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Abstract

In order to obtain unbiased estimates of a population quantity based on sample survey data, post-stratification
techniques use external data to adjust the estimates during the analysis stage. Small sample sizes in any post-
strata may yield highly variable estimator. The weight trimming method pools highly underrepresented units
into a stratum with better representation but it is somehow arbitrary. In the same spirit, weight-smoothing
approach treats post-stratum means as random-effects, inducing shrinkage across post-stratum means. To protect
against the bias generated by possible misspecification of the mixed-model, a doubly-robust version is used as
well as a nonparametric spline function for the underlying weight stratum means. I compare those approaches in
a simulation study for the inference about the population mean of a normally distributed survey outcome with
ordinal post-stratifying variable. None of the 9 estimators is uniformly best in all 24 scenarios considered but
the nonparametric weight-smoothing doubly-robust is close to the best for a wide range of populations offering
protection against unfavorable mean structures and model misspecification, therefore can be seen as a robust
technique. The methods are illustrated by estimating the weekly working hours using data from the 2008 Quality
of Life Survey in Colombia.

Key words: Empirical Bayes estimation; random-effects model; post-stratification; simulation study; sam-
ple survey weights; nonparametric regression.

1 Introduction

When working with sample surveys representativeness is difficult to achieve for all variables of interest.
Several sampling designs are available in order to get valid inference from a population, including
stratification, multi-stage and clustering. The former is intended to increase precision or allow sup-
population level estimates, multi-stage facilitates a more efficient fieldwork at the cost of decrease in
precision, clustering occurs when several dependent units are selected simultaneously. Stratification
consists in partitioning the population in more homogeneous subgroups, according to the levels of
an auxiliary variable which needs to be known prior to sampling, and sample each subpopulation
(stratum) independently.

Individual responses may vary with several factors such as age, sex, education, none available
prior to sampling for stratification purpose. However, if the population distribution is known at the
aggregate level, e.g. from a census, the estimates of the outcome can be adjusted in the analysis stage.
This method is called post-stratification, defined as a stratified analysis of a sample that was taken
in an un-stratified way, or more general, is an analysis that uses more stratifying variables than at
design stage (Molenberghs, 2013). Post-stratification reduces bias without improving precision as much
as full stratification (i.e. stratification at design stage) because strata sample sizes are not fixed by
design, adding a new source of variability. The stratification after selection is particularly useful in
multi-purpose surveys where stratification factors selected prior to sampling may be weakly correlated
with several secondary variables (Holt and Smith, 1979). Moreover, the post-stratification technique
intends to restore representativeness in observational studies, where data are collected in a nonrandom
fashion from a population and differential rates are more likely.

The usual post-stratified estimator presents high variability and the unweighted alternative is highly
biased. The trade-off between variance and bias can lead to high mean squared error especially in
the presence of large weights, i.e. highly underrepresented groups, or small sample sizes (Elliott and
Little, 2000). An alternative method consists in using a model to predict the non-sampled outcomes,
known as a model-based approach. The price to pay is the assumption regarding the distribution of the
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response. Misspecification is reduced by allowing the model to vary within strata. Moreover, smoothing
of the weights is achieved when considering stratum means as random-effects, called weight-smoothing
models (ibid.). The main advantage of the approach is the borrowing of strength between strata through
the shrinkage process related to the sample sizes per stratum. A doubly-robust version includes the
responders selection probability per stratum in an attempt to nullify the bias created by misspecification
(Vandendijck et al., 2014).

To shield further against misspecification a smooth function is used for the underlying weight
stratum means, the nonparametric model (Elliott and Little, 2000). The selected function is a cubic
spline, a curve composed of sections of cubic polynomials joined together at points called the knots of
the spline that is continuous in its second derivative (Wood, 2006).

Lazzeroni and Little (1998) and Elliott and Little (2000) have compared the performance of the
design-based estimators and the weight-smoothing models under several conditions via simulations
for normal outcomes and ordered post-strata. The former study extends the mixed-model with
exchangeable assumption, i.e. no systematic relation between the outcome and the post-stratified
variable, by assuming the post-stratum means follow a linear trend, and by considering an autoregressive
covariance structure of the post-stratum means. They find the latest a useful approach. In turn, the
second research extends the weight-smoothing technique by including a nonparametric spline function
for the underlying weight stratum means. The authors stress the superiority of their proposal. More
recently, Chen et al. (2010) proposed a Bayesian Penalized Spline Predictive estimator for a proportion
in the presence of unequal sampling probabilities. The authors use a probit regression to incorporate
the inclusion probabilities into the estimation of the proportion via penalized splines. They find
their estimator advantageous in terms of efficiency, coverage, average length of credible intervals,
and robustness to misspecification. Finally, Vandendijck et al. (2014) focus on prevalence and trend
estimation of binary outcomes and propose a doubly-robust weight-smoothing method, as an extension
of the weight-smoothing technique, in an attempt to protect against model misspecification. They find
consistently a good performance of their estimator. Although design-based and model-based methods
for normally distributed data have been well described in literature, no comparison has been made
including the doubly-robust estimator.

This report presents a simulation study to evaluate the performance of nine methods in estimating
the mean of a continuous, normally-distributed, survey outcome variable when two post-stratified
weights are high and an ordinal post-stratifying variable is available. Additionally, an application
using data from the 2008 Quality of Life Survey in Colombia is conducted; weekly working hours
is the outcome of interest and age the post-stratified variable. Section 2 summarizes the methods,
starting from the design-based methods which include the post-stratified, the unweighted mean and
the weight-trimming; followed by the weight-smoothing techniques and finalizing with the promising
doubly-robust estimators. The results of the simulation study under several conditions can be found in
Section 3. Section 4 presents the application and Section 5 concludes.
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2 Methodology

2.1 Notation

Let Y denote a continuous normally distributed survey outcome and X an ordinal post-stratifying
variable with H strata. Let Nh and nh denote the population size and the sample size, respectively, in
each post-stratum h, h = 1, 2, . . . , H. It is assumed that the population distribution, Nh, is known. Let
N = ∑H

h=1 Nh and n = ∑H
h=1 nh denote the total population and sample size, respectively.

Responders in each post-stratum are treated as a random sample, implying ignorable proba-
bility of inclusion in each stratum. The objective is to estimate the population mean, i.e. Ȳ =

1
N ∑N

i=1 Yi =
1
N ∑H

h=1 Nh
∑

Nh
i=1 Yi
Nh

= 1
N ∑h NhȲh. The normalized weights are denoted by wh = Nh/N

nh/n . Note
that ∑n

i=1 wh = ∑H
h=1 ∑nh

i=1 wh = ∑H
h=1 nhwh = n. Finally, arranging in ascending order the strata accord-

ing to the normalized weight values, let l denotes the pooling level such that wh < w0 if h < l and
wh ≥ w0 if h ≥ l for a given cut-point w0.

The entire simulation was conducted in R Development Core Team (2011) and the mixed-models
were fitted using the lme function implemented in the nlme package (Pinheiro et al., 2011). For the
bootstrap part of the simulation the function rmvnorm included in the mvtnorm package was used (Genz
et al., 2012).

2.2 Design-Based Methods

Design-based estimators and their variances are shown in Table 1. The post-stratified mean is an
unbiased estimator which weights each stratum mean by the relative size of that stratum in the
population, correcting for unbalanced samples. However, its variance may explode when a post-stratum
contains few observations, small nh for some h, vanquishing the bias reduction. The unweighted mean
is unbiased when Ȳh is constant for all h and when the sample is truly representative of the population,
i.e. nh/n = Nh/N, otherwise it is biased (Holt and Smith, 1979). Using the means per stratum, ȳh,
regardless of the number of observations per stratum, nh, can lead to unstable estimates, alternative
techniques solve the instability by taking into account the sample size distribution. The weight-trimming
estimator fixes weights larger than a cut-point value, w0, to w0 and adjusts low weights upward by a
constant, γ, to maintain the untrimmed weight sum. This way it pools all units with high weights into
a stratum with reduced weight. The approach reduces variance at the expense of introducing some bias
(Elliott and Little, 2000). The underlying weight pooling intention seems appealing but, at the same
time, arbitrary in the selection of the cut-point. Potter (1990) proposes alternative methods to choose
‘the optimal’ w0 based on data, the criteria attempt to minimize quantities related to the estimated mean
squared error and bias. The methods include deriving the distribution of the sampling weights based
on the assumption that the selection probabilities follow a standard beta distribution. The author says
that a weight with extreme low probability of occurring can be trimmed to a specific probability of
occurrence, e.g. using 0.01 a weight with value in excess of wop, where 1− F(wop) = 0.01, is trimmed
to wop.

Moreover, the post-stratified, the unweighted mean and the weight-trimming can be written as

∑n
i=1 wh(i)yi when wh(i) takes the values wh, 1 and w∗h respectively:

• Post-stratified: ∑n
i=1 wh(i)yi =

1
n ∑n

i=1 whyi =
1
n ∑H

h=1
n
N Nh

∑
nh
i=1 yi
nh

= 1
N ∑H

h=1 Nhȳh.

• Unweighted: ∑n
i=1 wh(i)yi =

1
n ∑n

i=1 yi =
1
n ∑H

h=1 nh
∑

nh
i=1 yi
nh

= 1
n ∑H

h=1 nhȳh.
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• Weighed-trimming: ∑n
i=1 wh(i)yi =

1
n ∑n

i=1 w∗hyi =
1
n

[
∑l−1

h=1 ∑nh
i=1 γwhyi + ∑H

h=l ∑nh
i=1 w0yi

]
= 1

n

[
∑l−1

h=1 γNh
n
N

∑
nh
i=1 yi
nh

+ ∑H
h=l w0nh

∑
nh
i=1 yi
nh

]
= γ

N ∑l−1
h=1 Nhȳh +

w0
n ∑H

h=l nhȳh.

Table 1: Mean and variance estimators for the design-based methods: post-stratified, unweighted and weight-trimming

Estimator Mean Variance

Post-stratified ȳps =
1
N ∑H

h=1 Nhȳh V(ȳps) =
1

N2 ∑H
h=1

(
Nh
nh

)2 (
1− nh

Nh

)
nhs2

h

Unweighted ȳuw = 1
n ∑H

h=1 nhȳh V(ȳuw) =
1

n2 ∑H
h=1

(
1− nh

Nh

)
nhs2

h

Weight-trimming ȳtr =
γ
N ∑l−1

h=1 Nhȳh +
w0
n ∑H

h=l nhȳh, V(ȳtr) =
1

n2 ∑H
h=1

(
1− nh

Nh

)
nhw∗hs2

h,

where γ =
n−w0 ∑H

h=l nh

∑l−1
h=1 nhwh

where w∗h =

{
γwh if wh ≤ w0

w0 if wh > w0

Notation:

N = ∑H
h=1 Nh; n = ∑H

h=1 nh; wh = Nh/N
nh/n ; ȳh =

∑
nh
i=1 yhi
nh

; s2
h = 1

nh−1 ∑nh
i=1 (yhi − ȳh)

2

l: pooling level such that wh < w0 if h < l and wh ≥ w0 if h ≥ l for a given cut-point w0

2.3 Weight-Smoothing Model

Design-based methods ignore the ordinal nature of the post-stratifying variable. As an alternative a
model-based approach reflects the intrinsic order and allows to borrow strength from neighboring strata
with more information. The method involves modeling the weight-stratum means as random-effects
(Lazzeroni and Little, 1998):

yhi|µh ∼ N(µh, σ2)

µ ∼ NH(δ, D)

where µ = (µ1, . . . , µH), δ = (δ1, . . . , δH) and D is an H × H covariance matrix of the post-stratum
means. Written in the mixed-effect form (Laird and Ware, 1982) y = NXβ + NZb + ε; where N is
an n × H incidence matrix (Green and Silverman, 1994, p. 65) that indicates to which stratum an
observations belongs (it captures the connection between the observations and the ordered distinct
values, the entries nhi = 1 if yi ∈ stratum h and 0 otherwise), X is an H × p fixed-effects design matrix,
β is a p× 1 vector of fixed-effects parameters, Z is an H × q random-effects design matrix, b is a q× 1
vector of random-effects such that b ∼ Nq(0, G), and ε ∼ Nn(0, σ2 In).

The estimator uses the strata means, ȳh, for the individuals in the sample, and the predicted
mixed-model means, µ̂h, for those not included in the sample (Lazzeroni and Little, 1998):

ȳws =
1
N

H

∑
h=1

[nhȳh + (Nh − nh)µ̂h]

where µ̂h = E(µh) shrinks the sample means ȳh towards δh in an amount according to the stratum sam-
ple size nh: the bigger the sample size the less shrinkage. Note that the estimator is design-consistent1

since it reduces to the post-stratified mean when strata sample size increases. The unweighted mean
is a special case when D → 0 and the post-stratified is obtained when D → ∞. The following three
assumptions are considered for the underlaying weight stratum means:

1An estimator e is asymptotically design consistent for Ȳt if lim
t→∞

P[|et − Ȳt| > ε] = 0 for every ε > 0 (Mukhopadhyay, 1996,

p. 96)

4



• Exchangeable random-effects (XR): δh = β0 ∀h, D = τ2 IH (Holt and Smith 1979, Ghosh and
Meeden 1986, Little 1991, Lazzeroni and Little 1998).
In the mixed-effect notation: X = 1H , β = β0, Z = IH , G = τ2 IH . Therefore,
yhi = β0 + bh + εhi; bh ∼ N(0, τ2); εhi ∼ N(0, σ2).

• Linear (LI): δh = β0 + β1h, D = τ2 IH (Lazzeroni and Little, 1998).
In the mixed-effect notation: X = [1H |(1, 2, . . . , H)′], β = (β0, β1)

′, Z = IH , G = τ2 IH . Therefore,
yhi = β0 + β1h + bh + εhi; bh ∼ N(0, τ2); εhi ∼ N(0, σ2).

• Nonparametric (NP): δh = f (h), D = τ2 IH (Elliott and Little 2000, Zheng and Little 2004).

In the mixed-effect notation: X = [1H |(1, 2, . . . , H)′], β = (β0, β1)
′, Z = [Z1|Z2], b =

[
bs

bh

]
,

bs is a H × 1 vector of the random-effects of the smooth nonparametric function, bh is a H × 1
vector of the post-stratum mean random-effects (similar to the vector of random-effects in XR
and LI assumptions), b ∼ N2H(0, G), Z2 = IH , Z1 = (S−1Z∗)′, S = UE1/2V′, U and V are the
components of the singular value decomposition of Z∗ (i.e. Z∗ = UEV′) and E1/2 a diagonal
matrix with elements the squared root of the elements in E,

Z∗ =


|1− κ1|3 |1− κ2|3 · · · |1− κH |3

|2− κ1|3 |2− κ2|3 · · · |2− κH |3
...

... · · ·
...

|H − κ1|3 |H − κ2|3 · · · |H − κH |3

, G =

(
τ2

s IH 0H×H

0H×H τ2 IH

)
. Therefore,

yhi = f (h) + bh + εhi; bh ∼ N(0, τ2); εhi ∼ N(0, σ2); f is a natural cubic smoothing spline with
radial basis functions 1, h, |h− κ1|3, . . . , |h− κH |3 (called radial since, in its general form, is radially
symmetric around κj, j = 1, . . . , H) that can be written as f̂ (h) = β̂0 + β̂1h + ∑H

j=1 b̂sj|h− κj|3 with
knots (κ1, . . . , κH) at 1, . . . , H and where β̂0, β̂1, b̂s1, . . . , b̂sH minimize ‖y − NXβ − NZ∗bs‖2 +

λb′sZ∗bs subject to X′bs = 0 (Ruppert et al., 2003, p. 73); bsh ∼ N(0, τ2
s ) ∀h the random-effects of

the smooth nonparametric function. The parameter λ = τ2

τ2
s

is the roughness penalty to control the
trade-off between data fitting and smoothness of f , λ→ 0 implies ȳnp → ȳps and λ→ ∞ implies
ȳnp → ȳli, so the nonparametric assumption can be viewed as a compromise between the linear
assumption and the post-stratified mean (Elliott and Little, 2000).

Some model-based estimators correspond to the standard design-based estimators, for example the
unweighted mean coincides with XR under an equal-probability design where nh are approximately
constant across strata (Zheng and Little, 2004). Variance components σ2, τ2, τ2

s can be estimated
by fitting the respective models via restricted maximum likelihood when maximizing LREML(θ) =

|∑N
i=1 X′iV

−1
i (α)Xi|−1/2LML(θ) with respect to θ = (α, β) (vector containing variance components

and fixed-effects). The fixed-effects are estimated by β̂ = (X′V̂−1X)−1X′V̂−1ȳ and the random-
effects are predicted using the posterior mean b̂ = ĜZ′V̂−1(ȳ − Xβ̂) where V̂ = ZĜZ′ + A, A =

σ̂2diag( 1
n1

, . . . , 1
nH

) and ȳ = (ȳ1, . . . , ȳH)
′ (Zheng and Little, 2004).

The variance formula is (Zheng and Little 2004, Vandendijck et al. 2014):

V(ȳws) =
1

N2 (N − n)′Θ(N − n)

where (N − n) = (N1 − n1, . . . , NH − nH)
′; Θ = C(C′A−1C + B)−1C′; A = σ2diag

(
1

n1
, . . . , 1

nH

)
and

• Exchangeable random-effects (XR): C = [1H |IH ]; B =

(
0 01×H

0H×1
1

τ2 IH

)
.
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• Linear (LI): C = [1H |(1, . . . , H)′|IH ]; B =

(
02×2 02×H

0H×2
1

τ2 IH

)
.

• Nonparametric (NP): C = [1H |(1, . . . , H)′|Z1|IH ]; Z1 = (S−1Z∗)′; S = UE1/2V′; U and V are the
components of the singular value decomposition of Z∗ (i.e. Z∗ = UEV′) and E1/2 a diagonal
matrix with elements the squared root of the elements in E;

Z∗ =



0 13 23 · · · |1− H|3

13 0 13 · · · |2− H|3

23 13 0 · · · |3− H|3
...

...
... · · ·

...
|H − 1|3 |H − 2|3 |H − 3|3 · · · 0


; B =


02×2 02×2H

02H×2

(
1

τ2
s

IH 0H×H

0H×H
1

τ2 IH

) .

2.4 Weight-Smoothing Doubly-Robust Estimator

The weight-smoothing estimator can be rewritten in the following form (Vandendijck et al., 2014):

ȳws =
1
N

H

∑
h=1

[nhȳh + (Nh − nh)µ̂h] =
1
N

H

∑
h=1

nh

∑
i=1

yhi +
1
N

H

∑
h=1

Nh

∑
i=1

µ̂h −
1
N

H

∑
h=1

nh

∑
i=1

µ̂h

=
1
N

H

∑
h=1

Nh

∑
i=1

µ̂h +
1
N

H

∑
h=1

nh

∑
i=1

(yhi − µ̂h) =
1
N

H

∑
h=1

Nh

∑
i=1

µ̂h +
1
N

H

∑
h=1

Nh

∑
i=1

rhi ε̂hi

where ε̂hi = Yhi − µ̂h are the estimated residuals and rhi = 1 if Yhi is in the sample and zero otherwise.
When the model is correct µ̂h is un unbiased estimator of Ȳh, i.e. E(µ̂h) = Ȳh, implying E(ε̂hi) =

E(Yhi − µ̂h) = 0. Therefore, E(ȳws) = E
(

1
N ∑H

h=1 ∑Nh
i=1 µ̂h

)
= 1

N ∑H
h=1 NhȲh = Ȳ, i.e. ȳws is unbiased.

Model misspecification of the weigh-smoothing estimator can lead to bias. As an alternative, the
weight-smoothing doubly-robust estimator proposed by Vandendijck et al. (2014) provides protection
against misspecification. The authors present an estimator of the form ȳwsdr = 1

N ∑H
h=1 ∑Nh

i=1 µ̂h +
1
N ∑H

h=1 ∑Nh
i=1

rhi
π̂hi

ε̂hi, where π̂hi is the inclusion probability in the observed sample, assuming same
inclusion probabilities within strata the estimator becomes:

ȳwsdr =
1
N

H

∑
h=1

[
nh
π̂h

ȳh +

(
Nh −

nh
π̂h

)
µ̂h

]

where π̂h = n̂h
Nh

; n̂h =


Nh/N
w0/n if wh > w0

γnh if wh ≤ w0

; γ =
n−∑H

h=l n̂h

∑l−1
h=1 nh

.

When the model is correct E(ȳwsdr) =
1
N ∑H

h=1 ∑Nh
i=1 E(µ̂h) +

1
N ∑H

h=1
nh
π̂h

E(ȳh)− 1
N ∑H

h=1
nh
π̂h

E(µ̂h) =
1
N ∑H

h=1 NhȲh +
1
N ∑H

h=1
nh
π̂h

Ȳh − 1
N ∑H

h=1
nh
π̂h

Ȳh = Ȳ, so it is unbiased regardless of the inverse proba-

bility weights. When the model is misspecified but the weights are correct 1
N ∑H

h=1 ∑Nh
i=1 E(µ̂h) =

1
N ∑H

h=1
nh
π̂h

E(µ̂h), therefore E(ȳwsdr) = 1
N ∑H

h=1
nh
π̂h

Ȳh = Ȳ. The estimator is called doubly-robust be-
cause, given its form, it attempts to nullify the bias coming from misspecification but no proof is
provided.

The variance is estimated via bootstrap according to the following scheme:

1. Set the number of bootstrap populations and samples per population, bpop and bsam respectively.
The total number of bootstrap samples is then bpop × bsam.
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2. For k = 1, . . . , bpop

(a) Simulate a random vector u(k) ∼ NH
(
0, D̂

)
, where D̂ = τ̂2 IH is the fitted covariance matrix

of the post-stratum means (defined in Section 2.3).

(b) Calculate δ(k) =
(

δ
(k)
1 , . . . , δ

(k)
H

)′
= Xβ̂ + Zu(k) for XR and LI models, and δ(k) = Xβ̂ +

Z1b̂s + Z2u(k) for the NP model (same notation as used in Section 2.3).

(c) Draw sample sizes per stratum from a multinomial distribution:(
n(k)

1 , . . . , n(k)
H

)
∼ Multinom

[
n,
(

n1
N1

, . . . , nH
NH

)]
.

(d) For j = 1, . . . , bsam draw outcomes in each post-stratum from normal distribution:
y(k,j)

hi ∼ N
(

δ(k), σ̂2
)

, i = 1, . . . , n(k)
h . Where σ̂ comes from the model fitted to the original

data.

3. For each k and j fit the model to the sampled data and calculate the doubly-robust mean estimates
for XR, LI and NP: ȳ(k,j)

wsdr.

4. For each k calculate the variance of the estimates: v(k) = 1
bsam−1 ∑bsam

j=1

(
ȳ(k,j)

wsdr −
1

bsam
∑bsam

j=1 ȳ(k,j)
wsdr

)2
.

5. The estimated variance is obtained by averaging the variances of the previous step:
V̂(ȳwsdr) =

1
bpop

∑
bpop
k=1 v(k).
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3 Simulation Study

A simulation, similar to that in Elliott and Little (2000), was conducted to evaluate the performance of
the methods under different conditions. Table 2 presents the population and sample size distributions
over the 10 strata used. The normalized post-stratified weights range from 0.1 to 13.9, same for
both samples. The values of yhi were generated as yhi = δh + εhi considering four scenarios for
the mean structure δh: δC, δD, δE, and δL (called closed, distant, equal and linear respectively, the
first two according to its proximity to the last strata, the underrepresented ones) as Figure 1 shows;
εhi ∼ N(0, σ2) with three values for σ = 1, 5, 10. Parameters of the mean structure are such that
E
(
Ȳ|δD) = E

(
Ȳ|δE) = E

(
Ȳ|δL) = 10.88 and E

(
Ȳ|δC) = 0. This way a total of 2× 4× 3 (n’s×δ’s ×σ’s)

= 24 populations are considered. For each scenario 50 populations are randomly generated and in each
10 samples are drawn yielding a total of 500 replications per combination.

The overall population mean is estimated using the 9 methods described: unweighted ȳuw (uw), post-
stratified ȳps (ps), trimmed with a cut-off value w0 = 3 ȳtr (tr), weight-smoothing using exchangeable
assumption ȳws.xr (ws.xr), weight-smoothing using linear assumption ȳws.li (ws.li), weight-smoothing
using nonparametric assumption ȳws.np (ws.np), weight-smoothing doubly-robust using exchangeable
assumption ȳwsdr.xr (wsdr.xr), weight-smoothing doubly-robust using linear assumption ȳwsdr.li (wsdr.li),
and weight-smoothing doubly-robust using nonparametric assumption ȳwsdr.np (wsdr.np). I used w0 = 3
for all doubly-robust estimates.

For each method, I calculate the average bias, variability, mean squared error (MSE), coverage
and 95% confidence interval (C.I.). The MSE(p) (MSE in population p) was obtained from the 10
estimates, one per sample, and the overall MSE was calculated by averaging over the 50 MSE(p)

values as follows: let µ(p) be the true mean in population p, µ̂
(p)
j the estimate of µ(p) in sample j,

j = 1, . . . , 10, and ¯̂µ(p) = 1
10 ∑10

j=1 µ̂
(p)
j the average of the 10 estimates in population p. The bias is

defined as Bias(µ̂(p)) = ¯̂µ(p) − µ(p), the variance is V(µ̂(p)) = 1
9 ∑10

j=1

(
µ̂
(p)
j − ¯̂µ(p)

)2
, the MSE per

population is MSE(p) = V
(

µ̂(p)
)
+
(

Bias
(

µ̂(p)
))2

and the overall MSE is MSE= 1
50 ∑50

p=1 MSE(p). The

95% C.I. was calculated by µ̂
(p)
j ± z

√
V̂
(

µ̂
(p)
j

)
in population p, sample j, V̂

(
µ̂
(p)
j

)
is the fitted variance

of the estimate and z the 97.5th quantile of the standard normal distribution. The variances of the
doubly-robust estimators were calculated using the bootstrap procedure with bpop = 25 and bsam = 10.

Table 2: Population and sample sizes in the 10 strata used in the simulation study

Stratum h 1 2 3 4 5 6 7 8 9 10 Total
Nh 800 1,000 1,200 1,500 2,000 3,000 4,000 5,000 7,500 10,000 36,000
n1,h 90 80 70 60 50 50 40 30 20 10 500
n2,h 18 16 14 12 10 10 8 6 4 2 100
wh 0.1 0.2 0.2 0.3 0.6 0.8 1.4 2.3 5.2 13.9
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Figure 1: Mean structure for the parameters (δC: close, δD: distant, δE: equal, δL: linear) used to generate samples for the
simulation study

Table 3 presents the MSE of the 9 estimators for all 24 scenarios. The unweighted mean has
the biggest MSE for close, distant and linear mean structures due to the huge bias; it has the best
performance for equal means and low variance in all scenarios (see Figure 3). The post-stratified
estimator is unbiased and has the biggest variance specially for equal mean structure. The weighted-
trimming has low variance, is notably biased for distant and linear scenarios and slightly biased for
close mean structure. The exchangeable random-effects estimator performs best under equal mean
structure, in the other scenarios the bias increases with large values of σ and small sample size. Linear
estimator has the best performance under linear structure and behaves well under equal scenario; is
biased under close and distant structure for small sample size and σ ≥ 5, and for large sample size and
σ = 10. The nonparametric estimator has the best performance under close structure, the second best
under distant scheme and the third best under linear scenarios but it is slightly biased under distant
structure specially when σ increases and sample size decreases. The doubly-robust version decreases
the bias although it persist for large σ and small sample size under distant for XR, LI and NP, under
close for XR and LI and under linear for XR. The doubly-robust estimators have also bigger variance
than their counterparts, which is not compensated by the reduction in bias under equal structure and
for some linear scenarios. The variance of the estimators increases with larger values of σ but mostly
when sample size decreases; similarly for MSE but σ has the biggest impact (see Figures 2 and 3).

Regarding coverage of the nominal 95% confidence intervals, the post-stratified mean performs
better for large sample size. The unweighted mean and the weighted-trimming method have bad
coverage for all but equal structure, due to strong bias. The doubly-robust approaches improve the
coverage, compared with its counterpart, in all but equal scheme. Among the models, the nonparametric
consistently maintains the coverage even under large σ and small sample sizes. The factor that mostly
affects coverage is the sample size (see Table 5 in the Appendix).

Finally, concerning average length of the confidence intervals, among the ones with at least 90%
actual coverage, equal scheme yields short intervals. The length increases with larger values of σ as
well as with smaller sample sizes. The post-stratified, the unweighted mean and the weighted-trimming
present similar lengths regardless of the mean structure whereas for the weight-smoothing and the
doubly-robust similarities are only predominant in close and distant schemes. Under equal structure,
the unweighted mean has the smaller length followed by the XR weight-smoothing. Under linear
scheme the weight-smoothing estimators have the smallest length, being LI model the best followed by
NP. In close scenario weight-smoothing NP has the smallest length when σ ≤ 5 and doubly-robust XR
overcomes when σ = 10. Under distant scheme weight-smooth NP has the smaller length for σ ≤ 5,
except the combination (σ = 5, n2) when the post-stratified mean wins, and for σ = 10 doubly-robust
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LI is the best (see Table 6 in the Appendix).
Lazzeroni and Little (1998) considered all designed-based methods and from model-based weight-

smoothing, the LI and XR assumptions. Similarly, they find the unweighted mean does well under
equal scenario but very poorly when population means have an structure, due to serious bias. The gain
of smoothing vanishes as the sample size increases since LI and XR converge towards the post-stratified
estimator. The XR seriously undercovers for linear structure whilst the unweighted mean has poor
coverage in all but equal scenario specially for large sample size where bias prevails over variance. The
XR and LI models achieve a reduction in the average width of confidence intervals compared with the
post-stratified; the smaller the sample size, the greater the reduction.

Elliott and Little (2000) studied all but the doubly-robust estimators with the difference that under
the nonparametric model they assumed D = 0, implying the post-stratifying means do not vary around
the spline function. In general, results go in the same direction. The authors conclude that unlike
close mean structure, distant is unfavorable for trimming since the mean of the most underrepresented
stratum differs substantially from the other and therefore pooling of the strata is not appropriate.
The XR estimator does well under equal scenario but performs poorly, relative to ȳps, in all other
mean structures. The LIN works well under equal and linear schemes but is less efficient than XR in
the former and has moderate coverage problems when the mean trend is not linear. Relative to the
post-stratified, LIN works poorly in distant scenario. The NP performs nearly as well as LI under
linear structures (δE, δL). Unlike current simulation, the authors find that under nonlinear scenarios NP
mimics post-stratified for small σ2 and LI when σ2 increases; poor coverage of XR when means follow
a linear trend and variance is moderate; and the post-stratified coverage is closed to nominal under all
scenarios.
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Table 3: Mean squared error for the simulation study based on 9 estimators (Est. ps=post-stratified, uw=unweighted,
tr=weight-trimmed, ws.xr=weight-smoothing exchangeable, ws.li=weight-smoothing linear, ws.np=weight-
smoothing nonparametric, wsdr.xr=doubly-robust exchangeable, wsdr.li=doubly-robust linear, wsdr.np=doubly-
robust nonparametric) and 500 subsamples for all 24 scenarios. Sample sizes: n1 = 500 and n2 = 100. Some
subsamples discarded due to not invertible matrices in ws variance calculation

Close Distant

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2
ps 0.013 0.053 0.303 1.462 1.230 5.488 0.011 0.061 0.366 1.526 1.156 5.999
uw 61.824 61.801 61.979 61.862 62.032 62.626 100.346 100.355 100.407 100.826 100.313 102.244
tr 1.204 1.214 1.334 1.754 1.597 3.137 27.064 27.076 26.993 28.083 27.298 29.233
ws.xr 0.013 0.053 0.307 1.486 1.211 5.745 0.012 0.064 0.405 3.189 2.038 23.682
ws.li 0.013 0.055 0.337 2.119 1.745 7.838 0.012 0.065 0.427 3.189 2.151 10.795
ws.np 0.013 0.052 0.283 1.355 1.119 4.806 0.012 0.063 0.361 1.622 1.208 6.306
wsdr.xr 0.013 0.053 0.299 1.368 1.145 4.439 0.012 0.062 0.384 2.412 1.614 13.338
wsdr.li 0.013 0.054 0.323 1.848 1.548 6.226 0.012 0.064 0.412 2.737 1.886 8.663
wsdr.np 0.013 0.052 0.283 1.342 1.100 4.663 0.012 0.062 0.357 1.564 1.176 5.981

Equal Linear

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n(1)
1 n(7)

2 n(2)
1 n(8)

2 n(3)
1 n(9)

2 n(4)
1 n(10)

2 n(5)
1 n(11)

2 n(6)
1 n(12)

2
ps 0.012 0.061 0.278 1.443 1.255 6.116 0.011 0.063 0.330 1.520 1.305 5.963
uw 0.002 0.012 0.058 0.280 0.228 1.152 150.882 150.900 150.983 151.489 151.300 153.182
tr 0.004 0.023 0.121 0.592 0.481 2.324 16.517 16.550 16.647 17.222 17.685 18.818
ws.xr 0.002 0.014 0.064 0.299 0.247 1.266 0.011 0.063 0.344 1.913 1.616 11.210
ws.li 0.006 0.034 0.177 0.877 0.696 3.573 0.006 0.030 0.178 0.741 0.727 3.583
ws.np 0.007 0.038 0.189 0.968 0.809 4.037 0.006 0.036 0.207 0.849 0.790 4.064
wsdr.xr 0.004 0.021 0.104 0.516 0.427 2.119 0.011 0.062 0.334 1.636 1.390 7.516
wsdr.li 0.007 0.035 0.182 0.904 0.746 3.722 0.006 0.032 0.189 0.782 0.751 3.791
wsdr.np 0.007 0.040 0.197 1.006 0.858 4.208 0.007 0.038 0.218 0.896 0.823 4.295
(1): 8 samples discarded. (2): 1 sample discarded. (3): 3 samples discarded. (4): 7 samples discarded.
(5): 4 samples discarded. (6): 6 samples discarded. (7): 22 samples discarded. (8): 14 samples discarded.
(9): 10 samples discarded. (10): 11 samples discarded. (11): 19 samples discarded. (12): 11 samples discarded.
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Figure 2: Mean estimates for the simulation study based on 9 estimators (ps=post-stratified, uw=unweighted, tr=weight-
trimmed, ws.xr=weight-smoothing exchangeable, ws.li=weight-smoothing linear, ws.np=weight-smoothing nonpara-
metric, wsdr.xr=doubly-robust exchangeable, wsdr.li=doubly-robust linear, wsdr.np=doubly-robust nonparametric),
four mean structures (close, distant, equal, linear) and three values of σ (1, 5 and 10). Sample sizes: n1 = 500 and
n2 = 100
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Figure 3: Variance estimates for the simulation study based on 9 estimators (ps=post-stratified, uw=unweighted, tr=weight-
trimmed, ws.xr=weight-smoothing exchangeable, ws.li=weight-smoothing linear, ws.np=weight-smoothing nonpara-
metric, wsdr.xr=doubly-robust exchangeable, wsdr.li=doubly-robust linear, wsdr.np=doubly-robust nonparametric),
four mean structures (close, distant, equal, linear) and three values of σ (1, 5 and 10). Sample sizes: n1 = 500 and
n2 = 100
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4 Application

The 2008 Colombian Quality of Life Survey (QLS) was used to illustrate the methods. Performed by
the National Administrative Department of Statistics during August the 11th and October the 18th
nationwide with the aim of gathering information regarding socio-economic conditions of households.
A total of 50,542 people were interviewed. The aim of the application is to estimate the average weekly
working hours for 20 years or older Colombians using as post-stratifying variable age groups of 5 years.
Younger than 20 years where excluded because it is expected most of them are studying rather than
working. The population age distribution (Nh, h = 1, . . . , 13) was taken from the website of United
Nations (www.un.org). The survey is representative of the total population and therefore it nicely reflects
the age distribution: normalized weights range from 0.69 to 1.16 (see Figure 4).

Figure 4: Age distribution of the Quality of Life Survey (QLS) population and the overall Colombian population (older than
20 years) stratified by 13 age intervals of 5 years

In order to see the advantage of the methods a simulation was performed. Unlike the preceding
simulation study, this is more realistic since the values are drawn from a real rather than a simulated
distribution. The survey was then considered as the true population and 100 subsamples where taken
according to the following two schemes: subsample type 1 (n1 = 317) with highest normalized weights
13.1 and 5.2 for underrepresented age groups 50-54 and 55-59 respectively; and subsample type 2
(n2 = 300) which highest normalized weights are 9.5 and 6.2 for underrepresented age groups 20-24
and 25-29 respectively, Figure 5 shows the age distributions.

Figure 5: Age distribution of the 2008 Colombian Quality of Life Survey (QLS) population and the sub-sampled populations
(older than 20 years) stratified by 13 age intervals of 5 years

In total N = 30, 118 people aged from 20 to 104 were sampled. According to Figure 6 in the
Appendix the age profile of the mean structure presents a quadratic curvature. Table 4 shows the results
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from the application. The best method in terms of MSE is the weight-trimming in both subsample types
but in the first case the doubly-robust estimators are nearly as good, particularly the nonparametric
one. The unweighted mean is by far the worst in the two scenarios despite its low variance, reflected in
the smallest C.I. length, due to the high bias. In the second scenario all estimates are more variable and
all but trimming and XR are more biased. In terms of bias, post-stratified is the best method in the first
scheme but is also the most variable and the coverage is just 89%; whereas in the second scheme is
outperformed by trimming and doubly-robust XR in terms of bias but remains the most variable. For
detailed insight see Figure 7 in the Appendix.

Table 4: Coverage, mean squared error (MSE), average bias (A. Bias), and average length of the 95% confidence interval
(A.L.C.I.) of the mean weekly working hours (older than 20 years) for the 2008 Colombian Quality of Life Survey
based on 9 estimators and 100 subsamples. Subsample type 1: 50-59 age groups highly underrepresented. Subsample
type 2: 20-29 age groups highly underrepresented

Subsample type 1 Subsample type 2

Estimator Coverage (%) MSE A. Bias A.L.C.I. Coverage (%) MSE A. Bias A.L.C.I.
ps 89 5.33 0.15 8.66 91 7.78 -0.72 10.72
uw 24 16.70 3.83 5.48 6 27.27 5.04 5.58
tr 96 3.16 0.21 6.95 97 3.95 0.02 7.74
ws.xr 88 4.56 1.12 7.15 90 5.77 0.91 8.46
ws.li 79 6.19 1.74 6.53 66 17.30 -3.31 8.72
ws.np 80 5.75 1.64 6.38 73 15.66 -2.98 8.88
wsdr.xr 92 3.82 0.44 7.20 87 5.54 -0.24 7.79
wsdr.li 89 3.81 0.65 7.05 80 12.74 -2.50 9.12
wsdr.np 91 3.66 0.60 7.21 86 11.80 -2.23 9.59

The unexpected bad performance of the nonparametric estimators in the second scenario, where
they were worse than the post-stratified one, is due to τ2

s → 0 implying λ→ ∞ and ȳnp → ȳli. Figure 8
in the Appendix shows the predicted means in each post-stratum for three subsamples. They reflect
that some cubic spline functions are extremely smoothed, because the roughness penalty is too high,
resembling a linear function, not capturing the curvature and therefore biasing the estimator upwards.

16



5 Discussion

This report compares several post-stratification techniques and extensions for a Gaussian survey out-
come when an ordinal factor is available and some groups are highly underrepresented. Standard
methods such as post-stratified, unweighted mean and weight trimming perform poorly under unfavor-
able configurations due to either considerable bias or large variance. Alternative methods, under the
mixed-model framework, show substantial improvement by taking into account the ordinal nature of
the post-stratifying variable and the strata sample size when borrowing strength from well represented
neighboring groups, hence overcoming the instability of the post-stratified estimator. Given that when
strata sample size increase the weight-smoothing estimates tend to the post-stratified mean, they are
design consistent. To avoid misspecification issues overshadow the appeal of the model-based approach,
a doubly-robust version was tested. As model assumptions exchangeable random-effects, linear and
nonparametric were considered.

When means among strata are equal, the simple unweighted design-based method is superior
although all techniques work relatively fine given that all models allow for equal means. However, since
in practical situations means differ, the unweighted estimator is not useful for routine use. As expected,
under linear scheme, linear model stood out. Under non-linear scenarios, i.e. close and distant mean
structures, nonparametric estimators showed superiority, although post-stratified performed well for
some distant conditions. Another advantage of the NP assumption is its higher plausibility when the
post-stratifier is nominal rather than ordinal. In general, the doubly-robust estimators are better than
their counterparts because the increase in variance is compensated by the reduction in bias. None
of the estimators was superior in all 24 scenarios considered but the weight-smooth doubly-robust
nonparametric was consistently among the best.

The weight-trimming estimator showed favorable results in the application due to the highest
weight strata have a mean not substantially different from the other strata in both scenarios but is
not recommended for routine use due to the lack of consistent good performance perceived in the
simulation.

Among the model-based techniques, the XR assumption is more parsimonious (because only one
fixed parameter is estimated) but at the expense of the strong exchangeability assumption which is
questionable given the ordinal nature of the post-stratifying variable when a systematic relationship
with the outcome of interest might be expected (Lazzeroni and Little, 1998). The LI and NP assumptions
come into the rescue by adding parameters to the mean structure but paying the price in efficiency,
once more a trade-off between robustness and efficiency is involved (Elliott and Little, 2000).

The empirical Bayes method, used under the model-based approaches, underestimates the posterior
variance when fixing the parameters σ2, τ2, τ2

s to their restricted maximum likelihood estimates, ignoring
part of the uncertainty. This explains partly the undercoverage of the weight-smoothing confidence
intervals under some nonlinear schemes. Nevertheless, the discrepancy is not severe for many samples
sizes found in practice (Zheng and Little, 2004). Full Bayesian analysis allows to incorporate the
uncertainty in estimating the variance components. Alternatively, Lazzeroni and Little (1998) used
a t-correction fraction to widen the confidence intervals by 20-30%, although Elliott and Little (2000)
ruled out it because they find it overly conservative when H is small.

The methodology is better suited for observational surveys, i.e. nonprobability samples, sample
designs which include intended subsampling, or when the interest is in subsamples, inter alia, where
some normalized weights are large. When representative surveys are available, i.e. when the true
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underlying model is more simple, complex estimators are unnecessary because they come with the cost
of intense computational requirements and possible loss of efficiency.

The performance of the methods relative to their robustness against deviations from the normal
distribution assumption was not tested in the simulation study, besides only one post-stratifying
variable was considered. As an extension, contaminated normal errors, more than one post-stratifier
and estimation of other than mean, e.g. population regression coefficients, can be considered in further
researches.
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Appendix

Table 5: Coverage of the nominal 95% confidence intervals for the simulation study based on 9 estimators (Est. ps=post-
stratified, uw=unweighted, tr=weight-trimmed, ws.xr=weight-smoothing exchangeable, ws.li=weight-smoothing
linear, ws.np=weight-smoothing nonparametric, wsdr.xr=doubly-robust exchangeable, wsdr.li=doubly-robust linear,
wsdr.np=doubly-robust nonparametric) and 500 subsamples for all 24 scenarios. Sample sizes: n1 = 500 and
n2 = 100. Some subsamples discarded due to not invertible matrices in ws variance calculation

Close Distant

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2
ps 91.8 87.6 94.2 85.4 93.2 85.2 94.2 86.2 91.0 86.2 94.0 86.0
uw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tr 0.0 0.0 5.8 67.0 63.0 88.4 0.0 0.0 0.0 0.0 0.0 5.4
ws.xr 92.8 97.2 94.4 93.2 93.6 91.2 95.2 93.8 89.2 78.8 84.8 47.2
ws.li 92.4 96.6 92.4 87.4 87.2 82.0 95.2 93.6 87.6 75.6 81.4 70.8
ws.np 92.8 97.0 95.8 94.4 94.8 93.2 95.2 93.6 92.2 91.2 93.2 89.8
wsdr.xr 100.0 100.0 99.8 96.4 93.2 91.6 100.0 100.0 99.2 85.8 85.2 56.4
wsdr.li 100.0 100.0 97.8 93.6 91.8 90.2 100.0 100.0 94.4 82.4 84.4 79.4
wsdr.np 100.0 99.8 97.2 95.8 94.4 94.4 100.0 100.0 93.4 93.0 93.2 90.8

Equal Linear

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n(1)
1 n(7)

2 n(2)
1 n(8)

2 n(3)
1 n(9)

2 n(4)
1 n(10)

2 n(5)
1 n(11)

2 n(6)
1 n(12)

2
ps 93.9 83.5 93.2 86.0 93.6 86.1 93.9 83.8 92.7 85.0 94.1 86.1
uw 95.7 93.5 93.0 95.5 94.0 93.9 0.0 0.0 0.0 0.0 0.0 0.0
tr 95.7 92.7 93.6 92.8 93.8 93.1 0.0 0.0 0.0 0.0 0.0 19.0
ws.xr 96.1 94.3 93.8 43.2 94.6 94.7 96.2 94.3 93.5 90.6 89.3 75.5
ws.li 96.5 93.7 95.2 32.9 94.8 93.7 96.2 96.7 95.4 96.3 94.7 94.7
ws.np 95.9 93.7 94.8 94.4 93.4 93.5 96.2 96.1 94.2 95.2 94.7 94.3
wsdr.xr 88.0 86.6 86.8 87.2 87.1 85.9 100.0 100.0 100.0 96.5 94.3 81.0
wsdr.li 96.3 94.1 94.2 93.8 93.2 93.3 100.0 100.0 99.8 99.6 97.6 96.5
wsdr.np 95.3 94.1 94.2 93.8 93.4 94.1 100.0 100.0 98.6 99.2 97.6 97.1
(1): 8 samples discarded. (2): 1 sample discarded. (3): 3 samples discarded.
(4): 7 samples discarded. (5): 4 samples discarded. (6): 6 samples discarded.
(7): 22 samples discarded. (8): 14 samples discarded. (9): 10 samples discarded.
(10): 11 samples discarded. (11): 19 samples discarded. (12): 11 samples discarded.
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Table 6: Average length of the 95% confidence intervals for the simulation study based on 9 estimators (Est. ps=post-
stratified, uw=unweighted, tr=weight-trimmed, ws.xr=weight-smoothing exchangeable, ws.li=weight-smoothing
linear, ws.np=weight-smoothing nonparametric, wsdr.xr=doubly-robust exchangeable, wsdr.li=doubly-robust linear,
wsdr.np=doubly-robust nonparametric) and 500 subsamples for all 24 scenarios. Sample sizes: n1 = 500 and
n2 = 100. Some subsamples discarded due to not invertible matrices in ws variance calculation

Close Distant

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2
ps 0.41 0.85 2.06 4.14 4.04 8.09 0.41 0.82 2.06 4.10 4.09 8.41
uw 0.17 0.39 0.85 1.93 1.70 3.88 0.17 0.39 0.85 1.95 1.71 3.88
tr 0.25 0.56 1.26 2.78 2.50 5.51 0.25 0.56 1.25 2.77 2.53 5.55
ws.xr 0.41 0.92 2.04 4.36 3.95 7.88 0.41 0.92 2.04 4.37 3.94 7.22
ws.li 0.41 0.92 2.02 4.23 3.84 7.66 0.41 0.92 2.02 4.21 3.81 7.48
ws.np 0.41 0.92 2.01 4.33 3.93 8.29 0.41 0.91 2.01 4.35 3.92 8.18
wsdr.xr 2.28 3.31 3.20 4.93 3.86 7.02 2.85 3.31 3.17 4.73 3.68 6.23
wsdr.li 1.42 2.46 2.40 4.84 3.96 8.01 1.42 2.44 2.39 4.65 3.85 7.60
wsdr.np 0.71 1.57 2.14 4.61 3.90 8.16 0.71 1.57 2.16 4.63 3.91 8.10

Equal Linear

σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

Est. n(1)
1 n(7)

2 n(2)
1 n(8)

2 n(3)
1 n(9)

2 n(4)
1 n(10)

2 n(5)
1 n(11)

2 n(6)
1 n(12)

2
ps 0.41 0.80 2.04 4.25 4.12 8.44 0.41 0.85 2.05 4.17 4.10 8.54
uw 0.17 0.39 0.85 1.96 1.71 3.88 0.17 0.39 0.85 1.95 1.70 3.88
tr 0.25 0.56 1.26 2.80 2.52 5.53 0.25 0.56 1.26 2.77 2.53 5.57
ws.xr 0.19 0.42 0.95 0.56 1.91 4.28 0.41 0.92 2.05 4.46 4.00 8.11
ws.li 0.31 0.69 1.55 0.76 3.11 6.91 0.31 0.69 1.55 3.46 3.10 6.89
ws.np 0.32 0.71 1.59 3.57 3.19 7.08 0.32 0.71 1.59 3.54 3.19 7.07
wsdr.xr 0.18 0.41 0.92 2.10 1.84 4.18 3.49 4.02 3.80 5.49 4.38 7.53
wsdr.li 0.31 0.69 1.55 3.47 3.10 6.93 1.20 2.33 2.43 5.08 3.96 7.83
wsdr.np 0.33 0.73 1.65 3.72 3.32 7.38 1.18 2.44 2.33 5.19 4.25 8.79
(1): 8 samples discarded. (2): 1 sample discarded. (3): 3 samples discarded.
(4): 7 samples discarded. (5): 4 samples discarded. (6): 6 samples discarded.
(7): 22 samples discarded. (8): 14 samples discarded. (9): 10 samples discarded.
(10): 11 samples discarded. (11): 19 samples discarded. (12): 11 samples discarded.

Figure 6: 2008 Colombian Quality of Life Survey. Mean age profile of weekly working hours (older than 20 years) and overall
mean as horizontal line
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Figure 7: 2008 Colombian Quality of Life Survey. Estimates and variances of weekly working hours (older than 20 years)
for the 100 subsamples of each type. Overall mean as horizontal line. Subsample type 1: 50-59 age groups highly
underrepresented. Subsample type 2: 20-29 age groups highly underrepresented

Figure 8: Colombian Quality of Life Survey. Mean weekly working hours (older than 20 years) stratified by 13 age intervals of
5 years. True means (from survey) solid lines, subsample means triangles and predicted means by the nonparametric
model ‘P’
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