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Abstract

We address the carpooling problem as a graph-theoretic problem. If the set of drivers is known in advance, then for any car

capacity, the problem is equivalent to the assignment problem in bipartite graphs. Otherwise, when we do not know in advance

who will drive their vehicle and who will be a passenger, the problem is NP-hard. We devise and implement quick heuristics for

both cases, based on graph algorithms, as well as parallel algorithms based on geometric/algebraic approach. We compare between

the algorithms on random graphs, as well as on real, very large, data.
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1. Introduction

Car pooling is a scheme according to which several people share a common vehicle simultaneously, in order to

reach common, or nearby destinations. The advantages of carpooling are multiple: it decreases the number of cars

on the roads, thus reducing traffic congestion, vehicle emissions, and noise. It saves fuel, time, parking spaces, and

decreases the number of accidents. In addition, it encourages sociability between people, and reduces stress in driving

to work.

The car pooling problem has been approached from diverse points of view, see for example2. The main challenge

is how to match between people to share a ride, and to decide who picks up whom with their vehicle, so that it will

be worthwhile both for the driver and all the passengers. Even if we assume that every driver can pick up at most one

other passenger, the problem is challenging.

In7,8 an automatic service for carpooling is described. People register their periodic trip executions (PTE), these

are periodic trips, where the base period is typically one week. Each PTE contains detailed information about the trip

such as origin and destination of the trip, earliest and latest departure and arrival times, the maximal detour distance

acceptable, and the capacity of the car, if it is available. In addition, each PTE also contains registration information of
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the person such as age, gender, educational level, special interests (like music type preferences), job category, driver

license availability, etc. The system suggests to individuals to share a car based on the details of their trips, as well as

their registration information. The assumption is that continued successful cooperation between people requires some

level of similarity. After the system makes its suggestions, together with appropriate financial incentives for the driver,

the individuals evaluate the proposed carpool, negotiate it, and possibly agree to cooperate. Once the individuals have

shared a trip, they can evaluate each other (e.g. was the driver/passenger punctual? Did the driver obey traffic rules?

Was the vehicle comfortable?) and give feedback to the system, for consideration in future trips.

In Section 2 we formulate the car-pooling problem as a graph-theoretic problem which was shown to be NP-

hard5. If the set of drivers (i.e. vehicles) are known and all we want to do is assign passengers to vehicles, the

problem becomes tractable from the theoretical point of view. However, since we are dealing with a very large

number (millions) of vertices, it is still challenging to find quick algorithms and heuristics which run efficiently. We

describe some of these algorithms in Section 3. In Section 4 we propose some heuristics and their results for the

general carpooling problem, and finally, in Section 5 we define some extensions to the carpooling problem defined so

far.

2. Problem formulation

Let V denote the set of Periodic Trip Executions, or for short, trips. Each trip is associated with an individual who

either drives her own vehicle, or travels as a passenger with some other driver. A loop (x, x) denotes the fact that x can

be a driver of her own vehicle. A directed edge (i, j) ∈ E, where i � j, has weight wi j representing the compatibility of

person i to get a ride with driver j (in driver j’s vehicle), i.e. it represents the probability that the negotiation between

them succeeds and i can travel in j′s vehicle. It takes into account the information related to both PTE’s i and j, as well

as registration information and feedback. The weight of a loop is zero. Each driver j also has a maximum capacity of

people that she can take in her vehicle (including herself), denoted by c j. A linear programming formulation of the

problem was mentioned in7.

A graph theoretic formulation was mentioned in5. We repeat here the definitions for the sake of completeness. A

directed star S r is a graph (K1,t) consisting of a center vertex r called the root and t vertices directed to it called leaves.

A star family is a collection Γ = {S r : r ∈ R} of vertex disjoint directed stars. Given a directed graph G = (V, E) and

a function c : V → N. A star family Γ = {S r : r ∈ R} is feasible if each star with root r contains in G a loop (r, r) and

its star-in-degree, including the loop, is at most c(r). A star partition in G is a star family that covers V(G), i.e. it is a

collection of vertex disjoint directed stars that cover V(G). Given a weight function w : E → R, the weight of a star,

w(S r), is the sum of the weights of its edges, and w(Γ) = ΣS r∈Γw(S r).

We remark that a directed star with root r may have in-degree one, in which case it is a single vertex v = K1 with a

loop, which we call the trivial star. Therefore, if every vertex in G has a loop, then G has a feasible star partition, the

trivial one, consisting of |V | trivial stars.

The carpooling problem can be formulated as follows:

Problem 2.1. Let G = (V, E) be a directed graph with edge weights w : E → R, and let c : V → N. Find a feasible
star partition Γ = {S r : r ∈ R} of maximum weight.

Solution to problem 2.1 guarantees maximum compatibility between people and their priorities for “taking rides.”

It does not guarantee, however, that the number of vehicles used is as small as possible. However, when wi j = 0 or 1

these problems are equivalent, as was shown in5.

Problem 2.2. Let G = (V, E) be a directed graph, and let c : V → N. Find a feasible star partition Γ = {S r : r ∈ R}
containing a minimum number of stars.

We have shown5 that Problem 2.2 is NP-hard even for the special case where c : V → N is restricted to c(v) ≤ 3,

i.e. each car can hold two passengers and the driver. Assume, now, that c(v) ≤ 2 for all v ∈ V . Then whenever we

have a cycle of length two, (i.e. edges (x, y) and (y, x) in the graph), we may, without loss of generality, remove the

smaller weight edge (or arbitrarily one edge, if they are of equal weight), and remain with a directed graph with no 2-

cycles. The problem is then reduced to finding a maximum weight matching (or maximum cardinality matching) in a
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general graph. These problems are well known and have solutions with algorithmic complexity O(|E||V | log |V |)4 and

O(
√|V ||E|)12, respectively. For graphs with millions of vertices the computing time is too large, and these algorithms

are not practical. We will therefore implement heuristic algorithms, and incremental algorithms which we describe in

Section 3.

3. The bipartite graph case

Assume now that the set of drivers is known. In other words, we are given set R of roots, and we are looking for a

feasible star partition Γ = {S r : r ∈ R} of maximum weight.

Problem 3.1 (Weighted Bipartite). Let G = (V, E) be a directed graph with edge weights w : E → R, let c : V → N,
and let R ⊆ V be a set of potential roots. Find a feasible star family Γ = {S r : r ∈ R}, such that the total weight of the
edges of the stars is maximized.

In this problem all edges in the original graph connecting two passengers or two drivers, are irrelevant, and can be

deleted. Hence the graph is reduced to a bipartite graph G = (X ∪ Y; E), where X denotes the set of passengers, or

non-drivers, and Y denotes the set of drivers. We would like to match as many vertices in X to Y under the capacity

constraints of the vertices in Y . When the graph is weighted we would like to maximize the total weight of the matched

edges. We remark that when the capacities of the vertices in Y are greater than two, it is not a matching we are looking

for, but a (g, f )- factor; in-other-words, we are looking for a maximum weight subgraph H that meets every vertex in

X in at most one edge, and every vertex y in Y in at most c(y)−1 edges (c(y)−1 is the maximum number of passengers

y can carry). This problem can be reduced to a matching problem by making c(y) − 1 copies of each vertex y in Y ,

say y1, y2, ..., and connecting each yi to all the neighbors of y. It is not difficult to verify that a matching in the new

graph corresponds to a (g, f )- factor in the original graph of the same weight, and vice-versa. We assume, therefore,

that we are faced with a maximum weight bipartite matching problem. The matching problem in bipartite graphs can

be solved in O(
√|V ||E|)6. In the weighted case, the problem is also known as the “assignment problem”, and can be

solved in O(|V |2 log |V |+ |V ||E|)3. These complexities do not allow us to run the algorithm on very large graphs, hence

heuristics and incremental algorithms are desirable.

3.1. Greedy Solutions

The greedy heuristics for finding a maximum weight matching in a graph (bipartite, or general) is as follows:

Algorithm Greedy Matching
1. Initialize: Sort the edges in E in decreasing order of weights, E′ ← E, M ← ∅
2. while (E′ � ∅)
3. do Let e = (x, y) be the first edge in E′
4. M ← M ∪ {e}
5. E′ ← E′ \ {e; e has an endpoint in x or y}
6. return M

The complexity of the greedy matching algorithm is the same as the complexity of sorting the edge weights, i.e.

O(|E| log |V |). If the graph is un-weighted (i.e. the edge weights are 0 or 1), then the greedy matching runs in time

O(|E|).
Performance of the greedy matching:
Theoretically, the weight (or cardinality) of the greedy matching algorithm is at least half the weight (or cardinality)

of the optimal matching, where equality can occur. This can be easily proved, since in the worst case, every edge

picked by the greedy algorithm destroys two edges of the optimal solution. The surprising fact is that when random

graphs were generated, with random weights according to a normal distribution, the greedy heuristics performed

extremely well! The ratio of the greedy algorithm to the optimal algorithm was on average better than 0.96.

Data Generation: 1000 random bipartite graphs were generated, each graph of size 500 by 500 vertices with 10%

edge density. Similar results were found for 50% edge density. The results are given in Figure 1.
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Fig. 1. Solution quality of the greedy algorithm for maximum weight matching on random bipartite graphs with 1000 vertices

3.2. Incremental Solutions

The weighted bipartite matching problem can be described by the following linear program:

Maximize
∑
i j

wi jxi j

Subject to

for all i
∑

j

xi j = 1 (1)

for all j
∑

i

xi j = 1 (2)

for all i, j xi j ≥ 0 (3)

The dual LP is given below:

Minimize
∑
i

ui +
∑

j
v j

Subject to

for all i, j ui + v j ≥ wi j (4)

for all i ui, vi ≥ 0 (5)

The variables xi j correspond to the edges (i, j) in the bipartite graph, and xi j = 1 if and only if the edge (i, j) is

in the matching. Otherwise, xi j = 0. Without loss of generality we assume here that the bipartite graph is complete,

by adding edges of weight zero to the original graph. The dual variables, ui and v j correspond to the vertices of the

bipartite graph. We assume now that we have an optimal, or close to optimal solution to the matching (or weighted

matching) problem in a given bipartite graph G = (X∪Y, E). Suppose a small fraction of the edges changes. They can

appear, or disappear, or their edge weight may change. We call the new graph the perturbed graph - G′. We address

the following problems: 1. Can we estimate how far the solution of the new, perturbed graph is from the solution of

the original graph? 2. Can we quickly find an accurate solution, or an estimated solution to the perturbed graph, based

on a solution to the original graph? (without starting the computation from “scratch”)

To address Problem 1, assume we are given optimal solutions x0
i j and u0

i , v
0
i to the LP and the Dual LP problems,

respectively, for a given graph G with edge weights vector w. Assume that a new weight vector w1is given by
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w1
i j = wi j + εi j, and let x1

i j, and u1
i , v

1
i be optimal solutions to the new weight vector w1. A straight forward upper

bound to the solution of the new problem with perturbed weights can be obtained by defining: u′′i = u0
i +max j εi j and

v′′i = v0
i .

It is not difficult to see that u′′i and v′′i is a feasible covering to the new problem, and hence we have the bound

∑

i j

w1
i j x

1
i j ≤
∑

i

u′′i +
∑

j

v′′j =
∑

i

u0
i +
∑

i

max
j
εi j +

∑

j

v0
j =
∑

i j

wi jx0
i j +
∑

i

max
j
εi j (6)

Similarly, we can define u′′i = u0
i and v′′j = v0

j +maxi εi j to obtain another feasible covering to the new problem,

and another upper bound to the weight of x1.

∑

i j

w1
i j x

1
i j ≤
∑

i

u′′i +
∑

j

v′′j =
∑

i

u0
i +
∑

j

v0
j +
∑

j

max
i
εi j =

∑

i j

wi jx0
i j +
∑

j

max
i
εi j (7)

The bounds in the RHS of equations (6) and (7) are not necessarily the same and the smaller bound is clearly a

better upper bound.

We can obtain even better bounds for the optimal matching problem with the perturbed edge weights by improving

the coverings u′′i and v′′j defined above. One way to do that is by defining

u′′i = u0
i +max j{εi j − (ui + v j − wi j)} and v′′i = v0

i .

This bound is better than the previous bound since ui + v j − wi j ≥ 0 for all i, j.
The vectors u′′i and v′′j are still a feasible covering to the perturbed problem, and we get the improved bound

∑

i j

w1
i j x

1
i j ≤
∑

i

u′′i +
∑

j

v′′j =
∑

i

u0
i +
∑

i

max
j
{εi j−(ui+v j−wi j)}+

∑

i

v0
i =
∑

i j

wi jx0
i j+
∑

i

max
j
{εi j−(ui+v j−wi j)}(8)

.

Similarly, we can change only the vector v and leave the vector u as it is, i.e. define:

u′′i = u0
i and v′′j = v0

j +maxi{εi j − (ui + v j − wi j)} to obtain another feasible covering to the new problem.

So far we have chosen an initial vertex covering u′′i and v′′j by updating either u or v. Another approach would be

to update both the vectors u and v by first finding a minimum vertex cover to the unweighted problem defined by the

set of edges in G which are not covered, with the perturbed weights, by u0
i and v0

i . In other words, consider only the

edges (i, j) for which εi j − (ui + v j − wi j) > 0. We run König’s algorithm (also known as the “Hungarian Algorithm”)

for finding a maximum cardinality matching and minimum cardinality covering u1, v1 for the subgraph spanned by

these edges. Now we define

u′′i = u0
i +max j{εi j − (ui + v j − wi j)} and v′′j = v0

j +maxi{εi j − (ui + v j − wi j)} only for vertices i, j for which u1
i = 1

and v1
j = 1, respectively. For vertices i (or j) which are not in the covering, i.e. u1

i = 0, (or v1
j = 0) we define u′′i = u0

i

(or v′′j = v0
j ).

To address Problem 2 we use the Kuhn-Munkres9,11 (K-M) algorithm. Assume we are given a maximum weight

matching and a minimum weight covering of G. This can be found using any graph-theoretic algorithm (like the

K-M algorithm), or by solving the LP described above. We now update the covering so it will be feasible for the

new perturbed graph G′. We use the upper bound estimates for a covering as described above. Once we have an

updated covering of G′, we update the “equality subgraph” (as in the K-M algorithm), and continue running the K-M

algorithm until an optimal solution is found.

Practical results: A random bipartite graph with 400 by 400 vertices and 20% edge density was generated. The

graph was perturbed 40 times with a 5% change of the edge weight, in each generation. The solution for each

generation was calculated by both the standard K-M algorithm and and three different incremental K-M algorithms.

The results, presented in Figure 2, showed a significant improvement in the running time of the incremental K-M

compared to the running time of the standard K-M. Similar results were found for 50% edge density, and for the other

incremental algorithms. When 20% of the edges were changed in each generation, there was no advantage to using

the incremental K-M algorithm.
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Fig. 2. Running time of the standard K-M algorithm vs. incremental K-M algorithm for maximum weight matching

3.3. Algebraic Approach

The Kuhn-Munkres algorithm is serial. For very large graphs, it is desirable to find an algorithm that can be run

in parallel, thus allowing substantial speedup. We now describe an iterative algebraic algorithm for solving the LP

described above, which is very easy to parallelize.

The standard simplex is defined by {y ∈ Rn | n−1∑
i=0

yi = 1, yi ≥ 0}. We observe that all the constraints in (1) and (2)

actually describe the standard simplex. This observation leads to a gradient projection algorithm. In each step, the

algorithm increases the entries of x in the direction of the gradient of the relevant objective function, and then projects

the rows and columns of x on the standard simplex (the gradient is trivial to compute, as we seek to optimize linear

functions). There are many simple and efficient algorithms for the projection onto the standard simplex1,10. The main

issue is choosing the order of the vectors which we project onto the standard simplex, since the projections are not

all independent; the projections of the rows are independent of each other and so are the projections of the columns.

However, projecting a column may violate some of the row constraints and projecting a row may violate some of

the column constraints. Hence, we repeat this step until x converges to a doubly stochastic matrix, i.e., a matrix that

satisfies all rows and columns constraints. In practice, this step is repeated only a few times (typically twice or three

times) until the desired convergence is reached. In the final step, we round x to a binary doubly stochastic matrix,

which represents the solution for the problem.

Algorithm Gradient projection to the standard simplex algorithm
Input: x ∈ Rn×n, w : x→ R, α ∈ R, δ ∈ R
1. Initialize: x0 = 0, k = 1

2. while α ≥ δ
3. do xk = xk−1 + αwi j

4. repeat
5. ∀i project row i of x onto the standard simplex

6. ∀ j project column j of x onto the standard simplex

7. until x converges to a doubly stochastic matrix

8. decrease α
9. k = k + 1

10. round xk−1 to a binary doubly stochastic matrix

11. return xk−1
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Practical results: A thousand random graphs, each with 2n vertices, were generated with edge probability 10
n and

weight function according to a normal distribution. We ran the experiments for n = 10, 50, 250, 500, 1000 on a serial

computer. The results are shown in Figure 3. In practice, the running time of the gradient projection algorithm is

much shorter, since the projections, which consume around 98% of the running time, may be computed in parallel.

The approach presented in this section is especially suitable to the incremental scenario (in which only a fraction of

the weights are changed), as one can initiate the iterative process at the previous value.

4. Heuristics for the general carpooling problem

We have mentioned in Section 2 that the general carpooling problem is NP-hard. We suggest here two heuristic

algorithms, a simplest greedy heuristic and a more complex one. We will compare between the algorithms in terms of

running time, as well as their output.

The input of the algorithms is a directed graph G = (V, E), weight function w : E → R, capacity function c : V → N

denoting the capacity of the vehicle associated with the vertex and a set of potential drivers who have vehicles, D ⊆ V .

Vertices not in D do not have a vehicle and must be assigned as passengers in other vehicles. The output of the

algorithm is a set of edges H which is a feasible star family, and a set U of vertices not covered by the edges in

H. The vertices (PTE’s) in U will either take their own vehicle (if they have one), or will remain unmatched by the

algorithm. The following considerations are taken into account in the second heuristic algorithm: (i) It is preferable to

match non-drivers before potential drivers, since potential drivers, if unmatched, can always drive their own vehicle,

(ii) Since we are trying to minimize the number of vehicles, it is preferable to assign passengers to existing vehicles,

than to ’new’ vehicles, (iii) If a new vehicle is used, it is preferable to use a vehicle with larger capacity, than to use

a small capacity vehicle. The complexity of the basic greedy algorithm is the same as the complexity of sorting the

edge set - O(|E|log|V |). The complexity of the second greedy algorithm is linear O(|V | + |E|).
Algorithm Basic greedy carpooling algorithm
Input: G = (V, E),w : E → R

+, c : V → N,D ⊆ V
1. H ← ∅
2. sort E by their weights in decreasing order

3. for each e = (u, v) ∈ E
4. do if d+H(u) = d−H(u) = 0 ∧ v ∈ D ∧ d−H(v) < c(v) − 1

5. then H ← H ∪ {e}
6. return H

Algorithm Greedy carpooling algorithm
Input: G = (V, E), w : E → R, c : V → N, D ⊆ V
1. Initialize: Perform ‘bucket sort’ on the edge weights. Sort the vertex set V so that vertices not in D precede

vertices in D, H ← ∅, U ← ∅
2. for all buckets in decreasing order

3. for all u ∈ V
4. do if d−H(u) = d+H(u) = 0 {i.e. u is not assigned to any car}
5. then choose v ∈ N+G(u): higher priority for v with 0 < d−H < c(v) − 1, else prefer v with

d−H(v) = d+H(v) = 0 and higher capacity

6. if such v exists

7. then H ← H ∪ {(u, v)}; update d+H(u), d−H(v)

8. V ← V\{u}
9. else {no such v exists}
10. if the current bucket is the last one

11. then U ← U ∪ {u}
12. return H,U

Practical results: The data was generated by FEATHERS, an activity based model simulation system, for the

region of Flanders in Belgium7. We compared the Basic greedy algorithm to the Greedy algorithm using 2,4,8 and 16
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Fig. 3. Solutions quality of the gradient projection algorithm and greedy algorithm compared to the optimal solution for maximum weight matching

in bipartite graphs

buckets. The results, presented in Table 1, show that the Greedy carpooling algorithm outperforms the Basic greedy

carpooling algorithm in all three parameters of running time, solution weight, and the number of drivers. We also see

that using 8 or 16 buckets is faster than using 2 or 4 buckets. This may happen due to the fact that choosing, in line

5, v ∈ N+G(u) in the current bucket is faster when the bucket is smaller, i.e. when more buckets are used, and once v is

chosen, vertex u is deleted together with all edges incident to it.

Algorithm Running time Solution weight Number of drivers

Basic greedy 3.588 39627.3 177577

2-Buckets 2.215 40450.4 174011

4-Buckets 2.168 40450.4 174011

8-Buckets 1.467 40596.8 175383

16-Buckets 1.482 40550.1 175742

Table 1. The running time and solution quality of the Greedy and the Basic greedy algorithms

5. More carpooling problems

1. Carpooling with aversion: This is an extension of Problem 3.1, where in addition, we are given an aversion
function a : V \R×V \R→ [0, 1] which signifies the amount of aversion passengers have to each other, in other

words, passengers who do not wish to share a car ride. Can we find an assignment of passengers to a given set

of vehicles by not allowing passengers with high aversion factor to share the same vehicle? We have shown that

this extended problem is NP-hard. The reduction is from the minimum vertex coloring problem.

2. Carpooling with attachment: Same as the problem above, but here we have an attachment function which

signifies the amount of attachment passengers have to each other, in other words, passengers who prefer to share

a car ride, or insist on sharing a car ride (so they can work together, etc.) We have shown that this problem is

NP-hard by reduction from the knapsack problem.

3. Carpooling with VIP passengers: Same as Problem 3.1 above, but in addition, some passengers insist on being

alone in the car (except for the driver), or with no more than a given number of passengers. This problem is also

NP-hard by reduction from the knapsack problem. We remark that this problem is equivalent to the carpooling

with attachment problem since we can identify passengers who wish to be together as a unique passenger, who

takes two seats.
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6. Conclusion

We have defined the carpooling problem as a graph-theoretic, NP-hard problem. If the drivers of the cars are known

in advance then the problem is tractable and is of complexity O(|V |3). We found that the greedy linear algorithm gives

close to optimal results in this case. We have also found and implemented quick and efficient incremental solutions for

a ‘perturbed’ graph, where some of its edges change. In addition, we found and implemented a fast heuristic algorithm,

based on an algebraic approach, which can be parallelized for very large graphs. We suggested and implemented on

real data several heuristics for the general intractable problem using linear and almost linear heuristics, and compared

between them. Finally, we defined extensions of the carpooling problems where the drivers are known, by allowing

the passengers to indicate their priorities, and showed that these extensions are NP-hard.
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