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Abstract 

Environmental and food-related residuals of natural and man-made EDCs are of concern due to their 
potential health hazards. It is believed that various health effects, including lowered fertility, 
endometriosis, and some cancers, are a result of exposure to EDCs. E2 and its analogues are one of 
the most important groups that interfere with the endocrine system. Therefore, to study them, 
detecting and measuring the concentration of these chemicals in complex samples is the most 
important challenge. Recently, Kim et al. (2007) introduced a prototype aptamer biosensor for E2 
detection. These artificial oligonucleotides are being used as biological recognition elements, which 
their high stability and selectivity for small molecules, and their lower production cost compared with 
antibodies, making them advantageous.  

The appealing features of aptamers prompted this thesis project, which was aimed to develop a new 
SELEX process for the selection of E2-aptamers in an optimized buffer composed of PBS and 10% 
ethanol, while Nortestosterone was used as counter molecule. It was hypothesized that such a SELEX 
can select aptamers with a high affinity and specificity to E2, especially for its hydroxylated aromatic 
ring A (phenolic group), according to the structural difference between E2 and Nortestosterone. 
Moreover, it was assumed that optimization of the buffer conditions for SELEX will allow, on the one 
hand, adequate dissolving of E2, and on the other hand, the selection of aptamers in experimentally 
realistic conditions. It was expected that selected aptamers in such realistic conditions will show lower 
unspecific binding and cross-reaction to molecules that are structurally similar to E2. Therefore, a 
more specific aptamer would be selected to fabricate a more efficient E2 aptasensor. 

During the first step of this thesis, 12 iterative SELEX cycles were carried out on a pre-designed 80-
mer ssDNA library, which was dissolved in the optimized buffer. After sequencing and structural 
analysis, the SELEX ended up with two aptamer molecules for E2. In the next step, both chemically 
synthesized biotinylated aptamers were immobilized on an SA-modified SPR sensor chip for affinity 
and specificity analysis. Under experimentally realistic conditions (e.g. PBS with 10% ethanol buffer, 
at RT) both selected sequences 2 and 1 showed good KDs (0.947 vs. 7.666 µM, respectively), as well 
as a broad range of detection (0.36-11.47 µM and 1.44-22.95 µM, respectively) for E2. Specificity 
studies indicated a high selectivity of both sequence 2 and 1 for cholesterol derivatives with a 
phenolic group A epitope (17α-ethinylestradiol, E2 and Estrone). In contrast to a previously selected 
76-mer aptamer by Kim et al., this epitope selectivity of the aptamers is due to a SELEX process 
targeting the structural difference between E2 and Nortestosterone.  

In conclusion, this thesis project led to the selection of two ssDNA aptamers with high affinities and 
epitope selectivity to E2 molecule, which resulted to the fabrication of a novel SPR-based prototype 
E2 aptasensor. The advantageous epitope selectivity characteristic of our aptamers can give a highly 
reliable detection in complex samples, and it can push us some steps further to fabricate an array 
system for E2. 
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1. Introduction 

The biosensor concept developed by Professor Clark in the middle of twentieth century, has opened a 
new era in monitoring and regulating a variety of parameters in areas such as hygiene, environmental 
protection, food industry, clinical diagnosis, drug development, or forensics. Biosensor technologists 
try to fabricate reliable analytical devices, with the simplest and cheapest of means, which are able to 
perform quick and accurate analyses in complex matrices. Application of these properly designed 
biosensors is the best solution to overcome many disadvantages of the complicated and expensive 
conventional methods [1].  

During recent years, environmental and food-related residuals of Endocrine Disrupting Chemicals 
(EDCs) have become a concern due to their potential health hazards [2]. It is believed that various 
health effects, including lowered fertility, endometriosis, and some cancers, are a result of exposure to 
EDCs. 17β-estradiol (E2) and its analogues are one of the most important groups that interfere with 
the endocrine system [3, 4]. Therefore, to study them, measuring the concentration of these chemicals 
in complex samples is necessary. High Performance Liquid Chromatography (HPLC), one of the 
routine monitoring methods in this field, has some limitations, such as a lack of real-time monitoring 
and its bulky size. Therefore, biosensors are good alternatives for on-site and real-time detection and 
measurement of EDCs, such as E2, in an easier, faster, and cheaper way. Aptamer-based sensors 
(aptasensors) are one type of biosensors, which have attracted particular attention for small molecule 
detection, especially E2, during the past years. In aptasensors, aptamers, which are oligonucleotides 
that take on a three-dimensional (3D) conformation, allowing them to recognize targets based on their 
topography, are being used as biological recognition elements, because of their high stability and 
selectivity for small molecules, and their low production cost [5]. 

In the following sections, EDCs and their relevant health hazards for humans and animals, as well as 
the biosensor concept, with special focus on aptasensors, will be reviewed. Furthermore, the idea and 
the objective of this research project will be discussed.   

1.1 Endocrine Disruptive Chemicals (EDCs) 

According to the 2002 International Programme on Chemical Safety (IPCS) document, an endocrine 
disruptor is described as “…an exogenous substance or mixture that alters function(s) of the 
endocrine system and consequently causes adverse health effects in an intact organism, or its 
progeny, or (sub) populations. A potential endocrine disruptor is an exogenous substance or mixture 
that possesses properties that might be expected to lead to endocrine disruption in an intact organism, 
or its progeny, or (sub) populations.” [6]. 

During the last decade, a variety of adverse effects of both natural and man-made EDCs on humans 
and animals have been observed [2]. Studies show that exposure to EDCs may result in health effects 
including breast and ovarian cancer, testes and prostate cancer, genital malformations, delayed sexual 
development, declining sperm count, obesity and neurological disorders such as delayed development 
of memory and intelligence [3, 4]. 

The mechanisms by which EDCs disrupt the actions of hormones have an enormous impact on the 
pattern of effects. Generally, EDCs can disrupt hormone action via two pathways. Firstly, they can 
have a direct competitive action on a hormone receptor protein complex including Estrogen Receptors 
(ERs), Androgen Receptors (ARs), Progesterone Receptors (PRs), Thyroid Receptors (TRs), and 
Retinoid Receptors (RRs), among others [3, 4]. Secondly, EDCs can have a direct action on a specific 
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protein, which controls the regulatory mechanisms of hormone delivery to the right place at the right 
time. These specific proteins could be involved in hormone production (e.g. aromatase), or they could 
be an important transporter (e.g. sodium/iodide symporter), or a carrier protein (e.g. cortisol binding 
protein). Therefore, EDCs can alter hormone synthesis, which leads to an increase or a decrease of the 
hormone levels in the blood. The impact of the altered hormone concentration would probably be 
similar to conditions where the hormone concentration in the body is changed because of disease or 
genetic disorders that inhibit or stimulate hormone synthesis. In contrast, the effects of an EDC can be 
quite complex if it interacts directly with a hormone receptor. Therefore, it should be expected to 
follow the mechanisms in which hormones interact with their receptors [4, 6]. 

The group of chemicals that are identified as EDCs is highly diverse. It consists of synthetic 
chemicals, such as industrial solvents or lubricants and their byproducts [polychlorinated biphenyls 
(PCBs), polybrominated biphenyls (PBBs), dioxins], plastics [bisphenol A (BPA)], plasticizers 
(phthalates), pesticides [methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)], 
fungicides (vinclozolin) and pharmaceutical agents [diethylstilbestrol (DES)]. Natural chemicals in 
food such as phytoestrogens, including genistein and coumestrol, also can act as EDCs [7].  

E2 and its analogues are some of the most important EDCs that interfere with the endocrine system by 
binding to or blocking the ERs. These endocrine disruptors and their analogues in waste water or food 
products are of particular environmental concern [3]. E2 is one of the major sex hormones belonging 
to the steroid hormones. Based on a steroidal structure, E2 consists of four fused rings (A, B, C, and 
D) as well as two hydroxyl (OH) groups, which are attached to the aromatic ring A (making a 
phenolic group) and D (figure 1). E2 has a C18H24O2 formula with a molar mass of 272.38 g/mol [8]. 
E2 derivatives are the most important estrogen ingredients of combined oral contraceptive pills. E2 
has been widely used as an anabolic steroid in animal fattening. Different studies clarify that EDCs, 
including E2, have harmful reproductive effects on aquatic wildlife. For instance, in fish these effects 
can be detected as sex reversals, production of intersex individuals, alterations in mating, and 
prevention of gonadal maturation. Moreover, humans are affected by chronic exposure to E2 and 
other EDCs, since these chemicals reach the natural aquatic systems and the drinking water [4, 9].  

 

Figure 1: 17β‐estradiol (E2) structure. It consists of the fused rings A, B, C, and D, and two hydroxyl (OH) groups, which 
are attached to the aromatic rings A and D (shown in red). 
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1.2 Biosensors 

Concerning the described health hazards of EDCs, e.g. E2, and the importance of their monitoring in 
food and environment, biosensors are good candidates for this purpose rather than other complicated 
conventional methods. Biosensors are compact analytical units that utilize biological recognition 
elements integrated with a physico-chemical transducer to determine the amount of a target 
biomaterial [10]. Target molecules can be captured by their specific biological recognition elements, 
including microorganisms, receptors, enzymes, antibodies and nucleic acids, which are attached to the 
transducer or sensor surface by means of covalent or non-covalent bonding. Binding of target 
molecules with the receptors leads to a physico-chemical alteration. This alteration is converted into a 
measurable output signal by the transducer. The intensity of the output signal is directly or inversely 
proportional to the concentration of the target molecule. Transducers can be subdivided into four main 
types: electrochemical, optical, piezoelectric and thermal transducers. Transducers send the generated 
output signal to the actuators, functioning as the biosensor reader unit. A graphical representation of a 
general biosensor is depicted in figure 2. Actuators with the related electronics or signal processors 
are primarily responsible for the display of the results [11, 12]. The ability to measure non-polar 
molecules that are not detectable by most other measurement devices, their increased specificity due 
to the immobilized recognition molecules, the possibility of rapid and continuous control, and their 
short response time, are the most important advantages of biosensors. However, the impossibility of 
heat sterilization due to the denaturation of the immobilized biological material, the danger of 
inactivating the biological material by exposure to extreme environmental conditions (e.g. pH, 
temperature, or ions), as well as fouling of the biosensor by other molecules that are capable of 
attaching non-specifically to the sensor surface are enumerated as their disadvantages. Good 
biosensors can be recognized based on their characteristics including high sensitivity, high specificity 
or selectivity, high precision, signal stability, fast working rate, fast response time, fast regeneration 
time, and reusability [13, 14].  

 

Figure 2: Principle of biosensors. A typical biosensor is composed of a bioreceptor layer attached to a transducer. The 
bioreceptors give the biosensor its specificity by selectively binding their target. The transducer is connected to an actuator 
which is responsible for amplification and signal processing. 
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1.4 Aptamer selection process 

Aptamers refer to a class of molecules including oligonucleotide or peptide sequences which are able 
to identify virtually any class of target molecules with high affinity and specificity. Their binding 
ability is due to structural compatibility, stacking of aromatic rings, electrostatic forces, hydrogen 
bonding or a combination of all these effects. Their advantages, such as their specific binding ability 
to the target molecules, low production cost, as well as higher stability in comparison with antibodies 
as their natural rivals, make them good candidates for therapeutic and diagnostic purposes. Aptamers 
are usually generated by a selection process from a large random pool (library) of sequences, but they 
also exist naturally as riboswitches [18, 19, 20].  

Aptamers are created by Systematic Evolution of Ligands by EXponential enrichment (SELEX), an in 
vitro selection process. In this method, unique RNA or DNA molecules with a very high affinity and 
specificity for target molecules are selected by exposing a very large library of random sequence 
oligomers (DNA or RNA library) to this target. The complexity of the library is dependent on the 
number of randomized nucleotides. Normally, the starting SELEX round contains around 1015 
individual sequences, a very large number that permits a high probability of selecting a specific 
aptamer for the target of interest [18]. 

Typically, for DNA aptamer selection, chemically synthesized random linear nucleotide sequences, 
which are flanked by two known primer binding sequences, are mixed with the target molecule 
immobilized on a matrix (e.g. Sepharose or magnetic beads, columns, polystyrene plates, etc.) via 
functional groups and allowed to form complexed structures. Following this, weakly and non-bound 
single stranded DNA (ssDNA) sequences are separated from tightly bound ones. The tightly bound 
sequences are eluted by a denaturing process. These eluted sequences are amplified by Polymerase 
Chain Reaction (PCR) and in the next step the amplified sequences, in the form of double stranded 
DNA (dsDNA), are converted to ssDNA via enzymatic digestion or linear amplification before 
starting a new SELEX cycle. The procedure of SELEX is graphically displayed in figure 4. All the 
steps are repeated until the sequences that bind tightly to the target are enriched. The number of 
required cycles is dependent on the stringency imposed on each round, as well as on the affinity of 
interaction between the target and the aptamers. In general, around 8–15 cycles are needed before 
selecting an oligonucleotide population that is dominated by those sequences which bind the target 
best. Potentially, each cycle can be composed of positive, negative, and counter selection steps 
depending on the SELEX process and the target molecule. Both negative and counter selection steps 
minimize the co-selection of unwanted aptamers. Aptamers that bind to the immobilization matrix as 
well as aptamers that are unable to discriminate between closely related structures are deleted from 
the library during negative and counter selection steps, respectively. It should be noted that the steps 
for positive, negative, and counter selection are similar, except that the counter molecules for the 
counter selection are analogue molecules to the target with some structural differences to increase the 
selectivity of the obtained sequences, while the immobilization matrix with no attached target 
molecule is used during negative selection. Also, unlike in the positive step, in the negative or counter 
selection step the unbound sequences will be used for future cycles. The negative selection step can be 
discarded using blocking agents [e.g. Bovine Serum Albumin (BSA)] to cover free spaces over the 
immobilization matrix during positive and counter selection steps [18, 20]. Cycle after cycle, the 
amount of DNA sequences that bind to the target with high affinity will become more numerous in the 
library, i.e. they will become enriched. After molecular enrichment in the pool, cloning and 
sequencing of the selected aptamers will allow them to be generated by chemical synthesis. 
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In 2007, Kim et al. introduced a prototype aptasensor for E2 detection. In this type of biosensor, 
aptamers are being used as biological recognition elements, with their high stability and selectivity for 
small molecules, and their lower production cost compared with antibodies, making them 
advantageous [5]. Moreover, the interaction between aptamers and their target can be broken, unlike 
that between antibodies and antigens, giving the resulting aptasensor a reusable character. These 
appealing features prompted this thesis project, aiming to generate aptamers to detect E2, that can 
eventually be implemented as bioreceptors in an aptasensor.   

1.6 Objective of research 

Recent efforts by the Nanobiotechnology research group at Hasselt University have resulted in the 
selection of two DNA aptamer batches for E2. Each aptamer batch was selected based on 8 SELEX 
cycles in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the analogues 
Dexamethasone and Nortestosterone were used as the binding molecules during the counter selection 
steps for each SELEX. Affinity studies of the two aptamer batches showed sensitivity and specificity 
to the target molecule and to some of its analogues. The cross-reactivity of the aptamers to the target 
and its analogues is assumed to be due to the structural similarity between the analogues and E2. 
However, using HEPES buffer as a working solution during affinity studies with SPR can be a 
confounding variable on the SPR signal due to its high molecular weight and subsequent effect on the 
surface of the sensor. Furthermore, ethanol is necessary to dissolve E2 during binding studies with 
SPR. Because of the fact that ethanol was not present in the SELEX buffer during aptamer selection, 
and that the secondary structure of aptamers, as well as their binding ability, is dependent on the 
buffer composition, it is suspected that ethanol can affect the binding efficiency of the selected 
aptamers to their target.  

Concerning all the described problems and criteria, the aim of this project is to select new aptamers 
for E2 in an optimized buffer composed of ethanol and Phosphate Buffered Saline (PBS). Moreover, 
Nortestosterone is going to be used during the counter selection step. Such a SELEX process can 
result in aptamers with a high affinity for E2, especially for the hydroxylated aromatic ring A 
(phenolic group), based on the structural difference between E2 and Nortestosterone. Moreover, it is 
assumed that optimization of the buffer conditions for SELEX will improve the binding studies of the 
aptamer to the target molecule. The methodology of the project will be based on the developed 
procedures at the Nanobiotechnology laboratory of the Hasselt University. The research will be 
composed of four main domains, including the design and testing of the ssDNA library, optimizing 
the SELEX procedure composed of counter (Nortestosterone) and positive (E2) selection steps in the 
new PBS and ethanol buffer, sequence analysis, and affinity and specificity studies of the selected 
aptamers via SPR binding assays. 
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2. Materials and Methods 

2.1 Design of a ssDNA library 

The ssDNA library consisted of a 40 base random region flanked by two fixed primer binding regions 
of 20 bases each (5'-TGT GTG TGA GAC TTC GTT CC-40 random nucleotides-CAG CAA GGC 
ATC AGA GGT AT-3'). The library and associated primers were designed and evaluated by using 
Oligo® software (version 7.56), according to the criteria shown in table 1, and obtained from 
Integrated DNA Technologies, Inc. (IDT, Leuven, Belgium).  

Table 1: Primer design evaluation criteria and primer specifications 

Criteria Forward Primer specification Reverse Primer specification 

Sequence 5'-TGT GTG TGA GAC 
TTC GTT CC-3' 

5'-ATA CCT CTG ATG 
CCT TGC TG-3' 

Length (18-22 nucleotides) 20 nucleotides 20 nucleotides 
G+C content (50-55%) 50% 50% 
Melting temperature (Tm=50-60˚C) 56.8˚C 56.7˚C 

Maximum accepted stability of hairpins 
(ΔG>-3 kcal/mol) 

0 kcal/mol 0 kcal/mol 

Maximum accepted stability of self or 
cross dimers (ΔG>-6 kcal/mol) 

-0.8 kcal/mol -1.5 kcal/mol 

Maximum accepted stability of 
heterodimers (ΔG>-6 kcal/mol ) 

-1.3 kcal/mol 

2.2 PCR optimization of the ssDNA library  

The optimal annealing temperature (Ta) of the primers was determined by performing a gradient PCR. 
All the reactions were carried out in a Veriti™ Thermal Cycler (Applied Biosystems, Darmstadt, 
Germany). The 50 µl PCR reaction mix was made up of 5 µl 10× PCR buffer (Roche, Vilvoorde, 
Belgium), 2.5 µl of 50 mM Mg2+ (Roche) (totalling 4 mM Mg2+ in the reaction, including the Mg2+ 
present in 10× PCR buffer), 1 µl of 0.01 mM forward primer, 1 µl of 0.01 mM reverse primer, 2.5 µl 
of 20 mM dNTPs (Roche), 1 µl of 5 U/µl Taq DNA polymerase (Roche), 1.7 µl of 0.0001 mM 
ssDNA library, which contains 1011 molecules, and deionized water up to 50 µl. The reaction mix was 
thermally cycled as shown in table 2.  

For a better yield of PCR products, different concentrations of Mg2+ as well as different amounts of 
ssDNA library were tested. The thermal conditions and reaction mixture were the same as described 
before, except a 2.5 µl and 1.2 µl of 50 mM Mg2+ was evaluated with an input of 17 µl, 1.7 µl, and 
0.17 µl 0.0001 mM ssDNA library. 

Table 2: Gradient PCR program 

Process Number of cycles Temperature (˚C) Time 

Initial denaturation 1 95 10 min 
Amplification 
 

30 95 30 s 
1Ta  30 s 
72 30 s 

Final extension 1 72 10 min 
Cool-down 1 4 ∞ 

1Ta was a spectrum from 48 to 60˚C, with 2˚C increments.  
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All the PCR products were analyzed on a 4% agarose gel (Invitrogen, Ghent, Belgium) and the length 
was compared with a 25 and 100 base pair (bp) DNA ladder (Invitrogen) on a Bio-rad gel 
documentation (Gel Doc) system (Bio-rad Laboratories Inc., Brussels, Belgium). 

2.3 SELEX 

The SELEX process was composed of 12 repeated cycles including positive and counter selection 
steps. E2 and Nortestosterone, attached to Sepharose beads (Polysciences Inc., Warrington, USA), 
were used as target and counter molecule, respectively. The first SELEX cycle was composed of four 
counter, one positive and one counter selection step. The order from the second SELEX cycle on was 
one counter, one positive and one counter selection step. During each cycle, quantitative real-time 
PCR (qRT-PCR) and second melting curve analysis were used for the determination of the molecule 
number, and the enrichment of the selected aptamer molecules in all the positive and counter selection 
steps, respectively. After the last counter selection step at the end of each cycle, the ssDNA library 
was conditioned for the next SELEX cycle. This final process step was composed of a PCR 
amplification with native forward and phosphorylated reverse primers, a subsequent purification of 
the target sequences on 4% agarose gel, and generating ssDNA from the dsDNA PCR products via 
Lambda exonuclease digestion. The optimized procedure is graphically displayed in figure 5.  

2.3.1 E2 and Nortestosterone Sepharose beads preparation 

Concerning the number of positive and counter selection steps per cycle, about 150 µl E2 and 150 µl 
Nortestosterone Sepharose beads were each divided into three fractions. After a mild vortex and 
centrifugation (Eppendorf, Hamburg, Germany) step at 3200 rotations per minute (rpm) for 2 minutes 
(min), the supernatant was discarded. A single washing step with 1× PBS pH 7.4 (1.29 M NaCl, 15 
mM KH2PO4, and 61.4 mM Na2HPO4) for 5 min on a rotor (Dynal® sample mixer, Life Technologies, 
Ghent, Belgium) was followed by a new centrifugation and supernatant withdrawal. A blocking step 
was done by incubating one fraction of both types of beads with 0.015 g BSA (United States 
Biological, Swampscott, USA) in 1 ml 1× PBS, a second fraction of each with 0.015 g dried skimmed 
milk or Marvel (Premier International Foods, Dublin, Ireland) in 1 ml 1× PBS, and the third fraction 
with 40 µl synthetic blocking reagent NB3025 (Cosmo Bio Co., Tokyo, Japan) in 960 µl 1× PBS for 
at least 2 hours (hr) at room temperature (RT) on a rotor. Subsequently, 3 washing steps with 1× PBS 
followed while combining all the blocked fractions of E2 and Nortestosterone beads together. 
Ultimately, the beads were blocked with 5 mg/ml non-specific sonicated salmon sperm DNA 
(Invitrogen) in 1 ml 1× PBS on a rotor overnight at 4˚C. Three washing steps were performed, first 
with 1× PBS containing 0.5% tween 20 (PROLABO®, Paris, France), and subsequently twice with 1× 
PBS. Finally, after adding 500 µl of 1× PBS the beads were kept at 4˚C until usage in the selection 
steps.  
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2.3.3 Positive selection step 

In comparison to the counter selection step, the procedure of the positive step was exactly the same 
except for using E2 beads, extra washing steps, elution steps, and phenol-chloroform purification. 
After discarding the unbound aptamers, the E2 beads with the bound aptamers were washed five times 
with 300 µl 1× PBS for 3 min on a rotor at RT. Four elution steps were performed through the 
addition of 200 µl preheated Tris/EDTA (TE) buffer containing 3 M urea pH 7.4 (10 mM Tris-Base, 2 
mM EDTA, and 3 M urea) at 80˚C on a hot plate shaking at 800 rpm for 5 min, and the supernatant of 
each washing step was collected. Phenol-chloroform purification was done on each elution fraction by 
the addition of 200 µl phenol-chloroform isoamylalcohol (Sigma-Aldrich, Diegem, Belgium) to each 
tube, vortexing, and centrifuging at 13200 rpm for 3 min. The upper part of the resulting biphasic 
liquid, which contains the DNA, was collected into a new tube. This was repeated once again with 
200 µl chloroform isoamylalcohol (Sigma-Aldrich). After 2 Sephadex purifications for each elution 
fraction, the following sample preparation steps were exactly the same as during the counter selection. 

2.3.4 qRT-PCR and second melting curve analysis 

For the quantification of the molecule number, as well as for the determination of the enrichment of 
the selected aptamer molecules, qRT-PCR will be used. For quantification, the absolute amount of a 
known sequence in a sample is determined in the exponential phase of the DNA amplification. By 
using a fluorescent reporter in the reaction, it is possible to measure DNA synthesis. The DNA 
amplification is monitored at each elongation step of the qRT-PCR. When the DNA is in the 
logarithmic phase of amplification, the amount of fluorescence will increase above the background 
signal. The cycle at which the fluorescence becomes measurable is called the threshold cycle (CT) or 
crossing point. The more DNA that was present at the start of the reaction, the lower CT. For the 
enrichment determination, the DNA will be amplified for 30 or more cycles. At the end of the 
amplification, by increasing the temperature, the dsDNA will denature and will result in a first 
melting curve. Decreasing the temperature will result in re-hybridization of the ssDNA sequences. 
This hybridization process is easier and faster for enriched fractions and produces more stable dsDNA 
structures than the hybridization of a complex, unenriched pool. Because of a high number of 
incorrectly re-hybridized dsDNA in random, unenriched fractions as compared to enriched ones, 
increasing the temperature again will result in a second melting curve which occurs at a lower 
temperature for unenriched fractions and at a higher temperature for enriched fractions. This effect is 
strongly dependent on the nature of the selected aptamers under certain conditions [25]. 

After the positive selection step of each SELEX cycle, 15.2 µl of the 1:100 diluted fraction collected 
after the last counter selection step, and of the elution fractions of the positive selection step, were 
analyzed in a LightCycler (Roche) according to the program shown in table 3. The samples were 
compared with ssDNA library ladders containing 1010, 108, 106 and 104 molecules and with a blank to 
determine the molecule number and the enrichment of the library. Apart from the DNA, the qRT-PCR 
reaction mix contained 2 µl of SYBR-green (Roche), 2.4 µl of 25 mM Mg2+

 (Roche), 0.2 µl of both 
0.01 mM forward and reverse primers and milli-Q water up to 20 µl. Depending on the molecule 
number and the difference in level of enrichment found in the four elution fractions of the positive 
selection step, the decision was made to continue the next step with a specific elution fraction or a 
combination of them. After selecting the elution fraction(s) to continue the SELEX process with, the 
molecule number of the sample was calculated based on qRT-PCR and 50 times more non-specific 
salmon sperm DNA was added to the sample. Then, the sample was evaporated completely and 
redissolved in 800 µl 1× PBS containing 10% ethanol for use in the next step. 
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Table 3: qRT-PCR program 

Step Number of cycles Temperature 
(˚C) 

Time 
(min:s) 

Temperature 
transition (˚C/s) 

Acquisition 
mode 

Initial denaturation 1 95 10:00 20,00 None 
Amplification 35-45 95 00:03 20,00 None 

54 00:05 20,00 None 
72 00:05 20,00 Single 

Melting curve 1 95 05:00 20,00 Continuous 
72 01:00 20,00 Continuous 
95 00:00 0,10 Continuous 

Cooling down 1 25 05:00 20,00 None 

2.3.5 Amplification of the bound aptamers and generation of ssDNA to be used in the next 
SELEX cycle 

After the last counter selection step, the remaining 95 µl of library ssDNA in milli-Q water were 
divided into 5 PCR conditions. The PCR mix and program were exactly the same as the optimized 
condition described in section 2.2, except for using 0.01 mM phosphorylated reverse primer instead of 
unlabeled reverse primer, which is necessary for ssDNA generation. The number of amplification 
cycles varied between 20 and 25, depending on the earlier calculated molecule number of the library. 
All of the PCR product was run on a 4% agarose gel, and the lengths were compared with a 25 and 
100 bp DNA length ladder. After analyzing the gel and recognizing the exact 80 bp band, it was cut 
out. Then, the chopped gel was soaked in crush and soak buffer pH 8.0 [500 mM NH4OAC, 0.1% 

sodium dodecyl sulfate (SDS), and 0.1 mM EDTA] overnight at 4˚C on a rotor. After centrifugation 
at 10000 rpm and collection of the supernatant, a single washing step with crush and soak buffer was 
performed on the gel remains, and the supernatant was added to the previously collected solution. 
Evaporation was performed to decrease the sample volume. Then, 1 phenol-chloroform and 2 
Sephadex purifications followed as described in section 2.3.3. The concentration of dsDNA was 
determined by a NanoDrop 2000 spectrometer (Thermo Scientific, West Palm Beach, USA) with a 
peak at 260 nm wavelength.  

The dsDNA was converted to ssDNA via Lambda exonuclease digestion. For this step, the sample 
was evaporated completely before 8.5 µl milli-Q water, 1 µl 10× Lambda exonuclease buffer 
(Epicentre Biotechnologies, Madison, USA), and 0.5 µl of 10 U/µl Lambda exonuclease enzyme 
(Epicentre) was added (for a concentration of dsDNA lower than 1 to 2 µg). The mix was incubated at 

37˚C for 30 min on a hot plate (enzyme activation) and subsequently at 75˚C for 10 min (enzyme 
deactivation). A Sephadex purification step was performed after increasing the volume to 40 µl with 
milli-Q water. The concentration of ssDNA was determined by NanoDrop with a peak at 260 nm 
wavelength. After calculation of the ssDNA concentration, 100 times more non-specific salmon 
sperm DNA was added to the sample and evaporated completely. By redissolving the pellet in 800 µl 
1× PBS containing 10% ethanol, the library was ready for the next SELEX cycle. 

2.4 Sequence analysis 

After a few SELEX cycles, collected fractions will be used for cloning into a plasmid vector, followed 
by transformation into bacteria, colony PCR and DNA sequencing of the aptamer inserts. Then, the 
sequences will be analyzed and compared, to check for the presence of identical aptamer sequences in 
different clones coming from different elutions. Repeated aptamer sequences from each elution will 
be selected as the specific aptamer for the target molecule [18, 20]. 
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2.4.1 TOPO vector cloning, transformation, and colony PCR 

After finishing the 12th SELEX cycle, the fractions collected after the first counter selection step of 
cycle 10 and after the last counter selection step of cycle 12 were selected for cloning and sequencing. 
An amplification of 25 cycles was performed on these fractions according to the optimized PCR 
conditions described in section 2.2. This amplification increases the DNA concentration and it adds a 
single deoxyadenosine (A) to the 3'-end of the PCR products by the non-template-dependent terminal 
transferase activity of Taq polymerase, which is necessary for TOPO cloning. The PCR products were 
analyzed on a 4% agarose gel and the length was compared with a 25 and 100 bp DNA length ladder. 
For concentration analysis, samples were compared with a SmartLadder (Eurogentec, Seraing, 
Belgium) and the concentrations were analyzed with the aid of Quantity One® version 4.6.3 software. 
Confirmation of enough DNA for cloning was followed by making a cloning mix composed of 2 ng 
PCR product, 1 µl salt (1.2 M NaCl, 0.06 M MgCl2) solution (Invitrogen), 1 µl TOPO vector 
(Invitrogen) and milli-Q water up to 6 µl. The mix was incubated at RT for 30 min.  

Then, 2 µl of cloned vector was added to a vial of One Shot® TOP10 chemically competent E. coli 
cells (Invitrogen) for transformation. After incubation of the mixture on ice for 30 min, the cells were 

given a thermal shock at 42˚C while shaking at 700 rpm for 30 s and immediately kept on ice. 
Subsequently, 250 µl pre-warmed Super Optimal broth with Catabolite repression (SOC) medium 
(Invitrogen) was added and incubated for 1 hr in a Stuart® shaking incubator SI500 (Bibby Scientific, 

Stone, UK) at 37˚C with a speed of about 200 rpm. The transformation products were cultured on LB 

agar plates (Invitrogen) containing 100 µg/ml Ampicillin (Invitrogen) and incubated at 37˚C 
overnight.  

Successful cloning and transformation was evaluated by colony PCR. Selected colonies were 
amplified for each fraction. In colony PCR, a colony was added to a 50 μl PCR mix containing 5 µl of 
10× PCR buffer, 1 µl of 0.01 mM M13 forward primer (Invitrogen), 1 µl of 0.01mM reverse primer 
(Invitrogen), 0.5 µl of 20 mM dNTPs, 0.4 µl of 5 U/µl Taq DNA polymerase, and 42.1 µl milli-Q 
water. The PCR program is shown in table 4. Subsequent to the colony PCR, the concentration 
analysis with SmartLadder was done after separating the amplified products on a 2% agarose gel. The 
bands with a length of 280 bp (80 bp corresponding to the amplified aptamer sequence and 100 bp of 
the vector sequence flanking the aptamer on both sides) were known to contain the aptamer inserts.  

Table 4: Colony PCR program 

Process Number of cycles Temperature (˚C)  Time 

Initial Denaturation 1 95 5 min 
Amplification 
 

35 94 20 s 
55  20 s 
72 40 s 

Final extension 1 72 6 min 
Cool-down 1 4 ∞ 

2.4.2 EXO-SAP-IT purification and sequencing 

The PCR products were purified by EXO-SAP-IT (Affymetrix, High Wycombe, UK). Depending on 
the initial concentration of the PCR products, they were diluted or concentrated to 50 ng/5 µl DNA in 
milli-Q water and 2 µl of EXO-SAP-IT was added. The mixture was incubated at 37˚C for 15 min 
(enzyme activation), followed by 80˚C for 15 min (enzyme deactivation). 
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A sequencing PCR was done by adding 5 µl of the purified product to 2 µl of M13 forward primer, 2 
µl BigDye® buffer (Applied Biosystems, Warrington, UK) and 1 µl BigDye® sequencing mix 
(Applied Biosystems) in a thermal cycler with the program as shown in table 5. 

Table 5: Sequencing PCR program 

Process Number of cycles Temperature (˚C)  Time 

Initial denaturation 1 96 5 min 
Amplification 
 

25 96 20 s 
50  20 s 
72 40 s 

Cool-down 1 4 ∞ 

Then, the amplified products were again purified through Sephadex columns and evaporated 
completely. The pellet was resuspended in 25 µl of Hi-Di™ (Applied Biosystems) and kept at 95˚C for 
5 min followed by cooling on ice for 5 min to denature the products. Finally, the samples of each 
cycle were loaded onto an ABI PRISM® Genetic Analyzer 310 (Applied Biosystems) according to the 
optimized sequencing program (table 6). 

Table 6: Sequencing program 

Module Injection time 
(s) 

Injection voltage 
(kV) 

Run voltage 
(kV) 

Run temperature 
(˚C) 

Run time 
(min) 

Seq. POP6 Rapid (1 ml) 20 2.0 15.0 50 36 

2.4.3 Sequencing data analysis 

The sequences were corrected using Chromas version 2.4.1 software and saved as a FASTA file. 
Then, the corrected sequences were analyzed and compared with Clustal-X version 2.1. Repeated 
sequences from each elution were selected and conformational analysis was done with the help of M-
Fold [26] under the required conditions (Temperature: 25˚C, Na1+: 157 mM, Mg2+: 0 mM). 
Furthermore, composition and distribution of putative Quadruplex-forming G-Rich Sequences 
(QGRS) in the selected sequences were identified by the web-based QGRS mapper [27]. 

 2.5 Affinity and specificity studies of selected aptamers via SPR 

All the affinity and specificity studies of the selected aptamers were performed in a Biacore™ T200 
(GE Healthcare, Diegem, Belgium) system at 25˚C with a four flow cell (FC) streptavidin (SA)-
modified sensor chip (GE Healthcare). Biotinylated aptamer sequences and a BC-22 random ssDNA 
sequence were purchased from IDT (table 7). The random ssDNA sequence was selected since it had 
a different secondary structure in comparison with the selected aptamers, as defined by M-fold. Based 
on the secondary structure difference, it was assumed that the random sequence is not able to bind E2.  

Table 7: The sequences of the biotinylated aptamers and BC-22 random ssDNA 

Probe Sequence 
Aptamer sequence 1 5’-Biotin-TTT TTT TTG TGT GTG AGA CTT CGT TCC GGC GAT GGG GTA GGG 

GGT GTG GAG GGG CCG GAC GGA GGG GCA GCA AGG CAT CAG AGG TAT-3’ 
Aptamer sequence 2 5’-Biotin-TTT TTT TTG TGT GTG AGA CTT CGT TCC CCC GGT CGG TGG GGT 

AGG GGG CGT GGA GTC ACC GGG GGG GCA GCA AGG CAT CAG AGG TAT-3’ 
BC-22 random 
ssDNA sequence 

5’-Biotin-TTT TTT TTT TAG CAG CAC AGA GGT CAG TTC GCC TGT AAG GTG 
GTC GGT GTG GCG AGT GTG TTA GGA GAG ATT GCC CTA TGC GTG CTA 
CCG TGA A-3’ 
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2.5.1 SA-modified sensor chip immobilization 

Via the immobilization wizard, the random ssDNA sequence was immobilized on FC 1 and 3 
(reference flow cells), while the biotinylated aptamer sequences 1 and 2 were immobilized on FC 2 
and 4 (active flow cells), respectively. The immobilization running buffer was 1× HPS-EP+ (0.1 M 
HEPES, 1.5 M NaCl, 30 mM EDTA, and 0.5% v/v Surfactant P20) enriched with 350 mM NaCl. The 
immobilization wizard was composed of a preliminary washing step of all FCs with a solution 
containing 1 M NaCl and 50 mM NaOH and an immobilization step with 4 µl of 0.1 mM biotinylated 
sequences in 124 µl running buffer. Normalization of the detector was done with 70% glycerol (GE 
Healthcare). We aimed for an immobilization response of 2000 Response Units (RU) for all four FCs.   

2.5.2 Affinity analysis of aptamers to E2 

A serial dilution of E2 (Sigma-Aldrich) in 1× PBS containing 10% ethanol (0, 0.098, 0.195, 0.391, 
0.781, 1.563, 3.125, 6.250, 12.500 and 25.000 µg/ml) was introduced to all the FCs of the 
immobilized sensor chip via a programmed wizard of the SPR system for small molecule studies. The 
method included a surface regeneration step with 5 mM NaOH, a washing step with 1× PBS 
containing 10% ethanol as running buffer, five start-up runs with running buffer, a first solvent 
correction step, all the E2 concentrations followed by a regeneration and washing step between each 
one, and a second solvent correction step. Duplicate measurements were performed for the E2 
concentrations of 0 and 6.25 µg/ml. The flow rate and injection time were set at 60 µl/min and 120 s, 
respectively, while the dissociation time and stabilization time were both 60 s. The surface of the 
sensor that was saturated by target molecules was regenerated via the surface regeneration steps, 
while a solvent correction step was performed to allow to subtract the solvent effect of the samples 
from the response signal. Because 1× PBS containing 10% ethanol was the running buffer in this 
experiment, a sample series of 1× PBS containing a concentration range of ethanol between 9-11.6% 
was prepared for solvent correction (table 8). 

Table 8: Solvent correction samples containing 1× PBS and different concentrations of ethanol 

Vial 1 2 3 4 5 6 7 8 

1× PBS + 9% ethanol (µl) 0 200 400 600 800 1000 1200 1400 

1× PBS  + 11.6% ethanol (µl) 1400 1200 1000 800 600 400 200 0 

Total volume (µl) 1400 1400 1400 1400 1400 1400 1400 1400 

Final ethanol percentage (%) 11.60 11.23 10.86 10.49 10.12 9.75 9.38 9.00 

2.5.3 Specificity analysis of aptamers 

Different cholesterol derivatives, including 17α-ethinylestradiol, androstenedione, cholesterol, 
cortisone, deoxycholic acid, E2, estrone, and testosterone (all Sigma-Aldrich) were dissolved in 1× 
PBS containing 10% ethanol to prepare 6.25 µg/ml concentration, while a blank sample was used for 
each chemical. All the samples were introduced into all the FCs of the immobilized sensor chip 
according to the specifications in the small molecules method wizard. All the steps of the small 
molecules method wizard were as described in section 2.5.2, except for using only 2 different 
concentrations (blank and 6.25 µg/ml) per cholesterol derivative. All the measurements were 
performed in duplicate.   
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2.5.4 SPR data analysis 

All the obtained SPR results were analyzed from real-time sensorgrams generated by the 
BIAevaluation 2.1 software. The sensorgrams were generated via subtracting the response of 
reference FC from active FC: FC 2-1 and FC 4-3.  
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Screening for putative QGRS in sequences 1 and 2 was done with QGRS mapper. The web-based 
program evaluates the QGRS in a sequence for its likelihood to form a stable G-quadruplex by a 
scoring system (G-score). QGRS sequences with a higher G-score will make better candidates for G-
quadruplexes. A G-score is calculated based on the potential number of G tetrads in the QGRS [27]. 
Table 11 shows the part of the sequence that is involved in quadruplex formation and its given G 
score for sequence 1 and 2. The obtained data for sequence 1 show a QGRS sequence with a length of 
29 nucleotides and a G-score of 31. Two QGRS sequences of 29 and 21 nucleotides in length, which 
have a G-score of 21 and 14, respectively, were estimated for sequence 2. The number of G tetrads in 
the G-quadruplex is defined by the number of G bases in groups, which are outlined by boxes in 
QGRS sequence in table 11. Therefore, 3 G tetrads were detected for sequence 1, while 2 G tetrads 
were defined for both G-quadruplex possibilities of sequence 2. It is important to note that the greater 
the numbers of G-tetrads, the more stable the quadruplex, and the higher the G-score [27]. Thus, the 
quadruplex of sequence 1 is more stable than those of sequence 2. In another point of view, the 
position of the G groups involved in the quadruplex formation can be located in the M-Fold structure 
of each sequence. The positions of the G groups in sequence 1 are situated in the axial ring, shaft and 
reverse primer binding site. While, for the first possible G-quadruplex of the sequence 2, the groups 
are in the axial ring and shaft, and for the second possible G-quadruplex of the sequence 2, they are 
located in the reverse primer binding site and leaf structure.      

Table 11: QGRS analysis for sequence 1 and 2(overlaps not included).  

Sequence Position 
(Nucleotide 
Number) 

Length 
(Nucleotides) 

QGRS Sequence G-Score 

1 32 29 GGGTAGGGGGCGTGGAGTCACCGGGGGGG 31 
2 27 29 GGGGTAGGGGGTGTGGAGGGGCCGGACGG 21 

57 21 GG GGCAGCAAGGCATCAGAGG 14 

3.5 Affinity and specificity studies of the selected aptamers 

Measuring the efficacy of the selected aptamers for E2 and their ability for specific binding to the 
target molecule is an important step in this thesis project. Attaining this goal is possible via affinity 
and specificity studies. Obtained results of these studies will direct the project to use the aptamers in 
the fabrication of a novel prototype E2 aptasensor. The Biacore SPR system is well suited to carry out 
qualitative studies to confirm the specificity of interactions as well as measurements for affinity, 
kinetics, and concentration determination [32, 33].   

From the conformational studies and QGRS analysis of the selected aptamers described in section 3.4, 
it was apparent that the 3’ ends of both selected sequences have a higher G-content than the 5’ 
extremities, which possibly means that this part of the sequences is more involved in secondary 
structure formation and binding to the target molecule. For this reason, 5’-biotinylated versions of 
both aptamers were used for immobilization on SA-modified SPR sensor chips. Based on the Biacore 
Sensor Surface Handbook, an SA sensor chip is a glass slide coated with a thin layer of gold with a 
3D-matrix of carboxymethylated dextran covalently attached to it (figure 16). To this dextran, SA is 
bound. SA can be used to capture biotinylated ligands with high efficiency. The affinity of SA for 
biotin is very high with a dissociation constant (KD) of around 10-15 M [34], so that the ligand is in 
practice permanently attached to the surface. 
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Figure 16: Schematic illustration of the structure of the SA sensor chip surface. A 3D-matrix of carboxymethylated dextran 
is covalently attached to a thin layer of gold. Onto this, SA molecules are attached, that serve as anchors for biotinylated 
ligands. 

Successful immobilization of a biotinylated unspecific sequence (BC-22) on the reference FC 1 and 3, 
as well as biotinylated aptamer sequences 2 and 1 on the active FC 2 and 4, respectively, is shown in 
table 12. The targeted ligand response (RL) was set at 2000 RU. This value was selected based on the 
previous pilot studies on aptamers using SA chips. To explain the importance of the selected RL value 
on analyte concentration measurements, the Biacore Concentration Analysis Handbook illustrates that 
the analyte binding response for a given concentration seems to be related to the level of immobilized 
ligand, so that a high immobilization level can enable measurements of lower analyte concentrations. 
In addition, high levels of immobilized ligand ensure rapid binding of analyte and favor mass-
transport limited binding, making concentration measurements less dependent on the affinity of ligand 
for analyte. On the other hand, the level of immobilized ligand may need to be kept lower in some 
cases. In the case of ligands such as aptamers, because they are large molecules and their binding 
ability is due to formation of their 3D structure on the surface, high levels of immobilized ligand 
(dense immobilization) can result in ligand crowding over the surface, and hence lack of space to 
make their secondary structure. This situation can limit the observed response, and hence the dynamic 
range due to a low number of active ligands. The analyte binding capacity of the ligand-functionalized 
surface will depend on the immobilization level and activity of ligand [5, 35].  
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The SPR response after analyte binding correlates with changes in mass concentration on the sensor 
chip surface, and therefore depends on the molecular weight (mass) of the analyte in relation to the 
number of ligand sites on the surface. Rmax describes the maximum analyte binding response to the 
surface ligands in RU. The theoretical Rmax is calculated from equation 1:  

Rmax = (analyte MW/ligand MW) × RL × Sm                                              Equation 1 

where MW is the molecular weight (mass) of the ligand and analyte, RL is the amount of immobilized 
ligand in RU (ligand response), and Sm is the stoichiometry as defined by the number of binding sites 
on the ligand for the analyte [35]. The calculated theoretical Rmax for active FC 2 and 4 were 19.89 
and 20.34 RU, respectively (see table 12). The MW of analyte and ligand were 272 and 28710 Dalton 
(Da), respectively, and the stoichiometry was 1.  

Table 12: Obtained RL after immobilizing all 4 FCs with either biotinylated unspecific ssDNA or aptamer sequences. The 
targeted response of 2000 RU was successfully reached for all 4 FCs. 

Ligand RL (RU) Rmax (RU) 

FC1 (BC-22) 2047.8 - 

FC2 (Sequence 2) 2099.7 19.89 

FC3 (BC-22) 1956.1 - 

FC4 (Sequence 1) 2147.3 20.34 

3.5.1 Affinity study of aptamers 1 and 2 for E2 

An affinity study of the aptamers for the analyte E2 was performed via a pre-programmed small 
molecule method including solvent correction, as stated in section 2.5.2. Generally, when working 
with low molecular weight analytes dissolved in a solvent, to improve the response value, a solvent 
correction is necessary. Using solvents like ethanol in the buffer can result in a different response for 
the reference FCs in comparison to the active FCs. The effect of the solvent on the reference FC, 
which probably has more empty spaces, is totally different than on an active FC without any or with 
less empty spaces. Based on the suggested protocol for a Biacore system by the company, to check if 
this solvent effect takes place, different concentrations of the solvent are run over the chip during the 
solvent correction cycles. If there is no difference between reference and active FCs, and so no 
solvent effect, the actual reference response value will be around zero, and no correction is necessary. 
However, when a solvent effect exists, the actual reference response value is different from zero, so 
correction is necessary. The concentrations used are summarized in table 8. Figure 17 shows the first 
and second solvent correction step for FC 2-1 and FC 4-3. Subtraction of the response of the reference 
FCs, or the blank, from that of the corresponding active FCs (actual response) helps to eliminate 
systematic variations in the response and improves the robustness of the assay. Curves in blue and 
purple refer to FC 2-1, while the green and gray ones refer to FC 4-3, for solvent correction step 1 and 
2, respectively. Both solvent correction steps for FC 2-1 show a regular response pattern around zero 
with increasing ethanol concentration. The responses for FC 4-3 are disordered and deviated from 
zero, and the curves of both solvent correction steps are not similar. Response values around zero for 
similar curves of FC 2-1 seem logical, since the reference and the active FCs are occupied by either 
unspecific ssDNA or aptamer sequences, respectively. Thus, the open spaces for both types of FC are 
probably equal, and as a result the solvent effect on both FCs will be the same. Although analogous 
results were expected for FC 4-3, the results, which show responses deviating from zero with non-
conforming curves, can be explained by an artifact due to delayed measurement of the response of the 
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same solvent sample in serial FCs. The vertical lines in figure 17 indicate that all the measured 
response values of the E2 samples are situated in between of these two lines, which indicates that all 
measured values are in the solvent correction range (9-11.6%). This fact confirms that all E2 samples 
were dissolved in 10% ethanol, correctly.  

 

Figure 17: First and second solvent correction steps for FC 2-1 and FC 4-3. Blue and purple refer to FC 2-1, while green 
and grey refer to FC 4-3, for the first and second step, respectively. 

Typically, a kinetics or affinity study determines whether a ligand-analyte complex forms or 
dissociates within a certain time span. The kinetics of a reaction is described by association (Ka) and 
dissociation (Kd) rate constants. Ka is referred to as the rate at which a complex is formed, while Kd 
is the rate at which a complex dissociates. Affinity indicates how much ligand-analyte complex is 
formed at equilibrium, which gives an idea about the complex strength or stability. When the 
association and dissociation rates are too fast, which often is the case for small molecules, calculation 
of these kinetic rate constants is not possible. The equilibrium dissociation constant or affinity 
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Combining the obtained results in SPR with the structural analysis of the different molecules confirms 
a structural similarity, especially in the phenolic group A (red circle), for 17α-ethinylestradiol, E2, and 
Estrone. A high affinity to chemicals with a phenolic group A indicates that this part of the molecule 
acts as the most important epitope (binding site) for the selected aptamers. This cross-reactivity of the 
aptamers was expected considering the structural difference between E2 as the target and 
Nortestosterone as the counter molecule during the SELEX. The differences in response values 
between binding and non-binding chemicals to sequence 1 and 2 can be ascribed to the number of 
double bonds in ring A, which has an effect on the molecular structure of ring A from flat with 3 
double bonds (aromatic ring) in 17α-ethinylestradiol, E2 and Estrone, to boat- or chair-shape with no 
double bonds in Deoxycholic acid and Cholesterol. Testosterone, Androstenodione, and Cortisone 
with a ring A containing one double bond and a ketone group also showed a low binding response to 
sequence 1 and 2. Furthermore, the specificity of sequence 1 and 2 for 17α-ethinylestradiol, E2 and 
Estrone can also be explained by the existence of CH3 groups near ring A in Deoxycholic acid, 
Cholesterol, Testosterone, Androstenodione, and Cortisone, by the presence of a number of electron 
pushing atoms, such as oxygen, which can lead to a different charge distribution over the molecules, 
as well as by the size of the side chain attached to ring D (blue circle). Comparing the specificity of 
the selected aptamers in this project with the Kim et al. aptamer shows that, because of their epitope 
specificity, our sequence 1 and 2 are more advantageous and reliable than the Kim et al. aptamer with 
a unclear epitope specificity.  
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4. Conclusion 

This thesis project sprung from the prototype E2 aptasensor introduced by Kim et al. (2007), and was 
aimed to develop a new SELEX process for the selection of E2-aptamers in an optimized buffer 
composed of PBS and 10% ethanol, while Nortestosterone was used as counter molecule. It was 
hypothesized that such a SELEX can select aptamers with a high affinity and specificity to E2, 
especially for its hydroxylated aromatic ring A (phenolic group), according to the structural difference 
between E2 and Nortestosterone. Moreover, it was assumed that optimization of the buffer conditions 
for SELEX will allow, on the one hand, adequate dissolving of E2, and on the other hand, the 
selection of aptamers in experimentally realistic conditions. It was expected that selected aptamers in 
such realistic conditions will show lower unspecific binding and cross-reaction to molecules that are 
structurally similar to E2. Therefore, a more specific aptamer would be selected to fabricate a more 
efficient E2 aptasensor. 

As a first step, 12 iterative SELEX cycles were carried out on a pre-designed 80-mer ssDNA library, 
which was dissolved in the optimized buffer. After sequencing and structural analysis, the SELEX 
ended up with two aptamer molecules for E2.  

In the next step, both chemically synthesized biotinylated aptamers were immobilized on an SA-
modified SPR sensor chip for affinity and specificity analysis. Under experimentally realistic 
conditions (e.g. PBS with 10% ethanol buffer, at RT) both selected sequences 2 and 1 showed good 
KDs (0.947 vs. 7.666 µM, respectively), as well as a broad range of detection (0.36-11.47 µM and 
1.44-22.95 µM, respectively) for E2.  

Specificity studies indicated a high selectivity of both sequence 2 and 1 for cholesterol derivatives 
with a phenolic group A epitope (17α-ethinylestradiol, E2 and Estrone). In contrast to a previously 
selected 76-mer aptamer by Kim et al., this epitope selectivity of the aptamers is due to a SELEX 
process targeting the structural difference between E2 and Nortestosterone. This advantageous 
characteristic of our selected aptamers can give a highly reliable detection in complex samples.  

It is important to note that this is the first time that a prototype SPR-based aptasensor is fabricated for 
E2, while previous efforts by Kim et al. were unsuccessful. One of the most important challenges in 
this project was a low Rmax for both aptamers, due to the small molecular weight of E2. This low 
Rmax results in a low sensitivity of the system. To overcome this problem, further optimization of the 
system, such as immobilization level, flow rate, etc., is suggested. Also, application of innovative 
methodologies, such as strand displacement, can improve the situation. In this method, specific 
aptamers for the target molecule are hybridized with a complementary sequence that is attached on the 
sensor surface. Exposure to the target molecules results in the detachment of the aptamers from the 
complementary sequence while they are attaching to the target molecules. This indirect assay can 
result in an improved Rmax via displacement of the massive aptamer molecule instead of the binding 
of a small molecule. 

Furthermore, during this project an E2 sandwich assay with a secondary aptamer for E2 was 
performed in an attempt to increase the sensitivity and decrease the detection limit. The secondary 
aptamer was previously selected at the biosensor group of Hasselt University. The secondary aptamer 
was selected during iterative SELEX cycles for E2, while Dexamethasone was used as the counter 
molecule. Based on structural differences of E2 and Dexamethasone, it was assumed that the 
secondary aptamer probably can bind to a different epitope of E2 in comparison with the immobilized 
aptamers 1 and 2 on the sensor chip. In this assay, it was hypothesized that a huge response can be 
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detected by sending E2 complexed with the secondary aptamer over the sensor. The obtained results 
did not follow the hypothesis, and indicated that the secondary aptamer probably trapped the E2 
molecule completely, so the aptamer on the sensor surface could not bind to E2. Further experiments 
are suggested.  

As the last point, it is important to state that optimization of such a new SELEX in this thesis will 
allow to select various highly specific aptamers, each directed against a different epitope of E2. These 
aptamers can be selected to develop an array system for the precise distinction between E2 and 
structurally similar molecules. Because of the ability of different E2 aptamers to each probe a specific 
part of the target molecule (epitope), an array of E2 aptamers is necessary for the accurate 
discrimination of E2 from other structurally similar molecules. Potentially, such a developed array 
system can be used by scientists and environmental care systems to reliably detect EDCs in complex 
environmental samples (e.g. waste water) as well as in biological samples. However, reaching these 
desirable goals requires solving problems such as selection of different aptamers that selectively 
recognize different epitopes of the target molecule, as well as testing their binding ability by changing 
the working conditions from experimental buffers to natural samples. When this is achieved, the array 
system can be patented and fabricated commercially.  

However, this thesis project was a great step forward to fabricate an aptasensor, for real-time 
detection and measurement of E2 in an easier, faster, and cheaper way in comparison with other 
techniques, but stills more research and development is necessary. 
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