 103

CCN_NAME=ccnx:/ test/ f i l e
LOGFILE=out . log
REMOTEFILE=/var/www/ccndata .tmp

rm $LOGFILE
echo " Creating f i l e on $OTHER_HOST"
ssh $OTHER_HOST dd i f =/dev/urandom of=$REMOTEFILE bs

=1000000 count=100
#Make sure the proper FIB entry is in place
ccndc add $CCN_NAME udp $OTHER_HOST
for r t t in 0 10 40 100 200;
do

echo " Setting RTT to $ { r t t }ms"
#Use tc on the server to set a delay on outgoing packets

from the server
ssh $OTHER_HOST tc qdisc replace dev eth0 root netem

delay $ { r t t }ms
for chunk_size in 1024 2048 4096 8192;
do

for window_size in 1 20 100 400;
do

echo " Preparing to send data with chunk size
$chunk_size "

#Remove cached copies from both hosts
#This ensures the segments w i l l be re−chunked and re−

sent every time
ssh $OTHER_HOST ccnrm $CCN_NAME
ccnrm $CCN_NAME
#Tel l the server to serve the chunks. This is done in

the background .
#ccnsendchunks wi l l convert the input f i l e into

chunks
#and put them in the server ’ s content store .
ssh $OTHER_HOST "ccnsendchunks −b $chunk_size

$CCN_NAME <$REMOTEFILE &" &
#Wait for a while to be sure the content is avai lable
from the server ’ s content store
sleep 5
#Get the content . Sends Interests for chunks of the

f i l e
to the server and waits for a l l the data to arr ive
#The output of the command is captured in RESULTLINE
RESULTLINE=$ (ccncatchunks2 −d −p $window_size

$CCN_NAME 2>&1)
i f [−z "$RESULTLINE"] ; then exi t ; f i
#F i l t e r the result , to obtain the time needed to

download the f i l e .
RESULT=$ (echo $RESULTLINE | egrep −o " [0−9.]+ seconds

" | cut −d ’ ’ −f1)

104 CHAPTER 9. EXPERIMENT 1: LARGE FILE DOWNLOAD

#Log the parameters and the result in CSV format to a
f i l e

echo " $rtt ; $chunk_size ; $window_size ;$RESULT" >>
$LOGFILE

#Stop the server process , to be sure .
ssh $OTHER_HOST pk i l l ccnsendchunks
echo "Done in $RESULT seconds "

done
done
#Repeat the experiment for HTTP using cURL.
#Note that chunk and window sizes were not varied ,
#so there is just one result for HTTP per RTT value .
#The ’ time ’ u t i l i t y is used to obtain the run time ,
#since this is d i f f i c u l t to derive from curl output .
#time −f "%e " returns tota l time between
#start ing the process and the process stopping .
echo " $rtt ; http ;1 ; " $ ((/usr/bin/time −f "%e " curl −o/

dev/null −s http ://$ {OTHER_HOST}/$ (basename
$REMOTEFILE)) 2>&1) >>$LOGFILE

done
#Remove the test f i l e .
ssh $OTHER_HOST rm $REMOTEFILE
#Set the network delay back to i t s default sett ing .
ssh $OTHER_HOST tc qdisc del dev eth0 root

9.3 Results

As was expected, a window size of one leads to very large down-
load times due to inefficient link utilization. The download time de-
creases linearly with increases in chunk size and window size at low
link utilization. As long as the link is not saturated, the through-
put is limited by the formula: (1/RTT) ∗ (Windowsize) ∗ (Chunksize).
This is due to the fact that CCNx will not issue new Interests be-
yond the window size as long as the first chunk is not received.
Each Interest corresponds with exactly one chunk (Data packet),
so the maximum data outstanding at any one time is given by
(Chunksize ∗ Windowsize). Because it takes at least RTT time for
an Interest to result in a received Data packet, we arrive at the for-
mula above.

An additional limit is the link data rate, at 100 Mbit/s, plus

9.3. RESULTS 105

the fact that header overhead also needs to be accounted for. This
results in a theoretical lower limit of 8 seconds to download this
100MB file ((100MB)/(100Mbit/s) = 8s). In practice, the large header
and delays in the CCNx stack implementation mean that the effec-
tive limit is about 8.8-8.9s in this test.

(a) Total view

(b) Zoomed in on t=[0-60]

Figure 9.1: The effect of chunk and window sizes on the download time of a large file.
Note that a window size of 1 is very sub-optimal in comparison with the alternatives.

Our experiment uncovered a third limit, caused by the CCNx
stack’s computational overhead: the stack was unable to serve more
than 2000 chunks per second in our tests, in various configura-
tions. In practice, this means for instance that when the chunk size
is 1000 KB, the download speed is limited to 2MB/s. The cause of
this last limit is the Pending Interest Table, which has serious per-

106 CHAPTER 9. EXPERIMENT 1: LARGE FILE DOWNLOAD

formance issues. To investigate this issue, a tool to monitor both
the CPU load and the network throughput were used. the results
are shown in figure 9.2. Given that the CPU is the limiting factor
in this case, the choice of CPU for the server becomes important.
As was established in table 8.1, the CPU in this case is a slightly
older Intel Core 2 Duo. With a better CPU this problem would not
be as prevalent. On the other hand, CPUs in routers tend to be less
powerful than those in desktops.

With high chunk sizes, high window sizes and very low RTT,
there is another problem: the server tries to put too much data on
the link, and because of that it fails to send all the data. Specifi-
cally, the sendto() function fails because the IP packet output buffer
is full, which causes the server to drop the packet. In turn, the
absence of some chunks causes the client to ask for the data that
was lost to be retransmitted after a timeout (in this case, 4 seconds)
has elapsed. This causes a sizable drop in the effective throughput
due to chunk download timeouts and the need to retransmit those
chunks.

To summarize, we reach a limit when:

• Link speed
The link speed is reached (100Mbit/s in this case). This is vis-
ible in the case where the chunk size is 8192 and the window
size is 20 or 100 in figure 9.1(b): the download time here is
very close to the ideal case of 8s.

• Link underutilization
The RTT is too long for efficient link utilization due to the fact
that packets do not arrive in time so the client has to wait to
send new Interests. This effect can be mitigated by increasing
the window size or increasing the chunk size. It is especially
visible when the window size is 1 in figure 9.1(a).

• Server CPU overload
Interests are sent out at a rate higher than 2000 per second,
leading to a CPU limit on the server. This effect explains why
the results for window size=20 and window size=100 are so
similar in figure 9.1(b): this limit is reached, so increasing the
window size does not help. See figure 9.2 for CPU load plots.

9.3. RESULTS 107

(a) RTT=10 ms Window size=20 Chunk size=2048 bytes

(b) RTT=10 ms Window
size=20 Chunk size=4096
bytes

(c) RTT=10 ms Win-
dow size=100 Chunk
size=2048 bytes

(d) RTT=10ms HTTP 1.0
(curl)

Figure 9.2: The effect of CCN network traffic on server CPU load. Note that HTTP does
not cause any significant CPU load.

• Server packet buffer overload
So much data is requested that some data is dropped at the
server, which has to be re-requested by the client after a time-
out. This effect is visible when the chunk size is 8192 and the
window size is 400 in figure 9.1(b).

The experiment was repeated once, which confirmed the accu-
racy of the original data and the conclusions.

108 CHAPTER 9. EXPERIMENT 1: LARGE FILE DOWNLOAD

Chapter 10

Experiment 2:
Downloading multiple
smaller files

10.1 Motivation and setup

The previous experiment revealed important factors and configura-
tion settings that constraint on the performance of CCN, but did not
identify the optimal parameters for CCN. Specifically, the built-in
chunk size limitation of 8192 bytes was not exceeded, but the ex-
periment did show that higher chunk sizes generally lead to higher
performance. Also, downloading singular large files is not the most
relevant use case for content access on the internet. In particular,
in DASH setups content is subdivided into smaller segments, and
each is downloaded either serially or in parallel. The setup of this
experiment is similar to the last one, with the important difference
that this time instead of downloading one file of 100 MB, 50 files of
2 MB will be downloaded. The chosen file size is in line with high-
resolution DASH segments. This way, the start and stop effects of
CCN should be more visible.

In this experiment, we vary the chunk sizes between 1024 bytes

109

110CHAPTER 10. EXPERIMENT 2: DOWNLOADING MULTIPLE SMALLER FILES

and 65000 bytes, with a factor of 4 difference between each step:
1024 bytes, 4096 bytes, 16384 bytes and 65000 bytes. To use
chunk sizes above 8192 bytes, a built-in CCNx limit had to be
raised. It was increased to 65535 bytes, out of a concern that the
size might be stored in a 16-bit integer somewhere and consequently
higher sizes might lead to hard-to-debug errors. Because this limit
includes the CCN header, a chunk (content) size of 65000 bytes was
used. Experiment 1 showed that a window size of 1 is suboptimal in
every case, so in this experiment it was decided to go with a window
size of 5 as minimum. An extra step between the window sizes of
20 and 100 was also added, to add some granularity. Furthermore,
in experiment 1 the maximum window size of 400 did never result
in an optimal download speed, so for this experiment the maximum
was reduced to 200 simultaneous Interests. For the RTT, the same
values as for the previous experiment were used, except that the
case of 200ms RTT was also examined.

10.2 Code

The code for this experiment is similar to that of experiment 1, and
is listed in appendix B.3.

10.3 Results

Figure 10.1 shows that, as expected, as RTT increases the down-
load time increases as well. This is in line with the findings from
experiment 1, where it was demonstrated that the download time is
linearly related to RTT as long as no other limits are encountered.

This time the most prominent result was the anomaly at RTT=0ms,
which is better explained using figure 10.3. When the RTT is very
low and the chunk and window sizes are high, the CCN stack on
the server side tries to push more bytes onto the interface than the
interface can handle at that point, filling up the IP packet buffer,
and causing an overflow which causes the server to drop packets.

10.3. RESULTS 111

Figure 10.1: Download time versus RTT. Note that CCN can outperform HTTP in sequen-
tial downloading of content (when chunk size >= 16K and RTT >= 10ms). The line labeled
http is using HTTP/1.1 pipelining to download all segments at once.

The client notices the chunks time out and re-sends the Interest for
them after 4 seconds, causing delays. This is the same effect as
was observed in experiment 1 for a window size of 400 and a chunk
size of 8 KB at RTT=10ms. The effect diminishes at higher chunk
sizes and higher window sizes because in such cases, the average
link utilization remains optimal even though many pending inter-
ests time out. The time-outs decrease the effective window size, but
at high chunk and window sizes, the effective window size remains
big enough for a near-optimal data transfer.

In figure 10.2 it is shown that increasing window sizes beyond 20
does not give a real difference except with very small chunk sizes.
And even with small chunk sizes, increasing the window size beyond
60 does not give any performance benefit. This is caused by the fact
that the system is fully occupied by the CCNx stack, as is evidenced
by figure 10.4. In this figure, the CPU load is plotted for a download
with chunk size 1024 and a window size of respectively 5, 20 and
60 at an RTT of 10ms. It can be clearly seen that the CPU load is
a limiting factor: with a window size of 20, the CPU load climbs to
80%. When we increase it even further, the CPU load reaches 100%
which slows down the CCNx stack.

112CHAPTER 10. EXPERIMENT 2: DOWNLOADING MULTIPLE SMALLER FILES

Figure 10.2: Download time decreases as chunk size increases. HTTP in this figure
means pipelined HTTP 1.1

10.3. RESULTS 113

Figure 10.3: Anomaly at RTT=0ms, with chunk size=16-65K and window size=20-60
download time increases dramatically.

Figure 10.4: CPU and network bandwidth. From left to right: Window size 5 (end of
download run), window size 20, window size 60. Note that CPU load increases with the
window size, reaching 80% at window size 20 and reaching 100% somewhere between 20
and 60. This means that there is no gain in increasing the window size because of server
CPU load.

114CHAPTER 10. EXPERIMENT 2: DOWNLOADING MULTIPLE SMALLER FILES

Chapter 11

Experiment 3: DASH-like
CCN download

11.1 Motivation and setup

The previous experiments showed various limitations of the CCNx
stack and CCN in general, and also showed the optimal parameters
for sequential download of files. However, they did not use a real-
istic DASH-like data set, and they downloaded each file (segment)
in series instead of downloading some in parallel for CCN. The next
experiment therefore looks at the potential benefits of downloading
multiple segments in parallel, with real, variably sized DASH con-
tent. The same data set as was used in [LGP+13] and [LMR+13a]
is used, in particular the 500kbit representation of the data set..
Each segment lasts for 2 seconds of playback time, leading to an
average segment size of 125 KB or 1 Mbit (the actual average size
was 124954 bytes with a standard deviation of 76942 bytes). This
data set uses a chunk size of 4KB for the entire data set. To down-
load these files in parallel, separate programs needed to be written
for both CCN and HTTP 1.1 (see appendix B.1 and B.2). The CCN
program was written against the CCNx API, more specifically the
ccn_fetch API. The HTTP program was written using libcurl (version
7.35), with the pipelining option. To simulate a realistic network
scenario where content is downloaded from a remote server, the

115

116 CHAPTER 11. EXPERIMENT 3: DASH-LIKE CCN DOWNLOAD

network throughput was reduced to 10Mbit/s.

For more thorough examinations of the resulting network traffic,
Wireshark was used (version 1.10.6), in combination with the CCN
Wireshark plugin. This plugin did not correctly show the CCN Data
packets with unconventional chunk sizes, but served as a baseline
to detect and filter CCN Interests.

The variables considered in this experiment are as follows:

• Window size
By “window size” is meant the amount of pending Interests per
segment, rather than in total. The total window size of the
CCN stack is given by the window size times the amount of
segments that are downloading simultaneously. The window
size is varied between 1, 2, 3, 4, 6, 8, 12, 16.

• Number of simultaneous segments (“Segment window”)
By “Segment window” is meant the number of DASH segments
downloading in parallel. The segment window is varied be-
tween 1, 2, 4, 8, 12 and 16.

• RTT
For the RTT the following values are used: 0ms, 1ms. 10ms,
20ms, 40ms and 100ms. The extra value 1ms was added
to better examine the effects of low RTT on download speed,
which has some curious properties as shown by the previous
experiments.

• Chunk size
The chunk size of 4KB is fixed by the use of the ITEC data
set, and not varied in this experiment. The effect of varying
this parameter has been sufficiently shown by the previous
two experiments,

11.2 Code

The code for the program that downloads multiple segments in par-
allel with configurable window size and segment window is available

11.3. RESULTS 117

in appendix B.1. The code for the equivalent program in HTTP is in
appendix B.2. The script that iterates over the various settings and
calls these programs is in appendix B.4.

11.3 Results

Downloading many segments in parallel did indeed result in a bet-
ter download time for small segments, with the effect rising propor-
tionally with the RTT of the link. For links with negligible RTT, it
can be shown that the segment window does not really affect the
throughput a lot, although there is always some improvement from
downloading two segments in parallel rather than only downloading
one (see figure 11.1). This is because as a segment download starts
and ends, the link utilization drops below the maximum, which is
covered by having a second segment download during this interval.

Figure 11.1: Download trace of 5 consecutive downloads with various RTT values (col-
ors), each time increasing the segment window size. Note that for delay=1ms, the optimum is
reached with 2-4 segments simultaneously, with a slight decrease for higher segment window
sizes. The window size is 5 in this particular test.

A particular surprise in this experiment is that there is clearly
an optimal segment window size for each combination of RTT and
chunk window size. The server CPU is not a limiting factor in this
case, but instead this phenomenon was probably caused by the

118 CHAPTER 11. EXPERIMENT 3: DASH-LIKE CCN DOWNLOAD

fact the high protocol overhead, both on-the-wire and in terms of
computations necessary before sending out chunks, although this
assertion was not tested. Other effects are into play. As can be seen
in figure 11.2, a maximum download speed that can be reached for
any given RTT was observed (in that figure, the limit is about 650
KB/s for an RTT of 40ms, for example). For other RTTs, the same
effect can be observed, as can be evidenced from the table below.

RTT Observed maximum download speed
0 850 KB/s
1 840 KB/s
10 800 KB/s
20 750 KB/s
40 650 KB/s
100 400 KB/s

This is also visualized in figure 11.3. There is a linear relation-
ship between RTT and download time. In experiment 1, it was
shown that there was a relationship between RTT and download
speed, but this limit also depended on the window size, which does
not appear to be the case here for window sizes greater than about
4. Figure 11.2 also shows that download speed can be improved
by either increasing the chunk window size or the segment window
size, at least up to this limit.

From the results, we can attempt to derive optimal parameter
sets for each RTT. Since once of the core concepts of DASH is the
ability to switch to a better (or worse) stream depending on chang-
ing network environments, it is best not to download too many seg-
ments at any one time, because that leads to more wasted pack-
ets and a slower reaction when switching to the different quality
stream. Given this, we see that CCN’s maximum performance can
be obtained (among other configurations) by downloading 3 concur-
rent segments at a low RTT (1-20ms), rising linearly to 6 segments
in the case of higher RTT (100ms), with a chunk window size of 8.
Also, it is important to keep in mind the important of high chunk
sizes: as shown by the previous experiment, higher chunk sizes
perform better (see section 10).

Compared with [LMR+13b], the results of this thesis do show
the same RTT problems of CCN relative to HTTP 1.1 (see figure

11.3. RESULTS 119

11.4). In the results of this experiment, there is a steeper drop-off
for both HTTP and CCN, which can be attributed to lower segment
sizes in this experiment (we use segment sizes of 125 KB on average
(500Kbit/s ∗ 2s = 125KB), whereas in the ITEC case, dynamic adap-
tation was probably used (although this is not explicitly confirmed
in the source).

120 CHAPTER 11. EXPERIMENT 3: DASH-LIKE CCN DOWNLOAD

(a) RTT=10ms

(b) RTT=40ms

(c) RTT=100ms

Figure 11.2: Download speed with various parameters at various RTT values. Note the
apparent ceiling each time for CCN, irrespective of the number of segments and the window
size. HTTP in this case refers to HTTP/1.1 with pipelining, downloading the same amount of
segments in parallel as in the CCN case. HTTP quickly climbs to near-optimal link utilization.

11.3. RESULTS 121

Figure 11.3: Download speed in function of RTT and number of simultaneous segments,
showing the different ceilings for each RTT. The anomaly at RTT=0ms and high number
of simultaneous segments is explained by the server packet buffer overload, discussed in
experiment 1.

122 CHAPTER 11. EXPERIMENT 3: DASH-LIKE CCN DOWNLOAD

Figure 11.4: A comparison of the results with those of [LMR+13b]. Our results (which
are subdivided into the results for different window sizes,colors) are on top.

Chapter 12

Other experiments

12.1 Multi-source CCN

One of the initial goals was to investigate the potential for faster
download in CCN by exploiting the fact that many hosts, especially
mobile ones, can potentially be connected to the internet through
multiple interfaces at once. One of the major features of CCN is
that it is link agnostic, so it will simply switch to a different link
if the old link becomes unavailable, or even if another link simply
provides faster throughput than the interface currently being used.
It does this by occasionally sending Interest packets out over other
links as well as the one it is currently using. If it receives a reply on
a different interface first, it is an indication that the other link may
be faster and it can switch to this link. While this functionality is
useful by itself, there is also the potential to significantly increase
the download rate by fully utilizing both links at once. However,
some research discovered that this is currently not supported by
any available CCN implementation, and in particular would need
some tricky modifications to the CCN strategy layer. The strategy
layer decides where to forward an Interest to, and thus over which
interface data will be received. The strategy layer would need to
send out Interests over both interfaces for different chunks in di-
rect proportion to the current link strength of both interfaces to
achieve an efficient load balancing; however, accurate link perfor-

123

124 CHAPTER 12. OTHER EXPERIMENTS

mance and reliability information is not always easy to obtain. In
addition, whenever two links are available to a host, usually one
will be far superior to the other, meaning that any potential benefits
will be modest. This might change in the future with the increased
adoption of 4G technologies, which can get as fast as Wi-Fi.

Chapter 13

Conclusions

CCN has the potential to be a contender for HTTP when it comes
to video streaming, but does not fit neatly underneath the current
DASH approach. For CCN, it is not a good idea to segment video
files into small segments, because CCN already uses variably sized
chunks. In particular, the benefits of parallelism level out in CCN at
a certain level (determined by the RTT), so it is better to download
one large file using a large window size than several small ones with
high window sizes for each. Hence, CCN is not currently optimized
for DASH-like content delivery (many small files).

Our results show that there are several limits imposed by the
CCN stack on the download speed:

1. Link underutilization due to RTT and a low Interest window
size/chunk size.

2. Server CPU overload with high number of outstanding Inter-
ests (more than 2000 per second on a dual-core Intel Core 2
Duo running at 2.4 GHz).

3. Server packet buffer overload: the server tries to send more
data back to the client than the link allows, causing it to fail
to send some data, which is later re-requested by the client.

4. The observed ceiling reached when issuing many requests in

125

126 CHAPTER 13. CONCLUSIONS

parallel for chunks of different files.

That said, with careful tuning it is usually possible to approach
or even exceed the performance of HTTP when downloading single
large files, and to approach the link speed at low RTT and high
chunk and window sizes. However, large chunk sizes increase the
chance that chunks will be lost due to packet drops when clash-
ing with other protocols such as TCP over highly utilized links, so
network conditions must be considered in every situation to find
the optimal balance. Large chunk sizes are to be preferred because
they minimize the impact of CCN’s very large header (compared with
TCP/IP headers), and to diminish the processing overhead associ-
ated with a high number of outstanding Interests. Increasing Win-
dow sizes will not have a big impact beyond a certain point, because
either the link speed or the CPU limit will be reached. At very low
network delay (<= 1ms) care must be taken not to overwhelm the
link. In such cases, a chunk size of 4 KB performs better than
higher chunk sizes.

Given the above conditions and limitations, the optimal settings
for the playback of DASH content were determined in function of the
RTT of the link, which is accurately measurable. Our results show
that at high RTT, high window sizes and higher segment window
sizes are appropriate; on the other hand, for low RTT, low levels
yield a slightly higher download rate.

Because HTTP 1.1 presently outperforms CCN in every measure-
ment regarding DASH, additional incentives will be necessary for
anyone to switch to CCN, such as its automatic caching behavior.
Whether this offers a compelling reason to switch from using CDNs
remains to be seen.

The central question this thesis tries to answer is whether CCN
can be a viable replacement of TCP/IP (see section 1.1.3). Our test-
ing has revealed that CCN has different performance characteristics
than TCP/IP, and that, while implementing a use case like dynamic
video streaming over CCN is not a big problem, CCN may not be
suited to all use cases. Certainly, as we have established, CCN can-
not beat TCP in raw performance, and needs another reason (such
as its built-in caching) to give it an edge.

127

Regarding the future uptake of CCN, it’s important to note that
CCN’s two main advantages over TCP/IP from a user’s perspective
(addressing content by name and ubiquitous caching) rely on net-
work effects (and network investments) to truly become effective:

• Addressing content by name is useful only when the content
you search for can be found within the CCN network

• Caching only works when there are intermediate hosts willing
(and capable) to store it, and only with popular content (i.e.
video)

The current CCNx stack still has many deficiencies, some of
which are inherent to CCN (such as the link underutilization prob-
lem). Others are subject to improvement in future implementations,
such as the CPU load problems with a high number of pending In-
terests, and load balancing.

In my personal opinion, while I believe strongly in what CCN sets
out to achieve, it tries to do too much. Addressing content by name
is a good idea, but could be achieved using a DNS-like protocol on
top of IP, rather than necessitating an overhaul of the network layer
protocols. Similarly, it is good to build encryption into the net-
work layer, but these are easier to achieve using dedicated initia-
tives (such as IPsec), rather than lumping it together with the con-
tent centric approach. Trying to fix everything at once means that
CCN is not optimal for any one use case (e.g. the computational
burden and header overhead decrease performance when simply
disseminating content that does not benefit from the encryption or
authenticity guarantees). Trying to do everything at once decreases
the appeal to anyone who is interested in only one aspect of CCN,
makes implementing and optimizing the CCN stack difficult (or im-
possible where two design goals conflict), leaves the door open to
abuse of the system (such as using the computationally complex
signature verification to execute a DoS attack on a server which is
difficult to trace back to the source), and constrains applications
to a strict model, necessitating workarounds such as pushing con-
tent as part of an Interest packet for push networking. All this goes
against the one redeeming feature of IP, which is its simplicity that
has over the past decades allowed anyone to build complicated sys-
tems on top of it which were never foreseen by the original authors

128 CHAPTER 13. CONCLUSIONS

of IP. In the long term, such flexibility is the thing that ultimately
matters most in networking.

Bibliography

[ADD+08] Bengt Ahlgren, Matteo D’Ambrosio, Christian Dan-
newitz, Marco Marchisio, Ian Marsh, Börje Ohlman,
Kostas Pentikousis, René Rembarz, Ove Strandberg,
and Vinicio Vercellone. Design considerations for a net-
work of information. In Proceedings of the 2008 ACM
CoNEXT Conference, page 66. ACM, ACM, December
2008.

[AVS] Adaptive video streaming over icn. Internet draft: draft-
irtf-icnrg-videostreaming-00, expires Sept 10th, 2014.
Accessed: 2014-08-31.

[bel] Streaming quality of tv everywhere. http://support.
en.belgacom.be/app/answers/detail/a_id/15350/
~/streaming-quality-of-tv-everywhere. Accessed:
2014-08-31.

[BGP] Border gateway protocol. http://en.wikipedia.org/
wiki/BGP. Accessed: 2014-08-31.

[CAFR12] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu,
and K.K. Ramakrishnan. Coexist: a hybrid approach
for content oriented publish/subscribe systems. In Pro-
ceedings of the second edition of the ICN workshop on
Information-centric networking, ICN 2012, pages 31–36,
Helsinki, Finland, 2012. ACM.

[CAJ+11] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xi-
aoming Fu, and K.K. Ramakrishnan. Copss: An effi-
cient content oriented publish/subscribe system. Tech-
nical report, Institute of Computer Science, Univer-
sity of Goettingen, Germany and AT&T Labs Research,
Florham Park, NJ, U.S.A., 2011.

129

http://support.en.belgacom.be/app/answers/detail/a_id/15350/~/streaming-quality-of-tv-everywhere
http://support.en.belgacom.be/app/answers/detail/a_id/15350/~/streaming-quality-of-tv-everywhere
http://support.en.belgacom.be/app/answers/detail/a_id/15350/~/streaming-quality-of-tv-everywhere
http://en.wikipedia.org/wiki/BGP
http://en.wikipedia.org/wiki/BGP

[CCN] Ccnx. http://www.ccnx.org/. Accessed: 2014-08-31.

[CG00a] David R. Cheriton and Mark Gritter. Triad: A scalable
deployable nat-based internet architecture. Technical
report, Stanford University, 2000.

[CG00b] D.R. Cheriton and M. Gritter. Triad: A new next-
generation internet architecture. http://www-dsg.
stanford.edu/triad/triad.ps.gz, 2000. Accessed:
2014-08-31.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guer-
raoui, and Anne-Marie Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys, 35(2):114–
131, June 2003.

[FSLL+06] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas,
Sean Rhea, Frans Kaashoek, and Robert Morris. Per-
sistent personal names for globally connected mobile
devices. In Proceedings of OSDI 2006, pages 233–248,
November 2006.

[GC01] Mark Gritter and David R. Cheriton. An architecture
for content routing support in the internet. In Proceed-
ings of the 3rd USENIX Symposium on Internet Technolo-
gies and Systems, volume 1 of USITS 2001, pages 4–4,
Berkeley, CA, USA, 2001.

[Gri] Mark Gritter. The triad content layer.
http://www-dsg.stanford.edu/slides/
triad-content-netseminar/. Accessed: 2014-08-31.

[HG04] Mark Handley and Adam Greenhalgh. Steps towards
a dos-resistant internet architecture. In Proceedings of
the ACM SIGCOMM workshop on Future directions in net-
work architecture, FDNA 2004, pages 49–56, Portland,
Oregon, USA, 2004. ACM.

[Int] Internetworking: communicating protocols and ba-
sic tcp/ip. http://www.highteck.net/EN/Basic/
Internetworking.html. Accessed: 2014-08-31.

[Jac06] Van Jacobson. A new way to look at network-
ing. http://video.google.com/videoplay?docid=
-6972678839686672840, August 2006. Accessed:
2014-08-31.

http://www.ccnx.org/
http://www-dsg.stanford.edu/triad/triad.ps.gz
http://www-dsg.stanford.edu/triad/triad.ps.gz
http://www-dsg.stanford.edu/slides/triad-content-netseminar/
http://www-dsg.stanford.edu/slides/triad-content-netseminar/
http://www.highteck.net/EN/Basic/Internetworking.html
http://www.highteck.net/EN/Basic/Internetworking.html
http://video.google.com/videoplay?docid=-6972678839686672840
http://video.google.com/videoplay?docid=-6972678839686672840

[JP09] Van Jacobson and Craig Partridge. A conversation with
van jacobson. ACM Queue, 7(1):8–16, January 2009.
Available at http://queue.acm.org/detail.cfm?id=
1508215.

[JSB+09] Van Jacobson, Diana K Smetters, Nicholas H Briggs,
Michael F Plass, Paul Stewart, James D Thornton, and
Rebecca L Braynard. Voice over content-centric net-
works. In Proceedings of the 2009 workshop on Re-
architecting the internet, pages 1–6, Rome, Italy, Decem-
ber 2009. ACM.

[JST+09] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, and Rebecca L.
Braynard. Networking named content. In Proceedings
of the 5th international conference on Emerging network-
ing experiments and technologies, pages 1–12. ACM, De-
cember 2009.

[KCC+07] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, An-
drey Ermolinskiy, Kye Hyun Kim, Scott Shenker, and
Ion Stoica. A data-oriented (and beyond) network ar-
chitecture. In Proceedings of the 2007 conference on Ap-
plications, technologies, architectures, and protocols for
computer communications, SIGCOMM 2007, pages 181–
192, Kyoto, Japan, 2007. ACM.

[Lau10] Tobias Lauinger. Security & scalability of content-
centric networking. Master’s thesis, Technische Univer-
sität Darmstadt, 2010.

[LGP+13] Yaning Liu, Joost Geurts, Jean-Charles Point, Stefan
Lederer, Benjamin Rainer, Christopher Müller, Christian
Timmerer, and Hermann Hellwagner. Dynamic adaptive
streaming over ccn: a caching and overhead analysis.
In Communications (ICC), 2013 IEEE International Con-
ference on, pages 3629–3633. IEEE, 2013.

[Lin06] D.I. Manfred Lindner. Ip technology basics. Tech-
nical report, Vienna University of Technology, 2006.
https://www.ict.tuwien.ac.at/lva/384.081/
infobase/L30-IP_Technology_Basics_v4-6.pdf.

[lLZ+12] Haibo li, Yang Li, Zhijun Zhao, Tao Lin, Hui
Tang, and Song Ci. A sip-based real-time traf-
fic mobility support scheme in named data net-
working. Journal of Networks, 7(6):918–925, June

http://queue.acm.org/detail.cfm?id=1508215
http://queue.acm.org/detail.cfm?id=1508215
https://www.ict.tuwien.ac.at/lva/384.081/infobase/L30-IP_Technology_Basics_v4-6.pdf
https://www.ict.tuwien.ac.at/lva/384.081/infobase/L30-IP_Technology_Basics_v4-6.pdf

2012. https://academypublisher.com/~academz3/
ojs/index.php/jnw/article/view/jnw0706918925.

[LMR+13a] Stefan Lederer, Christopher Mueller, Benjamin Rainer,
Christian Timmerer, and Hermann Hellwagner. Adap-
tive streaming over content centric networks in mo-
bile networks using multiple links. In Communications
Workshops (ICC), 2013 IEEE International Conference on,
pages 677–681. IEEE, 2013.

[LMR+13b] Stefan Lederer, Christopher Müller, Benjamin Rainer
Rainer, Christian Timmerer, and Hermann Hellwagner.
An experimental analysis of dynamic adaptive stream-
ing over http in content centric networks. In Proceedings
of the IEEE International Conference on Multimedia and
Expo 2013, pages 1–6, San Jose, USA, July 2013. IEEE.

[LRH10] Uichin Lee, Ivica Rimac, and Volker Hilt. Greening the
internet with content-centric networking. In Proceedings
of the 1st International Conference on Energy-Efficient
Computing and Networking, e-Energy 2010, pages 179–
182, Passau, Germany, 2010. ACM.

[MA11] Ahmed Mansy and Mostafa Ammar. Analysis of adaptive
streaming for hybrid cdn/p2p live video systems. In Pro-
ceedings of the 2011 19th IEEE International Conference
on Network Protocols, ICNP ’11, pages 276–285, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[MPZ10a] Michael Meisel, Vasileios Pappas, and Lixia Zhang. Ad
hoc networking via named data. In Proceedings of the
fifth ACM international workshop on Mobility in the evolv-
ing internet architecture, MobiArch 2010, pages 3–8,
Chicago, Illinois, USA, 2010. ACM.

[MPZ10b] Michael Meisel, Vasileios Pappas, and Lixia Zhang. Lis-
ten first, broadcast later: Topology-agnostic forwarding
under high dynamics. In Annual Conference of Inter-
national Technology Alliance in Network and Information
Science, London, UK (September 2010), 2010.

[ndn] ndnsim documentation – overall ndnsim documenta-
tion. http://ndnsim.net/. Accessed: 2014-08-31.

[Nig08] Eddy Nigg. Untrusted certificates. https://blog.
startcom.org/?p=145, December 2008. Accessed:
2014-08-31.

https://academypublisher.com/~academz3/ojs/index.php/jnw/article/view/jnw0706918925
https://academypublisher.com/~academz3/ojs/index.php/jnw/article/view/jnw0706918925
http://ndnsim.net/
https://blog.startcom.org/?p=145
https://blog.startcom.org/?p=145

[NSG+12] Erik Nordström, David Shue, Prem Gopalan, Matvey
Arye, Steven Ko, Jennifer Rexford, and Michael J. Freed-
mano. Serval: An end-host stack for service-centric
networking. In Proceedings of USENIX NSDI, pages 85–
98, April 2012. http://www.serval-arch.org/docs/
serval-tr-Oct11.pdf.

[PAR] PARC. Named data networking. http://named-data.
org/. Accessed: 2014-08-31.

[RR11] Dario Rossi and Giuseppe Rossini. Caching perfor-
mance of content centric networks under multi-path
routing (and more). Relatório técnico, Telecom ParisTech,
2011.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM, 21(2):120–126, February 1978.

[San] Global internet phenomena report 1h2014. http://
www.sandvine.com. Accessed: 2014-08-31.

[SDC+12] Stefano Salsano, Andrea Detti, Matteo Cancellieri, Mat-
teo Pomposini, and Nicola Blefari-Melazzi. Transport-
layer issues in information centric networks. In Pro-
ceedings of the second edition of the ICN workshop
on Information-centric networking, pages 19–24. ACM,
2012.

[Sig] Digital signature. http://en.wikipedia.org/wiki/
Digital_signature. Accessed: 2014-08-31.

[SJ09] Diana Smetters and Van Jacobson. Securing network
content. Technical report, Palo Alto Research Center,
2009.

[SRK+03] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh
Govindan, and Deborah Estrin. Data-centric storage in
sensornets. In ACM SIGCOMM Computer Communica-
tions Review, volume 33, pages 137–142. ACM, Januari
2003.

[tel13] Yelo tv een 360Âř beleving - medianet vlaan-
deren. Technical report, Telenet, September 2013.
http://www.medianetvlaanderen.be/content/
user/File/130905%20StreamingIII/Telenet%
20Yelo%20TV-%20een%20360%C2%B0beleving.pdf.

http://www.serval-arch.org/docs/serval-tr-Oct11.pdf
http://www.serval-arch.org/docs/serval-tr-Oct11.pdf
http://named-data.org/
http://named-data.org/
http://www.sandvine.com
http://www.sandvine.com
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Digital_signature
http://www.medianetvlaanderen.be/content/user/File/130905%20StreamingIII/Telenet%20Yelo%20TV-%20een%20360%C2%B0beleving.pdf
http://www.medianetvlaanderen.be/content/user/File/130905%20StreamingIII/Telenet%20Yelo%20TV-%20een%20360%C2%B0beleving.pdf
http://www.medianetvlaanderen.be/content/user/File/130905%20StreamingIII/Telenet%20Yelo%20TV-%20een%20360%C2%B0beleving.pdf

[VoI] A comparison of voip software. http://en.wikipedia.
org/wiki/Comparison_of_VoIP_software. Accessed:
2014-08-31.

[WWK+12] Lucas Wang, Ryuji Wakikawa, Romain Kuntz, Rama
Vuyyuru, and Lixia Zhang. Data naming in vehicle-to-
vehicle communications. In IEEE INFOCOM 2012 Work-
shop on Emerging Design Choices in Name-Oriented Net-
working, pages 328–333. IEEE, 2012.

[YFX12] Chunfeng Yao, Lingyuan Fan, and Yanping Xiang. long-
term interest for realtime applications in the named data
network. AsiaFI’12, August 20-24, 2012, Kyoto Univer-
sity, Kyoto, Japan, 2012.

[YFYX12] Chunfeng Yao, Lingyuan Fan, Zhefeng Yan, and
Yanping Xiang. Long-term interest for realtime
applications in the named data network. In
Proceedings of AsiaFI 2012, Kyoto, Japan, Au-
gust 2012. Asia Future Internet Forum, ACM.
http://asiafi.net/meeting/2012/summerschool/
submissions/WS/AsiaFI2012-ws-01.pdf.

[ZN11] Yuncheng Zhu and Akihiro Nakao. Content-oriented
transport protocol. In Proceedings of the 7th Asian In-
ternet Engineering Conference, AINTEC ’11, pages 104–
111, New York, NY, USA, 2011. ACM.

http://en.wikipedia.org/wiki/Comparison_of_VoIP_software
http://en.wikipedia.org/wiki/Comparison_of_VoIP_software
http://asiafi.net/meeting/2012/summerschool/submissions/WS/AsiaFI2012-ws-01.pdf
http://asiafi.net/meeting/2012/summerschool/submissions/WS/AsiaFI2012-ws-01.pdf

Appendix A

Figures

Figure A.1: An illustration of the Slashdot effect: The graph shows the increase in web
traffic to a small server after content on it has been posted to a popular website like Slashdot.
Many small websites are unable to deal with this. Source: http://en.wikipedia.org/
wiki/File:SlashdotEffectGraph.svg, retrieved September 16, 2013

135

http://en.wikipedia.org/wiki/File:SlashdotEffectGraph.svg
http://en.wikipedia.org/wiki/File:SlashdotEffectGraph.svg

Appendix B

Code

B.1 DASH over CCN test application

Listing B.1: Asynchronous download application for CCN: Downloads multiple DASH
segments simultaneously

#include <stdl ib .h>
#include <string .h>
#include <stdio .h>
#include <unistd .h>
#include <sys/time .h>
#include <stdbool .h>
#include <ccn/ccn .h>
#include <ccn/fetch .h>

//The highest−numbered segment to download
#define MAX_SEGMENT 299
//The lowest−numbered segment to download
#define MIN_SEGMENT 1
//The maximum size of a chunk in this experiment
//Used as a buffer size .
#define MAX_CHUNK_SIZE 65000

//Current chunk window size
stat ic unsigned chunkWindowSize ;
//Data attached to a single request , used to ident i fy
//the segment as well as the download start time
// (to measure download times for individual segments) .
typedef struct {

unsigned num;

137

struct timeval start ;
} segmentData ;

//Create a new ccn_fetch_stream object ,
//used to download the next segment (’ top ’ segment)
s tat ic bool request_next (struct ccn_fetch ∗handle , unsigned

∗top)
{

struct ccn_fetch_stream ∗ fs ;
struct ccn_charbuf ∗name;
char uri [256] ;
segmentData ∗segdata ;
//Stop downloading once MAX_SEGMENT is reached .
i f (∗ top == MAX_SEGMENT)

return fa lse ;
segdata = malloc (s izeo f (segmentData)) ;
name = ccn_charbuf_create () ;
//Memory al locat ion fa i lure
i f (segdata == NULL || name == NULL)

return fa lse ;
//Create the name
snprintf (uri , s i zeo f (uri) , " ccnx:/ itec1/dash/bunny/

bunny_2s_500kbit/bunny_2s%d.m4s" ,∗ top+1) ;
ccn_name_from_uri (name, uri) ;
//Create the ccn_fetch_stream
//representing this chunk download
//Can f a i l when creating lots in a row
//hence the while loop
while ((fs=ccn_fetch_open (

handle ,//master handle
name, //CCNx−formatted name
uri , //unformatted name
NULL, //Interest template
chunkWindowSize ,
CCN_V_HIGHEST,//Use versioning , prefer highest

version
1 //Can assume each chunk has the same size

)) == NULL)
usleep (1) ;

ccn_charbuf_destroy(&name) ;
++(∗ top) ;
// F i l l in the segment data
segdata−>num = ∗top ;
gettimeofday(&segdata−>start ,NULL) ;
ccn_fetch_set_context (fs , segdata) ;
return true ;

}

// Main download function .

stat ic void download_run (unsigned nsegs)
{

//Create the master handle
struct ccn_fetch ∗handle = ccn_fetch_new (NULL) ;
unsigned top = 0;
char buf [MAX_CHUNK_SIZE] ;
unsigned count=0;
struct timeval start , end , interval ;
i f (! handle)
{

perror (" ccn_fetch_new fa i l ed ") ;
return ;

}
//Get the current time , before start ing
gettimeofday(&start ,NULL) ;
//Queue nsegs simultaneous downloads
for (count=0;count<nsegs && request_next (handle,&top) ;++

count)
usleep (1) ;

while (count != 0)
{

//Check i f any handles have changed state
i f (ccn_fetch_poll (handle) !=0)
{

struct ccn_fetch_stream ∗s ;
//I terate over a l l act ive handles
//and check them individual ly
for (s = ccn_fetch_next (handle ,NULL) ;

s != NULL;
s = ccn_fetch_next (handle , s))

{
intmax_t res = ccn_fetch_read (s , buf , s izeo f (buf)) ;
i f (res > 0)
{
//In a real application , this is the point where
//you would do something with the data
// (write i t to f i l e , put i t into a display buffer

, . . .)
continue ;

}
switch (res)
{

// I f a timeout occurs , retry
case CCN_FETCH_READ_TIMEOUT:

puts ("Timeout ! ! ! ") ;
ccn_reset_timeout (s) ;
break ;

//Nothing was read −− ignore
case CCN_FETCH_READ_ZERO:

case CCN_FETCH_READ_NONE:
break ;

//The download has completed
case CCN_FETCH_READ_END:
{

//1) Find out how long i t took to download
//This data is not currently used
segmentData ∗segdata = ccn_fetch_get_context (s)

;
struct timeval s_end , s_int ;
gettimeofday(&s_end ,NULL) ;
timersub(&s_end,&segdata−>start ,&s_int) ;
double dur = s_int . tv_sec + ((double) s_int .

tv_usec) /1000000.;
//TODO: use dur to calculate an average segment

download time
//2) Clean up
ccn_fetch_close (s) ;
−−count ;
free (segdata) ;
//3) Start downloading the next f i l e
i f (request_next (handle,&top))

++count ;
break ;

}
default :

pr int f (" Error : unknown return from
ccn_fetch_read : %ld\n" , res) ;

}
}

}
//Don ’ t cook the CPU/freeze the system
usleep (10) ;

}
//Get the current time at the end of the stream download ,

and calculate the duration .
gettimeofday(&end,NULL) ;
timersub(&end,&start ,& interval) ;
double to ta l = interval . tv_sec + ((double) interval .

tv_usec) /1000000;
pr int f (" Total download took %l f seconds\n" , to ta l) ;

}

int main (int argc , char ∗∗argv)
{

unsigned long sws,cws ;
i f (argc < 3 || (sws=strtoul (argv [1] ,NULL,0)) ∗ (cws=

strtoul (argv [2] ,NULL,0)) == 0)

return fpr in t f (stderr , "Usage : %s segment_window_size
chunk_window_size\n" , argv [0]) ,EXIT_FAILURE;

//Remove any loca l l y cached chunks f i r s t ,
// otherwise that would be cheating ;−)
(void) system ("ccnrm /itec1 ") ;
chunkWindowSize = (unsigned) cws ;
//Start the download
download_run ((unsigned) sws) ;

return EXIT_SUCCESS;
}

B.2 DASH over HTTP test application

Listing B.2: Asynchronous download application for HTTP: Downloads multiple DASH
segments simultaneously, simulating a real DASH player but with adjustable number of
parallel segment downloads

#include <stdio .h>
#include <stdl ib .h>
#include <string .h>
#include <curl/curl .h>
#include <unistd .h>

#define MIN_SEGMENT 1
#define MAX_SEGMENT 299
#define MIN_PIPELINE_REQ 1
#define MAX_PIPELINE_REQ (MAX_SEGMENT − MIN_SEGMENT)

//Number of simultaneous (pipelined) requests
stat ic unsigned int pipeline_req ;

//Number of the next segment to download
stat ic int top = MIN_SEGMENT;
//Output f i l e (needed by cURL)
stat ic FILE∗ bitbucket = NULL;
//Function to obtain the next segment URI to use
stat ic char∗ getnexturi (void)
{

s ta t ic char uri [256] ;
i f (top > MAX_SEGMENT) return NULL;
snprintf (uri , s i zeo f (uri) , " http://192.168.1.181/bunny/

bunny_2s_500kbit/bunny_2s%d.m4s" , top++) ;
return uri ;

}
//Queue a f i l e for downloading with curl_multi_perform

stat ic CURL∗ addDownload (CURLM ∗master)
{

CURL∗ handle ;
//Get the URI to download
char ∗uri = getnexturi () ;
i f (uri == NULL) {

puts (" A l l segments added . ") ;
return NULL;

}
//Create a cURL handle for i t
handle = curl_easy_init () ;
i f (handle == NULL)

puts ("NULL handle received ! ") ;
//Configure the handle and
//add i t to the master (’ multi ’) handle
i f (handle != NULL &&

curl_easy_setopt (handle ,CURLOPT_URL, uri) ==
CURLE_OK &&

curl_easy_setopt (handle ,CURLOPT_WRITEDATA, bitbucket
) == CURLE_OK &&

curl_multi_add_handle (master , handle) == CURLM_OK)
return handle ;

puts ("Adding a handle fa i l ed ! ") ;
return NULL;

}

int main (int argc , char ∗∗argv)
{

unsigned i =0;
CURLM ∗m_curl ;
CURLMcode res ;
struct timeval start , end , interval ;
int count=0;
i f (argc <= 1)

return puts (" Insuf f ic ient arguments") , 1;

pipeline_req = atol (argv [1]) ;
i f (pipeline_req > MAX_PIPELINE_REQ || pipeline_req <

MIN_PIPELINE_REQ)
return puts (" Inval id Pipel ine Request : argument must be

between 1 and 298") , 2;

//CURL needs an output f i l e , so l e t ’ s use /dev/null
//This special f i l e throws away anything written to i t
bitbucket = fopen ("/dev/null " , "w") ;

//Set up curl , and enable pipel ining
m_curl = curl_mult i_ init () ;
curl_multi_setopt (m_curl , CURLMOPT_PIPELINING, 1L) ;

//Add pipeline_req sub−handles to cURL, to download that
many f i l e s in para l le l .

for (i =0; i <pipeline_req ; i ++)
(void) addDownload (m_curl) ;

//Before rea l ly start ing the download , get the current
time

gettimeofday(&start ,NULL) ;

do
{

// Perform the download ,
// stopping when one or more of the sub−handles

change state
res = curl_multi_perform (m_curl , &count) ;

// Check the message to see i f a download has finished
i f (res == CURLM_OK && count < (int) pipeline_req)
{

CURLMsg ∗msg;
int i ;

//Remove download handles for completed downloads
while ((msg=curl_multi_info_read (m_curl,& i)) !=NULL)
{

char ∗url = NULL;
i f (msg−>msg != CURLMSG_DONE)

continue ;
curl_multi_remove_handle (m_curl , msg−>easy_handle) ;
curl_easy_getinfo (msg−>easy_handle ,

CURLINFO_EFFECTIVE_URL,&url) ;
pr int f ("Segment ’%s ’ has been downloaded ! top=%d

count=%d\n" , url , top , count) ;
curl_easy_cleanup (msg−>easy_handle) ;

}
//Start downloading new f i l e s , unti l the counter

reaches MAX_SEGMENT
for (; count<(int) pipeline_req && top <= MAX_SEGMENT

;++count)
(void) addDownload (m_curl) ;

}
//Do not overheat the CPU by sleeping a l i t t l e (0.1ms)
// (This does not slow down the downloads −−
// they happen asynchronously) .
usleep (100) ;
// Stop when the number of active handles reaches 0 or

there is an error
} while (count > 0 && res==CURLM_OK) ;

i f (res != CURLM_OK)
{

fp r in t f (stderr , "An error occurred : %s\n" ,
curl_multi_strerror (res)) ;

}
//Compare start and end time of the tota l download to get

the duration
gettimeofday(&end,NULL) ;
timersub(&end,&start ,& interval) ;
pr int f (" Total elapsed time : %l f seconds\n" , interval .

tv_sec + ((double) interval . tv_usec) /1000000.) ;

//Clean up
curl_multi_cleanup (m_curl) ;
fc lose (bitbucket) ;

return 0;
}

B.3 Experiment 2 execution script

Listing B.3: Experiment 2: Sending 50 chunks of 2MB each, with different window
sizes, chunk sizes and RTT

#!/bin/bash
Author : Frederik Van Bogaert
Parameters : chunk size , RTT and CCN window size (interest

pipel ining)

OTHER_HOST=192.168.1.181
CCN_NAME=ccnx:/ test2/ f i l e
LOGFILE=smallchunks . log
REMOTEDIR=~/data/test/
FILESIZE=20 # x 100 000 bytes
ITERATIONS=50

rm $LOGFILE

echo " Creating f i l e s on $OTHER_HOST"
ssh $OTHER_HOST mkdir −p $REMOTEDIR
#Make 50 f i l e s of 2 MB. These are our "segments"
ssh $OTHER_HOST " for ((i =0;\$i<$ITERATIONS; i =\$i +1)) ; do dd

i f =/dev/urandom of=$REMOTEDIR/\$i bs=100000 count=
$FILESIZE ; done"

#Make sure the local routing table is correct
ccndc add $CCN_NAME udp $OTHER_HOST

for r t t in 0 10 40 100 200;
do

echo " Setting RTT to $ { r t t }ms"
#Set the "queuing disc ip l ine " for interface eth0 to "

Network Emulation"
with a r t i f i c i a l delay of r t t ms and capped to 100

MBit/s
ssh $OTHER_HOST tc qdisc replace dev eth0 root netem

delay $ { r t t }ms rate 100Mbit
for chunk_size in 1024 4096 16384 65000;
do

for window_size in 5 20 60 100 200;
do

echo " Preparing to send data with sz=$chunk_size ws=
$window_size r t t=$rtt "

#Remove cached copies from both hosts
#This ensures the segments w i l l be re−chunked and re−

sent every time
ssh $OTHER_HOST ccnrm $CCN_NAME
ccnrm $CCN_NAME
#Send the chunks on the other host . Do this in the

background .
ssh $OTHER_HOST " for ((i t =0;\$it <$ITERATIONS; i t =\$i t

+1)) ; do ccnsendchunks −b $chunk_size $CCN_NAME/\
$it <$REMOTEDIR/\$it ; done &" &

#We need to wait a bi t to be sure the content is
avai lable from the other host

sleep 5
RESULT=0
for ((i t =0; $it <$ITERATIONS; i t =$i t +1)) ;
do

#Download the chunk and store the debug output
including transfer time

RESULTLINE=$ (ccncatchunks2 −d −p $window_size
$CCN_NAME/$it 2>&1)

i f [−z "$RESULTLINE"] ; then exi t ; f i
#F i l t e r the result to obtain just the time taken by

the download .
R=$ (echo $RESULTLINE | egrep −o " [0−9.]+ seconds " |

cut −d ’ ’ −f1)
#Floating−point addition is not supported by BASH

−> use python (or perl ,awk , . . .) instead
RESULT=$ (python −c " print $RESULT + $R")

done
#Write the parameters + result to a log f i l e (CSV

format)
echo " $rtt ; $chunk_size ; $window_size ;$RESULT" >>

$LOGFILE
#Terminate the server−side process

pk i l l ssh
echo "Done in $RESULT seconds "

done
done

done

B.4 Experiment 3 execution script

Listing B.4: Experiment 3: Download a DASH stream using CCN and HTTP, with various
parameters

#!/bin/bash
#Author : Frederik Van Bogaert
#Prerequisite : The DASH CCN repository is in i t i a l i z ed on

the other host

OTHER_HOST=192.168.1.181
OUTFILE=experiment3 . csv
#remove the output f i l e i f i t already exists
[−f "$OUTFILE"] && rm $OUTFILE

for r t t in 0 1 10 20 40 100;
do

#Set the RTT on OTHER_HOST, and l imi t the rate to 10Mbit/
s

ssh $OTHER_HOST " tc qdisc replace dev eth0 root netem
delay $ { r t t }ms rate 10Mbit " ;

#SWS = Segment Window Size = # of simultaneous segments
for sws in 1 2 3 4 6 8 12 16;
do

#Try HTTP f i r s t
RESULT=$(./ httpdl $sws | egrep −o " [0−9.] seconds " |

awk ’ { print $1 } ’)
#We’ re not using the chunk size f i e l d for HTTP
−> put the special value ’ http ’ there
echo " $rtt ;$sws; http ;$RESULT" >> $OUTFILE
#CWS = Chunk Window Size = Number of chunks to fetch

simultaneously
per segment
for cws in 1 2 4 8 12 16;
do

#Download the stream using given SWS and CWS
#(see dlasync . c) , store output in $RESULT
RESULT=$(./ dlasync $sws $cws|egrep −o " [0−9.]+ ")
echo " $rtt ;$sws;$cws;$RESULT" >> $OUTFILE

done

done
done

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Content-Centric Networking

Richting: master in de informatica-multimedia

Jaar: 2014

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,

vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Voor akkoord,

Van Bogaert, Frederik

Datum: 8/09/2014

